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Evolving artificial minds and brains

Pete Mandik, Mike Collins and Alex Vereschagin

We explicate representational content by addressing how representations that ex-
plain intelligent behavior might be acquired through processes of Darwinian evo-
lution. We present the results of computer simulations of evolved neural network 
controllers and discuss the similarity of the simulations to real-world examples of 
neural network control of animal behavior. We argue that focusing on the simplest 
cases of evolved intelligent behavior, in both simulated and real organisms, reveals 
that evolved representations must carry information about the creature’s environ-
ments and further can do so only if their neural states are appropriately isomor-
phic to environmental states. Further, these informational and isomorphism rela-
tions are what are tracked by content attributions in folk-psychological and 
cognitive scientific explanations of these intelligent behaviors.

1	 Introduction

Many kinds of explanations of intelligent behavior make reference to mental repre-
sentations, that is, they explain an organism’s ability to behave intelligently in virtue 
of an organism’s having mental representations. The existence of such explanations, 
“representational explanations” for short, raises many questions, of which two will 
be the focus of this paper. The first is the question of whether representational expla-
nations of intelligent behavior are the best explanations of intelligent behavior or if 
we might instead do better with explanations that make no reference to mental rep-
resentations. We will argue that we can do no better than representational explana-
tions. The second question that arises is the question of what representational expla-
nations are referring to when they refer to representations. What are representations? 
We demand not just an account of what representations are, but additionally we 
demand an account that explains how representations can be the sorts of things that 
help explain intelligent behavior. We will sketch such an account. The goal of this 
paper then, is twofold: to argue that we need representations to explain intelligent 
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behavior and to sketch an account of what sorts of things representations must be if 
they are to explain intelligent behavior.

Several opponents of representational explanations have built their cases by 
starting with the simplest examples of intelligent behavior and attempting to dem-
onstrate that in such examples, no representations are to be found and thus, no 
representations need be referred to in order to explain the behaviors at hand. This 
is the strategy followed, for example, by roboticists and artificial intelligence re-
searchers such as Brooks (1991) and Beer (1990) in their arguments for the pos-
sibility of intelligence without representation. We will employ a similar strategy 
but we will be drawing different conclusions. We will examine some of the simplest 
cases of intelligent behavior and demonstrate that in these cases the behavior at 
hand is best explained in terms of representations. Further, our account of repre-
sentations will be fully realist and reductive. To say that the account is realist is to 
say that the attributions aren’t purely instrumental ways of speaking as if the crea-
tures had representations. It is instead to pick out states of creatures that would be 
there independently of our speaking of them. To say of our account that it is reduc-
tive, we will be identifying representational states in ways that are straightforward-
ly explicable in terms of states of creatures’ nervous systems and relations between 
their neural states and environmental states.

One way to examine the simplest examples of intelligent behavior is to examine 
the simplest examples of organisms that behave intelligently. This strategy confers 
the following advantage. The simpler the creature the easier it will be to keep track 
of the creature’s internal structures, the structures of the creature’s environment, and 
the relations between the two kinds of structure in virtue of which the former count 
as representations of the latter. Further, dealing with extremely simple cases will al-
low for tractable computer simulations of creature behavior as well as simulations of 
the evolutionary forces that contribute to the emergence of such behaviors.

Our motive for caring about the evolutionary background of the simplest cog-
nitive behaviors emerges from the following presumptions. We presume, and are 
unlikely alone in doing so, that the simplest forms of intelligent behaviors are 
adaptive. That is, intelligent behaviors, at least of the simplest varieties, provide 
biological benefits to the organisms that perform them. We presume also that just 
as there was a time in the history of the universe that there were no biological or-
ganisms, there was a time in the history of the universe that there were no organ-
isms performing intelligent behaviors. Since abiogenesis is the term referring to the 
hypothesized emergence of life from non-living matter, we coin the term apsycho-
genesis to refer to the hypothesized emergence of intelligence from non-intelligent 
systems. When, in the history of the universe did abiogenesis and apsychogenesis 
occur? No one knows, but we doubt that apsychogenesis preceded abiogenesis. 
They either coincided or abiogeneis occurred first. However, the latter option 
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strikes us as the more plausible of the two. Adding to our growing list of presump-
tions, we further presume that the problem of understanding apsychogenesis is 
best understood in the context of an evolutionary framework. Thus we are led to 
ask: What pressures applied to non-intelligent organisms yielded the earliest and 
simplest forms of intelligence? If mental representations are to underwrite intelli-
gent behavior, then questions of the evolvability of intelligence will be closely re-
lated to questions of the evolvability of mental representations.

We will tackle the topics of intelligence, representation, and evolution by ex-
amining computer simulations of evolved adaptive behaviors. The simulated or-
ganisms, behaviors, and environments will be simple enough to make tractable 
questions concerning the relations that constitute representation and the roles rep-
resentations play in adaptive intelligent behaviors.

