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Abstract:  Without a proper restriction on mappings, virtually any 
system could be seen as implementing any computation. That 
would not allow characterization of systems in terms of 
implemented computations and is not compatible with a 
computationalist philosophy of mind. Information-based criteria 
for independence of substates within structured states are 
proposed as a solution. Objections to the use of requirements for 
transitions in counterfactual states are addressed, in part using the 
partial-brain argument as a general counterargument to neural-
replacement arguments.1

1 INTRODUCTION

Intuitively, knowing that a physical system implements a given 
computation tells us that the structure and dynamics of some part 
(or subsystem) of the system are similar ‘in some way’ to those 
that define the computation. To make this precise and meaningful, 
well-defined criteria must be used for such implementations. Each 
computation that a system implements then provides a partial 
characterization of the structure and dynamics of the system.

The primary application that requires that such characterization 
of systems must in principle be possible is computationalist 
philosophy of mind. That is the idea that there are some 
computations that, if implemented, give rise to mental states either 
inevitably or due to natural laws.

Defining the exact criteria for implementation has proven to be 
a more difficult problem than it might at first appear, because 
without appropriate restrictions on how to map underlying 
systems to computations, even trivial simple systems could be 
seen as implementing virtually any computation. [1,2,3]

The relationship between physical systems and implemented 
computations is many-to-many: After all, many systems can have 
subsystems that are similar in some way, a given system can have 
many subsystems, and a given subsystem might have many 
aspects to its dynamics. The fact that a variety of physical systems 
would be able to implement the same computation is called 
multiple realizability. Although different mappings are associated 
with different computations, there is no role for observers’ 
preferences about which mapping to use for the question of 
whether or not a given computation is implemented by the system 
(since at least one successful mapping would be possible if it is), 
or when the whole spectrum of computations implemented by the 
system for all possible mappings is considered.

Along with the main proposal for implementation criteria, a few 
variant options will be suggested. Different options may be useful 
for different purposes, as different aspects of system structure and 
dynamics may be more important for each purpose; e.g. 
determining to what information-processing uses an analog 
machine can be put to as opposed to determining whether a 
computer system is similar enough to a system known to be 
conscious that it would have similar consciousness.
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An analogy for the use of such variant criteria is that a solid 
object has both a shape and a composition. One observer might 
say of the object “It is round”; while another observer might say 
“It is rubber”. Despite these different characterizations, neither 
property depends on any external observer.

The main proposal is intended to be the one capable of being 
applied to philosophy of mind, as well as for most general 
purposes that may arise, especially regarding digital computers. 
However, it is possible that a detailed computationalist theory of 
the human mind would call for a more analog-focused 
implementation criterion to appropriately characterize brain 
structure and dynamics.

2 NAÏVE CRITERIA FOR IMPLEMENTATION

The following criteria for implementation will be used as a 
baseline to which modifications will be added to avoid the 
problems with unrestricted mappings between the underlying 
system and the computation:

1) There must exist a mapping M between the states 
of the underlying system and those of the 
computation (known as formal states). A given 
underlying state maps to at most one formal state, 
and need not map to any formal state.

2) If the underlying system is (or were to be) in any 
state that maps to a state of the computation, then 
its time evolution must be such that the next 
different state of the computation that the 
underlying system state will be (or would be) 
mapped to (if any) is given by the appropriate 
transition rule of the computation.

The second criterion includes the requirement of proper behavior 
in counterfactual states, not just in actual states; this requirement 
was not always present in early ideas of implementation, and was 
part of Chalmers’ [1] counter to Putnam’s critique of the 
implementation concept [2]. This requirement leads to some 
counterintuitive implications that have been the basis for critiques 
of computationalism, as will be discussed below in sections 14-15.

Define a run of a computation as a pass through the sequence of 
formal states appropriate to the initial condition while 
implementing the computation. The system will be said to 
implement that run. To characterize what a system is actually 
doing, it is important to know what runs it implements; for 
example, applied to computationalist views of mind, runs of the 
same computation that are associated with different sequences of 
states could give rise to different mental states.

A run need not be unending.  If a system goes to an underlying 
state that is not part of the mapping and does not resume entering 
formal states, the run ends. A run of a computation can also end 
by entering a formal end state.

The verb ‘run’ may also be used as a synonym for ‘implement’ 
when referring to a computation. A computer is the part of the 
physical system that is mapped to the states of the computation.



3 SIMULATION PRINCIPLE

If the formal states for a computation are treated as though they 
were physical states and the transition rules for it as though they 
were physical laws, then one computation could be said to 
implement another.

One would expect the following simulation principle to hold, as 
it does so far for the above criteria: If a physical system 
implements computation #1, and computation #1 implements 
computation #2, then the physical system must also implement 
computation #2. In such a case, computation #2 is called a 
simulation, and computation #1 is called a virtual machine. The 
simulation principle should be interpreted as a description of a 
property of the implementation relation, rather than as an 
additional criterion, except when otherwise stated.

4 CLOCK-AND-DIAL FALSE IMPLEMENTATIONS

The traditional view is insufficient: A clock (something which 
reliably increments a non-repeating variable) and a stationary dial 
with sufficiently many states would implement any computation 
under the naïve criteria. The argument is summarized here; further 
details can be found in Chalmers’ paper [1]:

Map the initial state of the clock and the actual state of the dial 
into the initial formal state, and use that clock state and other 
possible dial states to extend the mapping to counterfactual formal 
states. For each subsequent clock state, map the clock and the 
chosen dial states to the proper subsequent formal states. In this 
way, any desired transition rule can be reproduced.

