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Because they are key components of aircraft, improving the safety, reliability and economy of engines is crucial. To ensure flight
safety and reduce the cost of maintenance during aircraft engine operation, a prognostics and health management system that
focuses on fault diagnosis, health assessment, and life prediction is introduced to solve the problems. Predicting the remaining
useful life (RUL) is the most important information for making decisions about aircraft engine operation and maintenance, and
it relies largely on the selection of performance degradation features. The choice of such features is highly significant, but there
are some weaknesses in the current algorithm for RUL prediction, notably, the inability to obtain tendencies from the data.
Especially with aircraft engines, extracting useful degradation features from multisensor data with complex correlations is a key
technical problem that has hindered the implementation of degradation assessment. To solve these problems, deep learning has
been proposed in recent years to exploit multiple layers of nonlinear information processing for unsupervised self-learning of
features. This paper presents a deep learning approach to predict the RUL of an aircraft engine based on a stacked sparse
autoencoder and logistic regression. The stacked sparse autoencoder is used to automatically extract performance degradation
features from multiple sensors on the aircraft engine and to fuse multiple features through multilayer self-learning. Logistic
regression is used to predict the remaining useful life. However, the hyperparameters of the deep learning, which significantly
impact the feature extraction and prediction performance, are determined based on expert experience in most cases. The grid
search method is introduced in this paper to optimize the hyperparameters of the proposed aircraft engine RUL prediction
model. An application of this method of predicting the RUL of an aircraft engine with a benchmark dataset is employed to
demonstrate the effectiveness of the proposed approach.

1. Introduction

Because they are core components of an aircraft, the failure of
engines is often a major cause of major accidents and casual-
ties [1]. Therefore, the safety and the reliability of engines are
vital to the performance of aircraft. However, it is difficult to
ensure their safety and reliability due to their complicated
structures, and engine failure has arisen inevitably due to
effects of aging, environment, and variable loading as the
working time increases. For this reason, it is essential to
detect underlying degradation, predict how soon an engine
will fail effectively, implement maintenance promptly, and
ultimately prevent catastrophic failure.

In the field of aircraft maintenance, traditional mainte-
nance is either purely reactive (fixing or replacing an aircraft
engine component after it fails) or blindly proactive (assum-
ing a certain level of performance degradation with no input
from the aircraft engine itself and maintaining the aircraft
engine on a routine schedule whether maintenance is actually
needed or not). Both scenarios are quite wasteful and
inefficient, and neither is conducted in real time [2-5]. Given
the scheduling of maintenance tasks based on fault diagnosis,
performance degradation assessment and the predicted
remaining useful life of the aircraft equipment and the need
to prevent faults in advance, prognostics and health manage-
ment (PHM) is gradually replacing these two maintenance
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strategies. Prognostics, as the core of PHM, involves man-
aging performance deterioration processes or faults in the
aircraft engine and forecasts when components/systems
of the engine will breakdown or when the performance
will reach to an unacceptable level.

There are three main classes of RUL prediction methods:
(1) data-driven methods, (2) physics model-based methods,
and (3) methods that combine data-driven and physics
model-based methods [6-9]. The data-driven methods use
past condition monitoring data, the current health status of
the system, and data on the degradation of similar systems.
The methods based on physics models use system-specific
mechanistic knowledge, failure regulation, and condition
monitoring data to predict the RUL of a system or compo-
nent. There are two main challenges in prognostics based
on physics: (1) there is not enough physical knowledge to
construct a physical degradation model and (2) the values
of the physical model’s parameters are difficult to determine
exactly. Therefore, it is important to understand the failure
mechanism of the system correctly, and experienced person-
nel are required for physics-based models [10, 11]. In addi-
tion, the peripheral environment during device operation
(e.g., the temperature and humidity) and the operating
conditions (e.g., the fan speed) may be used as inputs and
constitute additional dimensions to be considered. Therefore,
the requirements of data-driven methods to model the
degradation and predict the RUL are easier to satisty in
reality. At present, data-driven methods are widely used
in RUL prediction [12, 13].