The structure of the rest of the paper is as follows. First we will briefly examine 
a few cases in which representations are invoked to explain the intelligent behav-
iors of humans and non-human animals. The goal here will not be to extract a 
definition of representation from these examples but instead to only note a few key 
features of the roles representations play in such explanations. Formulating a defi-
nition of representation is a goal to be achieved (or at least approximated) toward 
the end of the paper and not a presupposition to be made at its outset. Following 
the examination of these sample explanations, we will describe the basic intelligent 
behavior of positive chemotaxis and highlight the ways in which the problem that 
chemotaxis poses for organisms can be solved in a variety of ways involving repre-
sentations. Next we describe mathematical and computer models of positive 
chemotaxis. The models are informed by neuroanatomical and neurophysiological 
data from real animals. Finally we discuss what account of representation seems 
best supported by the models.

2	 Mental representations in explanations of intelligent behavior

Let us take a brief look at a folk-psychological explanation of a piece of intelligent 
behavior. Consider George. George is opening a refrigerator. Why? What explana-
tion is available for this action? A folk-psychological explanation will advert to a 
collection of psychological states that jointly constitute a cause of George’s behav-
ior. An example collection of such states would include a desire, a perception, and 
a memory. One explanation of Georges’ behavior then would advert to George’s 
desire to drink some beer, George’s visual perception that there is a refrigerator in 
front of him, and George’s memory that he put some beer in the refrigerator the 
day before.
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There are a few useful points to note about this explanation. First, the psycho-
logical states are not individually sufficient to cause a behavior, but must act in 
concert. A belief that there is beer in front of you will contribute to causing you to 
move toward it if combined with a desire for beer and will contribute to causing 
you to move away from it if combined with a fear of beer. Similarly, a desire for 
beer will contribute to causing you to move forward if combined with a belief that 
beer lies ahead and cause you to move in some other direction if combined with 
some other belief. In summary, psychological states contribute to the causes of 
behavior by acting in concert.

A second useful point to note about this sort of explanation is that the psycho-
logical states are identified in part by their representational content and in part by 
what attitude the person is taking toward that content. In the case of George’s 
memory that he put some beer in the refrigerator, the representational content of 
the memory is that George put some beer in the refrigerator and the attitude is one 
of remembering. Different types of attitude can be taken toward one and the same 
content (e.g. remembering buying beer; planning on buying beer) and one and the 
same attitude type can be taken toward different contents (e.g. perceiving that 
there is a beer in front of me, perceiving that there is a slice of pizza in front of me). 
In summary, psychological states that are causes of intelligent behaviors admit of a 
distinction between their representational contents and the attitude that is taken 
toward those representational contents.

A third useful point to note about these sorts of explanation is that we can 
make attributions of content without explicit knowledge of what, in general, rep-
resentational content is. We construct such explanations on the fly without know-
ing, for example, what the right theory of content is or even having a theory of 
content in mind. We plan to exploit this in what follows. We will present relatively 
clear cases of synthetic organisms that behave in ways explainable in terms of rep-
resentational states and we will do so before offering a definition of what represen-
tations are or what representational content is. This leaves open to empirical inves-
tigation what the best accounts of representation and content are as opposed to a 
matter that must be settled a priori before such investigations take place.

It is worth noting that the power of representational explanation is not simply 
some story we tell ourselves and each other sustained by our own (possibly mis-
taken) views of ourselves. One way to appreciate the power of such explanations is 
to appreciate them in the context of explaining the behaviors of non-human ani-
mals. The literature is filled with such examples. We briefly mention just a few. 
Consider the impressive feats of maze learning exhibited by rats. A Morris water 
maze is filled with water rendered opaque to obscure a platform that will offer a rat 
a chance to rest without having to tread water. When placed in the maze for a first 
time, a rat will explore the area and eventually find the platform. When the rat is 
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returned to the starting position, the rat does not repeat the exploratory strategy 
but instead swims straight to the remembered location of the platform. Appar-
ently, the perceptual inputs gained during the exploration were utilized to com-
pute the straight-line path to the platform. The rat’s behavior is thus explicable in 
terms of psychological states such as perceptions and memories and computations 
that operate over them. Much more detail can be given, to be sure, but for now our 
main concern is only to call these sorts of explanation to the reader’s attention. 
Much more detail concerning, for instance, the neural underpinnings of percep-
tion, memory, and computation, will be supplied later. Gallistel (1990: 2) describes 
another such example:

Every day two naturalists go out to a pond where some ducks are overwintering 
and station themselves about 30 yards apart. Each carries a sack of bread chunks. 
Each day a randomly chosen one of the naturalists throws a chunk every 5 sec-
onds; the other throws every 10 seconds. After a few days experience with this 
drill, the ducks divide themselves in proportion to the throwing rates; within 1 
minute after the onset of throwing, there are twice as many ducks in front of the 
naturalist that throws at twice the rate of the other. One day, however, the slower 
thrower throws chunks twice as big. At first the ducks distribute themselves two 
to one in favor of the faster thrower, but within 5 minutes they are divided fifty-
fifty between the two “foraging patches.” … Ducks and other foraging animals can 
represent rates of return, the number of items per unit time multiplied by the average 
size of an item. (emphasis ours)

