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This paper focuses on the problem of lung nodule image classification, which plays a key role in lung cancer early diagnosis. In this
work, we propose a novel model for lung nodule image feature representation that incorporates both local and global characters.
First, lung nodule images are divided into local patches with Superpixel. Then these patches are transformed into fixed-length
local feature vectors using unsupervised deep autoencoder (DAE). The visual vocabulary is constructed based on the local features
and bag of visual words (BOVW) is used to describe the global feature representation of lung nodule image. Finally, softmax
algorithm is employed for lung nodule type classification, which can assemble the whole training process as an end-to-end mode.
Comprehensive evaluations are conducted on the widely used public available ELCAP lung image database. Experimental results
with regard to different parameter setting, data augmentation, model sparsity, classifier algorithms, and model ensemble validate

the effectiveness of our proposed approach.

1. Introduction

Lung cancer is one of the most deadly diseases around the
world, with about 20% among all cancers in 2016. The 5-year
cure rate is only 18.2% in spite of great progress in recent
diagnosis and treatment. It is noted that if the patient can be
accurately diagnosed in the early stage and suitable treatment
can be implemented, there will be a greater chance for their
survival [1]. Therefore, it is of great significance to do research
about early diagnosis of lung cancer. Computed Tomography
(CT) is currently the most popular method among lung can-
cer screening technologies [2]. CT can generate high resolu-
tion data, which enable small/low-contrast lung nodules
effectively detected compared with conventional radiography
methods. According to the report of National Lung Screen-
ing, low-dose CT scan reduces lung cancer mortality by a
rate of 20% [3]. Due to the fact that traditional lung can-
cer diagnosis only relies on professional experts, two main
drawbacks will be caused: (1) subjectivity, different doctors
have different diagnostic results for the same CT scan image;
(2) huge workload, reading CT images consumes much time

and effort. This makes the efficiency inevitably weakened.
With the development of computer vision technology, some
benefits are brought for medical image process and analysis.
Its efficiency and stability provide auxiliary help for doctors
with automatically or semiautomatically pattern.

During the last two decades, a number of researchers have
been devoted to the development of medical image process
and analysis with computer vision and machine learning
technologies especially for lung disease diagnosis [4]. Among
these studies, lung nodule image classification has attracted
much attentions for it is a key step for lung cancer analysis.
The lung nodule is characterized by its appearance and rela-
tion between surrounding regions. Usually, the lung nodule
can be classified into 4 types [5], as shown in Figure 1. To be
specific, Figures 1(a)-1(d) demonstrate nodule types W, V, J,
and P, respectively, where

W is well-circumscribed nodule located centrally in
the lung without any connection to other structures;

V is vascularized nodule that is also central in the lung
but closely attached to the neighbouring vessels;
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FIGURE 1: Demonstration of four types lung nodule image samples (cropped from images in [6]).

J is juxtapleural nodule that has a large portion con-
nected to the pleura;

P is pleural-tail nodule that is near the pleural surface
connected by a thin tail.

Lung nodule CT image classification includes two main
steps. First, feature extraction and representation use seg-
mentation, filter, and statistical method to describe feature
of lung nodule based on shape and texture. Second, classifier

design constructs classifier based on supervised or unsuper-
vised machine learning method. However, these methods
belong to the fields of traditional image processing and
machine learning, which can only characterize the abstrac-
tion of lung nodule image in a shallow layer and make the
research at low level. As a result, the complex structure of lung
nodule makes the classification still a challenging problem.
This paper proposes a novel model for lung nodule feature
representation and classification. The model considers both
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local feature and global feature. Lung nodule CT images are
first divided into local patches with Superpixel, and each
patch is associated with a relatively intact tissue. Then local
feature is extracted from each patch with deep autoencoder.
Visual vocabulary is constructed with local features. Global
representation is constructed by bag of visual word (BOVW)
model and classifier is trained using softmax algorithm. The
main contributions of our work are as follows: (i) a novel
feature representation model for lung nodule image classifica-
tion is proposed. Local and global features are constructed by
unsupervised deep autoencoder and BOVW model, and (ii)
comprehensive evaluations are conducted, and performance
analyses are reported from multiple aspects.

