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Abstract
Structuralism has recently moved center stage in philosophy of math-
ematics. One of the issues discussed is the underlying logic of mathe-
matical structuralism. In this paper, I want to look at the dual question,
namely the underlying structures of logic. Indeed, from a mathemat-
ical structuralist standpoint, it makes perfect sense to try to identify
the abstract structures underlying logic. We claim that one answer
to this question is provided by categorical logic. In fact, we claim
that the latter can be seen—and probably should be seen—as being a
structuralist approach to logic and it is from this angle that categorical
logic is best understood.
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1. Introduction

In their recent booklet Mathematical Structuralism, Hellman
and Shapiro (2019), give a list of eight criteria to evaluate var-
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talk in such a lovely venue.
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ious strands of mathematical structuralism. The very first criterion
is the background logic used to express the version of structuralism
examined: is it first-order, second-order, higher-order, modal? The
claim made by Hellman & Shapiro is that the logic has a direct impact
on the philosophical thesis: for instance, the existence of non-standard
models in first-order logic seems to affect some of the claims made
by a mathematical structuralist. Be that as it may, it is assumed that
any variant of mathematical structuralism is based on an underlying
logic and the chances are that a change of logic will modify the type
of structuralism defended. One then has to weigh the pros and the
cons of adopting a specific logic to defend a kind of mathematical
structuralism.

This is all well and good, and I don’t intend to discuss this assump-
tion in this paper. Let me rather turn the question of the underlying
logic on its head. A mathematical structuralist not only believes that
pure mathematics is about abstract structures, but also that pure logic
can be seen that way. In other words, a mathematical structuralist
aspires to know what are the abstract structures underlying a given
logic. Can logic itself be given a structuralist treatment? In other
words, is it possible to identify the abstract mathematical structures
from which the standard logical systems can be derived? In the same
way that the natural numbers or the real numbers can be seen as spe-
cific structures arising from the combination of particular structures
and properties, specific logical systems, e.g. intuitionistic first-order
logic, classical first-order logic would result from the combination of
particular abstract structures and properties. And important logical
theorems—completeness theorems, incompleteness theorems, defin-
ability, undecidability, etc.—would be instances of abstract structural
features, together with, presumably, singular properties.
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Our main claim in this paper is that categorical logic is one way to
give precise answers to these questions.1 Indeed, this is what categori-
cal logic is all about: it reveals the abstract mathematical structures
of logic and it relates them to other abstract mathematical structures,
revealing yet other structural features. It also shows how the main
results of logic are a combination of abstract structural facts and spe-
cific properties of logical systems. It is in this sense that one can say
that pure category theory is logic.2 This is one of the main points of
categorical logic. Thus, when mathematical structuralism is devel-
oped within the metamathematical framework of category theory, it is
possible to give a positive answer to our new challenge. And as far as
I know, it is at the time the only metamathematical framework that
allows us to do it in such generality.

Of course, we are not claiming that the abstract analysis is supe-
rior in a strong sense to the other presentations of logical systems.
It brings a certain perspective, a certain understanding and opens up
certain connections that are otherwise unavailable. Furthermore, in as
much as a logic is applied, be it in foundational studies or in computer
science, one also wants to look at it from a different point of view.
But it has to be perfectly clear that these are completely different
issues. We are now positioning ourselves in a structuralist framework,
and will therefore ignore the aspects of a logic that become prevalent
when one look at it for its applications. Ours is a philosophical goal,
not a technical one.

1 In his (1996), often quoted as representing the categorical perspective on mathemati-
cal structuralism, Awodey did include a presentation of the basic features of logic from
a categorical point of view, more specifically the internal logic of a topos. Given how
he treated logic in his paper, none of his critics saw that he was including logic itself
as an object of mathematical structuralism (see, for instance, Hellman, 2001; 2003).
We approach the issues from a different angle.
2 Which is not to say that it is all of logic. That is not the claim.
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It goes without saying that categorical logic, seen as a search
for the abstract structures of logic, did not come out of the blue. It
was part of a larger mathematical movement, namely the structuralist
movement in mathematics, which culminated in Bourbaki’s Éléments
de mathématique (for more on the prehistory and the history of math-
ematical structuralism, see Corry, 2004; Reck and Schiemer, 2020).
It will therefore be worth our while to look briefly at the birth of cate-
gorical logic in the 1960s and early 1970s. We will merely indicate
the major landmarks of the story, to see how indeed categorical logic
was, right from the start, understood as being a part of that movement.
We will then briefly look at some of the basic abstract structures that
correspond to logic and then how some of the main theorems follow
from features of abstract structures. At this point, to call the latter
‘mathematical’ or ‘logical’ is a matter of choice.

In the end, this paper should be taken as a challenge. We claim
that one should add a ninth criterion of Hellman & Shapiro’s list: how
does a given form of structuralism treat logic itself? Does it reveal the
structures of logic? Are these structures related to other mathematical
structures in a natural manner? Are these structures on the same level
as the other fundamental structures of mathematics? One could, and
we suggest that one should, evaluate different forms of mathematical
structuralism according to this criterion.

