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Abstract

Here we provide a proof that there exist closed timelike curves in
Gödel spacetime with total acceleration less than 2π(9+6

√
3)1/2. This

answers a question posed by David Malament.

1 Introduction

Most of the known solutions to Einstein’s equation have the properties we
have come to expect from models of our own universe. However, Kurt
Gödel’s contribution to relativity theory showed there are solutions that
allow for “time travel” in some sense (one may visit the same spacetime point
more than once via a closed timelike curve (CTC)).1 A number of questions
have been posed concerning these CTCs in Gödel spacetime.2 We know
that such a journey could not be accomplished without accelerating to some
degree.3 But, one question was whether such a trip could be accomplished
with an arbitrarily small amount of acceleration. A bit of formalism will
help to illustrate what exactly was at issue.

Let γ be a closed timelike curve with tangent field ξb.4 Let the accel-
eration vector field be αb = ξa∇aξb and the magnitude of acceleration be

∗I am grateful to David Malament and Bob Geroch for many helpful discussions on
this topic.

1See Gödel 447.
2See Earman Chapter 6.
3See Hawking and Ellis 168-170.
4Timelike curves are those that are “smooth everywhere unless they are closed, in which

case smoothness will be allowed to fail at initial (=terminal) points.” See Malament (1985)
777 and (1987) 2430.
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a = (−αbαb)1/2. The total (integrated) acceleration of γ (a quantity without
units5) is given by

TA(γ) =
∫
γ
a ds

where s is elapsed proper time along γ. The question, then, was the follow-
ing: (Q1) Was there some number k > 0 such that, for all CTCs γ in Gödel
spacetime, TA(γ) ≥ k?6 David Malament showed there was indeed such a
number (the value in his proof was ln(2 +

√
5)).7

To give some idea of what this value means, we consider a connection
between total acceleration and “fuel consumption”.8 Even if a traveler (in
any spacetime) has a perfectly efficient rocket, the following inequality must
be satisfied (here mr is the mass of the rocket and mf is the mass of the
fuel):

mr

mr +mf
≤ e−TA(γ).

Inserting ln(2 +
√

5) for TA(γ), we find that at least 76% of the rocket’s
mass must be fuel. This may or may not be “physically reasonable” but
one thing is for sure: we now know that one cannot “time travel” in Gödel
spacetime by accelerating an arbitrarily small amount.

This brings us to our next question. Let GLB be the largest k such that
every CTC has a total acceleration greater than or equal to k. Our next
question is this: (Q2) What is GLB?9 This is still an open question. We
can (and will in this paper) calculate the total acceleration for very simple
CTCs, but the smallest value of total acceleration known up until now is
2π(9+6

√
3)1/2.10 Using the inequality above, this value of total acceleration

implies that for every two grams of payload, a rocket will have to carry at
least 1012 grams of fuel! Surely this is not “physically reasonable” if the
term is interpreted as meaning a practical possibility.

So, we know that ln(2 +
√

5) ≤GLB≤ 2π(9 + 6
√

3)1/2. But, although we
know that GLB falls within this range, pinning down where it lies exactly
proves to be a formidable task. We can, however, ask a less difficult question:

5Total acceleration is invariant under rescaling of the metric and does not depend on
our choice of units for space and time. See Malament (1985) 774, 777.

6This question was posed by Robert Geroch. See Chakrabarti, Geroch, and Liang 597.
7See Malament (1985) 775-776. This number is approximately 1.44.
8For a derivation of the following inequality, see Chakrabarti, Geroch, and Liang 597.
9This question, as well as (Q3), was posed by Malament. See Malament (1985) 776.

10This number is approximately 27.67.
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(Q3) Are there any CTCs in Gödel spacetime with total acceleration less
than 2π(9 + 6

√
3)1/2? Malament believed that there were not. To him,

it seemed “overwhelmingly likely” that GBL=2π(9 + 6
√

3)1/2 but he was
unable to prove the claim.11 In this paper, I provide a proof that Malament’s
conjecture is false. My result turns on the fact that CTCs are not required
to be smooth everywhere. At the initial (which is the same as the final)
point of a CTC, there may be a “kink” in the curve.12 It turns out that the
total acceleration of some of these kinked CTCs is less than 2π(9 + 6

√
3)1/2.

