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1. Introduction 

This paper is the second part of our dislocation dynamics (DD) study on screw dislocation 
interactions with stacking-fault tetrahedra (SFTs) in Cu (hereafter referred to as Part I). 
Here we study edge and 60° and 30° mixed dislocations interacting with SFTs ranging 
from 2.5 to 4.7 nm in size. As in Part I, the potential parametric space to be explored is 
multi-dimensional, including SFT size and orientation, dislocation line length and 
character, Burgers vector direction, number of non-zero stress tensor components, 
intersection between the dislocation glide plane and the tetrahedron, etc. Here we use DD 
simulations to study dislocation-SFT strength as a function of the distance between the 
dislocation glide plane and the tetrahedron's base, dislocation line length, and Burgers 
vector orientation, and, together with Part I, this work completes the study as a function of 
dislocation character. In each case, we identify the corresponding mechanisms in terms of 
partial dislocation reactions and relate our findings to the current understanding in 
irradiated fee microstructures. Our objective is that the combined conclusions extracted 
from this and our previous study on screw dislocations will be helpful in interpreting 
fine-scale experimental observations or other more 'macroscopic' 

measurements such as yield stress increases and/or ductility loss in irradiated fee metals. 
There have been several recent molecular dynamics (MD) simulations of edge 

dislocation-SFT interactions in Cu. For example, Osetsky et al. have reported that the 
critical resolved shear stress (CRSS) required to traverse an SFT increases as the glide 
plane of an edge dislocation gets closer to the base of the SFT and the temperature 
decreases Also, Wirth et al. have shown that SFTs are neither absorbed nor 
destroyed, but sheared, by an edge dislocation They find that successive dislocation 
passages can result in further shearing of the tetrahedron, leading to separation into two 



pieces about the dislocation glide plane. Lee et al. have recently performed MD 
simulations where edge dislocations carry out an elaborate reaction-driven interaction 
with 4.7-nm SFTs, leading to structures similar to those left by screw dislocations [7]. 
In contrast, the amount of available atomistic simulations on mixed dislocations is quite 
limited [7,8]. This is primarily due to the difficulties associated with non-orthorhombic 
boundary conditions, which complicates the simulations' set up in terms of computational 
box orientation, stress (or strain) application, etc. In any case, time and length scale 
limitations, and associated artifacts - strain-rate effects, image forces, etc. - limit the 
amount of statistically significant information that can be extracted from MD studies. 

These difficulties are virtually non-existent in DD and the study of dislocation-SFT 
interactions as a function of dislocation character is trivial from a dislocation dynamics 
point of view. Two aspects need to be kept in mind to ensure the fidelity of DD simulations 
for such a study, however, namely, that the assumption of linear elasticity hold, and that 
partial dislocations be explicitly considered. We have solved both of these issues in our 
previous work and, to avoid redundancies, in his paper we omit the methodology 
section and move directly onto the results section, followed by a discussion on the validity 
of our results. 

2. Results 
Following the outline of Part I, below we present the results of the interaction of mixed and 
edge dislocations with a SFT as given by DD calculations. We calculate the strength of SFTs 
as a function of dislocation character, length, reacting geometry, and SFT size. We start by 
providing a detailed description of the geometry and boundary conditions employed. 

2.1. Interaction geometry and boundary conditions 

The geometry of the Thompson tetrahedron dictates the nature of the possible interaction 
configurations. As we have shown in Part I, screw dislocations lend themselves to 'perfect' 
face and edge-on interactions. The same is true for 60° mixed dislocations, but for edge 
and 30° mixed dislocations there is only one possible interaction geometry (shown in 
Figure 1). Moreover, as we shall see, all interactions can in principle be reduced to a few 
basic partial dislocation reactions stemming from pure screw/60o -mixed dislocations face 
and edge-on. Our simulations consist of (initially) straight dislocation segments of length L 
with fixed end points, i.e. akin to having a Frank-Read source operating on a single slip 
system. This is different to most MD simulations, which use periodic boundary conditions. 
The initial geometry is shown in Figure 2a. 

In the case of 60°-mixed dislocations, the face-on orientation brings partial and perfect 
dislocations directly in contact with one of the facets of the tetrahedron. How this contact 
evolves under applied pure shear stress depends on the resistance exerted by such facets on 
Shockley partials with a net force component in the direction of the facet plane normal. 
This resistance is characterized by the minimum stress, <xSF, required by a dislocation 
partial to traverse a stacking fault surface. This stress will determine the threshold after 
which a dislocation can penetrate the tetrahedron, shearing it. In Part I we have computed 
a value of <xSF «1659 MPa for screw dislocations and here we perform a similar 
calculation for 60° dislocations. Unlike screws, which dissociate into two Shockley partials 



Figure 1. Geometry of a perfect edge and 30° mixed dislocation (looking down onto the glide 
plane (d)) with respect to an SFT. In both cases, this geometry only allows for a single possible 
orientation. (1) Schematic diagram of the initial configuration. h0 and h are, respectively, the SFT 
size and the glide plane height (seen here in perspective with respect to the SFT base). 
(2) Configuration after the dislocation collides and 'hugs' the tetrahedron. Both types of dislocations 
become a perfect screw on one facet and a 60° mixed dislocation on the other two. Note that this 
is an illustrative cartoon and the depicted line shapes do not correspond necessarily to the 
equilibrium ones. 