In both the cases of the rats and the ducks, the ultimate explanation called for is 
going to require mention of some relatively subtle mechanisms inside of the ani-
mals that are sensitive to properties of the environment. To get a feel for what 
might be called for, contrast the way in which we would explain, on the one hand, 
the movements of the rat toward the platform or the duck toward the bread and, 
on the other hand, a rock falling toward the earth. The rock’s movement is ex-
plained by a direct appeal to a fundamental force of nature that constitutes the at-
traction between the respective masses of the earth and the rock. Such a direct 
appeal to a fundamental force will not explain the rat’s movement to the platform. 
This is not to say, of course, that something non-physical is transpiring between 
the rat and the platform. There is of course energy flowing between the two that 
impacts the rat in ways that ultimately explain its behavior. But unlike the case of 
the rock, the transference of energy from platform to rat will only have an impact 
on the rat’s behavior insofar as the rat is able to transduce the information carried 
by that energy into a code that can be utilized by information processing mecha-
nisms in its central nervous system. Such mechanisms will be able to store infor-
mation in the form of encoded memories and make comparisons between en-
coded memories and current sensory input to compute a course of action toward 
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a goal state. Going into further detail of how the nervous system of an animal 
might encode such information and perform such computations can get quite 
complicated. Before proceeding it will be useful to turn our attention toward nerv-
ous systems much simpler than those of vertebrates.

3	 Modeling the simplest forms of intelligence

Chemotaxis – directed movement in response to a chemical stimulus – is one of the 
simplest forms of organism behavior. It is an adaptive behavior as when, for exam-
ple, positive chemotaxis is used to move toward a food source or negative chemo-
taxis is used to move away from a toxin. The underlying mechanisms of chemo-
taxis are relatively well understood and amenable to modeling and simulation 
(Mandik 2002, 2003, 2005). Chemotaxis is appropriate to regard as cognitive. As we 
will argue below, it constitutes what Clark and Toribio (1994) call a “representation 
hungry” problem. To appreciate the informational demands that chemotaxis places 
upon an organism, it is useful to consider the problem in the abstract. The central 
problem that must be solved in chemotaxis is the navigation of a stimulus gradient, 
and the most abstract characterization would be the same for other taxes such as 
thermotaxis or phototaxis. To focus on a simplified abstract case of positive photo-
taxis, imagine a creature traversing a plane and utilizing a pair of light sensors – one 
on the left and one on the right. Activity in each sensor is a function of how much 
light is falling on in it in such a way that the sensor closer to the source of light will 
have a greater degree of activation. Thus, the difference in the activity between the 
two sensors encodes the location of the light source in a two-dimensional egocen-
tric space. Information encoded by the sensors can be relayed to and decoded by 
motor systems responsible for steering the creature. For example, left and right op-
posing muscles might have their activity be directly modulated by contralateral 
sensors so that the greater contraction corresponds to the side with the greatest 
sensor activity, thus steering the creature toward the light.

Consider now the problem of phototaxis as confronted by a creature with only 
a single sensor. The one-sensor creature will not be in a position to directly perceive 
the direction of the light since activity in a single sensor does not differentiate from, 
say, light being three feet to the left or three feet to the right. Of course, the creature 
might try to exploit the fact that the sensor is moving and make note of changes in 
sensor activity over time, but such a strategy will be available only to creatures that 
have some form of memory. Exploiting the change of sensor activity will require a 
means of comparing the current sensor activity to some past sensor activity.

Note the folk-psychological explanation of how a human would solve the 
problem of one-sensor taxis. To imagine that you are in a gradient it will do to 
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imagine that you are literally in a fog so dense that while you can ascertain how 
dense it is where you are, you cannot ascertain in which direction the fog gets 
more dense and in which direction it gets less dense. However, after walking for a 
while you notice that the fog is much less dense than it was previously. By compar-
ing your current perception of a less dense fog to your memory of a more dense 
fog against the background of your knowledge that you have been walking, it is 
reasonable for you to infer that you are moving out of the area of greatest concen-
tration. Conversely, if your current perception reveals a greater concentration of 
fog than remembered, it is reasonable for you to infer that you should turn around 
if you want to get out of the fog.

There are several points we should get from the above discussion. The first is that 
the informational demands of one-sensor chemotaxis can be readily appreciated 
from the point of view of folk-psychological explanation. The same point of view 
allows us to construct possible solutions to the problem of one-sensor chemotaxis: A 
creature that is both able to perceive the current concentration and remember the 
past concentration is thus in the position to make an inference about whether to 
keep moving ahead or turn in order to reach a desired location in the gradient.