2 Preliminaries

Here we review some basic facts concerning Gödel spacetime. Let (M, gab)
be Gödel spacetime. Here the manifold M is just R4. The metric gab is such
that for any point p ∈M , there is a global adapted (cylindrical) coordinate
system t, r, ϕ, y in which t(p) = r(p) = y(p) = 0 and

gab = (∇at)(∇bt)− (∇ar)(∇br)− (∇ay)(∇by)
+j(r)(∇aϕ)(∇bϕ) + 2k(r)(∇(aϕ)(∇b)t)

where j(r) = sinh4 r − sinh2 r and k(r) =
√

2 sinh2 r. Here −∞ < t < ∞,
−∞ < y < ∞, 0 ≤ r < ∞, and 0 ≤ ϕ ≤ 2π with ϕ = 0 identified with
ϕ = 2π.

The vector field ( ∂
∂ϕ)a is a rotational Killing field with squared norm

j(r). The closed integral curves of ( ∂
∂ϕ)a (curves with constant t, r, and y

values) will be called Gödel circles. Let rc be such that sinh rc = 1 (so
j(rc) = 0). Gödel circles with radius less than rc are closed spacelike curves.
If the radius is larger than rc, the Gödel circles are CTCs. Gödel circles
with radius rc are closed null curves. Because of the simple nature of these
curves, it is fairly straightforward to calculate the total acceleration of Gödel
circles as a function of r. Because these curves play a central role in our
argument, we carry out the calculation here.

Lemma 1: A Gödel circle γ with radius r > rc has a total acceleration of
π sinh 2r(2 sinh2 r − 1)j(r)−1/2.

11See Malament (1987), 2429-2430.
12We know that Malament took the possibility of kinked CTCs very seriously. At one

point, he devotes a paragraph to explaining that only the possibility of kinked CTCs kept
him from doubling his minimal acceleration requirements. See Malament (1985) 776.
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Proof: The unit timelike vector field for a Gödel circle or radius r is ξa =
j(r)−1/2( ∂

∂ϕ)a. We know that ξa∇aj(r)−1/2 = 0. So the acceleration vector
αb = ξa∇aξb is j(r)−1( ∂

∂ϕ)a∇a( ∂
∂ϕ)b. But because ( ∂

∂ϕ)a is a Killing field,
this is just −j(r)−1( ∂

∂ϕ)a∇b( ∂
∂ϕ)a = −1

2j(r)
−1∇bj(r). Differentiating, we

have αb = −1
2j(r)

−1 sinh 2r(2 sinh2 r − 1)∇br. Thus, a(r) = (−αbαb)1/2 =
1
2j(r)

−1 sinh 2r(2 sinh2 r − 1). Next we compute dϕ
ds = ξa∇aϕ = j(r)−1/2.

So, integrating, we have

TA(γ) =
∫
γ
a(r) ds =

∫ 2π

0
a(r)j(r)1/2 dϕ = 2πa(r)j(r)1/2

So the total acceleration is π sinh 2r(2 sinh2 r − 1)j(r)−1/2 as claimed. �

Note that the total acceleration of a Gödel circle approaches infinity as
r → rc and as r → ∞. The total acceleration is minimized when r is such
that sinh2 r = (1 +

√
3)/2 (for reference later on, call this optimal radius

ro). The total acceleration of this optimal Gödel circle is 2π(9 + 6
√

3)1/2.
Next, for ease of presentation in the next lemma, we give a list of iden-

tities that are true in Gödel spacetime.