2. The abstract structures of logic:
setting the stage

Although category, functors and natural transformations were intro-
duced explicitly in 1945 by Eilenberg and Mac Lane, category theory
came to maturity only fifteen years later, thus at the beginning of the
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1960s (for more on this history, see, for instance Landry and Marquis,
2005; Krömer, 2007; Marquis, 2009; Rodin, 2014). At that point, the
major concepts of category theory were in place, e.g. adjoint functors,
representable functors, constructions on categories, including the cru-
cial construction of functor categories, abstract categories like additive
categories, abelian categories, tensor or monoidal categories, etc.3

But it is only in the early 1960s that the connection with logic and
the foundations of mathematics was made and it was mostly the work
of one person, namely Bill Lawvere. We will not present Lawvere’s
early work here, for our goal is not to survey the history of the subject,
but rather to make a conceptual point.4

Of course, by that time, connections between classical proposi-
tional logic and Boolean algebras, intuitionistic propositional logic
and Heyting algebras, as well as others were known. Already in
(Birkhoff, 1940), the main relations are presented.5 The first links
between logic and lattice theory were restricted to propositional logic.
The chase for the identification of the abstract structures correspond-
ing to first-order, higher order logics, non-classical logics, as well
as algebraic proofs of the main theorems of logic was taken up by,
among others, Tarski and his school, Halmos, and the Polish school,

3 The locus classicus of the time is (Mac Lane, 1965).
4 See (Lawvere, 1963; 1966; 1967; 1969a; 1970; 1971). He was rapidly joined by
(Freyd, 1966; Linton, 1966; Lambek, 1968a,b; 1969; 1972). For a detailed history, see
(Marquis and Reyes, 2012).
5 We could argue that already for propositional logics, the structures arising from the
logical systems naturally live in categories, e.g. the category of distributive lattices,
the category of Boolean algebras, the category of Heyting algebras, the category of
S4-algebras, etc., and that the main results are also naturally expressed in categorical
language. It is in fact an important point to make, for once the higher order logical
systems find their place in this landscape, the fact that we move to bicategories to
express and prove the results of first-order logic is easily understood. But we will not
dwell on that.
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e.g. Łoś, Mostowski, Rasiowa and Sikorski.6 The main contenders to
the title of abstract algebraic structures corresponding to first order
logic at the time were cylindric algebras and polyadic algebras. The
main problem, so to speak, were the quantifiers ∀ and ∃. It was not
a technical problem. They were treated properly in each case. But
their treatment, as algebraic operators, was somewhat ad hoc, in the
sense that they did not arise as an instance of abstract operators in an
algebraic context. The resulting algebras were therefore somewhat
ad hoc also, in as much as they did not belong to a family of abstract
structures that arose naturally in other mathematical contexts. In other
words, the abstraction proposed via the concepts of cylindric algebras
or polyadic algebras were not genuine mathematical abstractions, for
they were merely the algebraic transcription of the quantifiers and
solely of the latter.7 This is in stark contrast with the case of propo-
sitional logic, where the abstract algebraic structures capturing the
logic and its main properties have instances in a variety of completely
different mathematical fields. Distributive lattices, Boolean algebras,
Heyting algebras, etc., are genuine mathematical abstractions.

It therefore came as a complete surprise that the quantifiers, as
well as the propositional connectives, could be seen as being instances
of adjoint functors on very simple categories, the concept of adjoint
functors being one of the core concepts of category theory, intro-
duced by Kan in the context of algebraic topology in 1958. This was
one of Lawvere’s crucial observations. Three additional crucial facts

6 The list of references is long, but clearly indicates that it was a very active area of
research in the 1950s as well as in the 1960s. See, for instance, (McKinsey and Tarski,
1944; 1946; 1948; Jónsson and Tarski, 1951; 1952; Henkin and Tarski, 1961; Henkin,
Monk and Tarski, 1971; Halmos, 1954; 1956a,b,c,d; 1962; Mostowski, 1949; Rasiowa,
1951; 1955; Rasiowa and Sikorski, 1950; 1953; 1955; Rasiowa and Sikorski, 1963).
7 The reader might wonder what we mean by “genuine mathematical abstraction”. We
refer her to (Marquis, 2015; 2016).
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had been established by Lawvere in his Ph.D. thesis. First, Lawvere
showed how algebraic theories, in the standard logical sense of that
expression, could themselves be captured by specific categories. Sec-
ond, the models of algebraic theories, again in the standard logical
sense of that expression, could be described in the language of cate-
gories, functors and natural transformations. Third, the classical links
between the syntax and the semantics of these theories could receive
an adequate categorical treatment, and at the core of this treatment
one finds adjointness. Thus, it seemed possible to put all the structures
of logic in the theoretical framework of categories, the latter being,
of course, an abstraction of a central fact of modern mathematics.
The overall plan was presented by Lawevere in (1969a). That paper
articulates in very broad strokes how the syntax, the semantics and
their relationships could be captured in a categorical framework. Here
are, in a nutshell, the main ingredients of this ambitious program.

A few words about the philosophical framework underlying Law-
vere’s program are in order. Lawvere identifies two fundamental as-
pects to all of mathematics, namely the formal and the conceptual,
roughly the manipulation of symbols, on the one hand, and what these
symbols refer to, their content. Lawvere is aware of the work done
in algebraic logic when he writes his paper. Indeed, he refers to it
explicitly in the opening section: “[...] Foundations may conceptual-
ize the formal aspect of mathematics, leading to Boolean algebras,
cylindric and polyadic algebras [...]” (Lawvere, 1969a, p.281). He is
also presenting the introduction of categories in the analysis of logic
as a structural approach, based on the notion of adjoints: “Specifi-
cally, we describe [...] the notion of cartesian closed category, which
appears to be the appropriate abstract structure for making explicit
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[...]. The structure of a cartesian closed category is entirely given by
adjointness, as is the structure of a ‘hyperdoctrine’, which includes
quantifiers as well.” (Lawvere, 1969a, p.281)

We will now focus on the final section of the paper, which is really
programmatic. In this last section, Lawvere is describing what he
himself characterizes as a globalized Galois connection, and indeed,
it also contains the main ideas that have driven the development
of duality theory in a categorical framework. But as far as logic is
concerned, we are offered the following picture.

1. Logical operations should arise from an elementary context as
adjoint operations. From a categorical point of view, a logical
doctrine, that is an abstract mathematical structure encapsulat-
ing a logical framework, should be given by adjoint functors.8

2. A theory T, in the standard logical sense of the term, should be
constructed as a category, in the same way that a propositional
theory in classical logic can be turned into a Boolean algebra
via the Lindenbaum-Tarski construction. A theory T, seen as
a special type of category, is conceived by Lawvere as being
the invariant notion of a theory, that is, independent of a choice
of primitive symbols or specific axioms. We thus have abstract
mathematical structures corresponding to the formal.

