
Structure and Dynamics in Implementation of Computations

Jacques Mallah1

Abstract: Without a proper restriction on mappings, virtually any
system could be seen as implementing any computation. That
would not allow characterization of systems in terms of
implemented computations and is not compatible with a
computationalist philosophy of mind. Information-based criteria
for independence of substates within structured states are
proposed as a solution. Objections to the use of requirements for
transitions in counterfactual states are addressed, in part using the
partial-brain argument as a general counterargument to neural-
replacement arguments.1

1 INTRODUCTION

Intuitively, knowing that a physical system implements a given
computation tells us that the structure and dynamics of some part
(or subsystem) of the system are similar ‘in some way’ to those
that define the computation. To make this precise and meaningful,
well-defined criteria must be used for such implementations. Each
computation that a system implements then provides a partial
characterization of the structure and dynamics of the system.

The primary application that requires that such characterization
of systems must in principle be possible is computationalist
philosophy of mind. That is the idea that there are some
computations that, if implemented, give rise to mental states either
inevitably or due to natural laws.

Defining the exact criteria for implementation has proven to be
a more difficult problem than it might at first appear, because
without appropriate restrictions on how to map underlying
systems to computations, even trivial simple systems could be
seen as implementing virtually any computation. [1,2,3]

The relationship between physical systems and implemented
computations is many-to-many: After all, many systems can have
subsystems that are similar in some way, a given system can have
many subsystems, and a given subsystem might have many
aspects to its dynamics. The fact that a variety of physical systems
would be able to implement the same computation is called
multiple realizability. Although different mappings are associated
with different computations, there is no role for observers’
preferences about which mapping to use for the question of
whether or not a given computation is implemented by the system
(since at least one successful mapping would be possible if it is),
or when the whole spectrum of computations implemented by the
system for all possible mappings is considered.

Along with the main proposal for implementation criteria, a few
variant options will be suggested. Different options may be useful
for different purposes, as different aspects of system structure and
dynamics may be more important for each purpose; e.g.
determining to what information-processing uses an analog
machine can be put to as opposed to determining whether a
computer system is similar enough to a system known to be
conscious that it would have similar consciousness.

1 Medical Physicist, Charleston Radiation Therapy Consultants, Suite B-1,
3100 MacCorkle Ave SE, Charleston, WV, 25304, USA.
Email: jackmallah@yahoo.com

An analogy for the use of such variant criteria is that a solid
object has both a shape and a composition. One observer might
say of the object “It is round”; while another observer might say
“It is rubber”. Despite these different characterizations, neither
property depends on any external observer.

The main proposal is intended to be the one capable of being
applied to philosophy of mind, as well as for most general
purposes that may arise, especially regarding digital computers.
However, it is possible that a detailed computationalist theory of
the human mind would call for a more analog-focused
implementation criterion to appropriately characterize brain
structure and dynamics.

2 NAÏVE CRITERIA FOR IMPLEMENTATION

The following criteria for implementation will be used as a
baseline to which modifications will be added to avoid the
problems with unrestricted mappings between the underlying
system and the computation:

1) There must exist a mapping M between the states
of the underlying system and those of the
computation (known as formal states). A given
underlying state maps to at most one formal state,
and need not map to any formal state.

2) If the underlying system is (or were to be) in any
state that maps to a state of the computation, then
its time evolution must be such that the next
different state of the computation that the
underlying system state will be (or would be)
mapped to (if any) is given by the appropriate
transition rule of the computation.

The second criterion includes the requirement of proper behavior
in counterfactual states, not just in actual states; this requirement
was not always present in early ideas of implementation, and was
part of Chalmers’ [1] counter to Putnam’s critique of the
implementation concept [2]. This requirement leads to some
counterintuitive implications that have been the basis for critiques
of computationalism, as will be discussed below in sections 14-15.

Define a run of a computation as a pass through the sequence of
formal states appropriate to the initial condition while
implementing the computation. The system will be said to
implement that run. To characterize what a system is actually
doing, it is important to know what runs it implements; for
example, applied to computationalist views of mind, runs of the
same computation that are associated with different sequences of
states could give rise to different mental states.

A run need not be unending. If a system goes to an underlying
state that is not part of the mapping and does not resume entering
formal states, the run ends. A run of a computation can also end
by entering a formal end state.

The verb ‘run’ may also be used as a synonym for ‘implement’
when referring to a computation. A computer is the part of the
physical system that is mapped to the states of the computation.

3 SIMULATION PRINCIPLE

If the formal states for a computation are treated as though they
were physical states and the transition rules for it as though they
were physical laws, then one computation could be said to
implement another.

One would expect the following simulation principle to hold, as
it does so far for the above criteria: If a physical system
implements computation #1, and computation #1 implements
computation #2, then the physical system must also implement
computation #2. In such a case, computation #2 is called a
simulation, and computation #1 is called a virtual machine. The
simulation principle should be interpreted as a description of a
property of the implementation relation, rather than as an
additional criterion, except when otherwise stated.

4 CLOCK-AND-DIAL FALSE IMPLEMENTATIONS

The traditional view is insufficient: A clock (something which
reliably increments a non-repeating variable) and a stationary dial
with sufficiently many states would implement any computation
under the naïve criteria. The argument is summarized here; further
details can be found in Chalmers’ paper [1]:

Map the initial state of the clock and the actual state of the dial
into the initial formal state, and use that clock state and other
possible dial states to extend the mapping to counterfactual formal
states. For each subsequent clock state, map the clock and the
chosen dial states to the proper subsequent formal states. In this
way, any desired transition rule can be reproduced.