Lemma 2: Let (M, gab) be Gödel spacetime. The following are true:

(i) ( ∂∂r )a∇a( ∂∂r )b = 0

(ii) ( ∂
∂ϕ)a∇a( ∂∂r )b = ( ∂∂r )a∇a( ∂

∂ϕ)b

(iii) ( ∂
∂ϕ)a∇a( ∂

∂ϕ)b = −1
2(∂j∂r )∇br

(iv) ( ∂∂r )a∇a( ∂
∂ϕ)b = ( djdr )∇bϕ+ (dkdr )∇bt

Proof: We know (i) is true because ( ∂∂r )a∇a( ∂∂r )b = −( ∂∂r )a∇a∇br. But be-
cause r is a scalar field, this is just−( ∂∂r )a∇b∇ar. This becomes ( ∂∂r )a∇b( ∂∂r )a
which is the zero vector.

To see why (ii) holds, note that ( ∂∂r )a∇a( ∂
∂ϕ)b = −( ∂∂r )a∇b( ∂

∂ϕ)a because
( ∂
∂ϕ)b is a Killing field. But this is just ( ∂

∂ϕ)a∇b( ∂∂r )a. We rewrite this as
−( ∂

∂ϕ)a∇b∇ar, switch the differential operators because r is a scalar field,
and wind up with −( ∂

∂ϕ)a∇a∇br which is just ( ∂
∂ϕ)a∇a( ∂∂r )b as claimed.

Because ( ∂
∂ϕ)a is a Killing field, ( ∂

∂ϕ)a∇a( ∂
∂ϕ)b = −( ∂

∂ϕ)a∇b( ∂
∂ϕ)a. But

this is just −1
2∇bj(r) = −1

2(∂j∂r )∇br as claimed. So (iii) is true.
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To see why (iv) holds, consider the following. ∇a( ∂
∂ϕ)b = ∇[a( ∂

∂ϕ)b] be-
cause ( ∂

∂ϕ)a is a Killing field. So we can rewrite this with the exterior deriva-
tive operator as da( ∂

∂ϕ)b. This is the same as da(j∇bϕ+ k∇bt). But this is

just ∇aj∇bϕ+∇ak∇bt. Differentiating, we have ( djdr )∇ar∇bϕ+(dkdr )∇ar∇bt.
So ( ∂∂r )a∇a( ∂

∂ϕ)b = ( djdr )∇bϕ+ (dkdr )∇bt as claimed. �

Let S be any submanifold of M on which t =const and y =const. In
this paper, we will be concerned only with CTCs that are contained entirely
within S. We now find an expression for the magnitude of acceleration of
this limited class of curves.

Lemma 3: Let ξa = f(r, ϕ)( ∂
∂ϕ)a+g(r, ϕ)( ∂∂r )a be the unit tangent to some

curve γ : I → S. Then the acceleration a(r, ϕ) at a point on ran[γ] is

[−f2(
∂f

∂ϕ
)2j − 2f(

∂f

∂ϕ
)g(

∂f

∂r
)j − 4f2(

∂f

∂ϕ
)g(

dj

dr
) +

1
4
f4(

dj

dr
)2 + f3(

∂g

∂ϕ
)(
dj

dr
)

+f2g(
∂g

∂r
)(
dj

dr
) + f2(

∂g

∂ϕ
)2 + 2fg(

∂g

∂r
)(
∂g

∂ϕ
)− g2(

∂f

∂r
)2j − 4g2(

∂f

∂r
)2(

dj

dr
)f

+g2(
∂g

∂r
)2 + 4(

dj

dr
)2g2f2m− 8(

dj

dr
)g2f2(

dk

dr
)km+ 4(

dk

dr
)2g2f2jm]1/2

where m(r) = 1/(sinh4 r + sinh2 r).

Proof: Let ξa be as above. Consider the acceleration vector αb = ξa∇aξb:

αb = [f(
∂

∂ϕ
)a + g(

∂

∂r
)a][(∇af)(

∂

∂ϕ
)b + f∇a(

∂

∂ϕ
)b

+(∇ag)(
∂

∂r
)b + g∇a(

∂

∂r
)b].

By (i) and (ii) of Lemma 2 and direct computation, we know that αb becomes

f
∂f

∂ϕ
(
∂

∂ϕ
)b + f2(

∂

∂ϕ
)a∇a(

∂

∂ϕ
)b + f

dg

dϕ
(
∂

∂r
)b + g

∂f

∂r
(
∂

∂ϕ
)b

+2fg(
∂

∂r
)a∇a(

∂

∂ϕ
)b + g(

∂g

∂r
)(
∂

∂r
)b .

