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Abstract. We present a novel technique for speeding up the computafion
PageRank, a hyperlink-based estimate of the “important®eb pages, based
on the ideas presented in [7]. The original PageRank alguoriises the Power
Method to compute successive iterates that converge tortheigml eigenvec-
tor of the Markov matrix representing the Web link graph. Ehgorithm pre-
sented here, called Power Extrapolation, acceleratestivergence of the Power
Method by subtracting off the error along several nonppgateigenvectors from
the current iterate of the Power Method, making use of knomnprincipal eigen-
values of the Web hyperlink matrix. Empirically, we showtthaing Power Ex-
trapolation speeds up PageRank computation by 30% on a Veph gf 80 mil-
lion nodes in realistic scenarios over the standard powénadein a way that is
simple to understand and implement.

1 Introduction

The PageRank algorithm for determining the “importanceWb pages has become
a central technique in Web search [9]. The core of the PageRigiorithm involves
computing the principal eigenvector of the Markov matripnesenting the hyperlink
structure of the Web. As the Web graph is very large, contgiover a billion nodes,
the PageRank vector is generally computed offline, duriagtleprocessing of the Web
crawl, before any queries have been issued.

The development of techniques for computing PageRank efitlgi for Web-scale
graphs is important for a number of reasons. For Web grapfitaicing a billion nodes,
computing a PageRank vector can take several days. CorgfgigeRank quickly is
necessary to reduce the lag time from when a new crawl is atagpko when that
crawl can be made available for searching. Furthermorenteapproaches to person-
alized and topic-sensitive PageRank schemes [2, 10, 6freeqomputingmany Page-
Rank vectors, each biased towards certain types of pageseTpproaches intensify
the need for faster methods for computing PageRank.

A practical extrapolation method for accelerating the catapion of PageRank was
first presented by Kamvar et al. in [7]. That work assumed tioae of the nonprinci-
pal eigenvalues of the hyperlink matrix were known. Havealavand Kavmar derived
the modulus of the second eigenvalue of the hyperlink maitrif3]. By exploiting
known eigenvalues of the hyperlink matrix, we derive her@pker and more effec-
tive extrapolation algorithm. We show empirically on an 80lion page Web crawl
that this algorithm speeds up the computation of PageRar80b over the standard
power method. The speedup in number of iterations is b&giegliivalent to that of the
Quadratic Extrapolation algorithm introduced in [7], baétmethod presented here is



much simpler to implement, and has negligible overheacdabits wallclock-speedup
is higher by 994

2 Prdiminaries

In this section we summarize the definition of PageRank [9] m@view some of the
mathematical tools we will use in analyzing and improving fitandard iterative algo-
rithm for computing PageRank.

Underlying the definition of PageRank is the following baagsumption. A link
from a pageu € Web to a pagev € Web can be viewed as evidence thais an
“important” page. In particular, the amount of importanoaferred orw by « is pro-
portional to the importance af and inversely proportional to the number of pages
points to. Since the importance ofs itself not known, determining the importance for
every page € Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary coatfmut, we next de-
scribe an equivalent formulation in terms of a random walltrendirected Web graph
G. Letu — v denote the existence of an edge frarto v in G. Letdeg(u) be the out-
degree of page in G. Consider a random surfer visiting paget timek. In the next
time step, the surfer chooses a negérom amongu’s out-neighborgv|u — v} uni-
formly at random. In other words, at tinker- 1, the surfer lands at nodg € {v|u — v}
with probability 1/ deg(u).

The PageRank of a pagés defined as the probability that at some particular time
stepk > K, the surfer is at pagé For sufficiently large/C, and with minor modifi-
cations to the random walk, this probability is unique,sthated as follows. Consider
the Markov chain induced by the random walk @nwhere the states are given by the
nodes inGG, and the stochastic transition matrix describing the itemmsfrom ¢ to j is
given by P with P;; = 1/ deg(?).

For P to be a valid transition probability matrix, every node mhave at least 1
outgoing transition; i.e.P should have no rows consisting of all zeros. This holds if
G does not have any pages with outdegdewhich does not hold for the Web graph.
P can be converted into a valid transition matrix by adding mplete set of outgoing
transitions to pages with outdegr@en other words, we can define the new matfk
where all states have at least one outgoing transition ifofle@ving way. Letn be the
number of nodes (pages) in the Web graph.#.dte then-dimensional column vector
representing a uniform probability distribution over afides:

v =[] @)

Let d be then-dimensional column vector identifying the nodes with @gke):

4, — {1 if deg(i) =0,

0 otherwise

! Note that as the Quadratic Extrapolation algorithm of [7éslmot assume the second eigen-
value of the matrix is known, it is more widely applicable {lbess efficient) than the algo-
rithms presented here.



y:cPT:v;
w = ||zl — |yl
Yy =y +wv;

Algorithm 1: Computingy = Ax

Then we construcP’ as follows:

D=d-v"
P =P+D

In terms of the random walk, the effect Bfis to modify the transition probabilities so
that a surfer visiting a dangling page (i.e., a page with ntirdes) randomly jumps to
another page in the next time step, using the distributisergbywv.