3. The models of T should form a category. Lawvere, having
himself developed the case of algebraic theories earlier in his

8 We have to point out that categorical logic does cover logical situations in which
certain logical operations are not given by adjoint operations. Although they do not
constitute logical doctrines in the sense of Lawvere, they are part and parcel of
categorical logic. We should also mention that the syntactic aspects of logic, which are
pushed in the background in Lawvere’s early work, occupy nonetheless an important
part of categorical logic, for instance via the notion of sketch, introduced by Ehresmann
and his school or the various formal graphical languages developed mostly in the
context of monoidal categories.
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thesis, generalizes from his work and proposes to make the
category of models of a theory a functor category. We will
be more specific in later sections. These provide the abstract
mathematical structures emerging from the conceptual.

4. Last, but certainly not least, since everything is a category now,
the links between the formal and the conceptual should also
be given by (adjoint) functors, and we have yet again a new
type of abstract mathematical structure, in Lawvere’s mind a
globalized Galois connection, arising from that situation.

Lawvere was of course guided by his own work on algebraic theory,
but also explicitly by Grothendieck’s work in algebraic geometry. As I
said, at the time, it was a program, some would say a vision. It became
a reality in the following decade and is still the basis of important
developments in the field.

We have to explain why we claim that we are then in a struc-
turalist framework. It is not only because we are in fact dealing with
abstract mathematical structures—this is of course a necessary step—
but these abstract mathematical structures can be characterized up to
‘isomorphism’, where the latter notion is derived from the abstract
structures themselves. Each and every one of these abstract structures
comes with a notion of homomorphism and, in particular, a notion of
‘isomorphism’. Therefore, it becomes possible to develop logic with
respect to the structuralist principle: if X is a structure of a given kind,
and it has property P (X), then given any other structure Y of the
same kind such that X is isomorphic to Y , X ≃ Y , in the appropriate
sense of isomorphism, we should be able to prove that P (Y ). As it
can be seen, the key component of this desideratum is the appropri-
ate sense of isomorphism. In some cases, we are dealing with the
usual set-theoretical sense of isomorphism, in others, it becomes an
equivalence of categories and in still others, it is a 2-categorical equiv-
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alence. It is the very possibility of having the appropriate sense of
isomorphism that allows us to claim that we are dealing with abstract
mathematical structures.

I want to emphasize again, at this point, that I am not claiming
that categorical logic, as I will present it succinctly below, is the only
possible answer for a structuralist nor is it the final answer. But it is one
clear answer and one of the very few that provides a comprehensive
answer.

3. Categories as abstract logical structures

At this stage, we would have to give a long list of definitions and
examples to illustrate how certain categories correspond to the abstract
mathematical structures of certain logics. I will assume that the reader
knows the notions of category, functor, natural transformation, adjoint
functors, etc., for otherwise this paper would be terribly long and
boring. We will try to put some flesh on Lawvere’s program described
in the foregoing section. We assume, however, that the description of
the logical connectives, including the quantifiers, as adjoint functors
is understood9. We will sketch how the other three steps are filled10. A
warning is necessary. Each following section would require a careful
and systematic exposition to be ultimately convincing. It is impossible
to do justice to the field in such a short paper. We will provide a more
detailed presentation in the next section only and merely gloss over
the abstract mathematical structures involved in the other sections. We

9 Mac Lane’s textbook, (1998), is still a good reference. All the standard concepts and
examples can also be found in (Riehl, 2017).
10 A more detailed presentation can be found in (Marquis, 2009), chapter 6. Our
exposition here is adapted from the latter, but the philosophical point is different and
therefore the presentation found there might not be optimal for our present purpose.
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apologize for the opacity that might result from the lack of details and
clarifications, but a much longer paper would be required to present
and motivate adequately the main mathematical ideas involved.

A theory as a category and a category as a theory

Let us start with the goal that was in the minds of logicians and
mathematicians in the 1950s, that is finding the appropriate abstract
mathematical structure that correspond to a first-order theory.

Let us fix the logical context first. We consider formal systems
with many sorts, which is a simple generalization of the standard
first-order logic which is done over a single sort. A similarity type or
alphabet A, often called a language in the literature, is given by:

1. A collection of sorts S1, S2, S3, . . .;11

2. A collection of relation symbols R1, R2, R3, . . ., each of which
is given with the sorts of its arguments;

3. A collection of function symbols f1, f2, f3, . . . each of which
is given with the sorts of its arguments and the sort of its target;
we denote a function symbol f as f : S1 × · · · × Sn → S if f
takes n arguments of sorts S1, . . . , Sn respectively to a value
of sort S.

4. A collection of constants c1, c2, c3, . . . each with a specified
sort; we denote a constant c by c : 1→ Si to indicate that the
constant c is of sort Si.

11 Or types, if you prefer. We are dealing here with first-order logic. We will say a few
words about type theory later. It does not affect our basic general point. Type theories
can also be analyzed as instances of abstract mathematical structures.
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This is the standard definition extended to a many-sorted context.
To obtain a formal system LA in the alphabet A, we add the usual
elements:

1. Each sort Si comes with infinitely many variables
x1, x2, x3, . . .; we write x : Si to indicate that the variable x is
of sort Si;

2. Each sort has an equality relation =S ; notice immediately that
this means that equality is not treated as a universal or purely
logical relation and that in the interpretation, whatever will
correspond to a sort will have to come equipped with a criterion
of identity or equality for its objects;

3. The usual logical symbols and two propositional constants, ⊤
and ⊥;

4. The usual deductive machinery for a predicate logic (say, intu-
itionistic predicate logic; if any other deductive procedures are
assumed, they are made explicit).