that create equivalent stress fields, 60°-mixed dislocations dissociate into Shockleys with 
Burgers vectors that have different edge and screw components. Here we have studied both 
orientations and taken the most conservative one for our purposes (the one that leads to a 
lower <rSF). Calculations are performed by minimizing the energy of atomistic structures 
containing a (dissociated) 60°-mixed dislocation dipole and a stacking fault surface. 
Shear stress is applied only on the glide plane using a Parrinello-Rahman algorithm [10]. 
For such a configuration, we obtain aSF= 1240.5 MPa for the most conservative 
dissociation, «24% lower than the value obtained for screw dislocations. This corresponds 
to a nodal force per lattice parameter o f / * = 8.96 x 10_11N. This force is then 
implemented as a Heaviside step function located at the SFT's facets. 

Prior to studying the strength of SFTs to edge and mixed dislocation glide, we perform 
a quick check to test whether local constriction is achieved for a 70-nm 60°-mixed 
dislocation before <xSF is overcome. Results are shown in Figures 2(b) and (c), with full 
constriction being attained before/* is surpassed. We have found this behaviour to hold 
for all interaction heights h. 

2.2. Interaction mechanism between 60° mixed dislocations and SFTs 

The interaction mechanism of a 60° mixed dislocation impinging face-on with an SFT 
bears significant similitude with that for screw dislocations described in Part I. The main 
difference is that the initial dissociation, shown in frame (1) of Figure 3, results in a 
Shockley partial plus a Frank partial, rather than a simple re-dissociation into Shockleys 
on the plane of the SFT facet. All other aspects of the interaction mechanism remain 



(a) 

Figure 2. Sequence of snapshots from a DD simulation of a dissociated 60°-mixed dislocation being 
driven towards an SFT at its mid-height plane face-on. (a) Initial geometry including the tetrahedron 
orientation, the dislocation splitting and the area of the SFT intersected by the glide plane (labelled 
\dy). L is the separation between the pinning points of the Frank-Read source, while h and h0 are 
defined as in Figure 1. (b) The leading partial is arrested upon contact with the SFT facet, prompting 
collapse from the trailing partial, (c) Full constriction is attained before/* is surpassed. Dislocation 
segments are coloured according to their Burgers vector: Shockley partials in blue, stair-rods in 
green, and perfect dislocations in red. For colour, see online. 

fundamentally the same. In fact the surviving structure after dislocation passage, shown in 
Figure 3(6), is of the same type as that shown in frame (6) of Figure 5 of Part I. The same 
can be essentially said of the edge-on interaction. 

In the following we analyse the interaction mechanism in detail. We start with a 60° 
mixed CB(d) dislocation, 70-nm long, gliding towards a 4.7 nm SFT. The applied stress is 
resolved only on the glide plane and, as for the screw dislocation case, the measured 



Figure 3. Sequence of simulation snapshots of the face-on interaction of a 60° dislocation with a 
4.7-nm SFT. See Section 2.2.1 for details. 

dislocation velocities lie in the range 0.1-lOms - 1 . We use Thompson's notation to 
describe all dislocation reactions. 

2.2.1. Face-on interaction mechanism 

As in Part I, shear stress is always applied incrementally so as to drive the dislocation into 
the SFT. Initial constriction on facet (c) is always attained. The subsequent processes are 
described below, in direct correspondence with Figure 3: 

(1) The perfect CB segment on facet (c) dissociates into a Frank dislocation, Qy and a 
Shockley partial yB: 

CB -* yB + Qy 



(2) yB glides down on the (c) plane and reacts with the basal stair-rod Sy, resulting in a 
new Shockley partial <5B: 

j/B + Sy -> SB 

which results in the removal of the stacking fault (c) from the intersection height 
down. yB reacts as well with the ay stair-rod situated at the left-hand edge of (c): 

yB + ay —>• aB 

(3) SB and aB are glissile on facets (d) and (a), respectively, which they proceed to 
sweep, removing stacking fault in their wake. The outer segment of the leading 
partial then reacts with the new segment Ba to reform the stair-rod dislocation Sa: 

SB + Ba -* Sa 

(4) The trailing partial catches up and its left-hand arm reacts with the newly-reformed 
Sa stair-rod, giving rise to a Ca Shockley partial segment. 

C<5 + Sa —>• Ca 

(5) The leading partial reconnects at the trailing edge of the SFT, laying down a 
segment of itself on (b). 

(6) The trailing partial then reconnects as well, leaving a constricted CB segment on 
(b). It is worth mentioning that the perfect and Frank segments, CB and Cy, may 
easily dissociate changing this final structure. For example Cy could split into a Sy 
stair-rod and a CS Shockley, which in turn could glide on (d) (the original glide 
plane) and react with the Ca Shockley to form the missing stair-rod Sa. In this 
fashion, a smaller SFT could be formed, accompanied by a side structure. 