To introduce notation that will be useful later, this mapping can
be represented in symbols as (C, D)  F, where C is a clock state,
D is the dial state, F is the formal state of the computation, and
“” means “maps to”. The dynamics for the clock can be
represented as C(t+1) = C(t) + k, where k > 0; here t refers to the
time at the initial step, and t+1 is the time at the next step. Since
the dial doesn’t change, D(t+1) = D(t), and F(t+1) relates to F(t)
according to the desired transition rule.

5 THE COMBINATORIAL STATE AUTOMATON

Chalmers [1] correctly noted that the lack of structure of
computational states in the naïve criteria is what allows the clock
and dial to implement any given computation; this illustrates that
both structure and function are relevant to characterizing the
nature of a system.

He proposed the Combinatorial State Automaton (CSA) as a
type of computation that would resist inappropriate (invalid)
mappings. It adds the following to the naïve criteria:

3) The formal state label is given as combination of
substate values, specified in an ordered list.

This also has the advantage that ‘input’ is easily incorporated into
the CSA concept by allowing some substates not to be covered by
the transition rule, but rather to have values that can be
determined by outside influences.

4) Each substate must be ‘independent’ of the others.
Chalmers took this to mean that its value must
depend on physical variables that are in a different
region of space.

The above independence requirement prevents ‘clock and dial’
mappings from implementing computations with substates.

6 PROBLEMS WITH SPATIAL INDEPENDENCE

However, the CSA criteria do not rule out all of the obviously
false implementations [1,5,6], as pointed out by Chalmers himself.
Consider a system in which the information that determines the
values of all of the substates is copied at the next time step into
each of the spatial regions. To make a mapping such that this
system would falsely be seen as implementing any computation
(within the limits of the number of substates), just map the regions
to the desired formal substates based on the transition rule.

This would require an exponentially growing memory capacity
for each region, so it is not practical for long runs or big
computations, and Chalmers left it at that as being sufficient until
a proper fix is found. But the problem is far from insignificant: If
not fixed, it is enough to trivialize the notion of implementation,
and thus, invalidate computationalism.

In fact, it is not difficult to find examples of systems that would
suffer from such false implementations. One such example is any
system that performs a weighted sum of real numbers, such as a
weighing scale does if more than one object can rest on the scale.
Suppose there are N weights, each with twice the weight of the
previous, which can be placed on the scale, each in a spatially
distinct spot. The presence or absence of each weight then can be
inferred from the total deflection of the scale. The position of the
scale pointer can then be mapped to any desired one-bit function
of an N-bit string. For example, a prime-check function that
equals 1 if the N-bit string represents a prime number in base 2
notation, and 0 otherwise, could be used in the mapping. What’s
more, there is no need for the absence of a weight to correspond to
a 0 and its presence to a 1; this can be different for each bit. Thus,
the empty scale would ‘compute’ that 000100012 (seventeen) is a
prime number. This is a computer with only two distinct time
steps, but in any other sense it is a nontrivial computation.
Clearly, this is a false implementation.

A second problem with the use of spatial separation as an
independence criterion is that it is too closely tied to physics. It
certainly would not be acceptable to use a physical property such
as energy, for example, as part of the fundamental definition of
what a system computes. It is understandable that time may play a
role in the definition because a computation is an initial-value
problem, and one can generalize the role of physical time to the
evolution parameter in any mathematical model of an initial-value
system; it is far less obvious how the idea of spatial separation
could be similarly generalized.

Also, in quantum physics (assuming no collapse of the
wavefunction, or in other words, the many-worlds interpretation
(MWI)), macroscopic objects have approximately well-defined
positions only relative to other objects. A system could then be in
a macroscopic quantum superposition such that the spatial
positions of objects would overlap in the overall wavefunction. It
is not plausible that this would destroy a computation since the
internal structure and dynamics of the system would still be, in
many ways, much the same as in the classical case. e.g. A
computer that finds prime numbers would still do so even if its
wavefunction overall is a spatially spread-out function; measuring
its position is not necessary. This argument holds even if the MWI
is not true, because the definition of implementation, being a
mathematical notion, must not depend on empirical physics.

7 STRUCTURED STATES

Before proposing a better notion of independence, another
aspect of implementations of computations should be dealt with,
and it will play a role in the criteria for valid mappings. While a
CSA has structure in the form of the ordered list of substates, that
may be a poor reflection of the structure of the underlying system,
which could for example involve a function on a space of more
than one dimension. While there is no reason that every
implementation of a computation must reflect the full underlying
structure, if implementations characterize both structure and
function, it would make sense that some implementation
mappings would reflect more structure than the simple ordered list
of a CSA does.

Therefore, a computation will be specified by a structured set of
variables (called substates), and a transition rule. Such a
computation will be called a Structured State System (SSS).
Substates must be independent in a sense to be defined below.
Unless otherwise noted, all of the other naïve implementation
criteria still apply.

The structured state variables may form an ordered list, or may
have additional structure; for example, they may be arranged into
a rectangular matrix. Any label that the identity of a state depends
on will be referred to as an index; for example, for states f(x)
which are a function on the space x, then for each value of x there
is a different substate f(x), and ‘x’ is an index label.

The structured state framework allows for both analog and
digital computations, including computations with a continuum of
variables (a field). The transition rule may be stated as a
differential equation involving time derivatives for an analog
computation.

Substates may have no particular structural relationship to each
other, in which case it will still be convenient to list them in an
ordered list, but the lack of structure should be noted. It is also
possible for more than one number to be considered part of a
single composite substate.