The structure of this paper is organized as follows. Related
works are introduced in Section 2. Section 3 gives the frame-
work. Local feature representation and global feature repre-
sentation are given in Sections 4 and 5. Section 6 presents
the classifier model. Experimental evaluations are shown
in Section 7. Section 8 concludes this paper.

2. Related Works

Many studies have reported the classification of lung nodule
in CT image. Some representative works are introduced in
this section. Many researches designed feature based on
texture, shape, and intensity of lung nodule image. A feature
extraction method based on morphological and shape of
lung nodule was designed in [7]. A subclass local constraint
based method is proposed in [8]. Spectral clustering and
approximate affine matrix were used to construct data sub-
class and each subclass was used as reference dictionary. The
testing image was represented by sparse dictionary. Finally,
two metrics based on approximation and distribution degree
were merged. In [9], spectrum was sampled around center
of lung nodule and feature was constructed by FFT. All
features were used to construct the dictionary, and then
BOVW mode was used to represent the feature of lung nod-
ule. The Haralick texture feature based on spatial direction
distribution was proposed in [10], and SVM was used as
classifier finally. Ridge direction information was adopted
in [11]. Local random comparison method was used to
construct the feature vector, and then random forest was
used as classifier. Reference [12] first labeled nodule as
solid, part-solid, and nonsolid. Then shape based feature was
extracted and kNN was used train the classifier. Reference
[13] adopted smoothness and irregularity of lung nodule as
feature representation. Texture, shape, statistics, and intensity
were extracted as feature representation and ANN was used
as classifier in [14]. An eigenvalue of Hessian matrix based
feature extraction method is adopted in [15], and AdaBoost
was used as classifier. Reference [16] used rotation-invariant
second-order Markov-Gibbs random field to model the
intensity distribution of lung nodule, and Gibbs energy was
used to describe the feature vector. Finally, Bayes classifier
was constructed. LDA and 3D lattice were used to construct
the mapping between lung nodule image and feature rep-
resentation in [17]. Reference [18] used topology histogram
to represent feature vector of lung nodule, and discrimi-
nant and K-means were used as classifier. These methods

represent the lung nodule image feature in relatively low
level, and they lack sophisticated extraction. On the other
hand, these methods need heavy participation of professional
expert and they have less generality.

Some well-engineered feature extraction and representa-
tion methods widely used in computer vision domain were
adopted in lung nodule image classification. Reference [22]
proposed a method based on texture and context of lung
nodule. Lung images are divided into nodule level and context
level; then SIFT, LBP, and HOG features were extracted.
Reference [19, 23] divided lung nodule as foreground and
background with graph model and conditional random field.
Then SIFT was used to extract feature and SVM was used as
classifier. In [24], SIFT feature was first extracted. Then PCA
and LDA were used for dimension reduction. Finally, com-
plex Gabor response was used for representation. In [25], a
supervised method was used for initial classification with 128-
length SIFT descriptor and weighted Clique was constructed
using 4-length probability vector against the 4 nodule types.
The overlap that lung nodule belongs to different types
was used for optimizing the final classification result. These
methods adopt general designed features. They obtain higher
performance compared with traditional low-level features,
while such methods are considered as mid-level abstraction
of lung nodule and with less flexibility.

Several methods were concerned with other aspects. An
ensemble based method was applied in [26] for lung nodule
classification. Lung nodule image patch was used as input,
and six large scale artificial neural networks were trained for
classification. Data imbalance problem was discussed in [27].
It used downsampling and SMOTE algorithms to train lung
nodule classifier.