Terms (of a given sort) and atomic formulas are defined as usual.
Here is the first original result obtained by searching for abstract

mathematical structures corresponding to theories in a given logic.
Some fragments of first-order logic and some extensions of first-order
logic turn out to have significant properties, properties that would not
have been identified otherwise12. We can immediately identify the
following fragments.

1. A formula φ is said to be regular if it is obtained from atomic
formulas by applying finite conjunction and existential quan-
tification.

12 We will not be exhaustive here. There are other infinitary fragments that are impor-
tant, but we will ignore them.
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2. A formula φ is said to be coherent if it is obtained from atomic
formulas by applying finite conjunction, disjunction and exis-
tential quantification.

3. A formula is said to be geometric if it is obtained from atomic
formulas by applying finite conjunction, finite existential quan-
tification and infinite disjunction.

Intuitionistic formulas and classical (or Boolean) formulas are
defined in the obvious manner. We point out immediately that many
metalogical results about intuitionistic and classical logic follow di-
rectly from results about the foregoing fragments. This is a genuine
discovery that could not have been foreseen beforehand.

An implication of regular (resp. coherent, geometric, etc.) formu-
las φ and ψ has the form

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ ψ(x1, . . . , xn))

where φ(x1, . . . , xn) and ψ(x1, . . . , xn) are regular (resp. coherent,
geometric, etc.) formulas. A theory T in the given language L is said
to be a regular theory (resp. coherent, geometric, etc.) if all its axioms
are implications of regular (resp. coherent, geometric, etc.) formulas.
Many mathematical theories can be expressed in the form of regular
theories, or coherent theories, etc.

Apart from the fact that we have assumed a many sorted context
and cut the fragments of first-order logic in ways that might seem
arbitrary, the foregoing presentation is squarely in a standard logical
context. We now move to the abstract mathematical context.

Given a theory T in one of the foregoing languages, we construct
a category denoted by [T], out of it. The latter is sometimes called
the category of concepts, sometimes the syntactic category, and it is
basically an extension of the Lindenbaum-Tarski construction, but for
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theories expressed in first-order logic (and others, as the reader can
now guess). It is constructed from the language and the axioms of T
as follows.13

Remember that we are constructing a category, thus a web of
objects connected by morphisms. To get the objects of this category,
we start with formal sets [x;φ(x)], where x denotes a n-tuple of
distinct variables containing all free variables of φ and φ is a formula
of the underlying formal system L. Two such formal sets, [x;φ(x)]
and [y;φ(y)] are equivalent if one is the alphabetic variant of the other,
that is if x and y have the same length and sorts and φ(y) is obtained
from φ(x) by substituting y for x (and changing bound variables if
necessary). This is an equivalence relation and it is therefore possible
to consider equivalence classes of such formal sets. An object of
the category of concepts [T] is such an equivalence class of formal
sets [x;φ(x)], where φ is a formula of the formal system L. The
objects of [T] are the equivalence classes of these formal sets, for all
formulas of L. Notice this last important point: we take all formulas
of the language, not only those which appear in T. Thus, in a sense,
the space of objects is the collection of all possible properties and
sentences expressible in that language, thus all possible theories in
the given formal system. No logical relationship is considered at this
stage. The next step introduces the structure corresponding to the
structure of that particular theory T. This is just as one would expect
in a categorical framework: the structure of T is captured by the
morphisms we will define and the properties resulting therefrom.

It is easier to motivate the definition of morphism with an eye
on the semantics, although the properties of the morphisms, e.g.,
that they form a category, have to be proved with the syntactical

13 See also (Makkai and Reyes, 1977, chap. 8) or (Mac Lane and Moerdijk, 1994,
chap. X, § 5) for more details and proofs or again (Johnstone, 2002).
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features of the theory (unless one has a completeness theorem at hand).
The basic idea is this: a functor from [T] to Set should transform
the objects of [T] into genuine sets and the morphisms of [T] into
genuine functions automatically. These functions should be functions
that are definable in T—i.e., for which we can prove in T that they
are indeed functions. Furthermore, [T] should contain all of them.
By sending a formal set [x;φ(x)] to the set of n-tuples satisfying
the formula, i.e. {(x1, . . . , xn) | φ(x)}, a morphism from [x;φ(x)]

to [y;ψ(y)] should become a genuine function between genuine sets
{(x1, . . . , xn) | φ(x)} and {(y1, . . . , ym) | ψ(y)} respectively. Such
a morphism should simply be given by a formula of the theory T

that defines such a function, that is a formula θ(x,y) of T that is
provably functional. The only trick in the construction is to construct
a morphism between two (equivalence classes of) formal sets [x;φ(x)]
and [y;ψ(y)] in such a way that, when interpreted, it yields the graph
of the function, in the standard set-theoretical sense of that expression,
between the actual sets {(x1, . . . , xn) | φ(x)} and {(y1, . . . , ym) |
ψ(y)}. Thus, all definable functions in T will be represented by a
morphism in [T].

Formally, consider a triple (x,y, γ), where x and y are disjoint
tuples of distinct variables and γ is a formula with free variables
possibly among x and y. Such a triple defines a formal function if the
following formulas are provable:

T ⊢ ∀x∀y(γ(x,y)⇒ (φ(x) ∧ ψ(y)));
T ⊢ ∀x(φ(x)⇒ ∃y(γ(x,y)));

T ⊢ ∀x∀y∀y′(γ(x,y) ∧ γ(x,y′)⇒ y = y′);

where we have used some obvious abbreviations. The underlying moti-
vation should be clear: these formulas will be true in any interpretation
of T in which γ is indeed a morphism.
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We now define an equivalence relation (x,y, γ) ∼ (u,v, η) if

T ⊢ ∀x∀y(γ ⇔ (η(x/u,y/v))).

The equivalence relation guarantees that for every model M of T,
the functions corresponding to γ and to η will coincide. We can
now stipulate that a formal function is an equivalence class of the
foregoing equivalence relation. Given a representative (x,y, γ) of
such an equivalence class, we denote the equivalence class containing
it by ⟨x 7→ y : γ⟩. Thus, a formal morphism in [T] is denoted by:

⟨x 7→ y⟩ : [x : φ]→ [y : ψ].