The performance of many data-driven prognostics
methods is heavily dependent on the choice of the perfor-
mance degradation data to which they are applied [14]. How-
ever, engines have many sensor parameters. The sensitivity of
the data from different sensors varies in terms of showing
engine performance degradation; the data from some sensors
is sensitive and the data from other sensors is not sensitive.
Therefore, it is necessary to select suitable sensor parameters
whose data are more sensitive to the engine’s performance
degradation trend as the training data for the RUL prediction
model. By observing the characteristic variations of the data
from all sensor parameters, quadratic fitting curve is used
to fit the degradation data from different sensors and rank
the engine’s sensor parameters by sensitivity.

Three problems hinder the implementation of perfor-
mance degradation feature extraction in practice. The first
is to select the most sensitive performance degradation
features for identifying performance degradation trends
easily. The second is that the relevant performance degrada-
tion features are often not available and unknown a priori; a
large number of candidate performance degradation features
have been proposed to better represent the performance
degradation state. The last is that most traditional methods
of extracting performance degradation features for prognos-
tics are unsupervised and cannot automatically adjust the
feature extraction modal parameters based on feedback from
the prediction [15-17]. Such feature extraction and choice is
significant but represents a principal shortcoming of popular
prognostics algorithms: the inability to extract and organize
discriminative or trend information from data. Therefore, it
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is important to develop an automatic feature extraction
method that is capable of extracting the prominent feature
to achieve better insight into the underlying performance
degradation state.

Deep learning, a new method that has been put forward
in the last few years, can be used to extract multilevel features
from data, which means the method could express data at
different levels of abstraction [18]. Deep learning is an end-
to-end machine learning system. It can automatically process
an original signal, identify discriminative and trend feature in
the input data layer by layer, and then, directly output the
classification/regression result. The whole process of feature
learning and classifier/regression model training is based on
optimizing an overall objective function. In contrast, tradi-
tional machine learning processes are divided into several
discontinuous data preprocessing steps, such as manual
feature extraction and classifier/regression model training,
and each step is based on optimizing a separate objective
function. Due to the advantage of feature self-learning, deep
learning has had great success in applications in artificial
intelligence, including computer vision (CS), natural lan-
guage processing (NLP) [19, 20], object recognition [21],
and image information retrieval [22, 23]. Deep learning is
not only popular in the academic world but also favored in
the industrial world. Companies such as Google, Microsoft,
Apple, IBM, and Baidu [24], whose products are widely used,
are researching deep learning and have made achievements,
such as AlphaGo.

There are many deep learning methods: deep neural
networks (DNNs), convolutional deep neural networks
(CNNs), deep belief networks (DBNs), and so on [25], for
instance, have been proposed. The stacked sparse autoenco-
der (SAE) [26] is one of the most commonly used deep neural
network approaches. SAE consists of multilayer autoencoder
such as sparse autoencoder, denoising autoencoder, and so
on. Sparse autoencoder is on the basis of autoencoder and
introduced sparse constraint condition to aid the expression
code as sparse as possible. Denoising autoencoder can learn
to remove the noise which is added to the initial input data
and extract more robust expression of the input data [27].
For this reason, SAE can effectively capture the important
factor of input data, extract more helpful and robust features
of data, and then realize excellent performance in pattern
recognition and machine learning.

In recent years, various researchers have demonstrated
the success of DNN and SAE models in the application of
machine health monitoring, such as fault classification of
induction motor operated under six different conditions,
vibration based fault diagnosis of rolling bearing and
hydraulic pump, fault detection within tidal turbine’s gen-
erator from vibration data acquired from an accelerometer
sensor placed within the nacelle of the turbine, vibration
based condition monitoring of air compressors, multi class
fault classification of spacecraft using large variety of data
generated during the spacecraft test, anomaly detection
and fault disambiguation in large flight data, drill bit and
steel plate health monitoring using vibration data, fault
recognition of voltage transformer in electric power indus-
try and so on [28-36]. Most of the research of SAE based
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health monitoring mainly focus on anomaly detection and
fault diagnosis at present. However, there are few applica-
tions on RUL prediction, especially for aircraft engine
RUL prediction.