By the Ergodic Theorem for Markov chains [1], the Markov chedefined byP’
has a unique stationary probability distributionAif is aperiodic and irreducible; the
former holds for the Markov chain induced by the Web grapte tter holds iffG is
strongly connected, which is generaligt the case for the Web graph. In the context
of computing PageRank, the standard way of ensuring thipgptp is to add a new
set of complete outgoing transitions, with small transitirobabilities, toall nodes,
creating a complete (and thus strongly connected) transiffaph. In matrix notation,
we construct the irreducible Markov matifX’ as follows:

E = [1]n><1 X ’UT
P'=cP' +(1-¢)E

In terms of the random walk, the effect &f is as follows. At each time step, with
probability (1 — ¢), a surfer visiting any node will jump to a random Web pageh@at
than following an outlink). The destination of the randomjuis chosen according to
the probability distribution given im. Artificial jumps taken because @f are referred
to asteleportation.

By redefining the vectoo given in Equation 1 to be nonuniform, so thatand £
add artificial transitions with nonuniform probabilitighe resultant PageRank vector
can be biased to prefer certain kinds of pages. For this neage refer tov as the
personalization vector.

For simplicity and consistency with prior work, the remanaf the discussion
will be in terms of the transpose matri¥, = (P”)T; i.e., the transition probability
distribution for a surfer at nodeis given by rowi of P”, and column of A.

Note that the edges artificially introduced Byand £ never need to be explicitly
materialized, so this construction has no impact on effayeor the sparsity of the
matrices used in the computations. In particular, the magctor multiplicationy =
Ax can be implemented efficiently using Algorithm 1.

Assuming that the probability distribution over the sugdocation at time0 is
given byz(?), the probability distribution for the surfer’s locationtahe & is given by
x®) = A*z©), The unique stationary distribution of the Markov chain éfided as



limy,_.oo %), which is equivalent tdim;,_... A¥z(?), and is independent of the initial
distributionz (). This is simply the principal eigenvector of the matrx= (P")7,
which is exactly the PageRank vector we would like to compute

The standard PageRank algorithm computes the principaheggtor by starting
with the uniform distributionz(®) = v» and computing successive iterate¥) =
Az*=1 until convergence. This is known as the Power Method, andsisudsed in
further detail in Section 4.

We present here a technique, called Power Extrapolatianh aitcelerates the con-
vergence of the Power Method by subtracting off the first fewprincipal eigenvectors
from the current iterate(*). We take advantage of the fact that the first eigenvalué of
is 1 (becausel is stochastic), and the modulus of the second eigenvalugsée [3]),
to compute estimates of the error along nonprincipal eigetors using two iterates of
the Power Method. This Power Extrapolation calculationasyeto integrate into the
standard PageRank algorithm and yet provides substap&absips.

3 Experimental Setup

In the following sections, we will be introducing a seriesatdorithms for computing
PageRank, and discussing the rate of convergence achievedlistic datasets. Our ex-
perimental setup was as follows. We used therGEWEB link graph, generated from
a crawl of the Web by the Stanford WebBase project in Janua@y 4]. LARGEWEB
contains roughly 80M nodes, with close to a billion linksdarequires 3.6GB of stor-
age. Dangling nodes were removed as described in [9]. ThEhgvas stored using an
adjacency list representation, with pages representedtbyedinteger identifiers. On
an AMD Athlon 1533MHz machine with a 2-way linear RAID disklume and 3.5GB
of main memory, each iteration of Algorithm 1 on the 80M pagerRGEWEB dataset
takes roughly 10 minutes. Given that the full Web contaitigobis of pages, and com-
puting PageRank generally requires roughly 50 applicatmAlgorithm 1, the need
for fast methods is clear.

We measured the relative rates of convergence of the digusithat follow using
the L; norm of the residual vector; i.e.,

142 — 2]

See [7] for discussion of measures of convergence for pagertisnce algorithms.

4 Power Method

4.1 Formulation

One way to compute the stationary distribution of a Markoaiclis by explicitly com-
puting the distribution at successive time steps, usiftg = Az~ until the distri-
bution converges.