Input substates have values not determined by the past-to-future
transition rule for the time step being considered, and are possibly
influenced by forces outside the scope of the computation.
Usually they are defined as being before the transition, but after
the transition, some substates could also be inputs if their values
are not fixed by the transition rule and by the values of substates
before the transition, e.g. a button that can be pressed by outside
forces at any time. Any substate which has a value determined by
those of past substates can be called an output and often serves in
turn as an input for future time steps.

Transition rules can apply at the substate level, not necessarily
based on a global time step, so it need not matter if states on one
side of a computer complete a localized transition before those on
the other side or vice versa. Thus, two otherwise identical
spatially distributed computers traveling at opposite relativistic
velocities could still implement the same computation.

In the following section, for convenience, the term ‘physical
system’ will be used for describing the underlying system.
However, it should be understood that one SSS may implement
another, treating the formal states for the underlying computation
in the same way as physical states are used in an implementation,
and the transition rules for it as though they were physical laws.

A physical system is treated here as being itself an SSS, with a
fixed state structure. For classical mechanics, the state structure
could be the positions and velocities of the particles. For quantum
mechanics it could be the wavefunction in the position basis, and

for quantum field theory, the basis of field configurations that are
functions of position. The criteria for implementation of
computations could also be applied to mathematical structures as
the underlying system, which have been proposed as the
underlying basis of reality, e.g. by Tegmark [4].

8 BASIC INDEPENDENCE

The false implementations cited in section 6 above must be ruled
out. Since the problems arise when the mapping rather than the
values of underlying physical variables does the work of binning
the combinations of substate values into the desired function, the
allowed mappings must be denied access to the resources to do so.
This suggests requiring limits on what information can be
obtained from knowledge of the underlying variables that are
mapped to a substate; that is the basis of the proposal given here,
which is as follows:

BI #1) The first rule for basic independence is thus that it
must not be possible to determine the values of any of those
substates (at the previous time step) that determined what the
value of a given substate is at the current time step from
knowledge of the physical states that are mapped to the formal
value of the current substate and from knowledge of the system
dynamics, except when the current formal value itself provides
enough information.

BI #2) In addition, the values of other substates at the same
time step should not be revealed by knowledge of the physical
variables that are mapped to a given substate. This provides the
second rule for basic independence.

If the second rule were not required, then false implementations
could be obtained in systems where a function of one physical
variable is calculated, if the invalid mapping claims it is a function
of many formal substates. For example, if variable A takes on
integer values in the range (0,…,2N-1), it can be mapped to N bits,
B1,…,BN. There are many such mappings. Let C be another
variable and C(t+1)=f(A(t)), where t indicates one time step and
t+1 the next. This might then falsely implement C(t+1)=g(B1(t),
…,BN(t)), where for example g could be a prime-checking
function for base 2 numbers, where the mapping from A to the
bits is chosen to make the values of g correspond to that function.
To summarize, this example invalid mapping is:

 One variable  Many variables
 A(t)  [B1(t),…,BN(t)]

 C(t+1) = f(A(t))  g(B1(t),…,BN(t))
 Simple function of one #  Complex function of many bits

This second rule for basic independence is a generalization of
Chalmers’ spatial independence criterion. It almost reduces to
spatial independence in a case where physical variables depend on
different spatial regions and do not contain the information needed
to reveal the values of the substates in the other regions, except
that it could allow one physical variable to partially determine
many substates. Spatial non-overlap can be a useful rule of thumb.

The two rules for basic independence eliminate clock-and-dial
mappings, because the clock and dial physical state which any
substate depends on would reveal all formal values of the previous
and current substates. They also rule out the other false
implementations discussed above, such as the binary prime
number checker discussed in section 5, in which the variables
mapped to each substate record information that would reveal the
values of the previous substates that determine its values. Yet they
are too conservative in some ways, as will be seen below.

9 INHERITANCE

It is sensible to allow certain cases in which formal substates share
all of the physical variables that they depend on (contrary to the
second rule for basic independence) when those variables carry
indices that mark them as functions on a grid or space of more
than one dimension: Mappings should be allowed to reflect the
multi-dimensional aspects of the structure and function.

For example, consider a hypothetical underlying physical
system that is a set of bits labeled by a pair of integers plus time,
B(i,j,t). Suppose that only one bit has the value 1 at any given
time; the rest are 0. The mapping is from these bits to a pair of
integers I(t),J(t) in which I=i and J=j for the nonzero bit.

The second rule for basic independence implies that I and J
would not be independent substates, because they both depend on
the same set of physical variables – all of the bits on the grid. (The
first rule may be violated as well but this depends on the transition
rule.) But, intuitively, they should be considered independent; i
and j are distinct aspects of the underlying structure of this
system, not something imposed by the mapping.

To take this type of structure into account, treating labels on a
space (here, the grid) almost on equal footing with the values of
physical variables, which labels the value of a formal substate
depends on must be taken into account. It is useful to define new
technical terms, ‘inherit’ and ‘disinherit’, to deal with this issue.

If a label is inherited by a computation substate, then the formal
value of the substate depends on how the physical state values are
distributed among physical states with different values of that
label. If there is no such dependence, then the label is disinherited
by that substate; swapping or permuting the values of physical
variables whose labels differ in only disinherited indices would
leave that substate’s value unchanged.

For substate independence purposes, knowledge provided by
the values of disinherited labels for a given substate is to be
disregarded when evaluating whether values of other substates
could be revealed by knowledge of the physical variables that are
mapped to the given substate.