One-sensor chemotaxis is accomplished by natural organisms. One particu-
larly well studied example is the nematode worm Caenorhabditis Elegans (C. Ele-
gans). Despite having four chemosensors, a pair in the head and a pair in the tail, 
there are good reasons to believe that the worm effects one-sensor, not four-sen-
sor, chemotaxis (Ferrée & Lockery 1999). First off, the worms are able to effect 
chemotaxis even when their tail sensors are removed. Second, the two sensors in 
the head are too close together for there to be an appreciable difference between 
the activity in each of them in response to local concentration of attractant. Third, 
when navigating chemical gradients on the effectively two-dimensional surface of 
a Petri dish, the worms are positioned on their sides with the pair of head sensors 
orthogonal to the gradient. Fourth, artificial neural network controllers inspired 
by the neurophysiology of C. Elegans with only a single sensor input are able to 
approximate real chemotaxis behaviors in simulated worms. These simulations are 
especially interesting to examine in some detail.

We next briefly review work done in simulating C. Elegans chemotaxis in 
Shawn Lockery’s lab at the University of Oregon Institute of Neuroscience. In par-
ticular we focus here on work reported in Ferrée and Lockery (1999: 263–277) and 
Dunn et al. (2004). Ferrée and Lockery construct a mathematical model of the con-
trol of C. Elegans whereby the time-derivative of the chemical concentration is 
computed and used to modulate the turning rate of the worm in the gradient. One 
of our purposes in reviewing this work is to point out how it, at best, supplies only 
a partial explanation of how the actual nervous systems of C. Elegans regulates 
chemotaxis. Ferrée and Lockery begin by constructing a model network that makes 
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many simplifying assumptions about the neuroanatomy and neurophysiology of 
the relevant circuits in C. Elegans. They hypothesize that the worm must “assess the 
gradient by computing the temporal derivative of concentration as it moves through 
the chemical environment” and that the behavioral upshot of this assessment is that 
the worm “attempts to keep its head pointed up the gradient”. Their model network 
consists of five neurons whose various states of activation model voltage. The single 
sensory input has a state of activation that reflects the local concentration of the 
chemical attractant. Two output neurons model the voltages of dorsal and ventral 
motor neurons whose relative voltages determine the worm’s neck angle. The re-
maining three neurons are interneurons. Each of the five neurons is connected to 
every other neuron by both feed-forward and feedback connections thus making a 
recurrent network. Ferrée and Lockery optimized network parameters by using a 
simple simulated-annealing training algorithm to maximize a fitness function de-
fined in terms of the change of chemical concentration. The optimized network 
resulted in simulated worm behavior similar to that of real worms: “oriented move-
ment up the gradient and persistent dwelling at the peak.” However, Ferrée and 
Lockery point out that it is not obvious how the networks are effecting these behav-
iors: “Simple inspection of the parameters … does not necessarily lead to an intui-
tive understanding of how the network functions, however, because the neural ar-
chitecture and optimization procedure often favor a distributed representation of 
the control algorithm.” To derive “an intuitive mathematical expression for this al-
gorithm” they manipulated the analytic solution to the linear system of equations 
that comprise their mathematical model. The analytic solution for the linear recur-
rent network is an equation wherein the rate turning is equal to the sum of a turn-
ing bias and the cumulative effect of chemosensory input on the rate of turning. 
This equation produces exactly the same response to chemosensory input as the 
original optimized network. In order to “further improve our intuition about 
chemotaxis control in this model”, Ferrée and Lockery produce a Taylor expansion 
of the equation in time-derivatives of the input. The extracted rule for chemotaxis 
control equates rate of turning with a sum whose first term is a turning bias, the 
second term is the zeroth time derivative of chemical concentration, the third term 
is the first order time derivative of chemical concentration, the fourth term is the 
second order time derivative of chemical concentration, and so on. Next they com-
pared simulated behavior wherein only some of the terms are kept. With just the 
turning bias and the zeroth order term, the resultant behavior was not chemotaxis 
but instead just a circular motion around the starting position. Adding the first 
order term resulted in chemotaxis as did adding the first and second order terms. 
Likewise adding the first order but omitting the zeroth order term.

Ferrée and Lockery describe their accomplishment as follows: “Using analyti-
cal techniques from linear systems theory, we extracted computational rules that 
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describe how these linear networks control chemotaxis” (Ferrée & Lockery 1999: 
276). However, we find the resultant mathematical descriptions unsatisfying inso-
far as they do not constitute explanations of how the networks effect chemotaxis. 
And they do not constitute explanations because too little has yet been said about 
what the underlying mechanisms are and how it is that they are functioning. When 
we say that they do not supply a complete account of the mechanism, by “mecha-
nism” we intend it in the sense of Craver (2001: 58): “Mechanisms are collections 
of entities and activities organized in the production of regular changes from start 
or set up conditions to finish or termination conditions” (See also Craver & Darden 
2001; Machamer, Darden & Craver 2000; Bechtel & Richardson 1993).

