
Research Article
Decentralized Competition Produces Nonlinear Dynamics
Akin to Klinotaxis

Pedro Manrique ,1 Mason Klein ,1 Yao Sheng Li,2 Chen Xu,2 Pak Ming Hui ,3

and Neil Johnson1

1Physics Department, University of Miami, Coral Gables FL 33126, USA
2College of Physics, Optoelectronics, and Energy, Soochow University, Suzhou 215006, China
3Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong

Correspondence should be addressed to Pedro Manrique; p.manriquecharry@umiami.edu

Received 23 February 2018; Revised 22 May 2018; Accepted 6 June 2018; Published 22 July 2018

Academic Editor: Eulalia Martínez

Copyright © 2018 Pedro Manrique et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

One of the biggest challenges in unravelling the complexity of living systems, is to fully understand the neural logic that translates
sensory input into the highly nonlinear motor outputs that are observed when simple organisms crawl. Recent work has shown that
organisms such as larvae that exhibit klinotaxis (i.e., orientation through lateral movements of portions of the body) can perform
normal exploratory practices even in the absence of a brain. Abdominal and thoracic networks control the alternation between
crawls and turns. This motivates the search for decentralized models of movement that can produce nonlinear outputs that
resemble the experiments. Here, we present such a complex system model, in the form of a population of decentralized
decision-making components (agents) whose aggregate activity resembles that observed in klinotaxis organisms. Despite the
simplicity of each component, the complexity created by their collective feedback of information and actions akin to
proportional navigation, drives the model organism towards a specific target. Our model organism’s nonlinear behaviors are
consistent with empirically observed reorientation rate measures for Drosophila larvae as well as nematode C. elegans.

1. Introduction

Biological systems, as well as many economic and social
systems, are characterized by highly nonlinear, complex
dynamics which reflect the high degree of adaptability that
they possess to the ever-changing environment that sur-
rounds them. Such complex adaptive systems are often
modeled as large collections of interacting agents that
evolve in time to produce a complicated interplay between
deterministic and stochastic outputs [1–3]. The challenge
to understand the neural circuit mechanisms underlying
an organism’s constant search for optimal living condi-
tions, constitutes an active research field [4–6]. Target sys-
tems such as nematodes and larvae are often studied to
unveil the neural logic responsible for transforming exter-
nal stimuli into directed locomotion [7–10]. From bacteria
to vertebrates, there is an open challenge to understand

the feedback loop in which sensory inputs and motor out-
puts coupled resulting in the organism’s locomotion. In
addition to the interest in understanding living systems,
the lessons learned from such studies may have useful
implications for the design of more efficient cyberphysical
systems comprising collections of sensors and actuators
[11, 12]. Indeed, the model that we present can be seen
as equivalent to such a cyberphysical system, with each
component (agent) acting simultaneously as a sensor and
an actuator.

In bacteria, a goal-directed behavior is realized through
biased random walks where paths are extended in the direc-
tion of the stimulus (klinokinesis) [13, 14]. Organisms with
highly complex nervous systems (e.g., vertebrates) perform
simultaneous spatial comparisons of stimulus samples (e.g.,
odor intensity) that are detected by independent sensors (tro-
potaxis) [15, 16]. Lying in between, organisms such as fruit
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fly larvae detect temporal changes in the stimulus intensity in
order to guide their motion [8]. The crawling larva alternates
forward movements or runs with head-sweeping movements
or turns [8–10, 17]. This is an error-correction mechanism of
temporal sampling known as weathervaning or klinotaxis,
and it encompasses a sensorimotor memory developing from
former reorientation actions [18].