Let m(r) = 1/(sinh4 r+ sinh2 r). Now we compute a = (−αbαb)1/2. By (iii)
and (iv) of Lemma 2 and direct computation, we have our result.13 �

13It is helpful during the calculation to have the inverse to gab. It is given
by gab = −j(r)m(r)( ∂

∂t
)a( ∂

∂t
)b − ( ∂

∂r
)a( ∂

∂r
)b − ( ∂

∂y
)a( ∂

∂y
)b − m(r)( ∂

∂ϕ
)a( ∂

∂ϕ
)b +

2k(r)m(r)( ∂
∂ϕ

)(a( ∂
∂t

)b). See Malament (1985) 777.
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3 A Theorem

In this section we present our result. It will be useful to have a general idea of
how we will go about proving our claim. Eventually, we seek to answer (Q3)
by showing there exists a curve in Gödel spacetime with total acceleration
less than 2π(9 + 6

√
3)1/2. We will do this by considering the behavior of a

particular curve γ : I → S contained entirely in the submanifold S.
We can think of γ as three separate curves joined smoothly together.

From 0 ≤ ϕ ≤ ε for some ε the curve γ makes its way from the point (ro, 0)
to (rε, ε) where rc < rε < ro. We will call this portion of the curve γ1. From
ε ≤ ϕ ≤ 2ε, γ makes its way from the point (rε, ε) to (ro, 2ε). This portion
of the curve we will call γ2. From 2ε < ϕ < 2π, γ is simply a Gödel circle of
radius ro. We call this portion of the curve γ3. We are careful to make the
three portions of γ join together smoothly except at the point (rε, ε). Thus,
at this point, there will be a “kink” in the curve and so we stipulate that
this will be the initial (and therefore the final) point of the CTC.

The basic structure of our proof is simple. We show that along γ, (a)
the acceleration of γ1 is always decreasing (from the constant acceleration of
the optimal Gödel circle) and (b) the acceleration of γ2 is always increasing
(up to the constant acceleration of the optimal Gödel circle). With this in-
formation we can integrate along γ to show that the total acceleration from
0 ≤ ϕ ≤ 2ε is less than the total acceleration of the optimal Gödel circle
from 0 ≤ ϕ ≤ 2ε. Because the total acceleration of γ3 just is that of the
optimal Gödel circle from ϕ = 2ε to ϕ = 2π, we have our result.

Theorem: There exists a CTC in Gödel spacetime with total acceleration
less than 2π(9 + 6

√
3)1/2.

Proof: The first step is to define our curve. Consider the vector field
ξa(r, ϕ) = f(r, ϕ)( ∂

∂ϕ)a + g(ϕ)( ∂∂r )a defined for all values of r > rc and
on some interval [0, ε] of ϕ. Let f(r, ϕ) = j(r)−1/2h(ϕ) where h(ϕ) = (1 +
e−2/ϕ)1/2. Let g(ϕ) = −e−1/ϕ For continuity considerations later, let h(0) =
1 and g(0) = 0. Clearly, ξa is a unit timelike vector field. Now, for some
interval I ⊆ R, let γ1 : I → S be such that its tangent vector at each point
is ξa and (ro, 0) ∈ ran[γ1] (i.e. γ1 is an integral curve of ξa).