To get a feel for what we think is still missing, recall the earlier discussion be-
tween the difference between two-sensor chemotaxis and one sensor chemotaxis. 
In the case of two-sensor chemotaxis, the difference in activity between the left 
and right sensors can be straightforwardly exploited by a steering mechanism that 
would guide the animal right up the gradient. For example, left and right steering 
muscles could be connected to the sensors in such a way that the greater activity in 
the right sensor will result in a greater contraction in the right steering muscle thus 
turning the head of the worm toward the direction of the greatest concentration. 
If the worm’s head is pointed directly in the direction of the greatest concentration 
then the activity in the left and right sensors will be approximately equal as will be 
the amount of contraction in the left and right steering muscles, thus keeping the 
worm on course. In this description of the two-sensor case, we have at least a 
sketch of what the mechanisms underlying chemotaxis are. We are not in a com-
parable position yet with Ferrée and Lockery’s mathematical description. The 
computation rule tells us that the time derivative of the concentration is being 
computed, but we are not yet in a position to see how it is being computed. We 
know enough about the underlying mechanisms to know that there is sufficient 
information present upon which to compute the time derivative, because we know 
that the chemical concentration detected by the sensor is changing over time as 
the worm moves through the environment. However, we need to know more than 
that the information is there. We need to know how the information is encoded and 
subsequently used by the organism. As Akins (2001: 381) puts a similar point:

Information that is carried by, but not encoded in, a signal is information that is 
available only in theory. To say that the information is present is to say only that 
there exists a computable function which, if used, would yield the correct result … 
It is present, as it were, from the point of view of the universe. But no creature has 
ever acted upon information that is available only in principle.

Lockery and his colleagues are not blind to this sort of shortcoming. In a subse-
quent publication Dunn et al.  (2004: 138) write “The chemosensory neurons re-
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sponsible for the input representation are known … as are the premotor interneu-
rons for turning behavior … Much less is known about the interneurons that link 
chemosensory input to behavioral output”. To get a further handle on what the in-
terneurons might be doing, Dunn et al. run simulations of networks optimized for 
chemotaxis. The networks in these simulations have a single input neuron, one 
output neuron, and eight interneurons. All of the neurons in each network are con-
nected to each other and have self-connections as well. After optimization and test-
ing, the networks that performed successful chemotaxis were subjected to a prun-
ing procedure whereby unused neurons and connections were eliminated. Dunn et 
al.  report that the pruned yet still-successful networks have only one or two in-
terneurons and they all have inhibitory feedback among all of the neurons. Dunn 
et al. proposed that the main function of this feedback is “to regulate the latency 
between sensory input and behavior” but we note that while this latency regulation 
may indeed be occurring, it certainly does not explain how successful chemotaxis 
is accomplished. The mere introduction of a delay between input and response 
surely cannot suffice for successful chemotaxis. We hypothesize that the crucial yet 
underappreciated mechanism in the successful networks is the existence of recur-
rent connections. Recurrence has been noted by many authors (e.g. Mandik 2002; 
Churchland 2002; Lloyd 2003) as a mechanism whereby a network may instantiate 
a form of short-term or working memory, since activity in the network will not 
simply reflect the information currently coming into the sensory inputs, but also 
reflect information feeding back and thus representing past information that came 
into the sensory inputs. We hypothesize, then, that the recurrence is implementing 
a form of memory that allows the network to compute the time derivative of the 
concentration in virtue of both encoding information about the current concentra-
tion (in the state of the sensor) and encoding information about past concentration 
(in the signal propagated along the recurrent connections).

To test this hyopothesis, we conducted our own simulations of C. Elegans’ sin-
gle-sensor chemotaxis. For our simulations we utilized the Framsticks 3-D Artifi-
cial Life software (Komosinski 2000) that allowed for the construction and testing 
of worms in a simulated physics and the optimization of the worms using simu-
lated Darwinian selection. The morphologies of our synthetic worms are depicted 
in Figure 1 and their neural network topologies are depicted in Figure 2. Networks 
are modular. One module constitutes a central pattern generator that regulates 
forward motion by sending a sinusoidal signal to the chain of muscles that control 
flagellation. Another module regulates steering with a single sensory neuron, three 
interneurons, and one output neurons. This five neuron steering network is recur-
rent with every neuron in it connected to every other.
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Figure 1.  Synthetic C. Elegans. On the left, front view. On the right, top view

Figure 2.  Neural network for the synthetic C. Elegans. Neurons include one sensor (s) and 
several motor neurons (m) and interneurons (i). Single-headed arrows indicate flow of in-
formation from one neuron to the next. A double-headed arrow between two neurons in-
dicates both a feed-forward and a feedback connection between them

In our simulations the initial morphologies and network topologies were set by 
hand. The connection weights, however, were optimized through a Darwinian 
process whereby mutations are allowed only for connection weights and not to 
morphologies or network topologies. Fitness is defined in terms of overall lifetime 
distance. This forced the worms both to maintain a high velocity and also to ex-
tend their lives by replenishing their energy store with found food. We compared 
the performance of three kinds of orientation networks: fully recurrent networks 
with sensory input, recurrent networks with no sensory input (“blind” networks), 
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and strictly feed-forward networks with sensory input. Four populations of each 
of the three kinds of orientation networks were subjected to the evolutionary sim-
ulation for 240 million steps of the running program.