Carefully designed anatomical models of larvae follow-
ing a combination of weathervaning and head casts have
been proposed to explain several features of the organisms’
behavior [19] and the flow of information [20]. A key
question is whether a simpler control scheme inspired by
empirical findings and involving a reduced number of
parameters, can produce satisfactory results. It has been
found that for Drosophila larva under the influence of an
odor gradient (chemotaxis), the subesophageal zone con-
trols the selection of different behavioral programs includ-
ing the regulation of transitions from runs to turns [21].
However, it has been shown empirically that these organ-
isms actually produce exploratory routines of runs and
turns in the absence of a brain, which suggests that there
is a basic motility pattern produced at the neural cord
[19, 22]. In addition, for thermal stimulus (thermotaxis),
chordotonal neurons found in the body wall, are shown
to produce different responsive patterns to thermal
changes [23, 24]. These findings motivate us to develop a
decentralized model approach in order to understand the
underlying sensorimotor circuits in simple organisms.

Here, we present such a decentralized model that reg-
ulates the direction of motion of a system (e.g., larva) in
search of a specific target, and as a result produces nonlin-
ear motion that is consistent with that observed empiri-
cally. We stress that our model is not unique, and is
purposely minimal in that it lacks a wealth of known bio-
logical details. Hence, it should be seen very much as a
possible prototype. However, its value comes from the fact
that, despite its minimal structure, it does produce non-
trivial nonlinear behaviors, which are consistent with the
observed empirical measurements. This in turn suggests
that our minimal model may indeed be capturing some
core principles (e.g., reward/penalty mechanism), albeit in
a very crude way, which may eventually become generaliz-
able to other organisms and systems in the future. The
nonlinear output trajectories produced by our model share
some interesting commonalities with those observed in kli-
notaxis dynamics. In addition to using temporal sampling
to regulate turns, our analysis shows that the relationship
between the turning rate and the optimal direction is akin
to that found in the chemotaxis of organisms such as C.
elegans and Drosophila larvae. Our model could hence
shed light on open questions regarding the specifics of
the neural circuits connecting the sensory and motor neu-
rons in these organisms.

2. Navigation Model

2.1. Description of Our Model. Consider a system comprising
N agents, and let N be odd for concreteness. Based on the set
of strategies that each agent holds, each of which is a look-up

table of actions to take given a particular history of recent
global outcomes, the aggregate action of these N agents will
dictate the trajectory of the system during the next timestep.
This process then continues for all timesteps. Each agent can
be considered, for example, to represent a piece of the organ-
ism’s machinery (e.g., a segment of the body or a piece of the
neural system). There is a specific target or destination, and
the global outcome produced at each timestep concerns
whether the aggregate behavior was good or bad in terms of
moving the organism toward or away from the target. There
is no communication among the agents beyond the fact that
they receive the same feedback of information about the
global outcomes at previous timesteps. The model setup is
crudely analogous to the situation of a set of N people in a
canoe, without any central coordinator, with each of them
deciding by themselves at each timestep whether to put their
oar into the water (and hence row) on the left or right of the
canoe. They then all see in which direction the canoe actually
moved, and whether this was beneficial to the canoe in terms
of moving toward a target, and then they each decide by
themselves again and the whole process iterates. The hetero-
geneity of the individuals means that they each have their
own set of strategies that they use to decide the action that
they will take at a given timestep, given the global informa-
tion about previous outcomes being good or bad in terms
of the canoe moving toward its target. We shall not pursue
this analogy more, though the rest of the paper can indeed
be read with this analogy in mind for concreteness.

Initially, the system is located at an arbitrary position
away from the target, and pointing in an arbitrary initial
direction. Suppose that at the end of the timestep t − 1, the
system reaches the point xt−1, yt−1 with an instantaneous
velocity of v t − 1 which makes an angle θ t − 1 with
respect to the horizontal (see Figure 1(a)). The target is

located at a fixed point xT , yT and we define the vector T
t − 1 to point from the system to the target at time t − 1.
The angle Ω t − 1 between the vectors v t − 1 and T
t − 1 serves as an indicator of the system-target align-
ment. At the beginning of the next timestep, the system
(i.e., organism) rotates so that it now makes a new angle
θ(t) with the horizontal and subsequently advances a dis-
tance ℓ along the new direction v t to the new location
xt , yt . The travelled distance ℓ per timestep is constant
throughout the simulation and, hence, so too is the sys-
tem’s speed, though this could of course be generalized.
An additional angle Ω′ is defined between the previous

target vector T t − 1 and the new direction v t , which
helps us determine whether the rotation was a good move
for the system or not. The angles Ω and Ω′ are always
taken to be positive.