Consequently, a prognostics method based on a stacked
sparse autoencoder is proposed to promote self-learning of
multilayer features and to predict the RUL of an aircraft
engine. The remainder of this paper is organized as follows:
Section 2 presents the entire prediction method procedure
and framework. Section 3 presents and discusses the predic-
tion results. Finally, conclusions are drawn in Section 4.

2. Methodology

This section introduces the relevant algorithms used in this
research. As depicted in Figure 1, the whole procedure for
RUL prediction for an aircraft engine consists of two main
steps: data preprocessing and RUL prediction using the SAE.

2.1. Data Preprocessing. Selection of sensors that are sensitive
to performance degradation and standardization of sensor
data with different dimensions are the primary tasks neces-
sary to obtain a high RUL prediction accuracy. Three steps
are needed to preprocess the data.

2.1.1. Sensor Selection. Different sensors in an aircraft engine
have very different responses to the performance degradation
process. Some sensors show unclear tendencies because of
noise or insensitivity to degradation trends. Choosing
insensitive parameter data may reduce the RUL prediction
accuracy. To improve the performance of the prediction
model, sensors that are more sensitive to the performance
degradation process are chosen as inputs to the RUL predic-
tion model. A method called slope analysis is proposed for
sensitivity measurement. Its three main steps are as follows:

Step 1: curve fitting is performed on the degradation
data for each parameter of each engine. Then,
the parameters of the best-fit curves, called
slopes, are used to analyze the sensitivity of
the degradation data.

Step 2: the average values of all the engine parameters in
the step 1 that belong to the same sensor are
calculated. Then, the different average parameter
values for the different sensors show the individ-
ual sensitivity of the degradation data.

Step 3: the degradation data with larger slopes are
selected for predicting the RUL of the engine.

2.1.2. Data Normalization. The linear function that best
preserves the original performance degradation pattern of
the aircraft engine is chosen to map the data for each selected
sensor to [0, 1].

2.1.3. RUL Normalization. The proposed prediction method
outputs a result in the range from 0 to 1. In the training stage
of the prediction model, the RUL of each cycle of aircraft
engine should also be normalized to [0, 1] using a linear

Sensor selection

Data preprocessing Data normalization
RUL normalization
SAE-based prediction model construction
RUL prediction L R .
. Predict del opt t dt
i SATE) ol rediction model optimization and training

Prediction model validation

FIGURE 1: The procedure for predicting the RUL of an aircraft
engine.

function. The test outputs of the prediction model need to
be inversely mapped from [0, 1] to the real RUL.

2.2. SAE Model Construction

2.2.1. Deep Architecture. Cortical computations in the brain
have deep architecture and multiple layers of processing.
For example, a visual image is processed in multiple stages
by the brain, first by cortical area “V1,” then by cortical area
“V2,” and so on [37]. Inspired by the information-processing
scheme of the brain, deep neural networks have similar deep
architectures and multiple hidden layers, which can support
complex recognition tasks [6, 37]. As is typical of deep neural
networks, the stacked sparse autoencoder (SAE) consists of
multiple autoencoders. Compared with traditional neural
networks with shallow architectures, it can learn features bet-
ter and extract deeper discriminative representations [38].

However, it is difficult to train deep architectures [39].
This problem has been addressed by Hinton et al. [40-42],
who showed that deep architectures can be trained by relying
on two main procedures: (1) on the basis of a unsupervised
autoencoder, the deep architecture layers are processed by
pretraining, and the output of the top layer’s autoencoder is
used as the input to a logistic regression and (2) fine-tuning
based on backpropagation is used to adjust the model param-
eters to obtain accurate prediction results.