Results are shown in Figure 3 of the lifetime distances averaged over the four 
populations for each of the three kinds of orientation networks. The performance 
of the blind networks involved the maximal distance accomplished by worms with 
maximally optimized velocities but no extension of lifespan through finding food 
beyond whatever food they collided with accidentally. Worms with sensory inputs 
and recurrent connections were able to maximize their lifespan through food-find-
ing by chemotaxis. Further, their swimming behaviors were similar to those exhib-
ited by real C. Elegans: directed movement up the gradient and dwelling at the 
peak. Worms without recurrent connections were conferred no advantage by sen-
sory input. Our explanation of this is that without the recurrent connections to 
constitute a memory, the worms are missing a crucial representation for the com-
putation of the change of the local concentration over time. We turn now to exam-
ine the nature of these underlying representations.

Figure 3.  Results of the experiment comparing recurrent, feed-forward, and blind net-
works in an evolutionary simulation of chemotaxis

4	 What the representations are in the models

We admittedly do not yet have a complete explanation of C. Elegans chemotaxis, 
but we do have a pretty good sketch of what is going on: Heading in the gradient 
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is determined by a computation that takes as inputs both a sensory representation 
that encodes information about the current local concentration and a memory 
representation that encodes information about the past local concentration. The 
existence of a memory mechanism was predicted by the folk psychological expla-
nation and supported by the simulation experiments. Further, we are in a position 
with respect to these models to make some remarks about what the representa-
tions are and what relations obtain that determine the representational contents. 
In the orientation networks we may discern three types of representations: sensory 
representations, memory representations, and motor representations. The sensory 
representations are states of activations in the chemo-sensory input neuron, the 
memory representations are signals conveyed along recurrent connections, and 
the motor representations are states of activation in neurons that output to mus-
cles. In each case, the contents of the representations are the things that are repre-
sented. In the sensory case, what is represented is current local concentration. In 
the memory case, what is represented is past local concentration. In the motor 
case, the representation is a command signal and what is represented is a level of 
muscular contraction.

The question arises of what the relation is between representation and the rep-
resented is such that the former is a representation of the latter. Two major sorts of 
suggestion common in the philosophical literature on representational content 
seem initially applicable to the case of the chemotaxis networks: informational ap-
proaches and isomorphism-based approaches. The first sort of suggestion is that 
the relations that underwrite representation are causal-informational. On such a 
suggestion, it is in virtue of being causally correlated with a particular external 
state that a particular internal state comes to represent it. In the chemotaxis exam-
ples, there are indeed relations of causal correlation between the representations 
and what they represent. In the case of the sensory representation, there is a reli-
able causal correlation between the sensor state and the current local concentra-
tion and in the memory case there is a reliable causal correlation between the re-
current signal and the past local chemical concentration. The informational view 
must give a slightly different treatment of motor representations since commands 
are the casual antecedents of their representational targets (Mandik 1999, 2005).

The isomorphism suggestion seems applicable as well, though before discuss-
ing its application we need to spell out the relevant notion of isomorphism. An 
isomorphism is a structure preserving one-to-one mapping. A structure is a set of 
elements plus a set of relations defined over those elements. So, for example, a set of 
temperatures plus the hotter-than relation constitutes a structure as does a set of 
heights of a mercury column in a thermometer and the taller-than relation. A one-
to-one mapping exists between a set of temperatures and a set of heights just in case 
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for any height and the next higher one they are mapped respectively to a tempera-
ture and the next hottest one.

Information-based theories of representational content make it a necessary 
condition on a representation r of a thing c that r carry information about (causally 
correlate with) c. Isomorphism-based theories of representational content make it 
a necessary condition on a representation r of a thing c that r and c be elements in 
structures wherein an isomorphism obtains that maps r to c. Can we adjudicate 
between the informational and isomorphism suggestions? More specifically, can 
the way in which attributions of representation in the explanations of the network 
control of chemotaxis be used to favor information-based theories over isomor-
phism-based theories or vice versa? We see the respective roles of the notions of 
representation, information, and isomorphism in this context as follows. The sen-
sory and memory states are able to drive successful chemotaxis in virtue of the in-
formational relationships that they enter into with current and past levels of local 
chemical concentration, but they are able to enter into those informational rela-
tions because of their participation in isomorphsims between structures defined by 
ensembles of neural states and structures defined by ensembles of environmental 
states. In brief, in order to have the representational contents that they have, they 
must carry the information that they do and in order to carry the information that 
they do they must enter into the isomorphisms that they do. To spell this out a bit 
further will require spelling out two things: First, why it is that representation re-
quires information and second, why information requires isomorphism.