In the example of the grid of bits (Fig.1), with a mapping to I(t)
and J(t) as described above, the value of I(t) depends only on the
i-label, and not on the j-label. Swapping the j-value rows would
have no effect on the value of I(t). Thus, I(t) inherits i and
disinherits j. Similarly, J(t) inherits j and disinherits i. In this way,
I(t) and J(t) are independent, just as if I(t) had depended on one
physical variable and J(t) had depended on a different variable,
even though in reality they depend on the same set of bits.

There may be variables that both substates inherit. In addition,
an index can be suppressed if other indices suffice to calculate
substate values. Suppose that the physical system consists of bits
on a 3-d grid plus time, B(i,j,k,t), and the mapping is such that
each pair (i,j) is paired with a unique value of k, namely kij, for
each of the bits that are included in the mapping. As before, only
one bit at a time among those used in the mapping is nonzero. As
before, let I(t)=i and J(t)=j for the nonzero bit. I(t) inherits i and
k.. Knowing k, since it is unique, reveals the value of j. But one
could still calculate I(t) and J(t) if the k-values were not used. In
this case, I and J should still be considered independent (barring
the special cases); I inherits i and disinherits j, and J inherits j and
disinherits i, with k suppressed.

Functions of labels can themselves be labels that the physical
variables are in turn functionals of, as are fields in quantum field
theory. Inheritance or disinheritance can be established by
considering permutations of either type of label.

10 CLASSICAL COMPUTERS IN QUANTUM WORLDS

Classical computation performed by quantum systems is a very
important subject because all known systems are actually
quantum, and it should be studied in depth with full awareness of
constraints on implementation mappings. Inheritance could allow
quantum systems to implement some computations that the
classical version of a quantum system would perform, using for
example the relative state (many-worlds) interpretation. In such a
case, particle positions for a given relative state might be mapped
to formal substates, each inheriting the label for position of the
appropriate particle and not the others. (Quantum field theory,
which is a more realistic model of reality, could be handled in an
analogous way with inheritance of field values at key positions.)

For example, relative to an environment state B representing
one of the decoherent branches, a (simplistic) mapping might be:

X1(t) = C(B) ∫ dx1 dx2 |Ψ(x1,x2,B,t)|2 x1

X2(t) = C(B) ∫ dx1 dx2 |Ψ(x1,x2,B,t)|2 x2

with transition rules such as
d2X1/dt2 = k (X2-X1), d2X2/dt2 = k (X1-X2)

X1 inherits x1 but not x2, and X2 inherits x2 but not x1; they can
thus be independent although both depend on the same set of
wavefunction physical variables.

Of course reality is not so simple, as decoherence is never
complete, so a more realistic mapping would specify a specific
value or range (which can vary with time) for each of those
variables that determine which branch of the wavefunction is
being considered. B could depend implicitly on x1 and x2 via the
dynamics (not explicitly via the mapping) and other restrictions
might also be needed (such as restricting the wavefunction to have
a given form). The analog formal states given above would
typically have to be binned into digital states to give exactly
reliable transitions, and (as usual) such a run need not go on
forever. It should be remembered that these mappings are not
necessarily the only ones that might be important for considering
classical computations performed by quantum systems.

11 THE SIMULATION PRINCIPLE AND LABELING

For the simulation principle that “If a physical system
implements computation #1, and computation #1 implements
computation #2, then the physical system must also implement
computation #2” to hold, the formal substates of the computation
should only be labeled with indices if each such index derives
from indices (of the underlying system) inherited by the substates.

For example, suppose the physical system consists of a set of
bits on a 1-d grid plus time, B(n,t). A mapping is proposed from
this system to formal substates consisting of a set of bits on a 2-d
grid plus time, F(i,j,t), where each individual formal bit depends
on only one physical bit; the only difference is in the labeling of
the bits. There is no problem with the independence of the bits.
However, there would be a problem if one tried to argue that the
relabeled system implements a computation involving substates
I(t),J(t) where they each inherit from the corresponding label on
the 2-d grid. That is not a legitimate mapping because the
proposed substates are not independent when considering the
labeling structure of the underlying system; both i and j depend on
the value of the underlying system index n.

By contrast, suppose that the underlying system consists of a set
of bits on a 4-d grid plus time, B(i,j,K,L,t). Map this to a set of
substates on a 2-d grid plus time, F(i,j,t) where i and j are the same

as before and each value of F depends on bits at various K-values
and L-values, but only one value each of i and j. Suppose that F
inherits K but disinherits L, treating L-values symmetrically. F
now inherits i,j,K , but if it depends on all K values there is no
point in labeling it with a K-dependent index. F(i,j,t) is a
legitimate set of substates. For a specific example:

F(i,j,t) = ∑L ∑K K ∙ B(i,j,K,L,t)
The formal system described these substates might then simulate
another computation involving a grid of bits with i,j labels.

Because many systems (at least when considered on an
intermediate level, as virtual machines) don’t have much intrinsic
label structure, such as a group of transistors which can be
assembled together in largely arbitrary ways, it is often convenient
to be able to label similar components without implying that the
label can play a role in determining substate independence. Such
labels of convenience will be flagged using a # sign.

12 TRANSFERENCE

The restriction on formal state labeling given above may be too
strong. With it, the set of allowed labels can contract by going
from an underlying system to an implemented computation, but
could not expand. For example, with it a Turing machine
consisting of a single long tape S(n,t) and the position N(t) and
state H(t) of an active head could not be legitimately mapped to a
set of bits on a 2-d grid plus time.