This leads us to Algorithm 2, the Power Method for computhmg principal eigen-
vector of A. The Power Method is the oldest method for computing thecpal eigen-
vector of a matrix, and is at the heart of both the motivatiod enplementation of the
original PageRank algorithm (in conjunction with Algoritht).



functionz (™ = PowerMethod() {
z© = o;
k=1;
repeat
) = Ag*-1.
§ = ||z — 2=V
k=k+1;
until § < e;
}

Algorithm 2; Power Method

The intuition behind the convergence of the power method ikows. For sim-
plicity, assume that the start vectot”) lies in the subspace spanned by the eigenvectors
of A.2 Thenz(® can be written as a linear combination of the eigenvectors of

2O = uy + asus + ... + Ot (2
Since we know that the first eigenvalue of a Markov matrixjis= 1,
M = Az = wuy + adous + . .. + A At €))
and
™ = A"z = 4, + QASUL + ..+ A A, U, 4)

Since), < ... < Ay < 1, A™ g approaches; asn grows large. Therefore, the
Power Method converges to the principal eigenvector of tiaekav matrix A.

4.2 Operation Count

A single iteration of the Power Method consists of the singlrix-vector multiply
Az, Generally, this is a(n?) operation. However, if the matrix-vector multiply is
performed as in Algorithm 1, the matri% is so sparse that the matrix-vector multiply
is essentiallyO(n). In particular, the average outdegree of pages on the Webdeas
found to be around 7 [8]. On our datasets, we observed angerefaround 8 outlinks
per page.

It should be noted that X, is close to 1, then the power method is slow to converge,
because: must be large beforgy is close to 0.

4.3 Resultsand Discussion

As we show in [3], the eigengadp— | \2| for the Web Markov matrixd is given exactly
by the teleport probability — ¢. Thus, when the teleport probability is large, the Power
Method works reasonably well. However, for a large telepoobability (and with a

2 This assumption does not affect convergence guarantees.
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Fig.1. Comparison of convergence rate for the standard Power Metimothe LARGEWEB
dataset for: € {0.80, 0.85,0.90}.

uniform personalization vectar), the effect of link spam is increased, and pages can
achieve unfairly high rankings.

In Figure 1, we show the convergence on theRIGEWEB dataset of the Power
Method forc € {0.80,0.85,0.90} using a uniform damping vectar. Note that in-
creasing: slows down convergence. Since each iteration of the Powéndddakes 10
minutes, computing 50 iterations requires over 8 hourshadtll Web is estimated to
contain over two billion static pages, using the Power Mdtbn Web graphs close to
the size of the Web would require several days of computation

In the next sections, we describe how to remove the error coemts of:(*) along
the directions of the nonprincipal eigenvectors, thusdasing the effectiveness of
Power Method iterations.

5 Extrapolation Methods

A practical extrapolation method for accelerating the catapion of PageRank was
first presented by Kamvar et al. in [7]. That work assumedribat of the nonprincipal
eigenvalues of the hyperlink matrix are known. However, ¢liavala and Kamvar [3]
proved that the modulus of the second eigenvalug &f given by the damping factor
c. Note that the web graph can have many eigenvalues with msdil.e., one ofc,
—e¢, ci, and—ci). In this section, we present a series of algorithms thatoédonown
eigenvalues ofl to accelerate the Power Method for computing PageRank.

3 A high teleport probability means that every page is giverexfi‘bonus” rank. Link spammers
can make use of this bonus to generate local structures tidrifie importance of certain
pages.



5.1 Simple Extrapolation

Formulation The simplest extrapolation rule assumes that the iterdte!) can be ex-
pressed as a linear combination of the eigenveatpendu,, whereus has eigenvalue
C.

2k-1) — uy + oty (5)

Now consider the current itera#€*); because the Power Method generates iterates
by successive multiplication by, we can writex*) as

z® = Agt- (6)
= A(u1 + OéQ’LLQ) (7)
= u1 + as AU (8)

Plugging in\s = ¢, we see that
) = uq + ascus (9)
This allows us to solve for; in closed form:

(k) _ cqe(k—1)
W= - (10)
1-c¢

Results and Discussion Figure 2 shows the convergence of Simple Extrapolation and
the standard Power Method, where there was one applicatiBmple Extrapolation

at iteration 3 of the Power Method. Simple Extrapolation @¢ effective, as the as-
sumption that is the only eigenvalue of moduluss inaccurate. In fact, by doubling
the error in the eigenspace corresponding to eigenvadythis extrapolation technique
slows down the convergence of the Power Method.

5.2 A2 Extrapolation

Formulation The next extrapolation rule assumes that the itexdte® can be ex-
pressed as a linear combination of the eigenveetprs,, andus, whereus has eigen-
valuec andus has eigenvalue c.

2% 2 = wuy + agug + a3u3 (12)
Now consider the current iteraag”) ; because the Power Method generates iterates
by successive multiplication by, we can writex(*) as
) = A2 (*=2) (12)
= A2(u1 + asus + azus) (13)
=u + OéQ)\%’LLQ + oz2)\§u3 (14)
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Plugging inAs = ¢ andA3 = —c, we see that
z® = uy + 2 (aoug + asus) (15)

This allows us to solve for; in closed form:
m(k) —_ 02:1}(]672)

T2 (16)

uy =
A? Extrapolation eliminates error along the eigenspacesspanding to eigenvalues
of cand—c.