Due to its breakthrough in the field of image processing
and speech recognition, deep learning has become one of the
most hottest topics in machine learning research and applica-
tion [20, 28-30]. High-level abstraction of image object can
be described using deep learning model. Meanwhile, feature
extraction and representation are more efficient and effective.
In [28], curvature, hu-moment, morphology, and shape
features were used to detect nodule candidate region. Then
convolutional neural network (CNN) was used to extract
feature for candidate region and multiple classifiers were
merged for final result. Some changes were made in [29, 30].
OverFeat was used for CNN parameter initialization. In [20],
a deep feature extraction with one hidden layer autoencoder
was adopted, and a binary decision tree was used as classifier
for lung cancer detection. This paper proposes a lung nodule
image classification method combining both local and global
feature representation. Our proposed work is close but has
essential difference from the work of [20]. Method in [20] just
applied one hidden layer autoencoder to lung nodule image.
Our proposed method uses Superpixel to generate intact
patches and deep autoencoder to extract local feature. More-
over, method BOVW is incorporated for lung nodule global
feature representation and method in [20] has no considera-
tion.

3. Framework

The procedure of proposed lung nodule classification method
is shown in Figure 2. It contains training and testing stages.
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FIGURE 2: Framework of the proposed method.

In training stage, lung nodule image samples are used as
input and the output is a trained classifier model. Collected
training image samples are first divided into local patches
with Superpixel. Local patches are assigned with no class label
and constitute local patch set. With the local patch set, local
features are extracted by unsupervised learning model, deep
autoencoder. Next, visual vocabulary is constructed based
on clustering all local feature vectors. A lung nodule image
can therefore be described by a global feature representation
with bag-of-visual-words model. Finally, classifier is trained
by supervised learning with nodule type labels. In testing
stage, the input is a lung nodule image with unknown type,
and the output is its predicted type label. Similar to training
stage, a test image is divided into multiple patches. Each local
patch is transformed into local feature and assigned with
a visual word. Finally, global feature representation of test
image is used for classification by the trained model. Details
of the proposed method will be introduced in the following
sections.

4. Local Feature Representation

Local feature representation is proposed in this section. The
process consists of two steps: (1) local patch generation and
(2) local feature extraction and representation.

4.1. Local Patch Generation. Decomposing a lung image into
small patches is useful and practical and for important tissues
can be picked up and unrelated ones can be get rid of. As
shown in (1), a lung nodule image x can be composed of a
group of image patches p;, where n denotes the number of
local patches:

X ={Pp>Pa>-+> Puf - 0))

The location and scale of local patches are determined
through generation [22, 24]. Useless part will be contained for
large size patch, while small part may not cover enough intact
tissue. Superpixel is a popular method that can partition the

image into small similar regions with better representative-
ness and integrity [31]. So it is adopted in this work.

Figure 3 illustrates the process of the proposed local patch
generation method. For a lung nodule image (Figure 3(a)),
it is first segmented into local patches using Superpixel and
a Superpixel map is obtained (Figure 3(b)). Local patches
essentially indicate the uniform regions. Figure 3(c) is an
individual patch sample. However, the region that Figure 3(c)
gives is an irregular shape, and it is inconvenient for local fea-
ture extraction and representation. So we expand local patch
with its minimum enclosing rectangle, as shown in Fig-
ure 3(d). Finally, a lung nodule image is decomposed into a set
of local patches, as shown in Figure 3(e). Besides, there are
some additional criterions to determine whether an image
patch is qualified for local feature extraction:

(i) Let p; be alocal patch; it is removed when the area of
p; islarger than A | or smaller than A ;.

(ii) Let p; and p; be two local patches; if the ratio between
their intersection and their union is larger than O,,
then the smaller one is removed.

A o Amin> and O, are predefined thresholds.

max>
4.2. Local Feature Extraction and Representation. With the
rapid development of unsupervised learning in recent years,
using unlabeled data to extract feature with autoencoder has
become an appropriate way. Autoencoder model is essentially
a multilayered neural networks. Its original version is a
forward network with one hidden layer. Let x; be the input
data, a;/ be the activation of unit i in layer j, and w; be the
matrix of weights controlling function mapping from layer i
to layer i + 1. If layer i has s; units and layer i + 1 has s;,, units,
then w; will be a matrix with size of s; * s,,;. The activation
can be formulated as (2), where af is the 1st unit in the 2nd
layer and x,-x; are 4 input features:

2 1 1 1 1
a =g (wmxo + Wy Xy + WX, + w13x3). (2)

The main difference between ordinary forward neural
network and autoencoder is that an autoencoder’s output is
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FIGURE 3: The process of local patch generation by Superpixel.
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FIGURE 4: The process of stacked deep autoencoder model.

always the same as or similar to its input. The basic formula
can be expressed as follows:

a=h(x) =f(WEx+b),
/ ’ D ! D ! 3
x =h (x):g(W a+b):g(W h(x)+b).