When the applied stress is resolved only on the glide plane, the mechanism described 
above is valid for h < 0.15/z0. If the glide plane is above this value, the attraction between 
the basal stair-rod Sy and the dissociated Shockley yB is not sufficient to sustain the 
reactions in step (1) above. In this case, either an Orowan loop is left behind, or if 
0.15/ZQ < h < 0.23/ZQ, a process similar to that of screw dislocations may occur on facet (a). 

When the Burger's vector of the initial mixed dislocation is BC, the perfect segment 
formed on the (c) facet of the SFT remains constricted due to the elastic repulsion between 
the basal stair-rod Sy and the potential yB Shockley partial resulting from step (1) above. 
However, in such cases, the perfect screw segment created on facet (a) when h > 0.15/z0 is 
amenable to dissociation, leading to a screw-type interaction mechanism. 

2.2.2. Edge-on interaction mechanism 

We now drive a 60° CB dislocation into a tetrahedron edge-on, such as depicted in 
Figure 4. The reaction starts with the leading Shockley partial CS 'hugging' the SFT on 
facets (b) and (a). This leads to pinning and eventual constriction when the trailing partial 
reaches the tetrahedron. From there, the mechanism proceeds as follows: 

(1) On facet (a), where the dislocation has perfect screw character, the following 
reaction occurs: 

CB ^ aB + Ca 



Figure 4. Sequence of simulation snapshots of the edge-on interaction of a 60° dislocation with a 
4.7-nm SFT. See Section 2.2.2 for details. 

Conversely, on (b) the dislocation is a 60° mixed, so that the corresponding 
dissociation is: 

CB -* ^B + Q6 

From there, the mechanism evolves as a combination of a screw and a 60° mixed 
face-on (described, respectively in Part I and Section 2.2.1). 

(2) The two Shockleys on (b) and (a) glide down their facets removing the stacking 
fault. When C/J reaches the base, it reacts with the PS stair-rod: 

cp + ps^ CS 

When it comes into contact laterally with the leading edge of the SFT, C/J has 
reversed its sign: 

pC + afi-* aC 

(3) The two Shockleys Ca and aC annihilate one another while C<5 segment sweeps the 
SFT base. 

(4) A minor increase in the level of stress makes the leading and trailing partials 
reconnect downstream of the SFT leaving a perfect dislocation segment in the back 
facet (c). The final structure is similar to the one described above in Section 2.2.1. 
Again, the Frank segment may dissociate resulting in a reconstructed smaller SFT 
and a dissociated Frank loop by its side. 



This is the observed mechanism up to h < 0.23 h0; above this height Orowan loops are 
produced. Inverting the Burgers vector from CB to BC modifies the mechanism slightly. 
The 60°-type dissociation (Frank + Shockley partial segments) on plane (b) mentioned in 
step (1) does not take place. The dislocation remains constricted on that facet for the 
remainder of the interaction. 

2.2.3. Basal interaction mechanisms 

There are four possible interactions, the details of which we provide in Appendix A. 
We use the same geometries as above, i.e. CB/BC(G?) dislocations impinging on a 
4.7-nm SFT. For clarity, here we summarize the most important results: 

• Reaction CB face-on (Appendix A.l): the dislocation curves around the base, 
leaving an Orowan loop. 

• Reaction BC face-on (Appendix A.2): the SFT is left intact. 
• Reaction CB edge-on (Appendix A.3): the base is removed and the SFT is 

partially absorbed. 
• Reaction BC edge-on (Appendix A.4): the base is removed and a perfect BC loop 

is left behind. 

2.2.4. Strength of SFTs to 60°-mixed dislocation passage 

The strength curves for the 4.7-nm SFT are given in Figure 5. Two important observations 
can be extracted from the curves: (i) edge-on interactions are harder than face-on 
interactions, and (ii) BC interactions show a stronger dependence with h than those of CB. 
As for screw dislocations (Part I), dislocation line length appears to have a strong influence 
on the computed strengths. The inset to Figure 5 shows the strengths for 70-nm segments 
compared to dislocation lines of 150 nm. The data shown in the inset show clearly that the 
shape of the strength curves is not affected by the total dislocation line length, in fact it is 
simply rigidly translated. This suggests that the stress needed to overcome an SFT can be 

CB(d) 60°-mixed face-on —>-
BC(d) 60°-mixed face-on — i -

CB(d) 60°-mixed edge-on — i -
BC(d) 60°-mixed edge-on — i -

h/hQ 

Figure 5. SFT strength as a function of the normalized interaction height, h/h0, for a 60°-mixed 
dislocation impinging on a h0 = 4.7-nm SFT face and edge-on. 



calculated using simple line tension arguments. Indeed, the ratio a''/a = 0.54 is reasonably 
close to the line length ratio of L/L' = 70/150 = 0.47 (the prime denotes results for 150-nm 
dislocations). In other words, the interaction mechanisms do not affect the overall 
strengths, which are dictated by the dislocation line tension. This equivalence is expected 
to break down for dislocation lengths of the order of the tetrahedron size. 