We need two more ingredients to get to a category. Firstly, for
each formal set [x : φ(x)], the identity morphism is provided by the
formal morphism ⟨x 7→ y : (x = y)∧φ⟩. Secondly, given two formal
morphisms ⟨x 7→ y : γ⟩ : [x : φ]→ [y : ψ] and ⟨y 7→ z : η⟩ : [y : ψ]→
[z : ζ], their composition is defined by the formal morphism ⟨x 7→
z : µ⟩ : [x : φ]→ [z : ζ] where µ = ∃y(γ ∧ η). These two definitions
satisfy the usual requirements of a category. Thus, [T] is a category
and we have an abstract mathematical structure corresponding to a
given theory.

Notice that [T] is not a category of structured sets and structure-
preserving functions! A lot of information about T is lost when all
we have at our disposal is [T]. It is, for instance, impossible to know
which atomic formulas are involved in specific formal sets or what
were the primitive symbols of the language LT. Furthermore, two
different theories T and T′ can very well yield isomorphic categories
of concepts, thus essentially the same category. We are squarely in
a structuralist framework: the category [T] is given up to an isomor-
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phism of categories.14 As we have seen, the syntactic logical opera-
tions, i.e., quantifiers and connectives, become categorical operations
in the category and this part of the structure is not lost. Again, moving
from a theory T to its category of concepts [T] is an abstraction: the
specific formulas with specific variables are abstracted from when
we move to the equivalence classes. The category of concepts is the
category of all definable sets and functions of a theory T. Thus, in a
sense, it contains all the formally expressible concepts of T, whence
its name.

When we start with, for example, a regular theory, the foregoing
construction yields a category with additional structures and proper-
ties. For instance, it is automatically a category with finite limits.

T and [T] are interchangeable in the following sense: for, given a
(small) category C, at least with finite limits, it is possible to associate
or construct the language LC of C as follows. We first have to identify
the alphabet of LC . The sorts are given by the objects X,Y, Z, . . . of C.
Every morphism f : X → Y of C becomes a function symbol of LC .
(In particular, a constant c : 1→ X is seen as 0-ary function symbols.)
This is called the canonical language of C. Notice that LC is obtained
as if we had taken C and destroyed its categorical structure, retaining
only the symbols, and keeping in mind that function symbols are
sorted. It is possible to extend this language to reflect the structure of
C more closely. Although subobjects of C can be denoted naturally by
formulas of LC , it is possible to introduce relation symbols for each
subobjectR(x1, . . . , xn) ↣ X1×· · ·×Xn and n-ary function symbol
for morphisms f : X1 × · · · ×Xn → X. This is called the extended
canonical languageof C (see Makkai and Reyes, 1977, chap. 2, sec. 4).
In order to get the internal theory TC of C in its canonical language,

14 Notice that we are talking about isomorphism here and not an equivalence of
categories.
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C has to have more structure than just finite limits. It has to be at least
a regular category, which we will define shortly. In this case, it is
possible to give a list of regular axioms ΣC , that is a set of regular
formulas, and prove that TC is sound in C (see Makkai and Reyes,
1977, chap. 3). The internal theory TC is related to C by two expected
properties:

1. There is a canonical interpretation G of TC in C;
2. For any model M of TC in a regular category D, in any reason-

able sense of the term ‘model’, there is a unique regular functor
I : C → D such that I applied to G is equal to M .

It is of course possible to complete the circle: starting with a
regular category C, construct its internal theory TC and then move
to its category of concepts [TC ]. How are C and [TC ] related? They
are in fact equivalent as categories, which means that they share the
same categorical properties. In other words, as abstract mathematical
structures, they are indistinguishable. From this, it is possible to
conclude a very important result that every (small) regular category is
equivalent to a category of concepts for some theory T.

The Architecture of Logical Theories

We now have sketched how a theory in a logical framework can
be turned into an instance of an abstract mathematical structure. It
should not come as a surprise to learn that a regular theory T (resp. a
coherent, geometric, etc.) yield a specific kind of abstract category,
namely a regular category (resp. a coherent, geometric, etc.). We
will fill in some blanks here, for we want to emphasize the existence
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of kinds of abstract mathematical structures. The existence of these
abstract mathematical structures explains why we have introduced
these fragments of first-order logic. Logic itself can be organized
from the perspective of these structures. We thus get what we call the
“architecture of logical theories” or the “architecture of logic”.15

We will simply state the definition without explaining all the
technical details. We refer the reader to the literature.

A regular category C is a category with finite limits16, such that

1. Every morphism has a kernel pair;
2. Every kernel pair has a coequalizer;
3. The pullback of a regular epimorphism along any morphism

exists and is a regular epimorphism.

This is the purely abstract mathematical structure corresponding to
a regular theory T, but the abstract notion was not abstracted from
that construction. It has an independent mathematical existence. The
definition does not show automatically how regular logic can be
interpreted in a regular category or that a regular theory yields, as its
category of concepts, a regular category. But of course, in both cases,
it does.

In a structuralist framework, one has to specify the criterion of
identity for the abstract structures given. Thus, we first have to specify
what a regular functor between regular categories is. Of course, it is
a functor that preserves the appropriate structure. In this particular

15 Again, we are being very selective, and our goal is not to be exhaustive. The picture
is much more elaborate than what we are presenting here. This is but the tip of the
iceberg.
16 There are various equivalent definitions of regular categories in the literature. We
are following (Borceux, 1994).
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case, a functor F : C → D between regular categories is regular if
it preserves finite limits and regular epimorphisms. The criterion of
identity for regular categories is given by the notion of equivalence of
regular categories, that is by a pair of regular functors F : C → D and
G : C → D such that G ◦ F ≃ 1C and F ◦G ≃ 1D.

