

Referent Tracking for Command and Control Messaging Systems

Shahid Manzoor, Werner Ceusters and Barry Smith
Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo

701 Ellicott Street, Buffalo NY, 14214
smanzoor@buffalo.edu, ceusters@buffalo.edu, phismith@buffalo.edu.

 Abstract – The Joint Battle Management Language (JBML)
is an XML-based language designed to allow Command and
Control (C2) systems to interface easily with Modeling and
Simulation (M&S) systems. While some of the XML-tags defined
in this language correspond to types of entities that exist in
reality, others are mere syntactic artifacts used to structure the
messages themselves. Because these two kinds of tags are not
formally distinguishable, JBML messages in effect confuse data
with what the data represent. In this paper we show how a
realism-based ontology combined with a rule language can be
used to make these distinctions explicit. The approach allows
storage of the contents of JBML messages in a Referent
Tracking System in a format that mimics the structure of reality
thereby providing an aid to message validation.

Index Terms - Realism-Based Ontology, Command and
Control, Referent Tracking, JBML

I. INTRODUCTION
The Joint Battle Management Language (JBML) was

designed in response to the growing need to interface
Modeling and Simulation (M&S) systems with Command,
Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance (C4ISR) systems in order
to provide the user with capabilities that support operational
functions including Course of Action (COA) Development
and Analysis, mission rehearsal, and execution monitoring
[1]. Its main benefit is that it overcomes the interoperability
problem caused by the use of unstructured “free text” within
the operational C2 messages that are passed within C4ISR
systems, specifically for the most critical C2 information: the
commander’s intent, orders and directives. While suitable for
interpersonal communication, free text is inadequate for use
by simulations and robotic or software-based components.

JBML is highly structured and the majority of its XML-
tags (or ‘elements’) are given very intuitive labels. Yet, the
language generally suffers from the problem that while some
of the tags denote generic entities in reality that are
instantiated by the referents denoted by the elements’ contents
in a specific message, other tags provide information about
the message structure itself, rather than what the message is
about. Because these two kinds of tags are not formally
distinguishable, JBML messages confuse data with what these
data represent. This does not need to be a problem if the data
are always an accurate representation of reality. But in an
intelligence context, where large amounts of data are

uncertain, conflicting and erroneous, either because of
misinterpretations committed by friendly agents or
falsifications introduced through counter-intelligence
activities, this distinction is crucial.

In this paper we show how a realism-based ontology,
combined with a rule language, can be used to make these
distinctions explicit and to store the contents of JBML
messages in a Referent Tracking System (RTS) in a format
that mimics the structure of reality.

In [2] we demonstrated how an RTS, i.e. a system that
forces assertions to be expressed by means of statements that
use globally unique and singular identifiers for each referent
mentioned [3] and that are structured according to the
principles outlined in Basic Formal Ontology [4], may help
the Intelligence Community to share information
unambiguously. Here, we report on further enhancements of
our prior work to integrate XML-based information systems
with RTS, using JBML as a specific example. We describe a
prototype application that uses a realism-based ontology to
parse JBML messages and that provides reasoning facilities
for the validation of the data. The application works by (1)
generating identifiers for all the real-world entities and their
relationships that are mentioned in given messages, and (2)
storing these identifiers in an RTS.

II. ONTOLOGY-BASED PROCESSING OF MILITARY MESSAGES
An RTS is an ontology-based database which uses globally

unique identifiers (called IUIs) to represent: (1) instances
(spatiotemporal particulars, including people, commands,
places, events), (2) the relations that hold between such
instances, (3) the (potentially multiple) names that are
assigned to such instances, and (4) the universals or classes
that such instances instantiate [2, 3, 4]. The RTS thereby
provides a framework for the logically coherent formulation
of assertions made about any of the given entities, including
those types of assertions contained in C2 messaging.

An example of a military message in JBML is shown in
Listing 1. The message represents a mission that is assigned
to an army unit with identifier ‘2TF A TEAM’. The army unit
has to move between points whose coordinates are given
under the WhereValue element in the XML. In the prototype
implementation here described, assertions about entities are
inserted in the RTS as triples, for example:

IUI-1004 instanceof MilitaryMission
IUI-1005 instanceof MilitaryUnit
IUI-1004 missionAssignedTo IUI-1005
IUI-1005 currentPostionAt IUI-1014

The first triple represents a statement to the effect that the
entity IUI-1004 instantiates the universal MilitaryMission; the
second triple a statement to the effect that the entity IUI-1005
instantiates the universal MilitaryUnit; the third triple
represents a statement to the effect that the mission with
identifier IUI-1004 is assigned to the military unit with
identifier IUI-1005. The fourth triple represents a statement to
the effect that the current position of IUI-1005 is location
IUI-1014.