These kinds of mappings are not like those generally thought to
be relevant to human cognition, which map physical variables to
neural nets, but might be relevant to artificial intelligence or to
attempts to model a possible structure underlying (and
implementing) known physics. Such mappings should be allowed
if doing so would permit a better characterization of the structure
and dynamics of the underlying system, since such a
characterization is what the implementation concept provides.

One way to allow such mappings is allow some of the structure
provided by the transition rules for an already legitimate
computation (which is structure actually present within the
system) to be ‘transferred’ to the substate labeling for a mapping
which can then be used to implement another computation. In
allowing cases like this, it must be verified that trivial systems can
not be considered to perform nontrivial computations.

The simulation principle as stated above will not automatically
hold in such cases. To preserve it, it should be turned into a
prescriptive rather than descriptive statement; this is an additional
relaxation of the independence criteria.

As an example of ‘transference’, suppose two of the underlying
system substates, X(1,t) and X(2,t), control which among the other
substates are used or updated by a subsystem; the transition rule is

X(3 + X(1,t) + C X(2,t), t+1) = [some function]
where 0 ≤ X1 < C and 0 ≤ X2 < (N-2)/C, and so for every
combination of X(1,t) and X(2,t)) a different variable among the
X’s within the appropriate range would be updated at this time
step. X(1,t) and X(2,t) would have their own transition rules.
(Such situations are common in artificial programs written for
electronic digital computers, such as to display an image on a
rectangular screen.) This suggests a sort of two-dimensional
structure among the X’s within that range. This 2-d structure can
be allowed to ‘transfer’ to the label structure in a mapping:

X(3 + X1 + C X2, t+1)  Y(X1,X2, t+1)
Another example in which the transition rules might be used to

guide allowed label structure is for a cellular automaton (CA). In a

CA, each substate’s transition rule within a subset of substates
depends on only a limited number of other such substates in a
largely symmetric way. For example, suppose the substates are
bits B(x#,y#,t). The bits are implemented by some other
underlying physical mechanism, and are not intrinsically on a 2-d
grid from any inherited physical index, so the # notation is used
here for the labels of convenience. They are hooked up in such a
way as to implement a cellular automaton, in which each bit’s
future state depends on its current state and on those of its nearest
neighbors in the x# and y# labeling scheme. The resulting
physical system may look messy, with wires going in various
directions and looping around each other, and the transistors
physically arranged in no particular order, but it implements the
transition rules and each bit is independent of the others as defined
above. The logical structure imposed by the transition rules can be
allowed to ‘transfer’ to the label structure; thus, the # signs may
be dropped and this can be considered as bits on a 2-d grid.

Transference could occur with continuous variables as well.
The path length position of a bead along a wire might transfer to a
continuous variable, since it implements constrained dynamics.

13 GENERALIZATION AND VARIANT CRITERIA

A time-less generalization of the implementation concept is
possible. This might be necessary for use with the “frozen
formalism” that quantum gravity might have if the Wheeler-
DeWitt equation is true. Transition rules would be replaced by
implication rules: the laws of physics must imply that if the
“input” substates have particular values, then the “output”
substates have values that correspond to the rules. A chain of
implications can then be constructed by taking those “outputs” as
“inputs” for the next step (now a logical step rather than a time
step), forming an extended computation. It must still be the case
that there are many possible physical states consistent with the
laws of physics, so that counterfactual implications would be true.

Another issue related to implementation is that the criteria for
independence put few restrictions on what function can be used in
a mapping from a single continuous physical variable to a
continuous formal value; e.g. any 1-to-1 function is allowed. Such
aspects of the system dynamics as finding the cube of a value are
not well reflected by allowing any 1-to-1 mapping.

An example of an analog mechanism that could be used to find
the cube of a number is a cone that can be filled with water up to a
height corresponding to the desired number. (For this conceptual
example, assume that water is a continuous fluid.) The water in
the cone can then be poured into a graduated cylinder. If the
diameter of the cylinder is appropriate, the height of the water
column in the cylinder will equal the desired cube. If the diameter
were different, then scaling the height of the water column by an
appropriate factor would give the desired cube.

A linear mapping for a continuous variable to a formal value,
even if within a limited range, would be meaningful as a
characterization of the system dynamics, as in the above example.
This restriction can be imposed, although this is not necessary for
computation in the classic sense, which is more concerned with
combinatorial properties. An otherwise valid mapping for a multi-
dimensional set of differential equations would still be nontrivial
without the linear restriction.

A similar issue arises for mappings to digital formal values. For
example, Joslin [7] believes that only a system that has something
oscillatory about it implements a 1-bit oscillator, while a

monotonically increasing clock would not. One option to produce
that result would be to restrict mappings to time-symmetric
monotonic functions of the variables.

Without that restriction a monotonically increasing clock would
indeed implement a 1-bit oscillator. Note, however, that the
formal value of that oscillator can only serve as input to a non-
trivial computational time step (such as putting it into a NAND
gate with another substate) if there is indeed something oscillatory
about the dynamics of the system, given the mapping restrictions.
Therefore there is no harm in not using such restrictions for
complex systems. Also, in general a time-symmetric mapping
may not be possible (e.g. if the hardware changes over time).

A somewhat different modification to the independence criteria
is suggested by considering a pointer whose position has a slight
‘fine structure’ dependence on variables that basic independence
would forbid, but where that dependence is not exploited by a
convoluted mapping. Such a pointer does not discard information
that is normally discarded by the digital substate, but there still is
much about the dynamics that is reflected by the computation. To
allow this type of system to implement the digital computation,
bin the values of the underlying system variable (in this case, the
pointer position) into non-overlapping ranges such that within
each range it is mapped to the same formal state value. If each
range is then treated as a single value of the underlying variable,
less information would be available from knowing those values
than is available from the actual value of the pointer position. Use
only this reduced information when testing for independence.
Because the ranges are non-overlapping, this could not be used for
clock-and-dial-style arbitrary mappings.