Figure 1(b) shows schematically the details of the rota-
tion. At each timestep, agents decide on one action from
among two possible actions: act to rotate the system clock-
wise (action− 1) or act to rotate the system counterclockwise
(action+1). The magnitude of the individual contribution is
δ. This means that if any two agents select opposite actions,
their contribution cancels out. By contrast, if two agents
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select the same action, their contribution adds up. The net
change in the direction of the system is given by the sum of
the agents’ individual contributions n+1 t − n−1 t δ,
which can be positive or negative. Here, we choose δ = π/2
N so that if all agents decide on the same action, the system
will change its direction by 90 degrees. Each agent decides
on a particular action based on the strategies that it holds.
Each agent holds s strategies that are randomly assigned to
it from the entire set of strategies. Each strategy dictates an
action given a particular history of prior winning groups
(i.e., winning decisions). If action+ 1 is better than action
− 1, the winning group is 1, and it is 0 otherwise. The length
of the history is known as the memory m and provides the
number of timesteps that are used as input. For example, if
m = 2, the last two winning groups are inputted in order to
represent the last two global outcomes.

Given the binary nature of the action, there are 2m possi-
ble winning histories corresponding to the global outcomes
and hence 22m possible strategies. For example, for m = 2
the four possible winning histories are 11, 10, 01, and 00,
and there are 22m = 16 possible strategies (see Figure 1(b)).
Strategies are rewarded or penalized depending on whether
they predict the winning group or not. Out of its own set of
s strategies, each agent uses the strategy that has the highest
score at that timestep. If two or more strategies have the same
highest score, the agent chooses randomly one of them. For
example, if the history for a given timestep is 10 and the high-
est scored strategy an agent holds is −1 − 1 − 1 + 1 (strategy
number 2 in Figure 1(b)), the agent will choose action− 1.
However, under the same conditions, if the history is 11,

the agent will choose action +1 instead. The chosen strategy
will either increase or decrease its score by one point depend-
ing on whether the action yields a better or worse system-
target alignment, respectively.

To determine whether an individual action is good or
not, we look at the change it produces to the direction of
the system at time t compared to time t − 1. A good action
would improve the alignment between the vector v and

the vector T . Therefore, if Ω is the angle between these two
vectors, the goal is to minimize Ω. To this end, a comparison
is made between Ω t − 1 , that is, before individuals perform
the action that changes the direction, and Ω′ defined as the
angle between the new vector v t (i.e., after the action is
taken but before the system displaces) and the target vector

T t − 1 . Thus, the effect of the combination of individual
actions is evaluated at the same position in the plane. Hence,
the difference ΔΩ =Ω′ −Ω t − 1 is used as a criterion to
determine whether the action is good or not as follows: when
ΔΩ > 0, the action that has led to Ω′ >Ω t − 1 is the bad
(losing) action and the other one is the winning action. By
contrast, when ΔΩ < 0, the action that has led to Ω′ <
Ω t − 1 is the good (winning) action. Finally, if ΔΩ = 0
and Ω′ =Ω t − 1 ≠ 0, the action that makes Ω′ smaller
wins, and if ΔΩ = 0 and Ω′ =Ω t − 1 = 0, both actions
are winners.

It is important to understand the correlations among the
different strategies, which in turn affect the system behavior
in the model. The root of these correlations lies in the spe-
cifics of the strategy space for a given value of m. When

v (t)

v (t − 1)

𝜃 (t)

𝜃 (t − 1)

T (t − 1)

m

m = 2
0 1

1 1

n+1(t)

n−1(t)

𝜃 (t) = 𝜃 (t − 1) + (n+1(t) − n−1 (t))𝛿

Target

T (t)

System

ℓ
𝛺′

𝛺 (t)

𝛺 (t − 1)

Action − 1

Action + 1

Rotation

Clockwise

Counterclockwise

Which is the
winning action? 