2.2.5. SFT size effects 

Next we turn to the study of SFT strength to 70-nm dislocations as a function of the 
tetrahedron size. Here, instead of plotting the results as in Figure 5 (as was the case in 
Figure 12 of Part I [1]), we express the data directly in terms of the areal stress function 
9m = xmja (where a is the 'encountered' triangular area resulting from the intersection 
between the tetrahedron and the glide plane). In addition to the 4.7-nm data, results for 2.5 
and 3.6-nm tetrahedra are shown in Figure 6. Again, all the data follow a clear trend in a 
logarithmic scale. This trend is best represented by a power law of the type 6m(a) = Bm/a"m 

where Bm and nm are constants and a = ^-l2. l=hQ — h is the length of the edge of the 
traversed triangle. Upon fitting the 6m function to the calculated data by means of a least-
squares fitting we obtain Bm= 160.82 and «m = 0.94, very close to a a~l behaviour. From 
here, we derive a general expression for the shear stress that a 70-nm 60°-mixed dislocation 
needs to traverse an SFT interacting face-on: 

9m(a) = xm(a)/a = 160.82a"0'94 

xm(a) = 160.82a006 

(1) 

(2) 

The final form of xm{a) displays a weak dependence with a. The small error between the 
calculated data and the power law fit proves that the strength of an SFT is completely 
independent of its size - at least in the range of sizes explored - and that equal areas 
encountered in different size tetrahedra give rise to the same mechanical response. 
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Figure 6. Variation of the stress per unit triangular area, 9m, with the area, a, encountered by a 60°-
mixed dislocation. The curves show that the SFT strength is independent of the tetrahedron size, and 
depends solely on the area intersected by the dislocation glide plane. The least-squares fit to the data 
is(9m(a) = 160.82/a0-94. 



(3) 

Aa—jj*v. 
8 a V 

aB 8B ' 

.AS 

8B 

(4) 

Aa-r/jrsi-^ < A" 
5n |M>TB 

aB BA 

AS 

""SB*"-

Figure 7. Interaction between an AB(<i) edge dislocation and a 4.7-nm SFT. 

2.3. Interaction mechanism between 30° and edge dislocations and SFT's 

As Figure 1(1) shows, neither 30° nor edge dislocations are aligned with any of the SFT 
facets or edges. Furthermore, both dislocations become pure screw on one facet and 60° 
mixed on the other two. These geometric peculiarities simplify the treatment substantially, 
for we can reduce the entire analysis to studying only one of them. Here we choose 
edge dislocations interacting with an SFT according to the only configuration possible 
(shown in Figure 1). 

2.3.1. Non-basal interaction mechanism 

We start out with a perfect AB(d) edge dislocation being driven towards the SFT. 
The dislocation readily undergoes constriction on facets (c) and (a), becoming a perfect 
screw segment and a perfect 60° mixed dislocation, respectively. These segments then 
dissociate following the reactions described respectively in Part I and Section 2.2.1. 
From there, the mechanism, shown in Figure 7, continues as follows: 

(1) The dissociation of the perfect screw segment on (c) is: 

AB -> yB + Ay 

On (a), the 60°-mixed segment dissociates as: 

AB ^ Aa + aB 



(2) The two Shockley partials gliding down on (c) (yB) and (a) (ocA) meet at the edge 
dividing both facets (stair-rod ay), annihilating with it: 

yB + Ba + ay -* 0 

(3) When yB and aA reach the base they react with the corresponding stair-rods, 
producing a <5B Shockley that sweeps the base: 

yB + Sy -> SB 

aB + Sa -* SB 

Concurrently, the leading partial curves around the SFT, detaching. 
(4) The trailing partial catches up and reconnects, falling upon the leading partial in 

the backside (b). This leads to the formation of a perfect BA 30°-mixed dislocation 
on (b). 

This is again the observed mechanism up to h < 0.23hQ, Orowan loops are produced above 
this height. Inverting the Burgers vector from AB to BA simply prevents the dissociation 
on facet (a) mentioned in step (1). 

2.3.2. Basal interaction mechanisms 

Here we consider the two possible interactions, AB and BA, and give the details in 
Appendix B. The summary of the results is: 

• AB reaction (Appendix B.l): the dislocation curves around the base, leaving an 
Orowan loop. 

• BA reaction (Appendix B.2): the SFT is left intact. 

2.3.3. Strength of SFTs to mixed 30° and edge dislocation passage 

Figure 8 shows the (r-h/hQ) curves for AB(d) and BA(d) edge dislocations traversing 
through a 4.7-nm SFT. In the inset to Figure 8 we compare the strengths for 70 and 
150-nm segments for the AB orientation. As for screw and 60° dislocations, there is a 
clear proportionality between the data for both lengths. This proportionality 
is well described by the ratio a'/a = 0.51, which is very close to the line length ratio of 
L/L' = 70/150 = 0.47 (the prime denotes results for 150-nm dislocations). In other words, 
the interaction mechanisms do not affect the overall strengths, which are governed by line 
tension effects, and the aL product is conserved for all lengths (except, likely, 
when L~hQ). 

