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Abstract. We present a novel technique for speeding up the computationof
PageRank, a hyperlink-based estimate of the “importance” of Web pages, based
on the ideas presented in [7]. The original PageRank algorithm uses the Power
Method to compute successive iterates that converge to the principal eigenvec-
tor of the Markov matrix representing the Web link graph. Thealgorithm pre-
sented here, called Power Extrapolation, accelerates the convergence of the Power
Method by subtracting off the error along several nonprincipal eigenvectors from
the current iterate of the Power Method, making use of known nonprincipal eigen-
values of the Web hyperlink matrix. Empirically, we show that using Power Ex-
trapolation speeds up PageRank computation by 30% on a Web graph of 80 mil-
lion nodes in realistic scenarios over the standard power method, in a way that is
simple to understand and implement.

1 Introduction

The PageRank algorithm for determining the “importance” ofWeb pages has become
a central technique in Web search [9]. The core of the PageRank algorithm involves
computing the principal eigenvector of the Markov matrix representing the hyperlink
structure of the Web. As the Web graph is very large, containing over a billion nodes,
the PageRank vector is generally computed offline, during the preprocessing of the Web
crawl, before any queries have been issued.

The development of techniques for computing PageRank efficiently for Web-scale
graphs is important for a number of reasons. For Web graphs containing a billion nodes,
computing a PageRank vector can take several days. Computing PageRank quickly is
necessary to reduce the lag time from when a new crawl is completed to when that
crawl can be made available for searching. Furthermore, recent approaches to person-
alized and topic-sensitive PageRank schemes [2, 10, 6] require computingmany Page-
Rank vectors, each biased towards certain types of pages. These approaches intensify
the need for faster methods for computing PageRank.

A practical extrapolation method for accelerating the computation of PageRank was
first presented by Kamvar et al. in [7]. That work assumed thatnone of the nonprinci-
pal eigenvalues of the hyperlink matrix were known. Haveliwala and Kavmar derived
the modulus of the second eigenvalue of the hyperlink matrixin [3]. By exploiting
known eigenvalues of the hyperlink matrix, we derive here a simpler and more effec-
tive extrapolation algorithm. We show empirically on an 80 million page Web crawl
that this algorithm speeds up the computation of PageRank by30% over the standard
power method. The speedup in number of iterations is basically equivalent to that of the
Quadratic Extrapolation algorithm introduced in [7], but the method presented here is



much simpler to implement, and has negligible overhead, so that its wallclock-speedup
is higher by 9%.1

2 Preliminaries

In this section we summarize the definition of PageRank [9] and review some of the
mathematical tools we will use in analyzing and improving the standard iterative algo-
rithm for computing PageRank.

Underlying the definition of PageRank is the following basicassumption. A link
from a pageu ∈ Web to a pagev ∈ Web can be viewed as evidence thatv is an
“important” page. In particular, the amount of importance conferred onv by u is pro-
portional to the importance ofu and inversely proportional to the number of pagesu
points to. Since the importance ofu is itself not known, determining the importance for
every pagei ∈ Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary computation, we next de-
scribe an equivalent formulation in terms of a random walk onthe directed Web graph
G. Let u → v denote the existence of an edge fromu to v in G. Let deg(u) be the out-
degree of pageu in G. Consider a random surfer visiting pageu at timek. In the next
time step, the surfer chooses a nodevi from amongu’s out-neighbors{v|u → v} uni-
formly at random. In other words, at timek+1, the surfer lands at nodevi ∈ {v|u → v}
with probability1/ deg(u).

The PageRank of a pagei is defined as the probability that at some particular time
stepk > K, the surfer is at pagei. For sufficiently largeK, and with minor modifi-
cations to the random walk, this probability is unique, illustrated as follows. Consider
the Markov chain induced by the random walk onG, where the states are given by the
nodes inG, and the stochastic transition matrix describing the transition from i to j is
given byP with Pij = 1/ deg(i).