An autoencoder can be seen as a combination of encoder
and decoder. The encoder includes an input layer and a
hidden layer, which converts an input image x into feature
vector a. The decoder includes a hidden layer and an output
layer that transform feature a to output feature x'. W* and
WP are weight matrices of encoder and decoder, respectively.
Functions f(-) and g(-) can be either sigmoid or tanh activa-
tion functions, which is used to activate the unit in each layer.
When x' approximates x, it is considered that the input fea-
ture can be reconstructed from an abstract and compressed
output feature vector a. The cost function can be generally
defined as follows:

JW.b) = < )

A deep autoencoder can be constructed by stacking more
hidden layers. As shown in Figure 4, there are 5 layers in
the model (including 3 hidden layers). L, to L are encoding

layers, and L to L are decoding layers. L; is used as the input
of the layer L;, |, and the weights can be gained based on (3).
There are 2 stacked autoencoders. The activation of 1st hidden
layer is the input of the 2nd stacked autoencoder. The network
can be trained in a fine-tuning stage by minimizing the equa-
tion (4). W, and W, are trained through the encoding and
decoding weights of the 1st stacked autoencoder, and W, and
W; are trained through the encoding and decoding weights
of the 2nd stacked autoencoder. Finally, the whole network
can be constructed layer by layer in a stacked way. Moreover,
Figure 4 just shows an example of symmetric encoding and
decoding structures, and other variational structures can also
be adopted.

Therefore, each local patch of a lung nodule image p; can
be represented by a fixed-length feature vector pf; with deep
autoencoder model. Then (1) is transformed as follows:
{pfopfo-npfil

x={p1sPy--sPut =

5. Global Feature Representation

For BOVW model, visual vocabulary is first constructed
based on clustering all local patch descriptors (local feature
representation) generated by a set of training images. Then
each lung nodule image can be represented globally by a
histogram of visual words. Distance between histograms of
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FIGURE 5: Procedure of BOVW representation of lung nodule image.

visual words can be treated as similarity between lung nodule
image samples.

Recall that a lung nodule image is decomposed into a
group of local patches and each patch is represented with
a feature vector based on deep autoencoder. Assume there
are D local patches generated from all lung nodule train-
ing images and each local patch is represented with d-
dimensional feature vector; then all local feature vectors
can be assembled into a feature space with size of d * D.
Clustering is performed with d * D features, and k-means
clustering method is adopted since it has relatively low time
and storage complexity, irrelevant to data process ordering.
Each cluster center ¢; represents a visual word i, and k cluster
centers constitute the visual vocabulary. A lung nodule image
sample x can be represented by the encoded local patches
as a bag, which is the occurrence frequency of visual word
in vocabulary. To get the histogram representation h(x) of
an image x, all local patch feature vectors of x are mapped
onto the cluster center of the visual vocabulary, and each
local feature is assigned with the label of its closest cluster
center using Euclidean distance in feature space. Then a k-
bins histogram h(x) is obtained by counting all the label of
local patches generated by image x, as shown in (6). Figure 5
exhibits the procedure of global representation of lung nodule
image.

h(x)=[h(x),h(x)y,....h(x)]. (6)

6. Classifier Model

With global representation of lung nodule image, softmax
algorithm is used to train nodule type classifier. Let {(x,, y,),
(%9, ¥3)5 « o> (X5 ¥,,)} denote training data set. x; denotes the
lung nodule image sample and y; € {0, 1,2, 3} denotes nodule
type label.