We have also chosen ξa to be such that at ϕ = 0, it joins smoothly with
j(r)−1/2( ∂

∂ϕ)a (the unit tangent field associated with Gödel circles). Finally,
we note two important facts concerning our functions f and g. The first is
a relationship between f and g and their partial derivatives with respect to
ϕ. The second states that as ϕ approaches zero, g and dg/gϕ both go to
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zero more quickly than d2g/dϕ2. These facts will play a crucial role in our
proof. They are easily verifiable and so we present them here without any
proof:

(1) f ∂f∂ϕ = j−1g dgdϕ

(2) lim
ϕ→0+

g/
d2g

dϕ2
= lim

ϕ→0+

dg

dϕ
/
d2g

dϕ2
= 0

Let a1 be the magnitude of acceleration at any point on ran[γ1]. Next,
consider the expression ξb∇ba1 = f ∂a1

∂ϕ + g ∂a1
∂r . This is the rate of change of

the magnitude of the acceleration in the direction of ξb. The claim is that
this quantity will be negative when evaluated at points (r, ϕ) ∈ ran[γ1] very
close to (ro, 0). We can differentiate the expression for a given in Lemma
3 to find that f ∂a1

∂ϕ + g ∂a1
∂r is a (very long) string of terms with a peculiar

characteristic. Using the identity (1) we can rewrite the string of terms such
that all the terms except for one contain, as a factor, either g or dg

dϕ . The one

exception is the term 1
2a
−1/2
1 f4( d

2g
dϕ2 )( djdr ) (call this term ω). The following

can also be verified:

(3) All of the terms in f ∂a1
∂ϕ + g ∂a1

∂r approach zero as the point (ro, 0) is
approached.

(4) All of the various factors of the terms approach a real number as the
point (ro, 0) is approached (none of them “blow up”).

(5) ω goes to zero as d2g
dϕ2 does.

We know that (3), (4), and (5), combined with (2), all imply that, as
the point (ro, 0) is approached, ω becomes the dominate term (it goes to
zero slower than any term containing g or dg

dϕ). To illustrate this, we can
pick any term in ξb∇ba1 (other than ω) and show that it must go to zero
faster than ω as the point (ro, 0) is approached. Take, for example, the term
−a−1

1 f2( ∂f∂ϕ)3j (this is one of the terms that results in taking the derivative
of the first term in the expression for a1 in Lemma 3 and multiplying by f).
Using (1) we can rewrite this term as −a−1

1 f( ∂f∂ϕ)2g( ∂g∂ϕ). We know that as
(ro, 0) is approached, a1 goes to some positive real number (the acceleration
of the optimal Gödel circle). Similarly, f approaches some positive real
number (the number is j(ro)−1/2). The remaining three factors all go to
zero as (ro, 0) is approached. So, the entire term approaches zero. How fast
does it go? We know it must go at least as fast as any one of the factors. So,
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it must go at least as fast as g. But now consider ω. By (3), we know that it
goes to zero as d2g

dϕ2 does. Now by (2) we know that ω must go to zero slower
than the term that we picked (it dominates the term that we picked as the
point (ro) is approached.) The claim is that if we repeated this process and
compared all the terms in ξb∇ba1, ω would dominate them all.

What is the behavior of ω near (ro, 0)? It is negative. So, there exists
an ε1 such that for all ϕ ∈ (0, ε1], ξb∇ba1 < 0 (moving along γ1 away from
(ro, 0) the value of acceleration decreases).

Now we define another curve γ2. Pick any point (ro, δ) in the optimal
Gödel circle. Let f ′(r, ϕ) = j(r)−1/2h′(ϕ) where h′(ϕ) = (1 + e−2/(δ−ϕ))1/2

and g′(ϕ) = e−1/(δ−ϕ) (for continuity considerations, let h′(δ) = 1 and
g′(δ) = 0). Let ηa = f ′( ∂

∂ϕ)a + g′( ∂∂r )a and let γ2 : I ′ → M be such
that its tangent vector at each point is ηa and (ro, δ) ∈ ran[γ2]. Note that
for all points (r, ϕ) where 0 ≥ ϕ ≥ δ we have f ′(r, δ − ϕ) = f(r, ϕ) and
g′(δ − ϕ) = −g(ϕ). Thus, under that same interval of ϕ, it is the case that
ran[γ1] is the mirror image of ran[γ2] across the line of symmetry ϕ = δ/2.