We have developed a prototype ontology for command and
control systems called ‘C2-Test-Ontology’, which uses a
subset of UCore SL, an ontology designed to support the
Universal Core data schema [5], to link the JBML tags from
the military messages to UCore SL. The ontology tells us
what data elements in a military message refer to what kinds
of real world entities (e.g. ArmyUnit, MilitaryMission) and
what relationships obtain between them.

We have also developed a Middleware program which
parses military messages, and – drawing on knowledge
contained in the C2-Test-Ontology – communicates with the
RTS and a rule-based reasoner to assign IUIs to the entities
mentioned in the messages. The architecture of our system is
shown in Fig. 1. When the middleware runs for the first time,

<OrderPush>
<Task> <GroundTask>
 <TaskeeWho>
 <UnitID>2TF A TEAM</UnitID>
 </TaskeeWho>
 <What><WhatCode>MOVE</WhatCode></What>

<Where>
 <AtWhere>
 <JBMLAtWhere>

 <WhereValue>
 <WhereLocation Sequence="0">

<GDC>
<Longitude>48.9100583</Longitude>
<Latitude>39.9570562</Latitude>
<ElevationAGL>0.0</ElevationAGL>

 </GDC>
</WhereLocation>
<WhereLocation Sequence="1">

<GDC>
<Longitude>48.9056792</Longitude>
<Latitude>39.9891024</Latitude>
<ElevationAGL>0.0</ElevationAGL>

</GDC>
</WhereLocation>

</WhereValue>
</JBMLAtWhere>

</AtWhere>
</Where>

</GroundTask></Task>
</OrderPush>

Listing 1: An Example of a JBML Message

and thus no messages have as yet been processed, the RTS
database contains no information. As more and more
messages are processed, the RTS becomes populated with
successively more IUIs and with corresponding statements
about the relationships between the referents of these IUIs.
Knowledge obtained through parsing earlier messages is used
to improve parsing of new messages, to check the consistency
of the information provided in new messages, and so forth.

The whole process is carried out in four steps.

A. Step 1: Structural Analysis of XML
In the first step, a military message is parsed with the goal

of detecting entities referred to and the relations between
them, as shown in Fig. 2. The nodes of the graph correspond
to putative entities within the domain of the message, while
the edges correspond to relations. Nodes without a prefix are
entities named explicitly in the message. Nodes with the “rts:”
prefix are generated on the basis of the XML-structure of the
message. Some of them will correspond to real entities, but
others are inserted as a side-effect of the oddities of the XML
syntax. It is one of the tasks of our application to turn the
resultant distorted view of reality into a realistic picture which
conforms to good ontological principles [6].

In the first step, the middleware does not use any
knowledge from the UCore SL or C2-Test ontologies. Rather
it iterates over the XML structure of the message using a
depth first iteration strategy, in which each XML element is
viewed as a relation between possible entities. The iteration
leads to the creation of a new graph in which the software
creates nodes automatically without contacting the RTS. As
an example, the XML element ‘<Task>’ is not explicitly
labeled in the message above. It is immediately followed by
<GroundTask>, which is also not explicitly labeled. What is
the relation between these two elements? The message
provides no answer to this question. Our application in this
first step assigns IUI identifiers to Task and GroundTask. By
using ontologies in later steps, it will become possible to
arrive at more determinate representations.

RTS

Middleware

Reasoner

Rules

Ontology

Command & Control System

Sends JBML XML Message

Communicate With RTS To Assign IUI
Referred in XML Message

Fig. 1: Command & Control Application Integration with RTS

Fig. 2: Graph generated in the first step of the middleware

The entities and their relations shown in the graph in Fig. 2
are represented in the middleware by means of triples. The
first triple in the graph is:

rts:1001 jbml:OrderPush rts:1002

The first and last terms of this triple denote entities, while the
middle term denotes the relationship between these entities.

As a further example, the triples representation for the node
rts:1004 and its relations with rts:1015 and its descendents are
shown in Listing 2.

This graph does not yet provide a representation which is
faithful to reality in terms of the logical and ontological
principles on which UCore SL and our C2-Test-Ontology are
based. Clearly, some nodes in the figure denote genuine
entities, including:

 rts:1004, a particular military ground mission
 rts:1005, a particular military unit,
 rts:1015, a particular time
 rts:1012, a particular location.