To introduce notation that will be useful later, this mapping can 
be represented in symbols as (C, D)  F, where C is a clock state, 
D is the dial state, F is the formal state of the computation, and 
“” means “maps to”. The dynamics for the clock can be 
represented as C(t+1) = C(t) + k, where k > 0; here t refers to the 
time at the initial step, and t+1 is the time at the next step. Since 
the dial doesn’t change, D(t+1) = D(t), and F(t+1) relates to F(t) 
according to the desired transition rule.

5 THE COMBINATORIAL STATE AUTOMATON

Chalmers [1] correctly noted that the lack of structure of 
computational states in the naïve criteria is what allows the clock 
and dial to implement any given computation; this illustrates that 
both structure and function are relevant to characterizing the 
nature of a system.

He proposed the Combinatorial State Automaton (CSA) as a 
type of computation that would resist inappropriate (invalid) 
mappings. It adds the following to the naïve criteria:

3) The formal state label is given as combination of 
substate values, specified in an ordered list.

This also has the advantage that ‘input’ is easily incorporated into 
the CSA concept by allowing some substates not to be covered by 
the transition rule, but rather to have values that can be 
determined by outside influences.

4) Each substate must be ‘independent’ of the others.  
Chalmers took this to mean that its value must 
depend on physical variables that are in a different 
region of space.

The above independence requirement prevents ‘clock and dial’ 
mappings from implementing computations with substates.

6 PROBLEMS WITH SPATIAL INDEPENDENCE

However, the CSA criteria do not rule out all of the obviously 
false implementations [1,5,6], as pointed out by Chalmers himself. 
Consider a system in which the information that determines the 
values of all of the substates is copied at the next time step into 
each of the spatial regions. To make a mapping such that this 
system would falsely be seen as implementing any computation 
(within the limits of the number of substates), just map the regions 
to the desired formal substates based on the transition rule.

This would require an exponentially growing memory capacity 
for each region, so it is not practical for long runs or big 
computations, and Chalmers left it at that as being sufficient until 
a proper fix is found. But the problem is far from insignificant: If 
not fixed, it is enough to trivialize the notion of implementation, 
and thus, invalidate computationalism.

In fact, it is not difficult to find examples of systems that would 
suffer from such false implementations. One such example is any 
system that performs a weighted sum of real numbers, such as a 
weighing scale does if more than one object can rest on the scale. 
Suppose there are N weights, each with twice the weight of the 
previous, which can be placed on the scale, each in a spatially 
distinct spot. The presence or absence of each weight then can be 
inferred from the total deflection of the scale. The position of the 
scale pointer can then be mapped to any desired one-bit function 
of an N-bit string. For example, a prime-check function that 
equals 1 if the N-bit string represents a prime number in base 2 
notation, and 0 otherwise, could be used in the mapping. What’s 
more, there is no need for the absence of a weight to correspond to 
a 0 and its presence to a 1; this can be different for each bit. Thus, 
the empty scale would ‘compute’ that 000100012 (seventeen) is a 
prime number. This is a computer with only two distinct time 
steps, but in any other sense it is a nontrivial computation. 
Clearly, this is a false implementation.

A second problem with the use of spatial separation as an 
independence criterion is that it is too closely tied to physics. It 
certainly would not be acceptable to use a physical property such 
as energy, for example, as part of the fundamental definition of 
what a system computes. It is understandable that time may play a 
role in the definition because a computation is an initial-value 
problem, and one can generalize the role of physical time to the 
evolution parameter in any mathematical model of an initial-value 
system; it is far less obvious how the idea of spatial separation 
could be similarly generalized.

Also, in quantum physics (assuming no collapse of the 
wavefunction, or in other words, the many-worlds interpretation 
(MWI)), macroscopic objects have approximately well-defined 
positions only relative to other objects. A system could then be in 
a macroscopic quantum superposition such that the spatial 
positions of objects would overlap in the overall wavefunction. It 
is not plausible that this would destroy a computation since the 
internal structure and dynamics of the system would still be, in 
many ways, much the same as in the classical case. e.g. A 
computer that finds prime numbers would still do so even if its 
wavefunction overall is a spatially spread-out function; measuring 
its position is not necessary. This argument holds even if the MWI 
is not true, because the definition of implementation, being a 
mathematical notion, must not depend on empirical physics.



7 STRUCTURED STATES

Before proposing a better notion of independence, another 
aspect of implementations of computations should be dealt with, 
and it will play a role in the criteria for valid mappings. While a 
CSA has structure in the form of the ordered list of substates, that 
may be a poor reflection of the structure of the underlying system, 
which could for example involve a function on a space of more 
than one dimension. While there is no reason that every 
implementation of a computation must reflect the full underlying 
structure, if implementations characterize both structure and 
function, it would make sense that some implementation 
mappings would reflect more structure than the simple ordered list 
of a CSA does.

Therefore, a computation will be specified by a structured set of 
variables (called substates), and a transition rule. Such a 
computation will be called a Structured State System (SSS). 
Substates must be independent in a sense to be defined below. 
Unless otherwise noted, all of the other naïve implementation 
criteria still apply.

The structured state variables may form an ordered list, or may 
have additional structure; for example, they may be arranged into 
a rectangular matrix. Any label that the identity of a state depends 
on will be referred to as an index; for example, for states f(x) 
which are a function on the space x, then for each value of x there 
is a different substate f(x), and ‘x’ is an index label.