14 COUNTERFACTUAL STATES AND CAUSALITY

In addition to the problem of false implementations of virtually
any computation by trivial systems, a related line of attack against
computationalism argues that counterfactual transitions - which
would have happened under different initial conditions - cannot
affect consciousness [8,9,10]. Requiring that counterfactual
transitions would have occurred is a crucial ingredient in rejecting
false implementations because, for example, without that
requirement any set of inert bits can be mapped to the output
string of a proposed Boolean computation.

If this attack succeeds it therefore rules out computationalism.
One exception has been proposed to that statement, which is that
Platonically existing computations as an underlying reality could
still give rise to consciousness, producing what we consider
physics as an emergent property of typical conscious experiences
[11]. However, pseudo-computations without the proper
counterfactual behavior should then also exist Platonically, so
even Platonic computationalism would be vulnerable.

Several arguments against the use of counterfactual transition
requirements have been made, but they fall into a few basic
categories. In the first category, the argument relies on incredulity
that the detailed properties of a potentially very complicated or
‘Rube Goldberg’ subsystem can matter for consciousness if it is
never even activated during the computation. For example,
Maudlin [9] gives an example of a computer that operates
straightforwardly for one input condition, which is in fact the
actual one, but is required to call on different (and in the actual
case, inert) machinery for any other input.

There is of course no empirical way to verify that any system
other than one’s own brain is conscious. In the face of this

criticism based on one intuition, therefore, a computationalist
responds by appealing to the contrary intuition that if-then
relationships and feedback loops, the sorts of things captured by
the notion of computation, seem to be things that would be
important for consciousness, and must accept that these aspects of
the overall structure and function of physical systems can indeed
depend on complicated “inactive” components.

For weighing these contrary intuitions about “inactive”
components, it is worth pointing out that so-called “inactive”
physical components still have function in that they still evolve in
time according to dynamical equations of physics; e.g. net force =
mass · acceleration still applies even when the forces cancel to
zero. This gives the components “if-then” functional properties
and is very different from a situation in which the components
only sit there and have no interesting functional properties.

In some cases, inactive components can be excluded from the
mapping being considered, and what would have been their output
is then treated as an input to the computation. This results in a
different computation than the one that would have included all of
the components, but it can be closely related to that one – perhaps
close enough that for a particular initial condition, if one would be
conscious, the other would have the same consciousness.

Consider a computer with a ‘straightjacket’ such that if it
departs from a pre-specified sequence, the state will be changed
by an external monitor to match the sequence. If it always
matches the sequence, the monitor will make no changes (and will
leave the subsystem of interest physically untouched). In the
actual run, the monitor makes no changes. This system seems to
have the wrong counterfactual relationships because of what the
monitor would have done for counterfactual states, yet part of it is
physically identical to a perfectly normal computer implementing
that particular run without any external interference in actual fact,
so it seemingly should implement that computation after all!

This is a case where the external monitor should be excluded
from the mapping and its actions treated as a fixed sequence of
inputs, where the sequence of inputs happens to be such as to
leave the sequence of other substates the same as they would have
been with no input. This computation is presumably conscious if
the one without input would have been. Also, the mapping can be
restricted to situations in which the input substates must have that
fixed sequence, which in effect removes them as inputs.

A ‘derail-able computation’ in which the computation proceeds
normally for some combinations of input substate values, but
enters a ‘halt’ state and no longer undergoes nontrivial transitions
for other possible input values, is another good candidate to be
considered ‘closely related’ to a nontrivial computation which
evaluates some function for all possible input values. The ‘halt’
value can be treated as one value of another substate, and in that
case should be independent of the others. For example, a fuse
might blow if an electrical computer is in a certain set of states.

Care must be taken, however, not to consider trivial
computations to be ‘closely related’ to complex ones. For
example, suppose there is a string of ‘input’ bits S recorded on
one set of adjustable switches, and a string of ‘output’ bits R
recorded on another set. The output bits initialize to a default
string R0 and remain that way if not adjusted. The default output
string equals the base 2 value of some nontrivial function of the
actual input string, S0. An implementation mapping can claimed to
exist such that the output R(t+1) will be the desired function of
S(t) if S(t)=S0 OR if Bob comes by, looks at the strings, and sets
the output to be the desired function of S. In fact Bob will not
come by, but since S=S0, the computation is not only implemented

but produces an output that does have the right value for the actual
value of the input. This computation may at first seem ‘closely
related’ to one in which the proper function of the input is actually
computed, but in fact it is a trivial computation since any bits
anywhere could be mapped to the output string R0, and cannot be
‘closely related’ to the nontrivial computation in the sense of
having the same consciousness if any.

15 NEURAL REPLACEMENT … OR ELIMINATION

Another type of argument against using counterfactual transition
requirements comes down to a neural replacement thought
experiment, e.g. that of Bishop [8]. Similar thought experiments
have famously been used to argue in favor of computationalist
views of the mind [12], so using this thought experiment against
computationalism is an interesting move, and refuting it is
important for the viability of computationalism.