2.2.2. Sparse Autoencoder. An autoencoder, first introduced
by Hinton et al. [40], is a general form of deep learning
method [43] that has been extensively used in unsupervised
feature learning. As shown in Figure 2, an autoencoder has
three layers: an input layer, a hidden layer, and an output
layer. The whole network is trained to realize the reconstruc-
tion from the input layer to the output layer, while the hidden
layer is accepted as the key feature. However, the traditional
autoencoder is not an efficient way to obtain significant rep-
resentativeness due to its intrinsic limitations. The SAE, as an
extension of an autoencoder, can be trained to obtain rela-
tively sparse representatives by introducing a sparse penalty
term into the autoencoder [44]. The sparse features learned
by the SAE have meanings that are more practical in experi-
ments and applications.
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FiGUrE 2: The structure of an autoencoder.

The SAE model contains two parts:

(i) An encoder map

The encoder maps an input vector x) € R% (the ith
training example) to the latent representation a'”
through deterministic mapping

a =f, (x(i)> = sigmoid(Wlx(i) + 171), (1)

where sigmoid is the activation function of the
encoder with weight matrix W, and bias vector b,.

(ii) A decoder map

The decoder maps feature a') back to a reconstruc-
tion of the vector Ay, (a”)) € R% in the output space
[45] through a mapping function

0 =hy,, (a<i)) = sigmoid(Wna@ + b2>. (2)

The decoder map tries to learn a function
hy,(a") = x®, which means making the output
% similar to the input ). Similarly, sigmoid is set
as the activation function of the decoder map with
weight matrix W,, and bias vector b,.

During the learning process, the parameters of the SAE
are adjusted using backpropagation by minimizing the cost
function within the sparsity constraint. The sparsity con-
straint works on the hidden layer to limit its units and makes
it into a sparse vector in which most elements are zero or
close to zero [44]. For the autoencoder’s network structure,
a neuron with a sigmoid activation function is in the active
state if its output is close to 1 and the inactive state if its
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FIGURE 3: The concept of the denoising autoencoder.

output is close to 0. Therefore, the sparsity constraint is
introduced to restrict most of the neurons to inactivity
most of the time.

The activation of hidden unit j is denoted by a;(x), and

the average activation of hidden unit j is as follows:

A=l ()] 0

Then, we define the sparsity constraint as ﬁj = p, where

p denotes the sparsity criterion and has a value that is
close to zero, that is, most of the neurons in the hidden
layer are inactive.

To reach the goal of sparsity, a penalty term is introduced
to the objective function that penalizes p; if it deviates sig-
nificantly from p. In our study, the KL divergence [45] is
selected as the penalty term;

KL(p|[p;) = plog % +(1-p)log 11__5- (4)
] ]

The training set of m training examples is denoted by
{(x™, yMy ..., (xt, (M)} and the original cost function
is defined as

The first term in (5) is an average sum-of-squares error
term, and the second term is a regularization term or weight
decay term, which tends to decrease the magnitude of the
weights. Here, W and b are the same as in (1) and (2), and
A is the weight decay parameter.

By adding the sparse penalty term, the cost function is
modified to

W) e = W5 + Y KL(p[B), ()
=1

where [ represents the weight of the sparsity penalty term.

2.2.3. Denoising Autoencoder. Despite the process described
above, learning features well to improve the performance
and generalization ability of the prediction model continues
to face challenges because of the noise and outliers that com-
monly appear in real-world data. To force the hidden layer to
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FIGURE 4: A two-layer stacked sparse autoencoder and logistic regression.

discover more robust features, the autoencoder can be
trained by reconstructing the input from a corrupted version
of it, which is the idea behind denoising autoencoders [37], as
shown in Figure 3.

These data corruption is implemented by corrupting the
initial input x to create a partially destroyed version x by
means of a stochastic mapping,

X ~ qp(X[x). (7)

The standard approach is to apply masking noise to
the original data by setting a random fraction of the ele-
ments of x to zero. Next, the corrupted data X pass
through a basic autoencoder process and is mapped to a
hidden representation,

y=fo(x) =sigmoid(W.x + b). (8)
From this equation, we reconstruct

2=y (¥)- ©)

In the last stage, the parameters are trained to minimize
the average reconstruction error

Ly(xz) =H(B,|[B.) (10)
to make z as close as possible to the uncorrupted input x.