The structured state framework allows for both analog and 
digital computations, including computations with a continuum of 
variables (a field). The transition rule may be stated as a 
differential equation involving time derivatives for an analog 
computation.

Substates may have no particular structural relationship to each 
other, in which case it will still be convenient to list them in an 
ordered list, but the lack of structure should be noted. It is also 
possible for more than one number to be considered part of a 
single composite substate.

Input substates have values not determined by the past-to-future 
transition rule for the time step being considered, and are possibly 
influenced by forces outside the scope of the computation. 
Usually they are defined as being before the transition, but after 
the transition, some substates could also be inputs if their values 
are not fixed by the transition rule and by the values of substates 
before the transition, e.g. a button that can be pressed by outside 
forces at any time. Any substate which has a value determined by 
those of past substates can be called an output and often serves in 
turn as an input for future time steps.

Transition rules can apply at the substate level, not necessarily 
based on a global time step, so it need not matter if states on one 
side of a computer complete a localized transition before those on 
the other side or vice versa. Thus, two otherwise identical 
spatially distributed computers traveling at opposite relativistic 
velocities could still implement the same computation.

In the following section, for convenience, the term ‘physical 
system’ will be used for describing the underlying system. 
However, it should be understood that one SSS may implement 
another, treating the formal states for the underlying computation 
in the same way as physical states are used in an implementation, 
and the transition rules for it as though they were physical laws.

A physical system is treated here as being itself an SSS, with a 
fixed state structure. For classical mechanics, the state structure 
could be the positions and velocities of the particles. For quantum 
mechanics it could be the wavefunction in the position basis, and 

for quantum field theory, the basis of field configurations that are 
functions of position. The criteria for implementation of 
computations could also be applied to mathematical structures as 
the underlying system, which have been proposed as the 
underlying basis of reality, e.g. by Tegmark [4].

8 BASIC INDEPENDENCE

The false implementations cited in section 6 above must be ruled 
out. Since the problems arise when the mapping rather than the 
values of underlying physical variables does the work of binning 
the combinations of substate values into the desired function, the 
allowed mappings must be denied access to the resources to do so. 
This suggests requiring limits on what information can be 
obtained from knowledge of the underlying variables that are 
mapped to a substate; that is the basis of the proposal given here, 
which is as follows:

BI #1)   The first rule for basic independence is thus that it 
must not be possible to determine the values of any of those 
substates (at the previous time step) that determined what the 
value of a given substate is at the current time step from 
knowledge of the physical states that are mapped to the formal 
value of the current substate and from knowledge of the system 
dynamics, except when the current formal value itself provides 
enough information.

BI #2)   In addition, the values of other substates at the same 
time step should not be revealed by knowledge of the physical 
variables that are mapped to a given substate. This provides the 
second rule for basic independence.

If the second rule were not required, then false implementations 
could be obtained in systems where a function of one physical 
variable is calculated, if the invalid mapping claims it is a function 
of many formal substates. For example, if variable A takes on 
integer values in the range (0,…,2N-1), it can be mapped to N bits, 
B1,…,BN. There are many such mappings. Let C be another 
variable and C(t+1)=f(A(t)), where t indicates one time step and 
t+1 the next. This might then falsely implement C(t+1)=g(B1(t),
…,BN(t)), where for example g could be a prime-checking 
function for base 2 numbers, where the mapping from A to the 
bits is chosen to make the values of g correspond to that function. 
To summarize, this example invalid mapping is:

      One variable  Many variables
    A(t)  [B1(t),…,BN(t)]

 C(t+1) = f(A(t))  g(B1(t),…,BN(t))
   Simple function of one #  Complex function of many bits

This second rule for basic independence is a generalization of 
Chalmers’ spatial independence criterion. It almost reduces to 
spatial independence in a case where physical variables depend on 
different spatial regions and do not contain the information needed 
to reveal the values of the substates in the other regions, except 
that it could allow one physical variable to partially determine 
many substates. Spatial non-overlap can be a useful rule of thumb.

The two rules for basic independence eliminate clock-and-dial 
mappings, because the clock and dial physical state which any 
substate depends on would reveal all formal values of the previous 
and current substates. They also rule out the other false 
implementations discussed above, such as the binary prime 
number checker discussed in section 5, in which the variables 
mapped to each substate record information that would reveal the 
values of the previous substates that determine its values. Yet they 
are too conservative in some ways, as will be seen below.



9 INHERITANCE

It is sensible to allow certain cases in which formal substates share 
all of the physical variables that they depend on (contrary to the 
second rule for basic independence) when those variables carry 
indices that mark them as functions on a grid or space of more 
than one dimension: Mappings should be allowed to reflect the 
multi-dimensional aspects of the structure and function.

For example, consider a hypothetical underlying physical 
system that is a set of bits labeled by a pair of integers plus time, 
B(i,j,t). Suppose that only one bit has the value 1 at any given 
time; the rest are 0. The mapping is from these bits to a pair of 
integers I(t),J(t) in which I=i and J=j for the nonzero bit.

The second rule for basic independence implies that I and J 
would not be independent substates, because they both depend on 
the same set of physical variables – all of the bits on the grid. (The 
first rule may be violated as well but this depends on the transition 
rule.) But, intuitively, they should be considered independent; i 
and j are distinct aspects of the underlying structure of this 
system, not something imposed by the mapping. 