Resultsand Discussion Figure 3 shows the convergence4f extrapolated PageRank
and the standard Power Method whelfeExtrapolation was applied once at iteration 4.
Empirically, A% extrapolation speeds up the convergence of the Power Métha8%.
The initial effect of the application increases the residbat by correctly subtracting
off much of the largest non-principal eigenvectors, theveogence upon further itera-
tions of the Power Method is sped up.

5.3 A9 Extrapolation

Formulation The previous extrapolation rule made use of the factthaj? = 2. We
can generalize that derivation to the case where the eiggrs/af modulus: are given
by cd;, where{d;} are thedth roots of unity. From Theorem 2.1 of [3] and Theorem 1
given in the Appendix, it follows that these eigenvaluesarfrom leaf nodes in the
strongly connected component (SCC) graph of the Web thatyles of lengthd.
Because we know empirically that the Web has such leaf nodései SCC graph, it
is likely that eliminating error along the dimensions ofergectors corresponding to
these eigenvalues will speed up PageRank.
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We make the assumption that*~% can be expressed as a linear combination of
the eigenvectorbu; . .. uq41 }, where the eigenvalues §fis . . . uq41 } are theith roots

of unity, scaled by:.
d+1

e* ) =y + ) aiu 17)
=2

Then consider the current iterat€") ; because the Power Method generates iterates
by successive multiplication by, we can writex(*) as

) = Adg(k—d) (18)
d+1
= Aur + ) aiu) (19)
i=2
d+1
=uy + Z ai/\fui (20)
i=2
(21)

But since)\; is cd;, whered; is adth root of unity,

d+1
2®) = u; + Z iU (22)
1=2
(23)
This allows us to solve for; in closed form:
(k) _ pdp(k—d)
=T 7 (24)

1—cd



functionz* = PowerExtrapolation(z* =%, 2(®) {
¥ = (:D(k) _ Cdm(kfd))(l _ Cd)fl;

}

Algorithm 3: Power Extrapolation

functionz (™ = ExtrapolatedPowerMethod(d) {
z© = v;
k=1,
repeat

k) — Aw(kfl);

6 = [l — 2~V

if k==d+2,

x™ = Power Extrapolation(z*~% x®);
=k+1;

until § < ¢;

}

Algorithm 4: Power Method with Power Extrapolation

For instance, forl = 4, the assumption made is that the nonprincipal eigenvalues
of modulusc are given by, —c¢, ¢i, and—ci (i.e., the 4th roots unity). A graph in which
the leaf nodes in the SCC graph contain only cycles of lehgtthere! is any divisor
of d = 4 has exactly this property.

Algorithms 3 and 4 show how to usé? Extrapolation in conjunction with the
Power Method. Note that Power Extrapolation with- 1 is just Simple Extrapolation.

Operation Count The overhead in performing the extrapolation shown in Aitpon 3
comes from computing the linear combinati@#®) — =) (1 — ¢)~1, anO(n)
computation.

In our experimental setup, the overhead of a single appicaif Power Extrapo-
lation is 1% the cost of a standard power iteration. FurtlieenPower Extrapolation
needs to be applied only once to achieve the full benefit.

Results and Discussion In our experimentsA¢ Extrapolation performs the best for
d = 6. Figure 4 plots the convergence af Extrapolation ford € {1,2,4,6,8}, as
well as of the standard Power Method, foe 0.85 andc = 0.90.

The wallclock speedups, compared with the standard Powénddefor these 5
values ofd for ¢ = 0.85 are given in Table 1.

For comparison, Figure 5 compares the convergence of thdr@iimExtrapolated
PageRank withAS Extrapolated PageRank. Note that the speedup in convesgenc
similar; however,A% Extrapolation is much simpler to implement, and has negligi
ble overhead, so that its wallclock-speedup is higher. htiqdar, each application of
Quadratic Extrapolation requires 32% of the cost of an ftenaand must be applied
several times to achieve maximum benefit.
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Table 1. Wallclock speedups faA?Extrapolation, ford € 1,2, 4, 6, 8, and Quadratic Extrapola-

tion
|_Type [speedup
d=1 -28%
d=2 18%
d=4 | 25.8%
d=26 30%
d=8 | 21.8%
Quadrati¢ 20.8%
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Appendix

This appendix repeats Theorem IV.2.5 from [5].

Theorem 1. (Theorem IV.2.5 from [5]) If P isthe transition matrix of an irreducible
periodic Markov chain with period d, then the dth roots of unity are eigenvalues of P.
Further, each of these eigenvalues is of multiplicity one and there are no other eigen-
values of modulus 1.