For P to be a valid transition probability matrix, every node musthave at least 1
outgoing transition; i.e.,P should have no rows consisting of all zeros. This holds if
G does not have any pages with outdegree0, which does not hold for the Web graph.
P can be converted into a valid transition matrix by adding a complete set of outgoing
transitions to pages with outdegree0. In other words, we can define the new matrixP ′

where all states have at least one outgoing transition in thefollowing way. Letn be the
number of nodes (pages) in the Web graph. Letv be then-dimensional column vector
representing a uniform probability distribution over all nodes:

v = [
1

n
]n×1 (1)

Let d be then-dimensional column vector identifying the nodes with outdegree0:

di =

{

1 if deg(i) = 0,

0 otherwise

1 Note that as the Quadratic Extrapolation algorithm of [7] does not assume the second eigen-
value of the matrix is known, it is more widely applicable (but less efficient) than the algo-
rithms presented here.



y = cP T x;
w = ||x||1 − ||y||1;
y = y + wv;

Algorithm 1: Computingy = Ax

Then we constructP ′ as follows:

D = d · v T

P ′ = P + D

In terms of the random walk, the effect ofD is to modify the transition probabilities so
that a surfer visiting a dangling page (i.e., a page with no outlinks) randomly jumps to
another page in the next time step, using the distribution given byv.

By the Ergodic Theorem for Markov chains [1], the Markov chain defined byP ′

has a unique stationary probability distribution ifP ′ is aperiodic and irreducible; the
former holds for the Markov chain induced by the Web graph. The latter holds iffG is
strongly connected, which is generallynot the case for the Web graph. In the context
of computing PageRank, the standard way of ensuring this property is to add a new
set of complete outgoing transitions, with small transition probabilities, toall nodes,
creating a complete (and thus strongly connected) transition graph. In matrix notation,
we construct the irreducible Markov matrixP ′′ as follows:

E = [1]n×1 × v T

P ′′ = cP ′ + (1 − c)E

In terms of the random walk, the effect ofE is as follows. At each time step, with
probability(1 − c), a surfer visiting any node will jump to a random Web page (rather
than following an outlink). The destination of the random jump is chosen according to
the probability distribution given inv. Artificial jumps taken because ofE are referred
to asteleportation.

By redefining the vectorv given in Equation 1 to be nonuniform, so thatD andE
add artificial transitions with nonuniform probabilities,the resultant PageRank vector
can be biased to prefer certain kinds of pages. For this reason, we refer tov as the
personalization vector.

For simplicity and consistency with prior work, the remainder of the discussion
will be in terms of the transpose matrix,A = (P ′′)T ; i.e., the transition probability
distribution for a surfer at nodei is given by rowi of P ′′, and columni of A.

Note that the edges artificially introduced byD andE never need to be explicitly
materialized, so this construction has no impact on efficiency or the sparsity of the
matrices used in the computations. In particular, the matrix-vector multiplicationy =
Ax can be implemented efficiently using Algorithm 1.

Assuming that the probability distribution over the surfer’s location at time0 is
given byx(0), the probability distribution for the surfer’s location attimek is given by
x(k) = Akx(0). The unique stationary distribution of the Markov chain is defined as



limk→∞ x(k), which is equivalent tolimk→∞ Akx(0), and is independent of the initial
distributionx(0). This is simply the principal eigenvector of the matrixA = (P ′′)T ,
which is exactly the PageRank vector we would like to compute.

The standard PageRank algorithm computes the principal eigenvector by starting
with the uniform distributionx(0) = v and computing successive iteratesx(k) =
Ax(k−1) until convergence. This is known as the Power Method, and is discussed in
further detail in Section 4.

We present here a technique, called Power Extrapolation, that accelerates the con-
vergence of the Power Method by subtracting off the first few nonprincipal eigenvectors
from the current iteratex(k). We take advantage of the fact that the first eigenvalue ofA
is 1 (becauseA is stochastic), and the modulus of the second eigenvalues isc (see [3]),
to compute estimates of the error along nonprincipal eigenvectors using two iterates of
the Power Method. This Power Extrapolation calculation is easy to integrate into the
standard PageRank algorithm and yet provides substantial speedups.