For an input image sample x;, we want to compute p(y =
j 1 x;) (j € {0,1,2,3}). The output, a 4-dimensional vector,
is estimated to represent the probability of each type that
x; belongs to. The hypothesis function can be expressed as
follows:

p(yi=0]x;0) e
p(yi=11x;0) 1 i

h (x;) = = | a0 @
p(yi=21x30) Yico€ | e
p(yi=31x;0) i

where 0 = {6,,0,,0,,0;} is model parameter set. This

equation normalizes the result and makes the sum to 1. For
training procedure, the loss function is given as follows:

1| & eli%i
J(©) =-— 1{y; = j}log -
m;; Tt (8)
A k 7!62
*32 26

where 1{-} is an indicative function, and stochastic gradient
descent (SGD) is used for function optimization and the
corresponding derivative functions are given as follows:

Ve, J (6)

= —li[xi(l{yi =jt-p(yi=Jjlx30))] + 26,

m

0 x;
. _ et
p(yi=7jlx:0)= ¥ el
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FIGURE 6: Demonstration of lung CT images (downloaded from [6]).

7. Experimental Evaluations

71. Dataset and Program Implementation. In order to eval-
uate the performance of the proposed lung nodule image
representation and classification method, a widely used
public available lung nodule image dataset, ELCAP, is used for
testing [6]. The dataset contains 379 lung CT images, which
are collected from 50 distinct low-dose CT lung scans. The
center position of lung nodule is marked in an extra s*.csv file.

Figure 6 demonstrates the lung nodule CT scan images,
which are sampled from different slices. Table 1 shows the
format of a *.cvs file. Each row denotes a lung nodule. The
4th column indicates the slice number where the lung nodule
exists. The 2nd and 3rd columns give the positions that the
lung nodule is located in. In this section, lung nodule images
are cropped from the raw CT images based on the x- and y-
coordinates of nodule center given in Table 1. The raw lung CT
scan image is fixed with 512512 pixels, and the cropped nod-
ule images are too small to implement the algorithm. There-
fore we further resize the cropped lung nodule image into
180 180 pixels with bicubic method. The lung nodule images
are labeled with one of four types according to the guidance
by an expert. Programs are implemented with Matlab 2016a
programming language and tested on a Pentium i7 CPU, 8 G
RAM, NVIDIA GTX 960 GPU, Windows OS PC.

The experiments include the following aspects: (1)
parameter setting; (2) classification rate with different param-
eters; (3) classification rate with data augmentation; (4)
classification rate with model sparsity; (5) classification rate
with different classifier algorithms; (6) comparing with other
methods; (7) classification rate with model ensemble. The
performance of lung nodule image classification is computed
with overall classification rate, as shown in the following:

N
Classification rate = —<oreet. (10)
all

where N, .. is the number of correctly labeled images and
N, is the number of all testing images. Cross validation mode

is adopted. The dataset is divided into 8 groups: 7 randomly
chosen groups are used for training and the left group is used

TaBLE 1: Format of lung nodule position.

Type x y Slice
Nodule 98 218 54
Nodule 355 153 84
Nodule 139 366 130
Nodule 436 213 169
Nodule 372 163 239
Nodule 328 175 229
Nodule 54 224 169

for testing. This process is repeated 7 times and the result is
computed by averaging 7 independent tests.

7.2. Parameter Setting. The parameters are needed to be set
in local patch generation, local feature representation, and
global feature representation. For local patch generation, we
need to set the number of superpixels that each lung nodule
image generates. For local feature representation, the number
of hidden layers and nodes that each layer contains should
be set. For global feature representation, the size of visual
vocabulary should be set.

As shown in Table 2, the number of patches that each
lung nodule image generates is set with 15, 20, 25, and 30.
The number of hidden layers in deep autoencoder is set with
1, 2, and 3. The number of nodes in deep autoencoder is set
with 50, 75, 100, 125, and 150. The size of visual vocabulary is
set with 200, 300, 400, and 500. The classification rate is eva-
luated on the combination of these parameters. For conve-
nience, parameters are expressed with p,, p,, p;, and p,, re-
spectively.