To take this type of structure into account, treating labels on a 
space (here, the grid) almost on equal footing with the values of 
physical variables, which labels the value of a formal substate 
depends on must be taken into account. It is useful to define new 
technical terms, ‘inherit’ and ‘disinherit’, to deal with this issue.

If a label is inherited by a computation substate, then the formal 
value of the substate depends on how the physical state values are 
distributed among physical states with different values of that 
label. If there is no such dependence, then the label is disinherited 
by that substate; swapping or permuting the values of physical 
variables whose labels differ in only disinherited indices would 
leave that substate’s value unchanged.

For substate independence purposes, knowledge provided by 
the values of disinherited labels for a given substate is to be 
disregarded when evaluating whether values of other substates 
could be revealed by knowledge of the physical variables that are 
mapped to the given substate.

In the example of the grid of bits (Fig.1), with a mapping to I(t) 
and J(t) as described above, the value of I(t) depends only on the 
i-label, and not on the j-label. Swapping the j-value rows would 
have no effect on the value of I(t). Thus, I(t) inherits i and 
disinherits j. Similarly, J(t) inherits j and disinherits i. In this way, 
I(t) and J(t) are independent, just as if I(t) had depended on one 
physical variable and J(t) had depended on a different variable, 
even though in reality they depend on the same set of bits.

There may be variables that both substates inherit. In addition, 
an index can be suppressed if other indices suffice to calculate 
substate values. Suppose that the physical system consists of bits 
on a 3-d grid plus time, B(i,j,k,t), and the mapping is such that 
each pair (i,j) is paired with a unique value of k, namely kij, for 
each of the bits that are included in the mapping. As before, only 
one bit at a time among those used in the mapping is nonzero. As 
before, let I(t)=i and J(t)=j for the nonzero bit. I(t) inherits i and 
k.. Knowing k, since it is unique, reveals the value of j. But one 
could still calculate I(t) and J(t) if the k-values were not used. In 
this case, I and J should still be considered independent (barring 
the special cases); I inherits i and disinherits j, and J inherits j and 
disinherits i, with k suppressed.

Functions of labels can themselves be labels that the physical 
variables are in turn functionals of, as are fields in quantum field 
theory. Inheritance or disinheritance can be established by 
considering permutations of either type of label.

10 CLASSICAL COMPUTERS IN QUANTUM WORLDS

Classical computation performed by quantum systems is a very 
important subject because all known systems are actually 
quantum, and it should be studied in depth with full awareness of 
constraints on implementation mappings. Inheritance could allow 
quantum systems to implement some computations that the 
classical version of a quantum system would perform, using for 
example the relative state (many-worlds) interpretation. In such a 
case, particle positions for a given relative state might be mapped 
to formal substates, each inheriting the label for position of the 
appropriate particle and not the others. (Quantum field theory, 
which is a more realistic model of reality, could be handled in an 
analogous way with inheritance of field values at key positions.) 

For example, relative to an environment state B representing 
one of the decoherent branches, a (simplistic) mapping might be:

X1(t) = C(B) ∫ dx1 dx2  |Ψ(x1,x2,B,t)|2 x1

X2(t) = C(B) ∫ dx1 dx2  |Ψ(x1,x2,B,t)|2 x2

with transition rules such as
d2X1/dt2 = k (X2-X1),  d2X2/dt2 = k (X1-X2)

X1 inherits x1 but not x2, and X2 inherits x2 but not x1; they can 
thus be independent although both depend on the same set of 
wavefunction physical variables.

Of course reality is not so simple, as decoherence is never 
complete, so a more realistic mapping would specify a specific 
value or range (which can vary with time) for each of those 
variables that determine which branch of the wavefunction is 
being considered. B could depend implicitly on x1 and x2 via the 
dynamics (not explicitly via the mapping) and other restrictions 
might also be needed (such as restricting the wavefunction to have 
a given form).  The analog formal states given above would 
typically have to be binned into digital states to give exactly 
reliable transitions, and (as usual) such a run need not go on 
forever. It should be remembered that these mappings are not 
necessarily the only ones that might be important for considering 
classical computations performed by quantum systems.

11 THE SIMULATION PRINCIPLE AND LABELING

For the simulation principle that “If a physical system 
implements computation #1, and computation #1 implements 
computation #2, then the physical system must also implement 
computation #2” to hold, the formal substates of the computation 
should only be labeled with indices if each such index derives 
from indices (of the underlying system) inherited by the substates.

For example, suppose the physical system consists of a set of 
bits on a 1-d grid plus time, B(n,t). A mapping is proposed from 
this system to formal substates consisting of a set of bits on a 2-d 
grid plus time, F(i,j,t), where each individual formal bit depends 
on only one physical bit; the only difference is in the labeling of 
the bits. There is no problem with the independence of the bits. 
However, there would be a problem if one tried to argue that the 
relabeled system implements a computation involving substates 
I(t),J(t) where they each inherit from the corresponding label on 
the 2-d grid. That is not a legitimate mapping because the 
proposed substates are not independent when considering the 
labeling structure of the underlying system; both i and j depend on 
the value of the underlying system index n.