In a neural replacement argument (NRA) scenario, small
components of a brain are replaced one at a time by alternate
components that behave in the same way as the old ones. The
following assumptions are made:
0) The functioning of the rest of the brain is preserved.
1) Any change this procedure might make to his consciousness is
not something the person can explicitly take mental note of; he
could not directly notice that anything has occurred.
2) Since he can’t notice any change, it must be true that the
properties of the person’s consciousness – namely the things he
experiences, including color qualia - do not change or fade away.
3) Sudden vanishing of consciousness when a certain number of
components have been replaced wouldn’t happen.

If these assumptions are granted, then a brain made of the new
components must be equally as conscious as one made of the old
ones. This is usually taken to imply that the behavior (which can
be described in terms of computations) and not the composition of
the components is what matters for consciousness.

The twist that is used to attack counterfactual transition
requirements is to replace the old components - one at a time as
before - with new components that have behavior that is only
correct for the particular initial conditions that actually occur. The
new components produce a fixed series of outputs and have no if-
then sensitivity to counterfactual inputs. The argument is made as
above that a brain made of the new components must be equally
as conscious as a brain made of the old ones; but if so, that
establishes that counterfactual sensitivity does not matter for
consciousness. But for computationalism to work, counterfactual
sensitivity must matter to filter out false implementations.

In order to counter this argument, a computationalist must
reject one or more of the assumptions. While it is possible to
reject assumption 0), the view of the brain as similar to a neural
net classical computer (which is a view common among
computationalists) implies that assumption; the argument can then
be run in terms of an artificial conscious digital neural net brain.

To reject assumption 1) would imply that the mind can make
mental notes that are not aspects of the functioning of the brain. It
would be a dualist position, suggesting an immaterial mind. While
dualism can be compatible with computationalism, as Chalmers
has argued [12], such a divergence between the activity of the
mind and that of the brain would not be.

Assumption 3), while not prima facie undeniable, is highly
plausible because brains are highly variable. Rejecting it would be
technically viable but would garner few if any supporters.

Assumption 2), that the properties of consciousness would not
change, must be the one that computationalists reject, despite the
fact that many computationalists have been ready to accept it in
the context of the original NRA.

To shed light on the issue, consider another variation of the
thought experiment. [13] In this case, when each small component
is removed, it is not replaced by a substitute component. Instead,
the exact same inputs that would have been fed to the remaining
part of the brain by the missing components are supplied
externally, as boundary conditions. For simplicity, assume that
these inputs are correct due to extreme luck. If the details of an
artificial brain’s internal functioning are predictable, the inputs
can be supplied by using those predictions.

Now only part of the brain remains, and that part becomes
smaller as more components are removed - until vanishing
altogether. The activity in the partial brain is the same as it would
have been if no components were removed, since the boundary
conditions are the same for that part of the system.

In this case it is not possible for the consciousness of the brain
to remain unaffected by the removal of the components, because
the tiny bit of a brain remaining near the end of the process would
not be complex enough to give rise to cognition. The remaining
consciousness must be only a partial version of the original.

Assumptions 0), 1), and 3) are equally valid in this case as in
the standard NRA. Assumption 2) is clearly false in this case,
because the subsystems of the brain responsible for the various
types of experiences – such as color vision – will at some point
simply no longer exist. But this means that the mind is not
necessarily a good judge of what it is conscious of, since it can
never at any point make a mental note of any changes.

To relate this partial brain argument (PBA) more closely to the
NRA, consider replacing the removed components with mentally
inert components – anything that can supply the right boundary
conditions to the remaining normal brain, but which cannot
support consciousness. For example, in a hypothetical model in
which substance dualism were true, the mentally inert components
would function the same in terms of input and output, but would
lack the ‘magic’ substance needed for consciousness.

The remaining partial normal brain would be identical to the
partial brain in the PBA, and would have the same partial
consciousness. Assumption 2) is just as clearly wrong in this case
as in the PBA. But this case is no different than that of the
standard NRA, except that it has been stated from the beginning
that the usual conclusion of the NRA that the consciousness is
unchanged is false. As this argument shows, that is a perfectly
self-consistent possibility, thanks to partial consciousness. As a
result, any NRA fails to show what it was intended to show.

Apart from the PBA, there are other reasons to think that the
mind is not a good judge of its own consciousness. For example,
the central part of the human visual field is much more detailed
than the peripheral parts, but humans rarely notice that fact. The
idea that the mind would have to be able to notice any change in
its own consciousness may be a sort of homunculus fallacy, in
which the mind is thought of as an observer of its own thoughts.

With the NRA no longer viable, computationalism loses one of
the arguments in its favor. However, the idea that the mind is a
good judge of its own consciousness must also be abandoned, and
it is a source of the anti-computationalist intuition that mental
qualia are hard to relate to computation. The truth or falsity of
computationalism is a complicated issue; what is being claimed
here is merely that the need to rule out false implementations does
not falsify computationalism.

16 AMOUNTS OF IMPLEMENTATIONS

If computationalism about consciousness is true, then in order to
use it to relate a mathematical model of a physical system to
predictions about what observers who live in that system would
observe, it is not enough to know which computations are being
implemented or even to also know how to relate each computation
to a particular conscious experience or lack thereof. The reason is
that multiple instances or different amounts of each computation
may exist [14,15]. In the system’s spectrum of computations,
different computations must be assigned different weights.

That is certainly the case in the many-worlds interpretation
(MWI) of quantum mechanics, for example. For the MWI, one
must be able to put a measure on the computations in each branch
of the wavefunction and relate it to the effective probabilities for
observing different outcomes. In principle, if the proper way to do
that were known, one could then either falsify the interpretation
(while suggesting what modifications could fix the problem) or
confirm that it does give the correct predictions.