In the same vein, corresponding to coherent theories, we have:
A coherent category C is a regular category such that

1. Every subobject meet semilattice S(X) is a lattice;
2. Each f∗ : S(Y )→ S(X) is a lattice homomorphism.

A coherent functor between coherent categories is a functor preserv-
ing the coherent structure, and the criterion of identity for coherent
categories is extracted from that context.

And, of course, we can add more structure and properties to get
other abstract mathematical structures. Let us simply mention a few
more abstract structures that are directly related to logic.

A Heyting category C is a coherent category in which each
f∗ : S(Y )→ S(X) has a right adjoint, denoted by ∀f . The last condi-
tion is sufficient to entail that each S(X) is a Heyting algebra, that f
is a homomorphism of Heyting algebras and that the right adjoint is
also stable under substitution. Heyting categories are common: for any
small category P , the functor category SetP is a Heyting category.
They correspond to theories in intuitionistic predicate logic. Heyting
functors are defined in the expected manner.

A Boolean category C is a coherent category such that every
S(X) is a Boolean algebra, i.e., every subobject has a complement.
Boolean functors between Boolean categories are functors preserving
the Boolean structure.
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A pretopos C is a coherent category having (1) quotients of equiv-
alence relations and (2) finite disjoint sums. Pretopos functors can be
defined.17 The notion of pretopos occupies a central place in the pic-
ture, since many of the important theorems about logic can be hooked
to that notion. Finally, we have to mention at this stage the notion of
Grothendieck topos, which surprisingly sits right at the center of the
development of first-order logic and its many variants.18 There is no
need to go on for our purposes.

Let us immediately point out that the category Set is regular,
coherent, Heyting, Boolean, a pretopos and a Grothendieck topos.
And it is even more than just those.

There is an interesting and immediate application of the above
constructions. In a classical logical framework, the notion of a inter-
pretation or translation of one category into another one is delicate
and complicated. Once we move from a theory T to its category of
concepts [T], there is a very simple and direct way to define it. Indeed,
a structure-preserving functor I : [T] → [T′] between (small) cate-
gories of concepts is called an interpretation of [T] in [T′]. (When
[T] and [T′] have been constructed from theories, one can verify that
it is a legitimate notion of interpretation (see Makkai and Reyes, 1977,
chap. 7, p.196).

17 As we have already mentioned, for many important results, it is enough to consider
weaker functors between some of the categories involved, e.g. coherent functors, for
they preserve, in these particular contexts, the additional structure.
18 As already pointed out by Makkai & Reyes in (1977), Giraud’s theorem can be
interpreted as giving a logical characterization of the notion of a Grothendieck topos
(see Makkai and Reyes, 1977, chapter 1, section 4; for a more recent look at the role
of Grothendieck toposes in logic, see Caramello, 2018; see also Caramello, 2014).
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The models of a theory as a category

We now have to consider how a theory T can be interpreted in
a category C. As it is often the case when facing such a situation,
the easiest solution is to translate what one does in sets, but express
it in the language of the category of sets and finally move to an
arbitrary category with the adequate structure and properties. It can
indeed be done and what we get is a genuine generalization of Tarski’s
notion of satisfaction or model. The classical notions of satisfaction,
interpretation, model and truth transfer directly to this new context.
However, instead of presenting the nuts and bolts of these definitions,
we will jump immediately to the next step.

Since we have constructed [T] from T, and since [T] is a cate-
gory, we can look directly at the interpretations of the latter. We will
illustrate the situation with a coherent theory T, but starting with the
(small) coherent category [T] constructed from it. A coherent functor
M : [T]→ Set is called a (set-)model of [T]. Since Set is a coherent
category, this makes sense.

It is natural to consider to category of all such models, that is the
functor category Mod([T],Set), the category of all (set-)models of
[T]. The objects of this category are the models of [T], that is coherent
functors M : [T] → Set, and the morphisms are the natural trans-
formations between models η : M1 → M2. These are the homomor-
phisms of models of [T] and they are the traditional model-theoretic
structure-preserving functions between models. More generally, for
any coherent category C, the category Mod([T], C) of models of [T]

in C is defined in the same way. We therefore have a flexibility that
was not available previously.
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The category Mod([T],Set) of models of [T] in Set is certainly
an instance of an abstract mathematical structure.19 It has, in fact, a
lot of structure. It is, among other things, a Grothendieck topos, an
important type of abstract mathematical structure.

A theory and its models: moving up the ladder

We have identified some of the abstract mathematical structures
that arise from the traditional logical notions. We now have, on the
one hand, abstract mathematical structures corresponding to what
Lawvere referred to as the “formal”, and, on the other hand, abstract
mathematical structures corresponding to what Lawvere referred to
as the “conceptual”. Of course, these have to be connected and these
connections constitute the core of classical logic.

These connections are themselves part of an abstract math-
ematical structure. Since [T] is a category—the formal side of
mathematics—and Mod([T],Set) is a category—the conceptual side
of mathematics—, we can investigate the functors between them. But
there is more. There are also functors between theories [T] → [T′],
functors between set-models of theories

Mod([T],Set)→ Mod([T′],Set),

functors between models of theories in different categories

Mod([T], C)→ Mod([T],D),

19 This is also true when we take category different from Set. But then, the structure
of the resulting category depends directly on the structure of C.
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functors between all those and natural transformations between some
of these functors!20 In fact, we are in a 2-category, which is a gen-
uinely new structure. A 2-category is not merely a category with
additional data. Thus, once again, we are in a realm of abstract math-
ematical structures and many of the results we are interested in will
be consequences of this abstract mathematical structure together with
some specific properties inherent in the situation we are dealing with.

Here are some questions that can now be investigated. The main
point here is that these questions make perfect sense, they are entirely
natural, whereas it is hard to imagine how they could have arisen
outside this mathematical context.