Let a2 be the magnitude of acceleration for any point on γ2. By an
argument very similar to the one made above for γ1 we can establish that
there exists some ε2 such that for all ϕ ∈ [ε2, δ), ηb∇ba2 > 0 (moving along
γ2 toward (ro, δ) the value of acceleration increases). Let ε = min{ε1, δ−ε2}.
Because δ was arbitrarily chosen and because ε ≤ δ − ε2, we know (if we let
δ = 2ε) that for all ϕ ∈ [ε, 2ε), ηb∇ba2 > 0. Of course, because ε ≤ ε1 we
know that for all ϕ ∈ (0, ε], ξb∇ba1 < 0.

Let the curve σ be the optimal Gödel circle. Let γ3 : I ′′ → S be that
portion of σ from ϕ = 2ε to ϕ = 2π. Let γ be such that ran[γ] = ran[γ1] ∪
ran[γ2] ∪ ran[γ3].

Now we integrate. We reparametrize a1 along γ1 so that it is only a func-
tion of ϕ. Next, note that dϕ

ds for σ is j(r)−1/2 while dϕ
ds for γ1 is j(r)−1/2h(ϕ).

We also reparametrize j(r) along γ1 so that it is a function of ϕ. Since along
γ1, j(ϕ)1/2 ≤ j(0)1/2 and h(ϕ) ≥ 1 we may conclude that∫ ε

0
a1(ϕ)j(ϕ)1/2h(ϕ)−1dϕ ≤ j(0)1/2

∫ ε

0
a1(ϕ)dϕ.

Let aσ(ϕ) be the acceleration at any point in σ. Because ξb∇ba1 < 0 along
γ1, for all 0 < ϕ ≤ ε, we know that aσ(ϕ) > a1(ϕ) over that same interval
and, of course, a1(0) = aσ(0). From Lemma 1 we know that the total
acceleration of the optimal Gödel circle over this interval is ε(9 + 6

√
3)1/2.

So, we have

j(0)1/2
∫ ε

0
a1(ϕ)dϕ < j(0)1/2

∫ ε

0
aσ(ϕ)dϕ = ε(9 + 6

√
3)1/2.
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So, we have

TA(γ1) =
∫ ε

0
a1(ϕ)j(ϕ)1/2h(ϕ)−1dϕ < ε(9 + 6

√
3)1/2.

A similar argument establishes that for γ2, we have

TA(γ2) =
∫ 2ε

ε
a2(ϕ)j(ϕ)1/2h(ϕ)−1dϕ < ε(9 + 6

√
3)1/2.

Finally, for γ3 we have

TA(γ3) =
∫ 2π

2ε
aσ(0)j(0)1/2dϕ = (2π − 2ε)(9 + 6

√
3)1/2.

So we may conclude that

TA(γ) = TA(γ1) + TA(γ2) + TA(γ3) < 2π(9 + 6
√

3)1/2.

Thus, there exists a closed timelike curve in Gödel spacetime with total
acceleration less that 2π(9 + 6

√
3)1/2. �

4 Conclusion

So, we have answered question (Q3) concerning CTCs in Gödel spacetime.
We have shown there exists a curve (and therefore a family of curves) with
total acceleration less than 2π(9 + 6

√
3)1/2. It is uncertain if a curve of the

type we have proposed will actually approach GLB (or if there is another
type of curve entirely that approaches it). As previously mentioned, (Q2)
or “What is GLB?” remains open.

Because there is a family of curves determined by varying the value of ε,
a natural next step in the development of this project would be to try and
optimize ε so as to find the curve that minimizes the total acceleration within
that class. This we have been unable to do. But by extending the methods
developed by Malament, we can show that any CTC contained entirely
within S (and therefore this particular class of “kinked” Gödel circles) must
have a total acceleration of at least 4 ln(4 +

√
17).14 This implies that for

every 2 grams of payload, a rocket traversing one of these kinked Gödel
circles will have to carry at least 10,000 grams of fuel. So, although these
kinked curves are more efficient than the optimal Gödel circle, it is clear
that they still don’t allow for any “physically reasonable” time travel in the
Gödel universe.

14This number is approximately 8.38.
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Space-time,” Journal of Mathematical Physics, 28: 2427-2430.

10