By contrast, suppose that the underlying system consists of a set 
of bits on a 4-d grid plus time, B(i,j,K,L,t). Map this to a set of 
substates on a 2-d grid plus time, F(i,j,t) where i and j are the same 



as before and each value of F depends on bits at various K-values 
and L-values, but only one value each of i and j. Suppose that F 
inherits K but disinherits L, treating L-values symmetrically. F 
now inherits i,j,K , but if it depends on all K values there is no 
point in labeling it with a K-dependent index. F(i,j,t) is a 
legitimate set of substates. For a specific example:

F(i,j,t) = ∑L ∑K K ∙ B(i,j,K,L,t)
The formal system described these substates might then simulate 
another computation involving a grid of bits with i,j labels.

Because many systems (at least when considered on an 
intermediate level, as virtual machines) don’t have much intrinsic 
label structure, such as a group of transistors which can be 
assembled together in largely arbitrary ways, it is often convenient 
to be able to label similar components without implying that the 
label can play a role in determining substate independence. Such 
labels of convenience will be flagged using a # sign.

12 TRANSFERENCE

The restriction on formal state labeling given above may be too 
strong. With it, the set of allowed labels can contract by going 
from an underlying system to an implemented computation, but 
could not expand. For example, with it a Turing machine 
consisting of a single long tape S(n,t) and the position N(t) and 
state H(t) of an active head could not be legitimately mapped to a 
set of bits on a 2-d grid plus time.

These kinds of mappings are not like those generally thought to 
be relevant to human cognition, which map physical variables to 
neural nets, but might be relevant to artificial intelligence or to 
attempts to model a possible structure underlying (and 
implementing) known physics. Such mappings should be allowed 
if doing so would permit a better characterization of the structure 
and dynamics of the underlying system, since such a 
characterization is what the implementation concept provides.

One way to allow such mappings is allow some of the structure 
provided by the transition rules for an already legitimate 
computation (which is structure actually present within the 
system) to be ‘transferred’ to the substate labeling for a mapping 
which can then be used to implement another computation. In 
allowing cases like this, it must be verified that trivial systems can 
not be considered to perform nontrivial computations.

The simulation principle as stated above will not automatically 
hold in such cases. To preserve it, it should be turned into a 
prescriptive rather than descriptive statement; this is an additional 
relaxation of the independence criteria.

As an example of ‘transference’, suppose two of the underlying 
system substates, X(1,t) and X(2,t), control which among the other 
substates are used or updated by a subsystem; the transition rule is 

X(3 + X(1,t) + C X(2,t), t+1) = [some function]
where  0 ≤ X1 < C and 0 ≤ X2 < (N-2)/C, and so for every 
combination of  X(1,t) and X(2,t)) a different variable among the 
X’s within the appropriate range would be updated at this time 
step. X(1,t) and X(2,t) would have their own transition rules. 
(Such situations are common in artificial programs written for 
electronic digital computers, such as to display an image on a 
rectangular screen.) This suggests a sort of two-dimensional 
structure among the X’s within that range. This 2-d structure can 
be allowed to ‘transfer’ to the label structure in a mapping: 

X(3 + X1 + C X2, t+1)  Y(X1,X2, t+1)
Another example in which the transition rules might be used to 

guide allowed label structure is for a cellular automaton (CA). In a 

CA, each substate’s transition rule within a subset of substates 
depends on only a limited number of other such substates in a 
largely symmetric way. For example, suppose the substates are 
bits B(x#,y#,t). The bits are implemented by some other 
underlying physical mechanism, and are not intrinsically on a 2-d 
grid from any inherited physical index, so the # notation is used 
here for the labels of convenience. They are hooked up in such a 
way as to implement a cellular automaton, in which each bit’s 
future state depends on its current state and on those of its nearest 
neighbors in the x# and y# labeling scheme. The resulting 
physical system may look messy, with wires going in various 
directions and looping around each other, and the transistors 
physically arranged in no particular order, but it implements the 
transition rules and each bit is independent of the others as defined 
above. The logical structure imposed by the transition rules can be 
allowed to ‘transfer’ to the label structure; thus, the # signs may 
be dropped and this can be considered as bits on a 2-d grid.

Transference could occur with continuous variables as well. 
The path length position of a bead along a wire might transfer to a 
continuous variable, since it implements constrained dynamics.

13 GENERALIZATION AND VARIANT CRITERIA

A time-less generalization of the implementation concept is 
possible. This might be necessary for use with the “frozen 
formalism” that quantum gravity might have if the Wheeler-
DeWitt equation is true. Transition rules would be replaced by 
implication rules: the laws of physics must imply that if the 
“input” substates have particular values, then the “output” 
substates have values that correspond to the rules. A chain of 
implications can then be constructed by taking those “outputs” as 
“inputs” for the next step (now a logical step rather than a time 
step), forming an extended computation. It must still be the case 
that there are many possible physical states consistent with the 
laws of physics, so that counterfactual implications would be true.

Another issue related to implementation is that the criteria for 
independence put few restrictions on what function can be used in 
a mapping from a single continuous physical variable to a 
continuous formal value; e.g. any 1-to-1 function is allowed. Such 
aspects of the system dynamics as finding the cube of a value are 
not well reflected by allowing any 1-to-1 mapping.

An example of an analog mechanism that could be used to find 
the cube of a number is a cone that can be filled with water up to a 
height corresponding to the desired number. (For this conceptual 
example, assume that water is a continuous fluid.) The water in 
the cone can then be poured into a graduated cylinder. If the 
diameter of the cylinder is appropriate, the height of the water 
column in the cylinder will equal the desired cube. If the diameter 
were different, then scaling the height of the water column by an 
appropriate factor would give the desired cube.