1. Given an interpretation I : [T] → [T′] between theories, one
can transfer models of T′ to models of T by composing with
I , that is given a model M : T′ → Set, we get by composition
with I a model M ◦ I : T → Set. Hence, there is a functor
I∗ : Mod(T′,Set)→ Mod(T,Set). The natural questions to
ask pertain to the relations between I∗ and I. More specifi-
cally, are there properties of I∗ that imply properties of I? In
particular, is it possible that I∗ being an equivalence of cate-
gories imply that I is? In words, what are the properties of the
conceptual that affect the properties of the formal?

2. Given a functor F : C → D of the right type (that preserves
the right kind of structure in each case), we get a functor
F ∗ : Mod([T], C) → Mod([T],D) by composing models M
with F . One question here focuses on the categories C and D,
more specifically on C and the abstract mathematical structure

20 We are not being careful here. Some of these are covariant functors, while others
are contravariant. We simply want to point at the possibilities at this juncture. We are
not developing the theory as such. Again, these details do not affect our main point.
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both these categories are instances of. Thus, is there an abstract
mathematical type of structure such that all the models of [T]

in D arise from models of [T] in C and functors C → D?

Other questions can be formulated, but these are not unlike ques-
tions that arise in other mathematical domains, thus relating this for-
mulation of logic with comparable frameworks. To be able to identify
what is the common abstract core of logic with other mathematical
domains and what is specific to logic is one of the gains of the abstract
structuralist approach.

4. Metalogical theorems from an abstract
structural standpoint

From a structuralist standpoint, once the abstract mathematical struc-
tures have been identified, one hopes to be able to prove standard
theorems from that vantage. And, indeed, one can. One of the epis-
temic gains expected from these theorems is the identification of the
abstract components involved in various proofs and thus see what is
the core structural component upon which these results are grounded.
Another expected benefit is the possibility to get genuinely new re-
sults which were impossible to get in the classical framework, even
impossible to formulate adequately.

Completeness and conceptual completeness

Let us start with what can be considered the pillar of logic in
general, namely completeness results. Completeness results for vari-
ous propositional logics are equivalent to representation theorems for
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various algebras, e.g., in the case of classical propositional logic, the
completeness theorem is equivalent to Stone’s representation theorem
for Boolean algebras. As we have already mentioned, the most natural
context to prove this result is already the context of the category of
Boolean algebras and the theorem is done up to isomorphism.

Moving to first-order logic, it is to be expected that the complete-
ness theorems would amount to representation theorems for certain
categories, e.g. regular, coherent, pretoposes, Heyting, Boolean, etc.
Indeed, the classical (Gödel) completeness theorem is equivalent to a
representation theorem for coherent categories, which can be stated
thus: for any small coherent category C, there is a (small) set I and a
conservative coherent functor F : C → SetI . A functor F : C → D is
said to be conservative if it reflects isomorphisms, i.e., if F (f) is an
isomorphism in D, then f was already an isomorphism in C. Needless
to say, the key property is precisely that of being conservative. For
what it amounts to is the fact that for any diagram in C such that its
image under F in D is a diagram of a universal morphism, then the
original diagram was already a diagram of a universal morphism in C.

As we have already mentioned, the category Set is coherent and
so is the functor category SetI . Since the functor F : C → SetI is
conservative, it follows that C shares all the coherent properties of
SetI , and in fact of Set. The equivalence between the representation
theorem and the completeness theorem can be established as follows.
Assuming the representation theorem, we start with a coherent theory
T and construct the category of concepts [T] of T, which is a coherent
category. Applying the representation theorem to [T], we obtain the
completeness theorem. To prove the other direction, we assume the
completeness theorem and start with a coherent category C. Using the
internal language of C, one constructs as above the coherent theory TC
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of C. The models of TC are then constructed so that they are identical
with functors C → Set. The representation theorem then follows from
the completeness theorem for TC .

Two important elements have to be added to the picture. First, the
representation theorem for coherent categories is but one represen-
tation theorem for a whole collection of relevant categories: regular
categories, pretoposes, Heyting categories and Boolean categories.
Second, these results in fact follow a general pattern. Indeed, the
foregoing representation theorem takes a general, purely categorical
form, in other words, there is a crucial part that is purely based on
the abstract mathematical structures. Given any categories S and C,
we can always consider the repeated functor category S(SC).21 In this
situation, there is a canonical functor, the evaluation functor

e : C → S(SC)

for which, given any object X of C, and any functor F : C → S,
e(X)(F ) is simply F (X), the evaluation of F at X. For any subcat-
egory D of SC , the same functor e : C → SD can be defined. It is
then possible to show that the representation theorem for coherent
categories is equivalent to the claim that the functor e : C → SMod(C)

is conservative. The fact that the evaluation functor is coherent holds
on purely general grounds. We therefore have a purely categorical
description of the representation theorem. Moreover, in the early sev-
enties Joyal demonstrated that the functor e preserves all existing
instances of the Heyting structure in C. This automatically yields a
representation theorem for Heyting categories and, in turn, a canonical
completeness theorem for intuitionistic logic.

21 This is not an unusual construction in mathematics. Think of the double dual of a
finite-dimensional vector space, for instance.
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The categorical set-up allows is to consider a stronger claim,
called the conceptual completeness. Given a functor I : T →
T′ and an equivalence of categories between Mod(T′,Set) and
Mod(T,Set), when is it possible to conclude that I is also an equiva-
lence of categories? From a categorical point of view, the assumption
means that the category of models of T′ is indistinguishable from the
category of models of T. We can think of the functor I as a translation
of [T] into [T′], thus as a case when the latter theory can in princi-
ple be more expressive than the former. In a sense, the conceptual
completeness can be interpreted as saying that adding new concepts
to T simply does not modify in any essential way what it can ex-
press. This means that T has some sort of completeness and in this
context it makes perfect sense to say that it is conceptually complete.
Thus, we say that T is conceptually complete whenever the follow-
ing is satisfied: if the functor I∗ : Mod(T′,Set)→ Mod(T,Set) is
an equivalence of categories, then the functor I : T → T′ was one
already. This literally means that by moving to T′, we did not add
anything essentially new to T, although we might have thought we
had, and this information was obtained by looking at the categorical
structure of the category of models of the theories. We can conclude
that a certain logical framework, say an equational theory, is enough
to characterize a type of structures, from the categorical structure of
the category of models. Conceptual completeness is in fact equivalent
to a standard result of model theory, namely Beth definability theorem.
However, one of the advantages of working in the categorical frame-
work is that categorical methods make it possible to prove results
which might not be accessible otherwise, for instance, a constructive
proof of this result for intuitionistic logic.22