3 Experimental Setup

In the following sections, we will be introducing a series ofalgorithms for computing
PageRank, and discussing the rate of convergence achieved on realistic datasets. Our ex-
perimental setup was as follows. We used the LARGEWEB link graph, generated from
a crawl of the Web by the Stanford WebBase project in January 2001 [4]. LARGEWEB

contains roughly 80M nodes, with close to a billion links, and requires 3.6GB of stor-
age. Dangling nodes were removed as described in [9]. The graph was stored using an
adjacency list representation, with pages represented by 4-byte integer identifiers. On
an AMD Athlon 1533MHz machine with a 2-way linear RAID disk volume and 3.5GB
of main memory, each iteration of Algorithm 1 on the 80M page LARGEWEB dataset
takes roughly 10 minutes. Given that the full Web contains billions of pages, and com-
puting PageRank generally requires roughly 50 applications of Algorithm 1, the need
for fast methods is clear.

We measured the relative rates of convergence of the algorithms that follow using
the L1 norm of the residual vector; i.e.,

||Ax(k) − x(k)||1

See [7] for discussion of measures of convergence for page importance algorithms.

4 Power Method

4.1 Formulation

One way to compute the stationary distribution of a Markov chain is by explicitly com-
puting the distribution at successive time steps, usingx(k) = Ax(k−1), until the distri-
bution converges.

This leads us to Algorithm 2, the Power Method for computing the principal eigen-
vector ofA. The Power Method is the oldest method for computing the principal eigen-
vector of a matrix, and is at the heart of both the motivation and implementation of the
original PageRank algorithm (in conjunction with Algorithm 1).



functionx(n) = PowerMethod() {
x(0) = v;
k = 1;
repeat

x(k) = Ax(k−1);
δ = ||x(k) − x(k−1)||1;
k = k + 1;

until δ < ε;
}

Algorithm 2: Power Method

The intuition behind the convergence of the power method is as follows. For sim-
plicity, assume that the start vectorx(0) lies in the subspace spanned by the eigenvectors
of A.2 Thenx(0) can be written as a linear combination of the eigenvectors ofA:

x(0) = u1 + α2u2 + . . . + αmum (2)

Since we know that the first eigenvalue of a Markov matrix isλ1 = 1,

x(1) = Ax(0) = u1 + α2λ2u2 + . . . + αmλmum (3)

and
x(n) = Anx(0) = u1 + α2λ

n
2u2 + . . . + αmλn

mum (4)

Sinceλn ≤ . . . ≤ λ2 < 1, A(n)x(0) approachesu1 asn grows large. Therefore, the
Power Method converges to the principal eigenvector of the Markov matrixA.

4.2 Operation Count

A single iteration of the Power Method consists of the singlematrix-vector multiply
Ax(k). Generally, this is anO(n2) operation. However, if the matrix-vector multiply is
performed as in Algorithm 1, the matrixA is so sparse that the matrix-vector multiply
is essentiallyO(n). In particular, the average outdegree of pages on the Web hasbeen
found to be around 7 [8]. On our datasets, we observed an average of around 8 outlinks
per page.

It should be noted that ifλ2 is close to 1, then the power method is slow to converge,
becausen must be large beforeλn

2 is close to 0.

4.3 Results and Discussion

As we show in [3], the eigengap1− |λ2| for the Web Markov matrixA is given exactly
by the teleport probability1− c. Thus, when the teleport probability is large, the Power
Method works reasonably well. However, for a large teleportprobability (and with a

2 This assumption does not affect convergence guarantees.
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Fig. 1. Comparison of convergence rate for the standard Power Method on the LARGEWEB

dataset forc ∈ {0.80, 0.85, 0.90}.

uniform personalization vectorv), the effect of link spam is increased, and pages can
achieve unfairly high rankings.3

In Figure 1, we show the convergence on the LARGEWEB dataset of the Power
Method forc ∈ {0.80, 0.85, 0.90} using a uniform damping vectorv. Note that in-
creasingc slows down convergence. Since each iteration of the Power Method takes 10
minutes, computing 50 iterations requires over 8 hours. As the full Web is estimated to
contain over two billion static pages, using the Power Method on Web graphs close to
the size of the Web would require several days of computation.