A linear mapping for a continuous variable to a formal value, 
even if within a limited range, would be meaningful as a 
characterization of the system dynamics, as in the above example. 
This restriction can be imposed, although this is not necessary for 
computation in the classic sense, which is more concerned with 
combinatorial properties. An otherwise valid mapping for a multi-
dimensional set of differential equations would still be nontrivial 
without the linear restriction.

A similar issue arises for mappings to digital formal values. For 
example, Joslin [7] believes that only a system that has something 
oscillatory about it implements a 1-bit oscillator, while a 



monotonically increasing clock would not. One option to produce 
that result would be to restrict mappings to time-symmetric 
monotonic functions of the variables.

Without that restriction a monotonically increasing clock would 
indeed implement a 1-bit oscillator. Note, however, that the 
formal value of that oscillator can only serve as input to a non-
trivial computational time step (such as putting it into a NAND 
gate with another substate) if there is indeed something oscillatory 
about the dynamics of the system, given the mapping restrictions. 
Therefore there is no harm in not using such restrictions for 
complex systems. Also, in general a time-symmetric mapping 
may not be possible (e.g. if the hardware changes over time).

A somewhat different modification to the independence criteria 
is suggested by considering a pointer whose position has a slight 
‘fine structure’ dependence on variables that basic independence 
would forbid, but where that dependence is not exploited by a 
convoluted mapping. Such a pointer does not discard information 
that is normally discarded by the digital substate, but there still is 
much about the dynamics that is reflected by the computation. To 
allow this type of system to implement the digital computation, 
bin the values of the underlying system variable (in this case, the 
pointer position) into non-overlapping ranges such that within 
each range it is mapped to the same formal state value. If each 
range is then treated as a single value of the underlying variable, 
less information would be available from knowing those values 
than is available from the actual value of the pointer position. Use 
only this reduced information when testing for independence. 
Because the ranges are non-overlapping, this could not be used for 
clock-and-dial-style arbitrary mappings.

14 COUNTERFACTUAL STATES AND CAUSALITY

In addition to the problem of false implementations of virtually 
any computation by trivial systems, a related line of attack against 
computationalism argues that counterfactual transitions - which 
would have happened under different initial conditions - cannot 
affect consciousness [8,9,10]. Requiring that counterfactual 
transitions would have occurred is a crucial ingredient in rejecting 
false implementations because, for example, without that 
requirement any set of inert bits can be mapped to the output 
string of a proposed Boolean computation.

If this attack succeeds it therefore rules out computationalism. 
One exception has been proposed to that statement, which is that 
Platonically existing computations as an underlying reality could 
still give rise to consciousness, producing what we consider 
physics as an emergent property of typical conscious experiences 
[11]. However, pseudo-computations without the proper 
counterfactual behavior should then also exist Platonically, so 
even Platonic computationalism would be vulnerable.

Several arguments against the use of counterfactual transition 
requirements have been made, but they fall into a few basic 
categories. In the first category, the argument relies on incredulity 
that the detailed properties of a potentially very complicated or 
‘Rube Goldberg’ subsystem can matter for consciousness if it is 
never even activated during the computation. For example, 
Maudlin [9] gives an example of a computer that operates 
straightforwardly for one input condition, which is in fact the 
actual one, but is required to call on different (and in the actual 
case, inert) machinery for any other input.

There is of course no empirical way to verify that any system 
other than one’s own brain is conscious. In the face of this 

criticism based on one intuition, therefore, a computationalist 
responds by appealing to the contrary intuition that if-then 
relationships and feedback loops, the sorts of things captured by 
the notion of computation, seem to be things that would be 
important for consciousness, and must accept that these aspects of 
the overall structure and function of physical systems can indeed 
depend on complicated “inactive” components.

For weighing these contrary intuitions about “inactive” 
components, it is worth pointing out that so-called “inactive” 
physical components still have function in that they still evolve in 
time according to dynamical equations of physics; e.g. net force = 
mass · acceleration still applies even when the forces cancel to 
zero. This gives the components “if-then” functional properties 
and is very different from a situation in which the components 
only sit there and have no interesting functional properties.

In some cases, inactive components can be excluded from the 
mapping being considered, and what would have been their output 
is then treated as an input to the computation. This results in a 
different computation than the one that would have included all of 
the components, but it can be closely related to that one – perhaps 
close enough that for a particular initial condition, if one would be 
conscious, the other would have the same consciousness.

Consider a computer with a ‘straightjacket’ such that if it 
departs from a pre-specified sequence, the state will be changed 
by an external monitor to match the sequence. If it always 
matches the sequence, the monitor will make no changes (and will 
leave the subsystem of interest physically untouched). In the 
actual run, the monitor makes no changes. This system seems to 
have the wrong counterfactual relationships because of what the 
monitor would have done for counterfactual states, yet part of it is 
physically identical to a perfectly normal computer implementing 
that particular run without any external interference in actual fact, 
so it seemingly should implement that computation after all!

This is a case where the external monitor should be excluded 
from the mapping and its actions treated as a fixed sequence of 
inputs, where the sequence of inputs happens to be such as to 
leave the sequence of other substates the same as they would have 
been with no input. This computation is presumably conscious if 
the one without input would have been. Also, the mapping can be 
restricted to situations in which the input substates must have that 
fixed sequence, which in effect removes them as inputs.