2.3A. SFT size effects 

As in Section 2.2.5, in addition to the 4.7-nm data, we have calculated the strengths for 2.5 
and 3.6-nm SFTs for the AB orientation and the results, expressed in terms of 6e, are 
plotted as a function of the 'encountered' area a in Figure 9. Again a simple power law of 
the type 6e(a) = Be/a"e provides the best fit to the shown data, with Be= 133.10 and 
ne = 0.90. The encountered area can readily be calculated as a = ^-(ho — h)2. In this 
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Figure 8. SFT strength as a function of the normalized interaction height, h/h0, for 70-nm AB and 
BA edge dislocations impinging on a h0 = 4.7-nm SFT according to the geometry shown in Figure 1. 
The inset shows a comparison between 70 and 150-nm AB dislocations. 
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Figure 9. Variation of the stress per unit triangular area, 9e, with the area, a, encountered by an edge 
(or, equivalently, a 30°-mixed) dislocation. The curves show that the SFT strength is independent 
of the tetrahedron size, and depends solely on the area intersected by the dislocation glide plane. 
The least-squares fit to the data is 6e(a) = 133.lOfiT0'90. 

fashion, we arrive at the expression for the SFT-size independent strength function for 
edge and 30°-mixed dislocations: 

6e(a) = xe{a)/a = 133.10a"0'90 

xe(a)= 133.10a010 

(3) 

(4) 

3. Discussion and conclusions 

There are two main conclusions that can be extracted from Part II: (i) SFT strength to 
dislocation passage depends only on the triangular area resulting from the intersection 
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Figure 10. Comparison of the function 6(a) as a function of dislocation character. 

between the SFT and the glide plane; (ii) these strengths can be explained resorting to simple 
line tension arguments. Together with Part I, Part II serves to generalize these conclusions to 
screw, edge, and 60° and 30°-mixed dislocations. We have obtained and fitted simple power 
laws to compute SFT strengths as a function of the encountered area (for screw and 60° 
dislocations, face-on interactions only). Generally, the displayed dependence with the area is 
weak for all dislocation types (Equations 2 and 4). Furthermore, as Figure 10 shows, the 
pure edge and screw cases run almost in parallel (very similar power law exponent), whereas 
the 60° -mixed resembles the edge (or, equivalently, the 30°) dislocation behaviour for large 
areas, and the screw behaviour for small values of a. 

Our simulations are subject to the same limitations explained in Part I, namely that 
SFTs cannot physically reduce their size due to the absence of intrinsically-atomistic 
vacancy-removing mechanisms. Hence, the final structures shown in Figures 3, 4, 7, Al, 
A2, A3, Bl, and B2 are not irreversible, and can always find a way back to their original 
perfect SFT form. Again, we emphasize that this study is one of SFT strength, not stability 
and/or morphology (although we recognize the importance of this topic and the role that 
MD simulations have played in it). 

Here again, a height-dependent transition from a reaction-governed to an 
Orowan-loop formation regime is observed in all cases studied. Similar to screw 
dislocations, this transition does not translate into a discontinuity in the strength 
curves, further evidence that line tension trumps short-range mechanistic details. Shearing, 
defined a.sft > / * , where/- is the force on any dislocation node in contact with a given SFT 
facet, is never observed. Regarding the dislocation reactions regime - which is observed 
when the dislocation glide plane is close to, but not at, the SFT base - we conclude that all 
interactions, independent of dislocation character, can be reduced to two main processes, 
namely, a Frank-Shockley and a Shockley-Shockley perfect dislocation dissociation. 
This is owed to the particular geometry of stacking-fault tetrahedra, which lend themselves 
to only a limited set of possible orientations. Again, regardless of its complexity, the 
interaction mechanism does not dictate the magnitude of the SFT strength, at least 
for sufficiently long dislocation segments. The mechanism is important, nonetheless, to 
understand the morphology of the resulting structures left after dislocation passage, which 
may affect the subsequent microstructural evolution. 

Least-squares 60°-mixed 
Least-squares screw 
Least-squares edge 



Basal reactions present their own interesting features. In general, three different 
mechanisms are observed: (i) the SFT is left intact, (ii) an Orowan loop composed of 
high-energy stair-rod dislocations is left behind, or (iii) an irreversible structure is 
produced. These are particularly interesting. For example, the resulting structure seen after 
the reactions described in Appendix A.4 is akin to a dissociated perfect dislocation loop. 
The SFT^perfect-loop transformation has been assumed in previous DD studies that do 
not contain partial dislocation resolution and it has been observed experimentally 
by Robertson et al. in carefully-performed in situ TEM experiments 

Equations 2 and 4 can be used in coarser hardening models where the details of the 
dislocation/SFT interaction are not captured. In this sense, our results show that the 
quantity a L is conserved for, presumably, L > hQ. This observation could be used to 
extend Equations 2 and 4, obtained specifically for 70-nm segments, to arbitrarily-long 
dislocation lines. For example, for 60° dislocations, we know the dependence of the a L 
product with the encountered area: 

aLL = 160.82a006[MPa] • 70[nm] = 11257.4a006 (5) 

This simple exercise shows that our work can serve as a bridge between high-resolution 
atomistic simulations and higher-level statistical tools that make use of homogenization 
techniques where this level of detail is avoided. 