We begin with the reason why representation requires information. A large 
part of the reason representation requires information in the example of the chem-
otaxis networks is because of the sorts of representation that we are talking about, 
namely sensory and memory representations. It is part of the nature of sensory 
states that they carry information about the current local situation of an organism 
and part of the nature of memory states that they carry information about the past. 
Another way to appreciate the carrying of information is to realize that if the net-
works didn’t encode information about the current and past chemical concentra-
tions then they would not be able to give rise to the successful chemotaxis behav-
ior. Consider the blind worms: they were deprived of the means of encoding 
information about the present chemical concentration. Consider also the worms 
with strictly feed-forward networks. Without recurrent connections, they were 
deprived of the means of encoding the relevant information about the past. It 
seems that the crucial aspect of attributing sensory and memory representations 
in explaining successful one-sensor chemotaxis is that such attributions track the 
information-bearing properties of the states.

To see why isomorphism is important, it helps to begin by considering how 
hard it would be to not have isomorphism. First off, note that, as Gallistel (1990) 
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has pointed out, a one-to-one mapping can be considered as structure preserving 
even if the structures involved are defined only in terms of sets of elements and the 
identity relation. On such schemes the resultant representations are what Gallistel 
calls “nominal representations”. For example, the set of numbers assigned to play-
ers on a sports team is a set of nominal representations in this sense. There is a 
one-to-one mapping between numbers and players and the only relation between 
numbers that is mapped onto a relation between players is identity: one and the 
same number can only be mapped onto one and the same player. Larger numbers, 
however, need not indicate larger or heavier players. Nonetheless, they still satisfy 
the requirements for isomorphism, since the mapping is structure preserving. 
Similarly, even if the information bearing states of a nervous system constitute a 
set of nominal representations of environmental states, they would nonetheless 
satisfy the requirements for isomorphism.

Setting aside identity-based nominal representations as genuine isomor-
phisms, there is still a serious difficulty the informational theorist faces concerning 
the alleged dispensability of isomorphism. Even if there were a logically possible 
scheme that had information without isomorphism, it is incredibly difficult, if not 
impossible, for such a scheme to be evolved or learned. We can see the point con-
cerning evolution in the context of the synthetic C. Elegans in our artificial life 
simulations. Organisms’ bodies, as well as the environments they are situated in, 
contain many physical systems that have states that fall into natural ordering rela-
tions. Consider, for example, that chemical solutions can be more or less concen-
trated, or that neural firings can have higher or lower rates or higher or lower 
voltages. It is hard, if not impossible, to see how there could be a counter-example 
to the following claim: Any situation in which a particular level of neural activa-
tion can be used to carry information about a particular level of chemical concen-
tration is also going to be a situation in which a slightly higher level of neural acti-
vation can be used to carry information about a slightly higher level of chemical 
concentration. In other words, organisms and their environments are rich in struc-
tures and it is hard to see how elements in those structures can be evolved to enter 
into informational relationships without the structures themselves also entering 
into isomorphism relationships.

While our argument is, to our knowledge, unique, it is worth mentioning cer-
tain similarities between our argument, which is specifically about evolution and 
some other arguments that focus on learning that have appeared in the literature 
on isomorphism. Cummins (1996) and Churchland (2001) both endorse isomor-
phism based theories of representational content and both argue that a creature 
can only be in a position to have states that carry information about external states 
if the creature’s internal states are embedded in a network of internal states that 
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may be regarded as constituting knowledge of or a theory of the target domain. As 
Cummins (1997: 356–537) puts the point:

Distal properties generally cannot be directly transduced. Instead, the detection of 
distal properties must be mediated by what we might as well call a theory about 
that property. To detect cats (an instantiation of catness) requires a theory that 
says, in effect, what sorts of proximal stimuli are reliable indicators of catness. To 
detect cats visually, you have to know how cats look. The same goes for colors, 
shapes, and sizes: for these to be reliably detected visually under changes in per-
spective, lighting, and distance requires knowledge of such facts as that retinal 
image size varies as the inverse square of the distance to the object. Much of the 
knowledge that mediates the detection of distal properties must be acquired: we 
are, perhaps, born with a tacit knowledge of Emmert’s Law, but we are not born 
knowing how cats look, or with the ability to distinguish edges from shadows.

(For an argument similar to Cummins’ see also Churchland 2001: 131–132; For an 
argument that a creature can extract information from a perceptual representation 
only if certain isomorphisms obtain between states of perception and what is per-
ceived, see Kulvicki 2004.)

Based on the above sorts of arguments, we draw the following conclusions 
about the nature of representation, at least as it applies to the simplest cases of 
creatures behaving intelligently in virtue of possessing mental representations. At-
tributions of representations to organisms are not simply heuristics to be aban-
doned later when better ways of explaining behavior are discovered. They are at-
tributions of real properties of organisms and real relations between organisms 
and their environments. The representations attributed are states of the nervous 
systems of the creatures that represent environmental (and bodily) states in virtue 
of carrying information about those and a requirement on the acquisition by the 
organism of such states is that the states enter into isomorphism relations between 
neural and other structures.