A ‘derail-able computation’ in which the computation proceeds 
normally for some combinations of input substate values, but 
enters a ‘halt’ state and no longer undergoes nontrivial transitions 
for other possible input values, is another good candidate to be 
considered ‘closely related’ to a nontrivial computation which 
evaluates some function for all possible input values. The ‘halt’ 
value can be treated as one value of another substate, and in that 
case should be independent of the others. For example, a fuse 
might blow if an electrical computer is in a certain set of states.

Care must be taken, however, not to consider trivial 
computations to be ‘closely related’ to complex ones. For 
example, suppose there is a string of ‘input’ bits S recorded on 
one set of adjustable switches, and a string of ‘output’ bits R 
recorded on another set. The output bits initialize to a default 
string R0 and remain that way if not adjusted. The default output 
string equals the base 2 value of some nontrivial function of the 
actual input string, S0. An implementation mapping can claimed to 
exist such that the output R(t+1) will be the desired function of 
S(t) if S(t)=S0 OR if Bob comes by, looks at the strings, and sets 
the output to be the desired function of S. In fact Bob will not 
come by, but since S=S0, the computation is not only implemented 



but produces an output that does have the right value for the actual 
value of the input. This computation may at first seem ‘closely 
related’ to one in which the proper function of the input is actually 
computed, but in fact it is a trivial computation since any bits 
anywhere could be mapped to the output string R0, and cannot be 
‘closely related’ to the nontrivial computation in the sense of 
having the same consciousness if any.

15 NEURAL REPLACEMENT … OR ELIMINATION

Another type of argument against using counterfactual transition 
requirements comes down to a neural replacement thought 
experiment, e.g. that of Bishop [8]. Similar thought experiments 
have famously been used to argue in favor of computationalist 
views of the mind [12], so using this thought experiment against 
computationalism is an interesting move, and refuting it is 
important for the viability of computationalism.

In a neural replacement argument (NRA) scenario, small 
components of a brain are replaced one at a time by alternate 
components that behave in the same way as the old ones. The 
following assumptions are made:
0) The functioning of the rest of the brain is preserved.
1) Any change this procedure might make to his consciousness is 
not something the person can explicitly take mental note of; he 
could not directly notice that anything has occurred.
2) Since he can’t notice any change, it must be true that the 
properties of the person’s consciousness – namely the things he 
experiences, including color qualia - do not change or fade away.
3) Sudden vanishing of consciousness when a certain number of 
components have been replaced wouldn’t happen.

If these assumptions are granted, then a brain made of the new 
components must be equally as conscious as one made of the old 
ones. This is usually taken to imply that the behavior (which can 
be described in terms of computations) and not the composition of 
the components is what matters for consciousness.

The twist that is used to attack counterfactual transition 
requirements is to replace the old components - one at a time as 
before - with new components that have behavior that is only 
correct for the particular initial conditions that actually occur. The 
new components produce a fixed series of outputs and have no if-
then sensitivity to counterfactual inputs. The argument is made as 
above that a brain made of the new components must be equally 
as conscious as a brain made of the old ones; but if so, that 
establishes that counterfactual sensitivity does not matter for 
consciousness. But for computationalism to work, counterfactual 
sensitivity must matter to filter out false implementations.

In order to counter this argument, a computationalist must 
reject one or more of the assumptions. While it is possible to 
reject assumption 0), the view of the brain as similar to a neural 
net classical computer (which is a view common among 
computationalists) implies that assumption; the argument can then 
be run in terms of an artificial conscious digital neural net brain.

To reject assumption 1) would imply that the mind can make 
mental notes that are not aspects of the functioning of the brain. It 
would be a dualist position, suggesting an immaterial mind. While 
dualism can be compatible with computationalism, as Chalmers 
has argued [12], such a divergence between the activity of the 
mind and that of the brain would not be.

Assumption 3), while not prima facie undeniable, is highly 
plausible because brains are highly variable. Rejecting it would be 
technically viable but would garner few if any supporters.

Assumption 2), that the properties of consciousness would not 
change, must be the one that computationalists reject, despite the 
fact that many computationalists have been ready to accept it in 
the context of the original NRA.

To shed light on the issue, consider another variation of the 
thought experiment. [13] In this case, when each small component 
is removed, it is not replaced by a substitute component. Instead, 
the exact same inputs that would have been fed to the remaining 
part of the brain by the missing components are supplied 
externally, as boundary conditions. For simplicity, assume that 
these inputs are correct due to extreme luck. If the details of an 
artificial brain’s internal functioning are predictable, the inputs 
can be supplied by using those predictions.

Now only part of the brain remains, and that part becomes 
smaller as more components are removed - until vanishing 
altogether. The activity in the partial brain is the same as it would 
have been if no components were removed, since the boundary 
conditions are the same for that part of the system.

In this case it is not possible for the consciousness of the brain 
to remain unaffected by the removal of the components, because 
the tiny bit of a brain remaining near the end of the process would 
not be complex enough to give rise to cognition. The remaining 
consciousness must be only a partial version of the original.

Assumptions 0), 1), and 3) are equally valid in this case as in 
the standard NRA. Assumption 2) is clearly false in this case, 
because the subsystems of the brain responsible for the various 
types of experiences – such as color vision – will at some point 
simply no longer exist. But this means that the mind is not 
necessarily a good judge of what it is conscious of, since it can 
never at any point make a mental note of any changes.

To relate this partial brain argument (PBA) more closely to the 
NRA, consider replacing the removed components with mentally 
inert components – anything that can supply the right boundary 
conditions to the remaining normal brain, but which cannot 
support consciousness. For example, in a hypothetical model in 
which substance dualism were true, the mentally inert components 
would function the same in terms of input and output, but would 
lack the ‘magic’ substance needed for consciousness.