Moreover some nodes are such that they are unique instance
identifiers, as is required by Referent Tracking principles.
However, the graph also contains many violations of these
principles. Some nodes denote in a non-unique way; for

rts:1004 jbml:StartWhen rts:1015
rts:1015 jbml:WhenTime rts:1016
rts:1016 jbml:StartTimeQualifier “NLT”
rts:1016 jbml:DateTime “110800ZAUG2025”

Listing 2: Triples representation generated while analyzing the message in
Listing 1

example ‘rts:1015’ and ‘rts:1016’ denote the same time, and
‘rts:1011’ and ‘rts:1012’ denote the same particular location.
In line with the Referent Tracking principles, such duplicate
identifiers must be removed. Inspection reveals that some
triples, such as

 rts:1001 jbml:OrderPush rts:1002
 rts:1002 Task rts:1003
 rts:1003 jbml:GroundTask rts:1004

are defective from an ontological point of view and these too
must be removed. A task, for example, is clearly not a
relationship. This restructuring cannot however be achieved
computationally in this step, because the XML framework
does not provide explicit information sufficient to ensure the
ontological soundness of the representation. We have
therefore built another service, executed in step 2 below,
which translates information implicit in the XML structure of
a message into explicit assertions.

B. Step 2: Shallow translation of XML

To achieve ontologically correct information of this sort we
use a variant of the Jena rule-based reasoning language [7] to
formulate rules stating the conditions for adding or removing
assertions in the graph.

We employ for this purpose forward-chaining reasoning
rules, each consisting of (1) a body and (2) a head. The
former specifies the set of patterns which triples in the
message graph must match if they are to be capable of being
transformed into triples that are ontologically well-formed.
The latter consists of a set of ontologically well-formed
triples into which the triples in the set specified in (1) to be
translated.

We distinguish four different types of rules:

• If a rule name is prefixed with ‘ded_’ (for
deduction), then it is a deduction rule as described
above.

• If a rule name is prefixed with ‘red_’ (for reduction),
then the rule removes the triples matched against the
pattern in part (1) of the rule and adds the triple set
in part (2).

• If a rule name is prefixed with ‘map_’ (for mapping)
then it assigns appropriate IUIs to entities that are
mentioned repeatedly in the message.

• If a rule name is prefixed with ‘val_’ (for
validation), then its goal is to check for
inconsistencies in the data and to provide
corresponding notification to the receiver of the
message.

Our middleware provides distinct services for each of the
rule types described above.

An example of a deduction rule is:

[ded_1 (?x jbml:Task ?y) (?y jbml:GroundTask ?z)
-> (?z ro:instanceof c2:MilitaryMission)]

which asserts that if (i) for two putative entities the ‘Task’
relationship holds and if (ii) the target-entity of this relation
stands in a ‘GroundTask’ relation with a third entity, then (iii)
the first two entities are erroneous artifacts generated in step
1, while the third entity is a MilitaryMission in the terms of
our C2-Test-Ontology. Note that the issue here is not whether
this specific rule is correct. What we are offering here are
examples. Crafting the needed set of rules for JBML and
other XML-based languages is a task which needs to be
performed when once the general strategy has been
formulated and tested.

Here ‘ded_1’ is the name of the rule. Variables are prefixed
by ‘?’ and serve as placeholders for the actual terms in the
matched triples in their respective places. The following are
triples that match the conditions of the rule above:

(rts:1002 jbml:Task rts:1003) (rts:2003 jbml:GroundTask rts:1004),

where variables in the rule bind terms in the matched triples
as follows: ?x = rts:1002, ?y = rts:1003, ?z = rts:1004.

Under the head part of the rule, the software inserts the
triple ‘rts:1004 ro:instanceof c2:MilitaryMission’, where the
term ‘ro:instanceof’ denotes the instanceof relation from the
Relation Ontology (‘ro’) [8], and the term
‘c2:MilitaryMission’ denotes the MilitaryMission universal
taken from the C2-Test-Ontology (‘c2’).