Δ𝛺 = 𝛺′ − 𝛺(t − 1)

New system’s direction

00 01 10 11
−1 −1 −1 −1
−1 −1 −1 +1
— — — —
−1 −1 +1 +1

−1 +1 +1 +1

+1 +1 +1 +1

Set of 
operating 
strategies

2
2

Histories2m

Each
has s

History at time t
… Updated history

at time t + 1 

…

∆𝛺 > 0

∆𝛺 < 0

∆𝛺 = 0

Losing action
makes 𝛺′
larger

Winning action
makes 𝛺′
smaller

𝛺 (t − 1) ≠ 0
𝛺′ ≠ 0

𝛺 (t − 1) = 0
𝛺′ = 0

Winning
action are

both

Δ𝛺 decides:

Winning action
is decided
(e.g., +1)

Trajectory parametrization

(a) (b)

Multiagent model

(xt−1, yt−1)

(xt, yt)

(xT, yT)

— — — —

— — — —

Figure 1: (a) Parametrization of the trajectory of a moving system advancing towards a well-defined target. The velocity vector v makes an

angle θwith the horizontal and an angleΩwith the vector T which points from the system to the target.Ω′ is defined as the angle between the
vector velocity v t at time t, and the target vector T t − 1 at time t − 1. (b) Our nonlinear model of klinotaxis. N heterogeneous adaptive
agents holding s strategies each, decide on a specific action using their respective highest scoring strategy from among the s that they possess.
These are assigned randomly to each agent at the start of the simulation, from the full strategy space to mimic agent (i.e., component)
heterogeneity across the N agents. The aggregate of their autonomous actions contributes to the rotation of the moving system either
clockwise or anticlockwise by an angle δ. The winning option is decided from the resultant angle ΔΩ as shown. Subsequently, the winning
history is updated, announced, and used by each agent as a new input to decide on its next action. Dashes in the list of strategies are used
to indicate groups of strategies that, for clarity, are not explicitly written out.
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looking at the full strategy space (i.e., dimension 22m), we
can find subsets of strategies where each pair within the
subset can be either uncorrelated or anticorrelated. Uncor-
related strategies refer to pairs of strategies that would take
the same actions for half of the histories and would take
the opposite actions for the remaining half. If the histories
occur equally often, the actions of the two agents will be on
average uncorrelated. For m = 2 as an example, this is the
case for strategies −1 − 1 − 1 − 1 and −1 − 1 + 1 + 1. Anticor-
related strategies refer to pairs of strategies that take opposite
actions independent of the sequence of previous outcomes.
For example, for m = 2, any two agents using strategies −1
− 1 + 1 + 1 and +1 + 1 – 1 − 1 do opposite actions and as a
result their net effect on the system’s trajectory cancels out
and will not contribute to the trajectory fluctuations. The
group of agents using these strategies at a given timestep
are called the crowd and the anticrowd [25] since they tend
to cancel each other’s contribution.

3. Results

3.1. Sample Trajectories. Sample trajectories from our model
are shown in Figure 2(a) for different values of m and s for a
population of N = 101 agents. Each panel shows three trajec-
tories for a specific value of m and s. The trajectories start at
the points (−40, 0), (0, 0), and (+40, 0) in length units of ℓ.
For all cases the initial angle is θ = π/2 with the horizontal,
and the target is located at the point (0, 100). The number
of steps is such that the system arrives to the target at the last
timestep if traveling in a straight line.