In the next sections, we describe how to remove the error components ofx(k) along
the directions of the nonprincipal eigenvectors, thus increasing the effectiveness of
Power Method iterations.

5 Extrapolation Methods

A practical extrapolation method for accelerating the computation of PageRank was
first presented by Kamvar et al. in [7]. That work assumed thatnone of the nonprincipal
eigenvalues of the hyperlink matrix are known. However, Haveliwala and Kamvar [3]
proved that the modulus of the second eigenvalue ofA is given by the damping factor
c. Note that the web graph can have many eigenvalues with modulusc (i.e., one ofc,
−c, ci, and−ci). In this section, we present a series of algorithms that exploit known
eigenvalues ofA to accelerate the Power Method for computing PageRank.

3 A high teleport probability means that every page is given a fixed “bonus” rank. Link spammers
can make use of this bonus to generate local structures to inflate the importance of certain
pages.



5.1 Simple Extrapolation

Formulation The simplest extrapolation rule assumes that the iteratex(k−1) can be ex-
pressed as a linear combination of the eigenvectorsu1 andu2, whereu2 has eigenvalue
c.

x(k−1) = u1 + α2u2 (5)

Now consider the current iteratex(k); because the Power Method generates iterates
by successive multiplication byA, we can writex(k) as

x(k) = Ax(k−1) (6)

= A(u1 + α2u2) (7)

= u1 + α2λ2u2 (8)

Plugging inλ2 = c, we see that

x(k) = u1 + α2cu2 (9)

This allows us to solve foru1 in closed form:

u1 =
x(k) − cx(k−1)

1 − c
(10)

Results and Discussion Figure 2 shows the convergence of Simple Extrapolation and
the standard Power Method, where there was one application of Simple Extrapolation
at iteration 3 of the Power Method. Simple Extrapolation is not effective, as the as-
sumption thatc is the only eigenvalue of modulusc is inaccurate. In fact, by doubling
the error in the eigenspace corresponding to eigenvalue−c, this extrapolation technique
slows down the convergence of the Power Method.

5.2 A2 Extrapolation

Formulation The next extrapolation rule assumes that the iteratex(k−2) can be ex-
pressed as a linear combination of the eigenvectorsu1, u2, andu3, whereu2 has eigen-
valuec andu3 has eigenvalue−c.

x(k−2) = u1 + α2u2 + α3u3 (11)

Now consider the current iteratex(k); because the Power Method generates iterates
by successive multiplication byA, we can writex(k) as

x(k) = A2x(k−2) (12)

= A2(u1 + α2u2 + α3u3) (13)

= u1 + α2λ
2
2u2 + α2λ

2
3u3 (14)
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Fig. 2. Comparison of convergence rates for Power Method and SimpleExtrapolation on
LARGEWEB for c = 0.85.

Plugging inλ2 = c andλ3 = −c, we see that

x(k) = u1 + c2(α2u2 + α3u3) (15)

This allows us to solve foru1 in closed form:

u1 =
x(k) − c2x(k−2)

1 − c2
(16)

A2 Extrapolation eliminates error along the eigenspaces corresponding to eigenvalues
of c and−c.

Results and Discussion Figure 3 shows the convergence ofA2 extrapolated PageRank
and the standard Power Method whereA2 Extrapolation was applied once at iteration 4.
Empirically,A2 extrapolation speeds up the convergence of the Power Methodby 18%.
The initial effect of the application increases the residual, but by correctly subtracting
off much of the largest non-principal eigenvectors, the convergence upon further itera-
tions of the Power Method is sped up.

5.3 Ad Extrapolation

Formulation The previous extrapolation rule made use of the fact that(−c)2 = c2. We
can generalize that derivation to the case where the eigenvalues of modulusc are given
by cdi, where{di} are thedth roots of unity. From Theorem 2.1 of [3] and Theorem 1
given in the Appendix, it follows that these eigenvalues arise from leaf nodes in the
strongly connected component (SCC) graph of the Web that arecycles of lengthd.
Because we know empirically that the Web has such leaf nodes in the SCC graph, it
is likely that eliminating error along the dimensions of eigenvectors corresponding to
these eigenvalues will speed up PageRank.
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Fig. 3. Comparison of convergence rates for Power Method andA2 Extrapolation on LARGEWEB

for c = 0.85.