Another important conclusion that emanates from Part II is that SFTs are never 
completely removed by a single dislocation passage. This is in agreement with a 
number of experimental and simulation works, including some atomistic simulations 

(although recent TEM experiments also show complete removal ). 
Despite the relatively large volume of atomistic simulations published in the literature, 
we have only found one study where quantitative data as a function of the cutting 
height is given These data were obtained for BA(d) dislocations, directly 
comparable with the DD results shown in Figure 8. Comparing the values obtained 
from both sources meaningfully requires that the different conditions and techniques 
under which they have been obtained be carefully kept in mind. That way, both data 
sets can be placed in the right context and plotted directly in the same master curve. 
In our case, we have just seen that our results suggest that the aL product is 
conserved for dislocation lengths L > hQ. In Figure 11, we have converted the MD and 
DD data to aL and plotted them as a function of a. Nevertheless, we want to note 
the following about the simulation conditions in each case: 

• SFT size: 4.2 vs. 4.7 nm. 
• Different boundary conditions and dislocation line lengths, L. 
• Temperature: 10 K (MD) vs. 100 K. 
• Dislocation velocities: 18-340ms_1 (MD) vs. 0.1-lOms - 1 . 
• Existence of core effects and anisotropic elasticity in MD but not in DD. 
• Existence of a component of the applied stress resolved on facets (a) and (c) in the 

MD simulations but not in DD (only on (d)). 

The critical parameter here is L, which merits a more elaborate discussion. The MD 
simulations are done using periodic boundary conditions. This means that the line length 
available to accumulate tension is the distance between periodic SFTs, which is equal to 
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Figure 11. Comparison between aL data obtained from MD and DD (this work) as a function of 
the traversed area for BA(<i) edge dislocations. The agreement between both data sets is quite 
remarkable considering the different conditions under which they have been obtained (listed in 
the text). 

the box length along the dislocation line. In our case, the distance 
over which the dislocation can curve is « L/2 in Figure 2a (from one end point to the SFT), 
or, for the BA dislocation data used here, 35 nm. Of course, the manner in which both 
segments (in MD and DD) accumulate tension is not equivalent due to the existence of 
fixed end points in DD, but we believe that the agreement shown in Figure 11 is more than 
reasonable despite the differences listed above. This agreement may be interpreted as a 
partial validation of the invariance of the aL product, which is also conserved across 
different techniques. 

We want to emphasize that the main objective of our work is not to supplant MD as 
the main technique to study atomistic-detail mechanisms, but to provide a sufficient degree 
of atomic-level resolution while retaining the computational expeditiousness required to 
extract statistical coarsening laws. Large-scale (discrete or stochastic) DD simulations will 
need to be performed in order to enable a direct comparison with experiments. 

References 

E. Martinez, J. Marian, A. Arsenlis et al., J. Mech. Phys. Sol. 56 (2008) p.869. 
Y. Matsukawa, Y.N. Osetsky, R.E. Stoller et al., J. Nucl. Mater. 351 (2006) p.285. 
Y.N. Osetsky, R.E. Stoller, D. Rodney et al., Mater. Sci. & Eng. A 400-401 (2005) p.370. 
Y.N. Osetsky, Y. Matsukawa, R.E. Stoller et al., Phil. Mag. Lett. 86 (2006a) p.511. 



B.D. Wirth, V.V. Bulatov and T. Diaz de la Rubia, J. Nucl. Mater. 351283 (2000) p.773. 
B.D. Wirth, V.V. Bulatov and T. Diaz de la Rubia, J. Eng. Mater. & Technol.-Trans. ASME 
124 (2002) p.329. 
H.-J. Lee, J.-H. Shim and B.D. Wirth, Key Engineering Materials 345-346 (2007) p.947. 
S.J. Zhou, D.L. Preston, P.S. Lomdahl et al., Science 279 (1998) p.1525. 
E. Martinez, J. Marian, A. Arsenlis et al., J. Mech. Phys. Solids, doi:10.1016/j.jmps.2007.06.014. 
M. Parrinello and A. Rahman, J. App. Phys. 52 (1981) p.7182. 
N.M. Ghoniem, S.H. Tong, J. Huang et al., J. Nucl. Mater. 307-311 (2002) p.843. 
T.A. Khraishi, H.M. Zbib, T. Diaz de la Rubia et al., Metall. Mater. Trans. B 33B (2002) p.285. 
J.S. Robach, I.M. Robertson, H.J. Lee et al., Acta Mater. 54 (2006) p.1679. 
Y.N. Osetsky, D. Rodney and D.J. Bacon, Phil. Mag. 86 (2006) p.2295. 
H.J. Lee, J.H. Shim and B.D. Wirth, J. Mater. Res. 22 (2007) p.2758. 
M.R. Surowiec, Phys. Stat. Sol. (a) 122 (1990) p.K15. 