The difficulty that arises is not only that the question cannot be
investigated experimentally but also that there are few obvious
restrictions that must be met, since the implementations being
considered do all exist in the system. By contrast, in the case of
defining implementation criteria, the need to avoid the possibility
of false implementations at least provides a strict restriction that
guides what criteria are acceptable.

That said, a few possibilities will be mentioned here. One
possibility is that the measure is proportional to the number of
independent implementations, where independence is established
in the same way as for substates within a single implementation.
A more lenient possibly is that in this context implementations are
independent as long as it is physically possible to choose their
initial conditions in any logically possible combination. These
possibilities may be consistent with a slightly modified MWI [14].

Since the measures are also a characterization of the structures
and function within the overall system, it is also possible that parts
of the system that are in some sense physically larger should have
more measure. That could be consistent with the fact that branches
of the wavefunction with larger amplitude in the MWI have
higher effective probabilities. However, that solution of the
problem, while it might be qualitatively plausible, assumes what it
is meant to explain on the quantitative level (amplitude-squared
for effective probabilities), so it lacks philosophical force unless
independent confirmation could somehow be supplied.

17 CONCLUSIONS

Implementation of Structured State Systems is a way to
characterize the structure and dynamics of physical systems in
terms of computations, such as is required for computationalist
philosophy of mind. Criteria based on information available in the
physical subsystems that are mapped to substates suffice to rule
out false implementations, and the concepts of inheritance and
transference extend the usefulness of those criteria to include
various valid implementations that should not be ruled out.
Options exist for better characterizing the systems for different
applications or for systems with laws but not dynamics.

The implementation criteria include requirements on transitions
in counterfactual states. This has been a subject of controversy in
regard to the application to philosophy of mind. The importance it
gives to inactive machinery is counterintuitive to some people, but

currently inactive components still follow the laws of dynamics
and this endows them with functional capabilities, which
computationalists do not see as counterintuitive. Also, in some
cases, ‘improper’ overall counterfactual behavior need not make
any difference to consciousness in the computationalist view, as
such systems can implement computations which can be closely
related to the ‘proper’ one and which would give rise to the same
type of consciousness.

The neural replacement argument, which traditionally has been
used to argue in favor of computationalism, can be turned around
to argue against it with the use of components with pre-specified
activity. To counter this, the partial-brain argument was given as a
general counterargument to the neural replacement argument.
With only part of the brain in existence, it becomes clear that
consciousness in such cases must become more partial as the
process goes further, and the same partial consciousness can apply
in the neural replacement scenario. This neutralizes the neural
replacement argument in both its traditional pro-computationalist
form and in its anti-computationalist form.

Given that a system does implement various computations,
some of which (assuming here the validity of computationalism)
give rise to conscious observations, it is necessary to have a way
to assign an effective probability to each observation in order to
predict what observers who live in that system should expect. The
way to do this remains an open question, which assumes particular
importance for the evaluation of interpretations of quantum
mechanics, because the quantum wavefunction has a many-worlds
character and the origin of effective probabilities in that context
has not been adequately explained.

REFERENCES

[1] D. Chalmers. Does a Rock Implement Every Finite-State Automaton?
Synthese, 108:309-33 (1996).
[2] H. Putnam. Representation and Reality. MIT Press (1988).
[3] Searle, J.R. Is the brain a digital computer? Proceedings and
Addresses of the American Philosophical Association, 64:21-37 (1990).
[4] M. Tegmark. The Mathematical Universe. Foundations of Physics,
38:101-150 (2008).
[5] D. Chalmers. The Varieties of Computation: A Reply. Journal of
Cognitive Science, 13:211-248 (2012).
[6] M. Sprevak. Three challenges to Chalmers on computational
implementation. Journal of Cognitive Science, 13:107–143 (2012).
[7] D. Joslin. Real realization: Dennett’s real patterns versus Putnam’s
ubiquitous automata. Minds and Machines, 16:29–41 (2006).
[8] M. Bishop. Counterfactuals cannot count: a rejoinder to David
Chalmers. Consciousness & Cognition, 11:4:642-652 (2002).
[9] T. Maudlin. Computation and consciousness. The Journal of
Philosophy, 86:407–432 (1989).
[10] M. Muhlestein. Counterfactuals, Computation, and Consciousness.
Cognitive Computation, 5:1:99-105 (2013).
[11] B. Marchal. The computationalist reformulation of the mind-body
problem. Prog Biophys Mol Biol. 113(1):127-40 (2013).
[12] D. Chalmers. Absent Qualia, Fading Qualia, Dancing Qualia. In:
Conscious Experience. T. Metzinger (Ed). Imprint Academic (1995).
[13] J. Mallah. The partial brain thought experiment: partial
consciousness and its implications. Unpublished manuscript.
http://cogprints.org/6321/ (2009)
[14] A. Pruss. Functionalism and Counting Minds. Unpublished
manuscript. https://bearspace.baylor.edu/Alexander_Pruss/
www/papers/CountingMinds.html (2004).
[15] J. Mallah. The Many Computations Interpretation (MCI) of Quantum
Mechanics. Unpublished manuscript. arXiv:0709.0544v1 [quant-ph]
(2007)

	Structure and Dynamics in Implementation of Computations
	Jacques Mallah1
	3 SIMULATION PRINCIPLE
	7 STRUCTURED STATES
	12 Transference
	17 Conclusions
	References

	[15] J. Mallah. The Many Computations Interpretation (MCI) of Quantum
	Mechanics. Unpublished manuscript. arXiv:0709.0544v1 [quant-ph]