2.2.4. Structure of the Stacked Sparse Autoencoder. As a
typical neural network, the stacked autoencoder consists of
multiple layers of sparse or denoising autoencoders (discard-
ing the decoder) and a logistic regression. The outputs of
each layer of the stacked autoencoder are wired to the inputs
of the subsequent layer. The architecture of a two-layer
stacked sparse autoencoder is shown in Figure 4. Each sparse
or denoising autoencoder generates a representation of the
inputs (data from the aircraft engine’s sensors) that is more

abstract and high dimensional than the previous layer’s
because it is obtained by applying an additional nonlinear
transformation. The output of the last layer of the sparse
autoencoder are input to the logistic regression and then,
the results (the predicted RUL) are obtained.

(1) Prediction Using Logistic Regression. The purpose of
logistic regression is to find an optimal model for matching
independent variables and class distinctions of dependent
variables (probabilities of the occurrence of an event). The
logistic function is expressed by

-1

prob(event) = p(x) = (1 + e’em) (11)

The logistic or logit model is

Logit = g(x) =log (p(x)(1 - p(x))™")

(12)
=0+ Brx; + Byxy e+ Brxs

where g(x) is a linear combination of the independent

variables x,x,, ..., x;.

Parameters of models (such as a, 3, ..., 8;) need to be
determined beforehand, which is the major premise for
determining P(x). Because of the existence of dichotomous
dependent variables, it is improper to estimate the values of
the parameters using the least-squares method [46]. There-
fore, compared with the method of minimizing the sum of
the squared errors, the paper uses the maximum likelihood
method to estimate the parameters (such as o, 3, ..., 3;) of
the logistic regression [47]. Then, the probability of the
occurrence of the event can be obtained using (11) once the
vector x has been determined.
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FIGURE 5: Procedure for training the SAE-based RUL prediction model.

(2) Fine Tuning. The process of fine-tuning mainly focuses
on adjusting the weights in the SAE network, which leads
to much better prediction performance.

First, feed-forward is used to compute the activations for
all the autoencoder layers.

In the next step, we set 8" = —(V . J)ef'(z") for the
output layer, where V] =6(I - P), I is the input label, and
P is the vector of conditional probabilities. Then, for layers
l=n—1,m-2,...,3,2, we set 8 = ((W(l))TS(l“))of’(z”’),
and then, the desired partial derivatives are

T

VW (W, bsx5y) =60 (a®)

( ») =8 (a®) "
Vb (W, bsx;y) =00,

where W, b, and a are as in (1) and (2).
Finally, the batch gradient descent algorithm is used to
minimize the overall cost function.

2.3. Training and Optimization of SAE-Based RUL Prediction

2.3.1. Procedure for Training the SAE-Based RUL Prediction
Model. A two-layer stacked sparse autoencoder and a logistic
regression (LR) model were used as an example to illustrate
the training procedures in the proposed deep learning-
based RUL prediction methodology. The values of the SAE
parameters are predetermined. A grid search is used to find
a set of optimal SAE parameters. The four major steps of
the procedure are as follows:

Step 1: a single-layer denoising autoencoder (DAE), the
first layer of the SAE, is trained to extract robust
performance degradation features using unsuper-
vised learning [37]. The signals of the selected

—> Grid search
Model-free —
—> Random search
Automated
hyperpar?.meter —» Bayesian optimization
selection

Model-based ——»  Nonprobabilistic
Evolutionary
—> A
algorithms

FIGURE 6: Approaches to automated hyperparameter selection.