For m = 1 (left panel in Figure 2(a)), the strategy pool is
small (4 strategies) and all strategies are in play. This results
in a large-crowd effect where the majority outnumbers the
minority by a large amount. Consequently, the majority
action quickly becomes the wrong action and then soon the
opposite action becomes the majority and subsequently the
wrong action again. The outcomes move through the history
space with some periodicity. This translates into a rather zig-
zag motion of the system in a short period and at a big
inclined angle to the vertical. The zigzag motion makes the
end point farther away from the target. The effect is larger
when agents have access to more strategies as shown in the
s = 3 case. As m increases, the trajectories gradually lose the
zigzag behavior and drive the system more effectively
towards the target. This is because the anticrowd is effectively
balancing the crowd. The system moves in a more direct way
towards the target. However, since N is odd, it displaces from
one side to the other of the optimal path with an angleΩ that
is smaller than that for m = 1.

Figure 2(b) illustrates the average time the system takes to
reach the target given by τ, as a function of the number of
agents N for different values of s and m. In this case we have
chosen an initial system-target separation equal to 103ℓ, so
that a search time close to 103 timesteps is an indication of
a more efficient path. It is found that the average search time
tends to reach a steady value as N grows while the fluctua-
tions decrease rapidly as m increases. This indicates that a
population of N = 101 agents is a good choice if we want to

avoid large-population effects where the fluctuations will
likely significantly affect the dynamics.

3.2. Resemblance with Proportional Navigation. A navigation
strategy known as proportional navigation has the objective
of maintaining the line of sight (LOS) angle fixed while the
system moves towards the target [26]. LOS is the direction
that maximizes the efficiency of the movement measured
with respect to a fixed reference. For example, the LOS angle
of the central trajectories of each panel in Figure 2 is 90
degrees, or more generally in Figure 1(a) the LOS corre-

sponds to the direction of the vector T . It has been shown
that the rate of change of the LOS angle (i.e., the turning rate)
is proportional to the sine of the local bearing angle β which

is defined as the angle from vector v to vector T [27]. Note
that ∣β∣ =Ω, since Ω is defined as positive. Figure 3(a) illus-
trates the instantaneous turning rate per timestep ϕ and the
bearing angle β for three step trajectories moving towards a
single target. We measure the turning rate and bearing angle
for a large set of trajectories generated by our model for dif-
ferent values of s and m. We analyze 1024 trajectories for
each parameter set while randomizing the initial conditions
(i.e., the system’s initial position and direction).

Figure 3(b) shows our results for the dependence of
the mean turning rate on the mean bearing angle. For
all cases, the relationship resembles that of a sine function
as predicted by the proportional navigation guidance
technique. The main panel shows how by changing m
and s, the dependence alters the roughly sinusoidal pat-
tern. For example, large changes in the turning rate are
associated with small values of m and large values of s,
which is a result of the zigzag behavior described in the
previous section. The inset illustrates the effect of different
noisy level information in the angular dependence. Noise
is introduced by means of a probability p that the winning
group is identified incorrectly at a given timestep. This
could model an obscured target as well as sensor malfunc-
tion. Noise in the information tends to reduce the turning
rate without changing the original pattern.

We find that the sinusoidal pattern is robust for a wide
range of choices of the number of agentsN . Figure 3(c) shows
that even for a single agent, the overall pattern is preserved
while the sinusoidal shape improves when more agents are
included. As found for the search time, larger effects occur
for the small populations. This finding indicates that the ele-
ment of competition among a fair number of agents (N > 50),
tends to stabilize the system to the point that the model
becomes scalable with N .