Appendix A: Basal reactions for the 60°-mixed dislocation 

A.l . Reaction CB face-on 

The interaction is shown in Figure Al. Each frame is explained in detail below: 

(1) The leading partial SB reacts with the basal stair-rod Sy to give a segment with Burger's 
vector^ [301]: 

SB + Sy -> Sy : SB 

This unusual Burgers vector is akin to a Hirth-type dislocation in the sense that both act as a 
'hinge', joining two stacking fault regions on the same plane plus another from a secondary 
plane. As we have mentioned in Part I, the Sy.SB dislocation is not stable in terms of elastic 
energy and its stability is contingent upon the applied stress. In its absence, this dislocation 
is expected to dissociate very rapidly. 

(2) The leading partial curves around the SFT base, reacting with the Sa and f)8 stair-rods: 

SB + Sa -> Sa : SB 

SB + #S -> #S : BS 

Again, none of the above is elastically favourable, which contributes to increasing the stress 
required for dislocation passage through the SFT base. Sa: SB and f)8: BS are also Hirth-
type dislocations and were first observed in Part I. 

(3) The trailing partial CS is strongly repelled by the Sy: SB dislocation. After curving around it, 
the right-hand arm of CS reacts with the existing Hirth segment on the base to form a 
segment with Burger's vector ^ [312], CB: f)8 in Thompson's notation, that is the sum of a 
perfect plus a stair-rod dislocation: 

08 : BS + SC -> CB : #5 

(4) The left-hand arm of the trailing partial falls upon the existing Sa:SB, giving rise to another 
uncommon resultant for the Burger's vector: 1 again CB:Sa in Thompson's notation. 

Sa : SB + CS -> CB : Sa 

The Shockley partials reconnect downstream of the SFT leaving an Orowan loop at the base 
composed of highly unfavourable dislocation segments. Therefore, it is reasonable to expect that 
these segments will quickly dissociate as soon as stress is no longer applied. However, these 
dissociations are not part of our partial dislocation reaction catalogue due to their rarity, and they 



Figure Al. Face-on interaction of a CB 60° mixed dislocation with the base of a 4.7-nm SFT. 

already dissociate during the course of the simulations, when stress is applied. In any case, this is not 
expected to affect the results in any significant way. 

A.2. Reaction BC face-on 

Figure A2 shows the mechanism for this case, itemized below: 

(1) In this case, the leading partial is attracted towards the SFT base by the stair-rod Sy, with 
which it reacts to form a By Shockley: 

BS + Sy -> By 

This partial glides up on the (c) facet of the SFT removing a portion of the stacking 
fault on it. 

(2) The left-hand arm of the leading partial reacts with the Sa basal stair-rod resulting in a new 
Shockley, Ba, which glides up on the (a) facet: 

BS + Sa -> Bo-

The trailing partial keeps gliding, removing the original base as it moves. 
(3) The trailing partial reacts then with the f)8 stair-rod, giving rise to a Shockley partial /SC that 

moves up on the (b) facet: 

SC + PS -> /SC 

The Hirth segment AS:Sa is given by the triple reaction: 

SB + SC + Sa -> AS : Sa 
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Figure A2. Face-on interaction of a BC 60° mixed dislocation on the base of a 4.7-nm SFT. 

(4) Due to the line curvature, the leading partial reverses its sign and reacts with the Shockley 
By on facet (c): 

By + SB^ Sy 

Meanwhile, the trailing partial continues to curve around the defect. 
(5) The two arms of the leading partial reconnect downstream of the SFT, leaving a segment 

behind that reacts with Ba on (a) to reform the original stair-rod 5a: 

SB + Ba -> <Sa 

(6) The trailing partial (with its line tangent inverted) and the Shockley gliding on plane (b), /SC, 
react, reforming the stair-rod f)8: 

PC + CS -> 08 

Subsequently, both arms of <5C meet at the trailing edge of the tetrahedron, leading to full 
detachment and leaving a reconstructed SFT behind. 

A.3. Reaction CB edge-on 

In this case the interaction is quite straightforward, as Figure A3 shows: 

(1) The leading partial comes into contact with the base and reacts with the stair-rod on the 
right-hand side, resulting in a new Shockley partial with Burger's vector aB: 

SB + aS -> aB 

This partial moves up on facet (a), removing the stacking fault in its wake. 
(2) The trailing partial hugs the base, sweeping it through the opening left on the right-hand 

side by the Shockley partial Ba. On the left, the portion of CS that is sweeping the base 
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Figure A3. Edge-on interaction of a CB 60° mixed dislocation on the base of a 4.7-nm SFT. 

comes into contact (with reversed sign due to curvature) with the leading partial and with 
the basal stair-rod f)8: 

8C + 8B + P8^8A: fi8 

which is a Hirth-type dislocation with Burgers vector ^[130]. Meanwhile, aB reacts with ya 
giving rise to yB: 

aB + ya —> yB 

(3) The portion of the trailing partial C<5 that swept the base falls upon the backside stair-rod 8y 
giving rise to a Frank segment Cy: 

CS + Sy —> Cy 

When the trailing partial collapses onto the 8A:f38 segment, a /SB Frank segment arises: 

CS + 8A : P8 -> /SB 

(4) The dislocation (one partial followed by the other) curves back around the SFT reacting 
with the backside Frank segment, resulting in a By Shockley: 

BC + Cy -> By 

leaving a tetrahedron with the base removed. 
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Figure A4. Edge-on interaction of a (B<5,<5C) 60° mixed dislocation and the base of a 4.7-nm SFT. 