An example of a reduction rule is:

[red_7: (?x jbml:StartWhen ?y)
 (?y jbml:WhenTime ?z)
 (?z jbml:StartTimeQualifier "NLT")
 (?z jbml:DateTime ?l)
 -> (?x c2:StartWhen ?y)
 (?x ro:instanceof c2:TimeEvent)
 (?x c2:NoLaterThan ?l)]

The body of this rule is matched by the following set of
triples, generated from the message shown in Listing 2 .

rts:1004 jbml:StartWhen rts:1015
rts:1015 jbml:WhenTime rts:1016
rts:1016 jbml:StartTimeQualifier “NLT”
rts:1016 jbml:DateTime “110800ZAUG2025”

Since the rule is of type ‘reduction’, the four triples are
removed from the military message triple set, and the
following three triples are inserted instead:

rts:1004 c2:StartWhen rts:1015
rts:1015 ro:instanceof c2:TimeEvent
rts:1015 c2:NoLaterThan “110800ZAUG2025”

The first represents the assertion that the mission with
identifier #1004 starts at time event #1015. The second
represents the assertion that entity #1015 instantiates the
TimeEvent universal from the C2-Test-Ontology, and the
third represents the assertion that the time event #1015 occurs
at a time point which is not later than the time specified by the
“110800ZAUG2025” date-time stamp. The execution of rule
red_7 shows (1) how redundant entities and their relations can
be removed from military messages in such a way that (2) an
ontology can be used to infer automatically assertions about
the entities in the real world which are referred to in these
messages.

Note that in this second step, the middleware executes only
rules of types 1) and 2). Execution of deduction and reduction
rules over the triple set whose visualization is shown in Fig. 2
then yields a new triple set whose visualization is shown in
Fig. 3. This new triple set conforms to sound logical and
ontological principles; specifically: there is here no
redundancy, and all nodes and edges in the graph are
ontologically well-formed.

Each node of the graph whose label is prefixed with ‘rts:’
contains the IUI of an entity referred to in the message, as
follows:

- #1004 denotes a particular military mission
- #1015 denotes the particular TimeEvent when

mission #1004 must start
- #1005 denotes the military unit that must perform

mission #1004
- #1009 denotes the line along which the #1005 unit

has to move
- #1014 and #1012 denote distinct points

corresponding to the start and end of the #1009 line.

C. Step 3: Entity Tracking and Semantic Verification
In the third step, rules prefixed with ‘map_’ are executed

over the triple set that results from step 2. The middleware
first checks whether the RTS is empty. If it is, there cannot be
any duplicate entries and the triple set is simply inserted into
the RTS and processing stops. However, if the RTS is not
empty, then the middleware program continues to execute this
step to. Suppose the middleware receives a second military
message (shown in Fig. 4) and that the RTS database contains
the triples shown in Fig. 3. Here, the military unit named
‘2TF A TEAM’ is assigned the IUI rts:2005. However, in the
RTS used in the message analysis system there is already a

Fig. 3: Visualization of Ontologically Articulated Content of the XML message in Listing 1

Fig. 4: Second Military Message after Processing via Step 2

Fig. 5: Second Movement Mission as Described in the 2nd Example Message

military unit whose name is ‘2TF A TEAM’, to which the IUI
rts:1005 has already been assigned.

The Referent Tracking principles state that if the military
unit in the second message is the same as the one referred to
already in the RTS, then it should continue to be denoted by
the IUI rts:1005. It is this conformity to Referent Tracking
principles that is achieved by the mapping rules.

A mapping rule whose conditions are satisfied by the
incoming second message is:

[map_1: (?x jbml:UnitID ?a) -> entity_found(?x)]

This rule instructs the middleware to search for matching
triples in the incoming message, in this case returning the
triple:

rts:2005 jbml:UnitID “2TF A TEAM”

As ‘?x’ refers to an entity (whose IUI is to be determined),
the middleware replaces the IUI in the triple found by ?x. The
above triple is thus transformed into the following:

?x jbml:UnitID “2TF A TEAM”

The map_1 rule now instructs the middleware to search for
a corresponding triple in the RTS which returns, in this case:

rts:1005 jbml:UnitID “2TF A TEAM”

As a result, rts:2005 is replaced by rts:1005 in all
corresponding triples in the new message. The final output is
shown in Fig. 5.

At this stage, all triples of the incoming message are in
accordance with the RT principles, and the message triples
are ready to be inserted into the RTS database in addition to
the triple (rts:1005 jbml:UnitID “2TF A TEAM”) which is
already present.

At the end of these steps, an unambiguous representation of
the data – at least in terms of the C2-Test-Ontology – is
obtained, and additional reasoning over the data now becomes
possible.