We make the assumption thatx(k−d) can be expressed as a linear combination of
the eigenvectors{u1 . . . ud+1}, where the eigenvalues of{u2 . . . ud+1} are thedth roots
of unity, scaled byc.

x(k−d) = u1 +

d+1
∑

i=2

αiui (17)

Then consider the current iteratex(k); because the Power Method generates iterates
by successive multiplication byA, we can writex(k) as

x(k) = Adx(k−d) (18)

= Ad(u1 +

d+1
∑

i=2

αiui) (19)

= u1 +

d+1
∑

i=2

αiλ
d
i ui (20)

(21)

But sinceλi is cdi, wheredi is adth root of unity,

x(k) = u1 + cd

d+1
∑

i=2

αiui (22)

(23)

This allows us to solve foru1 in closed form:

u1 =
x(k) − cdx(k−d)

1 − cd
(24)



functionx∗ = PowerExtrapolation(x(k−d), x(k)) {
x∗ = (x(k) − cdx(k−d))(1 − cd)−1;
}

Algorithm 3: Power Extrapolation

functionx(n) = ExtrapolatedPowerMethod(d) {
x(0) = v;
k = 1;
repeat

x(k) = Ax(k−1);
δ = ||x(k) − x(k−1)||1;
if k == d + 2,

x(k) = PowerExtrapolation(x(k−d), x(k));
k = k + 1;

until δ < ε;
}

Algorithm 4: Power Method with Power Extrapolation

For instance, ford = 4, the assumption made is that the nonprincipal eigenvalues
of modulusc are given byc, −c, ci, and−ci (i.e., the 4th roots unity). A graph in which
the leaf nodes in the SCC graph contain only cycles of lengthl, wherel is any divisor
of d = 4 has exactly this property.

Algorithms 3 and 4 show how to useAd Extrapolation in conjunction with the
Power Method. Note that Power Extrapolation withd = 1 is just Simple Extrapolation.

Operation Count The overhead in performing the extrapolation shown in Algorithm 3
comes from computing the linear combination(x(k) − cdx(k−d))(1 − cd)−1, anO(n)
computation.

In our experimental setup, the overhead of a single application of Power Extrapo-
lation is 1% the cost of a standard power iteration. Furthermore, Power Extrapolation
needs to be applied only once to achieve the full benefit.

Results and Discussion In our experiments,Ad Extrapolation performs the best for
d = 6. Figure 4 plots the convergence ofAd Extrapolation ford ∈ {1, 2, 4, 6, 8}, as
well as of the standard Power Method, forc = 0.85 andc = 0.90.

The wallclock speedups, compared with the standard Power Method, for these 5
values ofd for c = 0.85 are given in Table 1.

For comparison, Figure 5 compares the convergence of the Quadratic Extrapolated
PageRank withA6 Extrapolated PageRank. Note that the speedup in convergence is
similar; however,A6 Extrapolation is much simpler to implement, and has negligi-
ble overhead, so that its wallclock-speedup is higher. In particular, each application of
Quadratic Extrapolation requires 32% of the cost of an iteration, and must be applied
several times to achieve maximum benefit.
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Table 1. Wallclock speedups forAdExtrapolation, ford ∈ 1, 2, 4, 6, 8, and Quadratic Extrapola-
tion

Type speedup

d = 1 -28%
d = 2 18%
d = 4 25.8%
d = 6 30%
d = 8 21.8%

Quadratic 20.8%
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Appendix

This appendix repeats Theorem IV.2.5 from [5].

Theorem 1. (Theorem IV.2.5 from [5]) If P is the transition matrix of an irreducible
periodic Markov chain with period d, then the dth roots of unity are eigenvalues of P .
Further, each of these eigenvalues is of multiplicity one and there are no other eigen-
values of modulus 1.