7.3. Classification Rate with Different Parameters. The size
of local patch is set with 30 = 30 pixels in our experiment.
Table 3 gives the average performance of lung nodule image
classification based on combination of parameters p;, p,, ps»
and p,. It can be seen that classification model with p; = 25,
P, =2, p; = (100,50), and p, = 400 gets the optimal result,
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TABLE 2: Parameter setting. TABLE 4: Performance with data augmentation.
Parameter Parameter explanation Setting Data augmentation method Average
P Number of Superpixel generation 15, 20, 25, 30 Random Random Random performance
D, Hidden layers of deep autoencoder 1,23 rotation cropping perturbation
Ps Nodes of deep autoencoder 50, 75, 100, 125, 150 No No No 0.895
o Size of visual vocabulary 200, 300, 400, 500 Yes No No 0.899
No Yes No 0.887
TABLE 3: Performance with different parameters. Yes Yes No 0.908
Parameters setting Perf No No Yes 0.903
p P, (ps) p criormance Yes No Yes 0.91
1 2 3 4
15 1(50) 200 0.8199 No Yes Yes 0.912
15 1(50) 400 0.832 Yes Yes Yes 0.924
15 1(50) 600 0.829
15 2 (100, 50 200 0.858 , , )
( ) with 3%. This shows that adding more augmented data for
15 2 (100, 50) 400 0.86 .. . s s
training can improve the compatibility and generalization of
15 2 (100, 50) 600 0.845 the classification model.
15 3 (150, 100, 50) 200 0.836
1 150, 100, 4 .84 . . . . .
> 3 (150,100, 50) 00 0845 7.5. Classification Rate with Model Sparsity. In this subsec-
15 3 (150, 100, 50) 600 0.85 tion, a sparsity constraint is imposed on the hidden layer.
25 1(50) 200 0.83 Sparsity is a recently proposed technique to improve the
25 1(50) 400 0.842 generalization of the model [33]. A sparsity regularization
25 1(50) 600 0.849 termisadded to (4), and the new objective functions are given
25 2 (100, 50) 200 0.887 as follows:
25 2 (100, 50) 400 0.895 N
1 1y 2
25 2 (100, 50) 600 0.891 J(W,b) = — Z - “xi _ xi”
25 3 (150, 100, 50) 200 0.835 N4&2
25 3 (150, 100, 50) 400 0.832
Ni—-1 M; My, 5
25 3 (150, 100, 50) 600 0.86 Y Z (‘/Vzl)
40 1(50) 200 0.824 el e
40 1(50) 400 0.82
N-1
40 1(50) 600 0.813 ! )
40 2 (100, 50) 200 0.824 +B Z KL(p Il pi)»
iz
40 2 (100, 50) 400 0.815
40 2 (100, 50) 600 0.833 p (1-p)
KL ;) =plog—=+(1-p)lo ,
40 3 (150, 100, 50) 200 0.81 (pl pi) = plog p; (1= p)log (1-p)
40 3 (150, 100, 50) 400 0.80
40 3 (150, 100, 50) 600 0.806

reaching 89.5%. We can also see that different parameter
settings have great impact on the classification results.

7.4. Classification Rate with Data Augmentation. Overfitting
is common in machine learning, and it is influenced by both
model complexity and the size of training data. Data aug-
mentation scheme is usually adopted to lessen this problem
[32]. In this section, data augmentation is used to enlarge
the size of training data. Random rotation, random cropping,
and random perturbation (brightness, saturation, hue, and
contrast) are used as basic augment techniques.

For original lung nodule image, it is sampled with
possibility of 0.5 for data augmentation. The new created
examples are set with same labels as original. As shown in
Table 4, data augmentation can increase classification rate

1N
Pi:IT];hi(x)‘

The sparsity regularization term is regulated by Kullback-
Leibler divergence KL(p || p;). p; is the average activation of
ith layer of deep autoencoder and p is the target activation.
p with small value can reduce the mean activation of the
model. 8 is a trade-oft parameter. Table 5 gives the result
of classification performance with different p (values from
0.1-0.9). It can be seen that p set around 0.3-0.4 leads to the
superior performance.