D. Step 4: Reasoning to Validate Incoming Messages
In this step, data validation rules are executed over the RTS

database used by the middleware to check for any
inconsistencies that may arise when inserting the content of
the new message into the RTS.

Imagine a scenario under which the RTS is in the state
shown in Fig. 3, and now the triples shown in Fig. 5,
corresponding to a new planned mission for the 2TF A
TEAM, are ready to be inserted. The new mission involves
the movement of the team from location #2012. Because the
new starting position is different from the current position of
the unit as recorded in the database, it is not possible for the
military unit to carry out the mission unless the starting point
can be reached in due time. In this case, the middleware will
provide an alert warning of potential inconsistency of the
data.

To perform the reasoning necessary for such an alert to be
generated, rules of type 4 are executed. The middleware
executes these rules by communicating with the RTS and the
reasoner. If the middleware finds any inconsistency as defined
in a rule of type 4 (_val) then it generates warning messages.

One rule used in this reasoning scenario is:

val_1 (?a c2:missionAssignedTo ?b)
 (?a jbml:WhatCode ?c)
 (?b c2:CurrentLocation ?d)
 (?l jbml:missionAssigndTo ?b)
 (?l jbml:WhatCode ?c)
 (?b c2:StartingFrom ?o)
 notEqual(?a, ?l)
 notEqual(?d, ?o)
 -> (?a error:inconsistentWith ?l)

III. CONCLUSION
We are currently in a phase in which the middleware

component is able to process several sample types of
incoming messages and to perform a number of reasoning

strategies in relation to incoming messages on the basis of
information obtained through earlier messages. The benefit of
using middleware along with rules built on the basis of a well-
structured ontology such as our C2-Test-Ontology (itself an
extension of UCore SL), is that, if changes occur, for example
in the format of the military messages or in our understanding
of military reality, changes will need to be made only in the
rules and ontologies, and the need for further software
changes will thus be reduced. Another benefit of this
architecture is that the system can be re-used with other
information systems pertaining to other Communities of
Interest (CoI). The only changes we need to make are: (1)
building an appropriate ontology for each new CoI, (2)
writing a new parser to analyze the information coming from
the corresponding information system, and (3) defining
appropriate rules for that domain.

We also did not use rules that provide alternative
interpretations of inconsistent data. Note for instance that the
inconsistency as concerns the location of the 2TF A TEAM
discussed above might result from a false assumption about
which entity the name ‘2TF A TEAM’ in fact denotes – either
perhaps it denotes different units in different messages, or
because in some messages typing errors have been made.

The approach can be used not only to reason with messages
in given formats, but also to integrate messages with different
formats. Future work should be based on fully axiomatized
forms of the various ontologies. The C2-Test-Ontology
should also be dramatically extended to include not only
JBML, but relevant content from JC3IEDM, and NIEM with
the objective of creating fully automatized interoperability
corridors, establishing a model for further work not only on
more comprehensive collections of messages, but also on
information of other types.

REFERENCES
[1] J. Mark Pullen, Andreas Tolk, and C. Blais, "Joint Battle Management

Language (JBML) -US Contribution to the C-BML PDG and NATO
MSG-048 TA," in IEEE European Simulation Interoperability Workshop
Genoa, IT, 2007.

[2] W. Ceusters and S. Manzoor, "How to track absolutely everything?," in
Ontologies and Semantic Technologies for the Intelligence Community.
Frontiers in Artificial Intelligence and Applications: IOS Press
Amsterdam, 2009, (in press).

[3] S. Manzoor, W. Ceusters, and R. Rudnicki, "Implementation of a
Referent Tracking System," International Journal of Healthcare
Information Systems and Informatics, vol. 2, pp. 41-58, 2007.

[4] W. Ceusters and B. Smith. Strategies for Referent Tracking in Electronic
Health Records. J Biomed Inform. 2006 Jun;39(3):362-78.

[5] The Universal Data Core, Army Net-Centric Data Strategy (ANCDS),
http://data.army.mil/datastrategy_universal_core.html, (2009).

[6] K. Munn and B. Smith (eds.), Applied Ontology: An Introduction,
Frankfurt/Lancaster: ontos, 2008, 342 pp.

[7] HP Labs Semantic Web Research, "Jena- A Semantic Web Framework
for Java," 2009.

[8] B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C.
Mungall, F. Neuhaus, A. L. Rector, and C. Rosse, "Relations in
biomedical ontologies," Genome Biology, vol. 6, p. R46, 2005.