3.3. Comparison to Larval Chemotaxis.A comparable turning
rate pattern is found for the nematode C. elegans [28] and
Drosophila larva [18] when released on a surface subject to
a chemical gradient (chemotaxis). This is a form of klinokin-
esis and klinotaxis where the organisms are guided by the
stimulus intensity (e.g., odor). Figure 4(a) uses the measure-
ments from [18] to compare trajectories from Drosophila
larva chemotaxis using a sensory gradient formed by an odor
droplet of 30nM ethyl butyrate (top) and trajectories from
our model with parameters of s = 2, m = 3, and p = 0 1
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Figure 2: (a) Sample trajectories from our navigation model moving from a specific point on the x axis and y = 0, toward a specific target
located at the point (0, 100) in distance units of one single step ℓ. Each panel shows three trajectories for a specific value of m (m = 1 on
the left, m = 2 in the middle, and m = 3 on the right) and s (s = 2 on the top and s = 3 on the bottom). For each trajectory, the number of
steps is such that the system would get to the target if traveling along a straight line. Here, the population is N = 101. (b) Dependence of
the average search time τ with the number of agents N for s = 2, 3 and m = 1, 2, 3. Data points are averaged over 104 realizations with
randomized initial conditions of winning history and strategy distribution. The initial system-target separation is 103ℓ. Error bars are
fluctuations. For all cases, we have used δ = π/2N .
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Figure 4: (a) Crawling chemotaxis trajectories from Drosophila larvae taken from [18] (top) and our model (bottom) around a target located
at the central colored circle. Both illustrations show the overlap of 47 individual paths. (b) Comparison of the average dependence of ϕ on β
between the trajectories from chemotaxis (black circles) and our model (blue inverted triangles). The model parameters are s = 2, m = 3, and
p = 0 1. Experimental points are taken from [20].
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(bottom). The stimulus (e.g., odor and target) is located close
to the initial position of the system so that the target region is
revisited frequently by the system (organism) and the
reorientation mechanism (i.e., turning rate) can be analyzed.
Each panel shows the overlap of 42 independent trajectories.
Using the measurements of Gomez-Marin and Louis [18],
Figure 4(b) contrasts the turning rate dependence with the
bearing angle for both systems. For the model, we have used
a sample of 1024 trajectories with at least 100 timesteps each
and we use the same parameters as in Figure 4(a). Although
the amplitude for the turning rate for the model is larger than
that of the organism, both patterns compare reasonably well
when scaled, as shown.

4. Discussion

Though we are certainly not arguing that the neural circuit
responsible for the motion in these organisms follows the
same mechanism as our model, it is curious and suggestive
that there are nontrivial commonalities about the resulting
nonlinear motion that could provide new insights into how
these neural circuits connect the sensory and motor neurons.
This becomes particularly interesting for light avoidance kli-
notaxis in Drosophila larvae where it has been found that the
sensorimotor system (i.e., alternation between crawls and
turns) of the organism’s abdomen and thorax can function
normally in the absence of brain activity. In addition, body
wall neurons in contrast to dorsal organ neurons, have shown
active response to thermal inputs in Drosophila melanogaster
larvae [23]. These findings point to a potential decentralized
neural machinery instead of a unified central network.

Our model can indeed be extended to account for more
complex environments beyond a single target point, for
example, considering a gradually (or temporally) changing
signal often used to model chemotaxis. Indeed, considering
a fixed-point target is a reasonable strong first step that
accounts for basic but illustrative environments in phototaxis
as well as chemotaxis. In addition, for a very large initial
system-target separation, compared to a typical trajectory
length, our current model could also be used to study one-
dimensional thermotaxis.

Our work contributes to the undergoing transition of the
biological sciences to a more quantitative subject and where
nonlinear approximations can play a central role [29]. In par-
ticular, it provides a framework where the adaptability of a
system can be tested against nonlinear interactions, both
internal and external. Moreover, our work touches on the
incorporation of randomness in biological processes such as
perception and its potential implication in locomotion.

In summary, we have presented a decentralized multia-
gent model that, by using a decision-making mechanism
based on strategies and scores, drives the trajectory of a
system towards a specific target. Our model is scalable to
any number of agents N and adaptable through a penalty-
reward mechanism of the implemented strategies. The
model follows a proportional navigation principle, which
aims to fix the LOS angle along the trajectory. This is shown
by calculating the dependence of the turning rate on the
bearing angle, revealing a sinusoidal dependence. This same

turning rate function is found in the klinotaxis dynamics of
several organisms and compares qualitatively well with our
nonlinear model.
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