Step 2:

Step 3:

Step 4:

sensors are input into the DAE, and then, low-
level features are output by the hidden layer of
the DAE.

a single-layer sparse autoencoder (AE), the sec-
ond layer of the SAE, is trained for unsupervised
self-learning of features. The low-level features
are input into the AE, and the high-level features
are output by the hidden layer of the AE.

high-level features are used as inputs to train the
LR model for RUL prediction. The target output
of the LR model is the normalized RUL of the
aircraft engine.

the previously trained SAE and LR model are
combined into an integrated feature learning
and RUL prediction model. Then, the integrated
model is trained using supervised learning for
the final feature learning to obtain the RUL
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prediction model. The signals of the selected
engine sensors are the inputs of the integrated
model, and the normalized RUL of the engine is
used as the target output during model training.
Training the integrated model using supervised
learning can fine-tune the modal parameters
(the parameters of the DAE, the AE, and the
LR models) based on the values obtained in the
previous training, steps 1 to 3. The features
obtained from the fine-tuned DAE and AE more
clearly present the degradation trend of the
engine performance. Based on these features,
the LR model can provide a more accurate RUL
prediction result.

The process of training the proposed RUL prediction
method is summarized in Figure 5.

2.3.2. Grid Search-Based SAE RUL Prediction Model
Parameter Optimization and Validation. The hyperpara-
meters of the deep learning, which have significant impacts
on the feature extraction performance, are adjusted in most
cases based on expert experience. In view of the difficulty of
adjusting hyperparameters by means of deep learning, a
method of optimizing the hyperparameters is necessary.
There are currently two main types of method of auto-
mated hyperparameter selection for the SAE (which is
shown in Figure 6). One includes model-free methods,
which include the grid and random search methods; the
other includes model-based methods, which mainly include
three subcategories, the Bayesian optimization (e.g., spear-
mint [48]), nonprobabilistic methods (such as RBF surrogate
models [49]), and evolutionary algorithms (e.g., genetic
algorithms [50] and particle swarm optimization [51]).
Model-based methods efficiently explore the solution space



according to the algorithm selected and then, quickly obtain
the accepted parameter value. However, the identified
hyperparameter value may be a local optimum, and the
method has several individual hyperparameters, which
would increase its complexity.

Unlike model-based methods of hyperparameter selec-
tion, model-free hyperparameter selection methods search
for the optimal parameters within the defined space; the
main ones are grid and random searching [52, 53]. In the
paper, the grid search method is chosen to search for the
hyperparameters of the SAE.

There are a few reasons why grid search is chosen as
the hyperparameter optimization algorithm used in the
proposed SAE-based RUL prediction model.

(1) Compared with the manual search method of opti-
mizing the hyperparameters, a grid search is more
likely to identify better model parameters than pure
manual sequential optimization (in the same time).

(2) Compared with model-based hyperparameter selec-
tion methods, a grid search is simple to implement,
and parallel computing is easy to implement.

(3) Compared with the random search method of hyper-
parameter optimization, mesh searches are recom-
mended when few parameters need to be optimized.

Theoretically, when the space defined by the optimized
parameters is large enough and the changes in the optimal
parameters are small enough, the optimization method
called mesh searching could be used to find the global
optimal solution.

There are three main steps in the grid search-based hyper-
parameter optimization of the SAE RUL prediction model.

Step 1: the hyperparameters to be optimized are defined
in the space, and the space is divided into grids
with a fixed step size. Each point on each grid is
a combination of model parameters.

Step 2: the training set is divided into several subsets of
equal size. Then, the SAE is trained with one
combination of model parameters. Details of the
procedure for training the SAE-based RUL pre-
diction model are in Section 2.3.1 of this paper.

Step 3: step 2 is repeated until the grid search has
been completed. The resulting optimal hyper-
parameters are output.

Figure 7 shows the process of the method. To obtain an
SAE with the optimal parameters, predicted degradation data
for the engines are input into the trained model, and the RUL
of each engine is obtained.

3. Case Study

3.1. Engine Data Description. The challenge datasets used for
the prognostics challenge competition at the 2008 PHM
International Conference consist of multiple multivariate

Complexity

TaBLE 1: Description of the sensor signals for the aircraft gas
turbine engine.