One sort of objection that we’ve encountered in various personal communica-
tions is that the notion of isomorphism employed above should instead be re-
placed with the notion of homomorphism where, in brief, the main difference 
between the two is that where isomorphisms involve one-to-one mappings, homo-
morphisms involve mapping one structure into (not onto) another. Homomor-
phism comes up in the literature on non-mental representations such as scientific 
representation (Suarez 2003) and the representations pertinent to measurement 
theory (Matthews 1994; Suppes & Zinnes 1965) but we think that isomorphism is 
more appropriate for mental representation. Trying to utilize the notion of homo-
morphism for mental representation would involve the idea that structure A rep-
resents B if and only if B is homomorphic to A which involves B mapping into (not 
onto) A. This allegedly allows for, among other things, A to be a partially accurate 
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model of B. We might think of these mappings as, for example, a mapping of phys-
ical objects or an empirical system into the real numbers allowing us to say that 
numbers represent physical objects.

One problem with the above homomorphism based suggestion is that we don’t 
simply want to establish a relation between two sets: the representations and the 
represented. We want instead to establish a set of relations, more specifically, a set 
of relations that will allow us to say, for example, of each height of the mercury 
column, whether it represents a temperature and, if so, which one. Similarly, we 
want to say of each temperature, if it is represented by a height of the mercury 
column and, if so, which one. We especially want to avoid attributing multiple 
contents to one and the same representation, as in, saying of a height of the mer-
cury column that it represents multiple temperatures.

Attributing representations to an organism must involve partitioning the state-
space of the organism and the state-space of its environment such that there is a 
one-to-one mapping between the two sets of regions. Thus there is a certain super-
venience guaranteed between mental contents and neural vehicles: there should be 
no mental (content) differences without physical (vehicular) differences. We do 
not want to attribute multiple contents if the organism is not capable of distin-
guishing them. This is analogous to the case of the representation of the past in our 
experiment. The chemosensory input carries information about both the present 
and the past, but the feed-forward networks are incapable of distinguishing present 
from past. The attribution of contents to an organism is an attempt to portray the 
world as it is carved up by the creature’s point of view: Elements of the world that 
the creature cannot distinguish cannot make a difference discernable from the 
creature’s point of view.

We close by briefly mentioning what the above account of representation in 
very simple systems might possibly say about the philosophically vexing problem 
of the representation of inexistent objects. The problem of representations of things 
that do not exist – gold mountains, square circles, etc. – constitutes one of the larg-
est problems that inspire philosophers to worry about representation. It might 
even be framed as an objection to our view: Our account of representation, couched 
in terms of information and isomorphism, cannot account for the representation 
of inexistent objects, since if something doesn’t exist something else can neither 
carry information about it nor be isomorphic to it. We have several brief remarks 
to make on this topic.

The first remark is that our primary concern is to give an account of how rep-
resentations might underwrite certain kinds of explanation and it is unclear that 
representations of inexistent objects play roles in explanations in virtue of their 
contents and not simply in virtue of their vehicular properties. An underappreci-
ated point is that we may very well be wrong when we think something has con-
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tent. It may very well be that any appearances to the contrary from the first person 
point of view are explicable in terms of the first person indistinguishability of ve-
hicles that have content and vehicles that do not. We suggest, then, that certain 
seeming representations, namely, so-called representations of things that do not 
exist, actually have no content. If the content of a representation is identical to the 
thing it represents, then a representation of a thing that does not exist is a repre-
sentation with a content that does not exist. If nothing exists that is identical to the 
representation’s content, then the representation has no content. Whatever role 
such representations play in explanations of behavior must, then, be due to their 
vehicular properties.

This line of thought derives a nihilism about content from a relatively dismiss-
ive view of inexistent objects. Some philosophers, however, may be much more 
tolerant of things such as non-actual possible worlds. Our response to such phi-
losophers is that insofar as there may be a sense in which things that do not exist 
in the actual world nonetheless exist, then there may be a sense in which things in 
non-actual worlds are able to enter into the requisite information and isomor-
phism relations with neural representations in the actual world. (See, for example, 
Swoyer 1991 for a discussion of isomorphism based representations and non-ac-
tual possible worlds.)

We close, then, with a final remark on the topic of the representation of inex-
istent objects. Whatever the status of the representation of inexistent objects, it is 
safe to say that such representations are irrelevant in the explanations of the sim-
plest cases of cognition. Certainly, the representation of a thing that does not exist 
cannot be the most basic case of representation. Restricting our attention to the 
simplest cases of representation, we see that the simplest cases of things that can be 
represented are things that not only actually exist, but also actually enter into rela-
tions of information and isomorphism with neural states.
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