A dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: interactions with screw dislocations

Martínez Sáez, Enrique, Marian, Jaime, Arsenlis, A., Victoria, Maximo Pedro and Perlado Martín, José Manuel ORCID: https://orcid.org/0000-0001-6907-4153 (2008). A dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: interactions with screw dislocations. "Philosophical Magazine", v. 88 (n. 6); pp. 809-840. ISSN 1478-6435. https://doi.org/10.1080/14786430801986662.

Descripción

Título: A dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: interactions with screw dislocations
Autor/es:
  • Martínez Sáez, Enrique
  • Marian, Jaime
  • Arsenlis, A.
  • Victoria, Maximo Pedro
  • Perlado Martín, José Manuel https://orcid.org/0000-0001-6907-4153
Tipo de Documento: Artículo
Título de Revista/Publicación: Philosophical Magazine
Fecha: Febrero 2008
ISSN: 1478-6435
Volumen: 88
Materias:
Palabras Clave Informales: Dislocation dynamics; stacking-fault tetrahedra; irradiation damage; Cu plasticity
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Ingeniería Nuclear [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[thumbnail of INVE_MEM_2008_57418.pdf]
Vista Previa
PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (996kB) | Vista Previa

Resumen

We present a comprehensive dislocation dynamics (DD) study of the strength of stacking fault tetrahedra (SFT) to screw dislocation glide in fcc Cu. Our methodology explicitly accounts for partial dislocation reactions in fcc crystals, which allows us to provide more detailed insights into the dislocation– SFT processes than previous DD studies. The resistance due to stacking fault surfaces to dislocation cutting has been computed using atomistic simulations and added in the form of a point stress to our DD methodology. We obtain a value of 1658.9 MPa, which translates into an extra force resolved on the glide plane that dislocations must overcome before they can penetrate SFTs. In fact, we see they do not, leading to two well differentiated regimes: (i) partial dislocation reactions, resulting in partial SFT damage, and (ii) impenetrable SFT resulting in the creation of Orowan loops. We obtain SFT strength maps as a function of dislocation glide plane-SFT intersection height, interaction orientation, and dislocation line length. In general SFTs are weaker obstacles the smaller the encountered triangular area is, which has allowed us to derive simple scaling laws with the slipped area as the only variable. These laws suffice to explain all strength curves and are used to derive a simple model of dislocation–SFT strength. The stresses required to break through obstacles in the 2.5–4.8-nm size range have been computed to be 100–300 MPa, in good agreement with some experimental estimations and molecular dynamics calculations.

Más información

ID de Registro: 2691
Identificador DC: https://oa.upm.es/2691/
Identificador OAI: oai:oa.upm.es:2691
Identificador DOI: 10.1080/14786430801986662
URL Oficial: http://www.tandf.co.uk/journals/tphm
Depositado por: Memoria Investigacion
Depositado el: 24 Mar 2010 09:54
Ultima Modificación: 06 Sep 2017 16:50
  • Logo InvestigaM (UPM)
  • Logo Sherpa/Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Logo Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Logo del Portal Científico UPM
  • Logo de REBIUN Sexenios Logo de la ANECA
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo de Recolecta
  • Logo de OpenCourseWare UPM