The remaining partial normal brain would be identical to the 
partial brain in the PBA, and would have the same partial 
consciousness. Assumption 2) is just as clearly wrong in this case 
as in the PBA. But this case is no different than that of the 
standard NRA, except that it has been stated from the beginning 
that the usual conclusion of the NRA that the consciousness is 
unchanged is false. As this argument shows, that is a perfectly 
self-consistent possibility, thanks to partial consciousness. As a 
result, any NRA fails to show what it was intended to show.

Apart from the PBA, there are other reasons to think that the 
mind is not a good judge of its own consciousness. For example, 
the central part of the human visual field is much more detailed 
than the peripheral parts, but humans rarely notice that fact. The 
idea that the mind would have to be able to notice any change in 
its own consciousness may be a sort of homunculus fallacy, in 
which the mind is thought of as an observer of its own thoughts. 

With the NRA no longer viable, computationalism loses one of 
the arguments in its favor. However, the idea that the mind is a 
good judge of its own consciousness must also be abandoned, and 
it is a source of the anti-computationalist intuition that mental 
qualia are hard to relate to computation. The truth or falsity of 
computationalism is a complicated issue; what is being claimed 
here is merely that the need to rule out false implementations does 
not falsify computationalism.



16 AMOUNTS OF IMPLEMENTATIONS

If computationalism about consciousness is true, then in order to 
use it to relate a mathematical model of a physical system to 
predictions about what observers who live in that system would 
observe, it is not enough to know which computations are being 
implemented or even to also know how to relate each computation 
to a particular conscious experience or lack thereof. The reason is 
that multiple instances or different amounts of each computation 
may exist [14,15]. In the system’s spectrum of computations, 
different computations must be assigned different weights.

That is certainly the case in the many-worlds interpretation 
(MWI) of quantum mechanics, for example. For the MWI, one 
must be able to put a measure on the computations in each branch 
of the wavefunction and relate it to the effective probabilities for 
observing different outcomes. In principle, if the proper way to do 
that were known, one could then either falsify the interpretation 
(while suggesting what modifications could fix the problem) or 
confirm that it does give the correct predictions.

The difficulty that arises is not only that the question cannot be 
investigated experimentally but also that there are few obvious 
restrictions that must be met, since the implementations being 
considered do all exist in the system. By contrast, in the case of 
defining implementation criteria, the need to avoid the possibility 
of false implementations at least provides a strict restriction that 
guides what criteria are acceptable.

That said, a few possibilities will be mentioned here. One 
possibility is that the measure is proportional to the number of 
independent implementations, where independence is established 
in the same way as for substates within a single implementation. 
A more lenient possibly is that in this context implementations are 
independent as long as it is physically possible to choose their 
initial conditions in any logically possible combination. These 
possibilities may be consistent with a slightly modified MWI [14].

Since the measures are also a characterization of the structures 
and function within the overall system, it is also possible that parts 
of the system that are in some sense physically larger should have 
more measure. That could be consistent with the fact that branches 
of the wavefunction with larger amplitude in the MWI have 
higher effective probabilities. However, that solution of the 
problem, while it might be qualitatively plausible, assumes what it 
is meant to explain on the quantitative level (amplitude-squared 
for effective probabilities), so it lacks philosophical force unless 
independent confirmation could somehow be supplied.

17 CONCLUSIONS

Implementation of Structured State Systems is a way to 
characterize the structure and dynamics of physical systems in 
terms of computations, such as is required for computationalist 
philosophy of mind. Criteria based on information available in the 
physical subsystems that are mapped to substates suffice to rule 
out false implementations, and the concepts of inheritance and 
transference extend the usefulness of those criteria to include 
various valid implementations that should not be ruled out. 
Options exist for better characterizing the systems for different 
applications or for systems with laws but not dynamics.

The implementation criteria include requirements on transitions 
in counterfactual states. This has been a subject of controversy in 
regard to the application to philosophy of mind. The importance it 
gives to inactive machinery is counterintuitive to some people, but 

currently inactive components still follow the laws of dynamics 
and this endows them with functional capabilities, which 
computationalists do not see as counterintuitive. Also, in some 
cases, ‘improper’ overall counterfactual behavior need not make 
any difference to consciousness in the computationalist view, as 
such systems can implement computations which can be closely 
related to the ‘proper’ one and which would give rise to the same 
type of consciousness.

The neural replacement argument, which traditionally has been 
used to argue in favor of computationalism, can be turned around 
to argue against it with the use of components with pre-specified 
activity. To counter this, the partial-brain argument was given as a 
general counterargument to the neural replacement argument. 
With only part of the brain in existence, it becomes clear that 
consciousness in such cases must become more partial as the 
process goes further, and the same partial consciousness can apply 
in the neural replacement scenario. This neutralizes the neural 
replacement argument in both its traditional pro-computationalist 
form and in its anti-computationalist form.

Given that a system does implement various computations, 
some of which (assuming here the validity of computationalism) 
give rise to conscious observations, it is necessary to have a way 
to assign an effective probability to each observation in order to 
predict what observers who live in that system should expect. The 
way to do this remains an open question, which assumes particular 
importance for the evaluation of interpretations of quantum 
mechanics, because the quantum wavefunction has a many-worlds 
character and the origin of effective probabilities in that context 
has not been adequately explained.
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