Index Symbol Description Unit
1 T2 Total temperature at fan inlet ‘R
2 T24 Total temperature at LPC outlet ‘R
3 T30 Total temperature at HPC outlet R
4 T50 Total temperature at LPT outlet ‘R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm
10 epr Engine pressure ratio (P50/P2) —
11 Ps30 Static pressure at HPC outlet psia
12 phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass ratio —
16 farB Burner fuel-air ratio —
17 htBleed Bleed enthalpy —
18 Nf_dmd Demanded fan speed rpm
19 PCNFR_dmd Demanded corrected fan speed  rpm
20 W31 HPT coolant bleed Ibm/s
21 W32 LPT coolant bleed Ibm/s

‘R: Rankine temperature scale; psia: pounds per square inch absolute;
rpm: revolutions per minute; pps: pulses per square inch; lbm/s: pound
mass per second.

TABLE 2: Operating regime of the aircraft engine.

Throttle resolver
angle (TRA)

R1 20 0.7 0

Operation regime ~ Altitude ~Mach number

time series, which were collected via a dynamical simulation
of an engine system. The model simulated various degrada-
tion scenarios in any of the five rotating components of the
simulated engine (fan, LPC, HPC, HPT, and LPT), and the
connections among the engine modules in the simulation
are shown in Figure 8. The engine begins in normal
operation, then, degradation appears in some cycle of the
simulation. The degradation data for each engine are
recorded until the engine fails. The simulation model results
in 218 engine datasets defined as unit 1 through unit 218 with
different failure times measured by the number of operating
cycles for the same engine system.

The complete dataset for each cycle of each engine unit
consists of the unit ID, the operating cycle index, the
operational regime settings, and typical sensor measure-
ments. A total of 21 sensors (shown in Table 1) are installed
in different components of the aircraft engine. A total of 21
sensory signals are obtained under the R1 operation regime
shown in Table 2. In this study, sensor data were collected
from 200 aircraft engines injected with the HPC degradation
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FIGURE 9: Engine degradation tendencies using the data from different sensors over time.

fault mode. The dataset considered in this study consists  of the 100 testing units. Each training unit runs to break-
of three files, which include degradation data for 100  down, and each testing unit stops running at some time
training and 100 testing units and the remaining useful life ~ before it breaks down. Through investigation and research,
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TaBLE 3: Operation regime of the aircraft engine. TaBLE 5: Parameters of the SAE model obtained using the method.
Rank Sensor Sensitivity Parameter name Min Step Max
1 Ps30 2.63785E-05 Hidden layer 1 of SAE 4 2 16
2 phi 2.58711E-05 Hidden layer 2 of SAE 2 2 8
3 P30 2.45237E-05 Learning rate of SAE 0.3 0.1
4 T50 2.43431E-05
5 BPR 2.35888E-05
6 Nf 2.30928E-05 TaBLE 6: Life prediction results for the first seven optimal
7 NRf 2.25432E-05 ~ Pparameters.
8 W32 2.17608E-05 Accuracy Acceptable Acceptable
9 w3l 2.1399E-05 Rank " te MAPE number rate
10 htBleed 2.1267E-05 1 83.82%  16.18% 82 86.32%
11 T24 2.1055E-05 2 83.67%  16.33% 81 85.26%
12 T30 1.9856E-05 3 83.67%  16.33% 80 84.21%
13 Ne 1.1581E-05 4 83.66%  16.34% 80 84.21%
14 NRe 5.86587E-06 5 83.65%  16.35% 80 84.21%
6 83.62% 16.38% 81 85.26%
7 83.61% 16.39% 81 85.26%

TaBLE 4: Parameters of the SAE obtained using the grid search
method.

Parameter name Parameter value

Input layer 16
Learning rate of NN model 0.5
Number of training cycles 300

it is found that the dataset is highly authoritative and
accurate [54-56].