A.4. Reaction BC edge-on 

Figure A4 shows a sequence of snapshots of the interaction between a BC 60° mixed dislocation and 
an SFT. The mechanism, itemized below with direct correspondence with the images in Figure A4, 
is more complicated in this case: 

(1) The leading partial reacts with the stair-rod 8a, giving rise to a high-energy Hirth-type 
segment with Burgers vector \ 

B<5 + 08 -> B<5: 08 

(2) This Hirth segment connects two stacking fault regions on the glide plane plus another one 
on the secondary (b) plane. What happens next is that this segment dissociates into the 
original 08 stair-rod and <5B partial inside the base. This way the basal stacking fault is 
removed by this Shockley partial gliding inside the base. The re-formed stair-rod has the 
same Burgers vector but it now connects obtuse stacking fault planes, rather than acute 
ones. 

(3) When the trailing partial comes into contact with the SFT it reacts with the two 
corresponding stair-rods, giving rise to new Shockley partials that glide up their respective 
facets ((a) and (b)): 

8C + 
08 

aS 

0C 

aC 

When the leading partial that was gliding inside the base reaches the SFT backside, it reacts 
with the 8y stair-rod: 

BS + Sy -> By 

This partial glides up on plane (c) and reacts with the stair-rod ya: 

By + ya —> Ba 



(4) PC reaches the yg stair-rod and reacts with it resulting in a yC Frank segment: 

PC + yp -> yC 

On the other side, the small remaining segment of Sa is literally transported downstream of 
the SFT. 

(5) The yC Frank dissociates into its constituents yP and PC. Then, yP associates itself with the 
Shockley partial on (c) By: 

By + yP -> B/S 

Also, this By partial continues to react with the ya stair-rod dislocation in the opposite side 
of facet (c), resulting in a longer Ba segment. 

(6) The original dislocation detaches from the SFT leaving a defect which can be analysed in the 
following terms: (i) the Frank dislocation B/S and the Shockley partial PC represent a 
dissociated perfect BC segment, which is a Lomer-type dislocation and would be sessile if 
formed; (ii) the original segments SC and BS lying close to what used to be the BA edge of 
the SFT represent a glissile perfect CB dislocation on the original glide plane; (iii) the 
segments Ba and aC located on the edges of facet (a) also are equivalent to a dissociated 
perfect BC segment. In other words, the structure shown in Figure A4(6) represents a 
dissociated perfect loop with partial mobility. 

Appendix B: Basal reactions for the edge dislocation 

B.l. Reaction of an AB edge dislocation and an SFT 

The interaction process is depicted in Figure Bl. The different frames are explained below: 

(1) The leading partial SB comes into contact with vertex B of the SFT. 
(2) The leading partial reacts with the basal stair-rod Sa, giving rise to a segment with 

Burgers vector g[310], of the same kind as that reported in Appendix A for 60°-mixed 
dislocations and in the literature 

SB + Sa -> Sa : SB 

(3) Likewise, the leading partial reacts with the other basal stair-rods: 

SB + Sy -> Sy : SB 

BS + PS -> PS : BS 

When the trailing partial catches up, it is repelled by the Sa: SB dislocation but attracted by 
Sy: SB, with which it reacts giving rise to a high-energy stair-rod dislocation AB : SB: 

Sy : SB + AS -> AB : Sy 

(4) A similar reaction takes place on the CA edge of the tetrahedron, whereby a AB: PS is 
formed. After this, the dislocation detaches leaving an Orowan loop-type structure behind. 

B.2 Reaction of a BA edge dislocation and an SFT 

The interaction process is given in Figure B2. The different frames are explained below: 

(1) The leading Shockley BS reacts with the basal stair-rods of edges CB and BA, Sa and Sy 
respectively: 

{ Sa —> Ba 

Sy^ By 
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Figure Bl. Interaction of an AB edge dislocation with the base of a 4.7-nm SFT. 
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Figure B2. Interaction of an BA edge dislocation with the base of a 4.7-nm SFT. 
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(2) These newly-created Shockleys glide up on facets (a) and (c), respectively, eliminating the 
stacking fault as they proceed. After this, the trailing partial <5A is free to sweep the base 
unimpeded. 

(3) When the trailing partial reaches the back edge it reacts with p8: 

8A + p8^ PA 

which proceeds to glide up on facet (b). 
(4) Once the leading partial has reconnected and detached, the SB segment left behind glides 

backwards towards the original vertex B. 
(5) SB forms Lomer-Cottrell junctions with the Shockleys created in step (1): 

SB + P ^ 
[ Ba —> 8a 

reconstructing the original tetrahedron. At the same time, the curved trailing partial segment AS 
reacts with the Shockley left in the backside: 

AS + pA -> 08 

completing the reconstruction. 
(6) The trailing partial reconnects with itself leaving the a fully reconstructed tetrahedron. 