7.6. Classification Rate with Different Classifier Algorithms. In
this subsection, we evaluate the performances of 4 commonly
used classifier algorithms. Softmax (which is used in this
paper), SVM, kNN, and decision tree are used. The same
feature representation is adopted. Table 6 shows that softmax
slightly outperforms SVM, kNN, and decision tree. The
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TaBLE 5: The effect of model sparsity. TABLE 7: Performance comparing with other methods.
Sparsity (p) Performance Classification method Performance
0.1 0.92 Ref. [19] 0.877
0.2 0.929 Ref. [7] 0.88
0.3 0.938 Ref. [20] 0.82
0.4 0.939 Ref. [21] 0.895
0.5 0.93 Ref. [9] 0.891
0.6 0.905 Our proposed method 0.939
TABLE 6: The effect of different classifier algorithms.
TABLE 8: Performance of model ensemble.
Classifi del Perf
S :SI ermocde o (c))rgr;l:nce Number of models Performance
ormax ' 1 0.939

SVM 0.931

5 0.952
kNN 0.927

6 0.954
Decision tree 0.919

7 0.955

results demonstrate that, compared with classifier algorithm,
the feature representation is the key problem. Meanwhile, it
is easy to combine the softmax algorithm and the proposed
feature representation method into an end-to-end structure,
which can make model training more convenient.

7.7. Comparing with Other Methods. In order to evaluate the
classification rate of different methods, 5 related algorithms
are used for testing. Reference [19] studies the same problem
as ours. Reference [20] adopts the primitive autoencoder
method. References [7, 21] use non-deep-learning methods
for classification. Reference [9] employs the BOVW model.
The compared methods are reimplemented and are tested
with diverse parameters. Table 7 gives the testing result.
Among all testing methods, the proposed one demonstrates
the best performance. Comparing with non-deep-learning
method, our method can construct better feature representa-
tion, while, comparing with primitive autoencoder method,
the Superpixel and DAE used in our method can catch more
detailed information.

7.8. Classification Rate with Model Ensemble. Model ensem-
ble can improve the classification performance by aggregat-
ing multiple individual classifiers [34]. We evaluate model
ensemble based on Majority Rule in this subsection. In
Majority Rule, the class label is assigned with the one that
most classifier votes. The function to evaluate the class label e
for image I is given as follows:

N
pe)=) S(Ci(I)=e),
=1 (12)

e=argmax p(e;),
i

where I is a testing image, e is a class label, N denotes number
of selected models, and C; means ith classifier. S(C;(I) = e) =
1, if C; classifies I as e. The label with maximal value of p(:) is
determined as the final result. If multiple labels have the same

votes, the arithmetic average of class probabilities predicted
by individual model is used as classification result.

With different parameters combination, models with top
performances are retained for ensemble. Table 8 gives the
testing result. The Ist row denotes the single model. The
2nd to 4th rows denote model ensemble with 5, 6, and 7
individual models, respectively. The result demonstrates that
model ensemble can complement individual ones and the
performance is improved with about 1.5%.

8. Conclusion and Future Works

In this paper, a novel feature representation method is
proposed for lung nodule image classification. Superpixel is
first used to divide lung nodule image into local patches.
Then local feature is extracted and represented from local
patches with deep autoencoder. Bag-of-visual-words model is
used as global feature representation with visual vocabulary
constructed by local feature representation. Finally, an end-
to-end training is implemented with a softmax classifier. The
proposed method is evaluated from many aspects, including
parameter setting, data augmentation, model sparsity, com-
parison among different algorithms, and model ensemble.
We draw a conclusion that the proposed method achieves
superior performance. The merits of our method are the
combination of local and global feature representation, and
better model generalization can be gained by incorporating
unsupervised deep learning model.

Our future works will focus on two aspects: (1) study
new classification framework and method according to up-
to-date convolutional neural network and (2) analysis of our
method in large data set for making further improvement and
optimization.
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