3.2. Results and Discussion

3.2.1. Data Preprocessing. In the process of engine perfor-
mance degradation, the performance data from the sensors
gradually change over time, and the data indirectly reflect
the degradation tendency of the engine’s performance. How-
ever, the sensitivity of different parameters to degradation
varies over time. Figure 9 shows the degradation tendency
of the 21 performance parameters. According to Figure 9,
data from seven of the sensors (1, 5, 6, 10, 16, 18, and 19)
exhibit no tendency, so the sensitivities of the remaining
parameters to engine performance degradation are analyzed.
The results of the 14 performance parameters for which the
sensitivity analysis is conducted are shown in Table 3. To
reduce the computational complexity, the data from the first
six sensors (4, 7, 8, 11, 12, and 15) in the sensitivity ranking
are selected. By surveying and analyzing relevant information
about the RUL of engines, parameters T24 and T30 are also
chosen as objects of study. Finally, eight performance
parameters (2, 3, 4, 7, 8, 11, 12, and 15) are chosen for
predicting the RUL of the aircraft engine [57-59].

3.2.2. SAE Parameters Optimized Using Grid Searching. The
SAE used in this paper has eight hyperparameters: input
layer, hidden layer 1, hidden layer 2, output layer, learning
rate of SAE, learning rate of NN model, and number of

TaBLE 7: Engine life prediction accuracy of the 2008 PHM data
challenge.

Rank Score MAPE Accuracy rate
1 512.12 15.81% 84.19%
2 740.31 18.92% 81.08%
3 873.36 19.19% 80.81%
4 1218.43 20.15% 79.85%
5 1218.76 33.14% 66.86%
6 1232.27 32.90% 67.10%
7 1568.98 36.75% 63.25%
8 1645.77 30.00% 70.00%
9 1816.60 26.47% 73.53%
10 1839.06 27.72% 72.28%

training cycles. Based on the results, the parameters input
layer, learning rate of NN model, and number of training
cycles are shown in Table 4, which is a good parameter
match. Then, there are three hyperparameters that need to
be optimized using grid searching. The grid search method
of automated hyperparameter selection for SAE is performed
in a defined space with a fixed step size. The proposed
parameters of the SAE obtained using the grid search
method are shown in Table 5.

3.2.3. Results. Through automated selection of the DNN
hyperparameters using a grid search, the experimental results
show that the method is effective, with an accuracy rate of up
to 83.82% and an acceptable rate of up to 86.32% of ranking
first (shown in Table 6). Compared with the accuracy of the
2008 PHM data challenge engine life prediction, the first-
rank prediction accuracy is 84.19% (shown in Table 7), and
the RUL prediction accuracy is quite close. However, there
are six types of working condition and 218 training and test
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TaBLE 8: The first seven optimal parameter arrays obtained by the
grid search method.

Rank Input Hidden Hidden Output Learning rate of
layer  layer 1 layer 2 layer SAE model
1 16 10 2 1 0.9
2 16 10 2 1 0.5
3 16 8 2 1 0.3
4 16 8 2 1 0.5
5 16 12 2 1 0.9
6 16 10 2 1 0.7
7 16 12 4 1 0.5

sets in the FDOO5ST dataset, which were used in the data
challenge. Then, comparing the method proposed in this
paper and the 2008 PHM data challenge provides only a
relative comparison. The accuracy of the RUL predictions
obtained in this paper is acceptable in the field of engine
prediction, and the results are satisfactory. Table 8 shows
the first seven optimal parameter arrays obtained by the grid
search method. Table 6 shows the life prediction results based
on the first seven optimal parameters. Table 7 shows the
seven most accurate engine life predictions in the 2008
PHM data challenge.

4. Conclusions

In this paper, a new data-driven approach to engine prognos-
tics is developed based on deep learning that can capture
effective nonlinear features by themselves and reduce manual
intervention. The SAE, a type of deep learning model, is not
only able to capture the tendency of the system to evolve but
also sufficiently robust to noise. To automatically select the
hyperparameters of the SAE, the grid search algorithm is
used. The method of predicting an aircraft engine’s remain-
ing useful life is applied to the 2008 PHM data challenge
dataset to demonstrate the effectiveness of the proposed
approach. The experimental results, which show a satisfac-
tory prediction accuracy and acceptance rate for all the
samples, show that the method is effective at predicting the
RUL of an aircraft engine. It also has significance for enhanc-
ing the safety of aircraft engines and prognosticating and
managing the health of aircraft engines to reduce the cost
of maintenance.
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