22 See (Pitts, 1989) for a categorical proof of conceptual completeness of intuitionistic
first-order logic.
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It is possible to strengthen the conceptual completeness theo-
rem. In the latter, we assume as given a functor I : T → T′. Is it
possible to start with an equivalence of categories Mod(T,Set) →
Mod(T′,Set) and construct from it an equivalence T → T′? This
is much stronger theorem, but it can be proved under certain circum-
stances. It says that a logical theory is completely characterized by
the categorical structure of its category of models. In some sense, the
conceptual determines the formal, up to equivalence. In the case of
propositional logic, it amounts to a form of Stone duality, the latter
being formulated entirely within the category of Boolean algebras, and
not as the existence of an equivalence of categories between the cate-
gory of Boolean algebras and the category of Stone spaces. The strong
conceptual completeness asserts that the Lindenbaum-Tarski algebra
of a propositional theory can be recovered from its space of models—
the ultrafilters on the given Boolean algebra. A theory for which the
theorem can be proved is said to be strongly conceptually complete.
A different way to formulate this result is to say that if Mod(T,Set)

and Mod(T′,Set) are equivalent, then T and T′ are equivalent too.
Whereas conceptual completeness is a local phenomenon, since it
depends on the interpretation I, strong conceptual completeness is
a global phenomenon, since there is no underlying interpretation at
hand. The construction of T can be thought of as a case of abstracting
certain data out of another, more “concrete”, situation. Finite limit
categories of concepts are strongly conceptually complete23, although
the original result applied to (Boolean) pretoposes. If the category of
models is adequately enriched in a precise technical sense, then in
these circumstances first-order classical logic is strongly conceptually
complete (see Makkai, 1988; 1990; for a a different proof which is

23 Thus they are the so-called Barr-exact categories. A Barr-exact category is a regular
category in which every equivalence relation is a kernel pair (see Makkai, 1990).
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build with higher-dimensional categories in mind, see Lurie, 2019).
Notice that it is hard to see how this theorem could even be formulated
outside the context of category theory.

It is impossible not to mention the fact that strong conceptual
completeness theorems are closely related to dualities. In fact, they
are equivalent in a precise technical sense to dualities. The only thing
we want to underline is that these results are proved in the context
of 2-categories. Thus, it is not only that the natural set-up involves
2-categories, but that important theorems require 2-categorical (even
bicategorical) concepts. We cannot, in such a short paper, present
these in any comprehensible manner.

Syntax and abstract completeness

From the above considerations, the reader might feel that we
have entirely left behind syntactical considerations, more specifically
formal deductions. Therefore, it might seem like the categorical com-
pleteness results are not quite the same as the classical results which
assert that semantical consequences of a theory are provable in a fully
specified formal system. This is not the case. For one thing, we have
not abandoned the syntax, nor the formal systems in these investiga-
tions. But there is an additional point to make, for it brings to the fore
a way of dealing with the syntax of theories that emerged naturally
from the context of categories, namely the idea of a sketch and its
generalizations.

From Lawvere’s thesis, category theorists toyed with the idea that
a theory could be presented directly in the form of a category or some
graphical variant thereof. In this spirit, sketches were introduced by
Charles Ehresmann in the early 1960s and developed afterwards by
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him and his school (see Ehresmann, 1967; 1968; Lair, 2001; 2002;
2003, for instance). A sketch, which is a specific kind of (oriented)
graph, is a new kind of syntax, specifically tailored to do categorical
logic. It gives directly in a graphical way the syntactical and proof
theoretical content of a theory.

We will give one definition of the notion of sketch24. A sketch
S = (G,D,L,C) is given by a graph G, a set D of diagrams in G,
a set L of cones in G and a set C of cocones in G. We can consider
the category of sketches by stipulating that a morphism of sketches
is a homomorphism of graphs which preserves the diagrams, the
cones and the cocones. It is easy to see that any category C has an
underlying sketch SC. A model of a sketch S in a category C takes
all the diagrams of S to commutative diagrams, all the cones of S
to limits of C and all cocones of S to colimits of C. A morphism
of models is a natural transformation. Thus, we can reproduce what
we did above with theories, namely we can construct the category of
models Mod(S,C) of a sketch S in a category C.

It is natural to consider sketches in which there are no cocones
and only discrete and finite cones, or in which there are no cocones
and only finite cones, etc. Sketches organized themselves with respect
to these natural choices and they correspond to various logical theo-
ries. Thus, there are finite product sketches (a FP-sketch), left exact
sketches (a LE-sketch), regular sketches, coherent sketches, etc.

In this framework, it is natural to ask which categories are sketch-
ables: is it possible to characterize categories that are equivalent to
categories of models of a type of sketch? There are positive answers to
that question and it naturally brings us, when the most general kinds
of sketches are considered, to infinitary logic L∞,∞ (see Lair, 1981;
Makkai and Paré, 1989).

24 See (Barr and Wells, 1990; 2005) for an introduction to sketches.
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Generalization of the notion of sketch has led Makkai to develop
a categorical proof theory and establish a completeness theorem along
the classical lines, that is proving that a formula is formally provable
in a theory if and only if it is true in all models of the theory. Interest-
ingly enough, the set-up still rests upon the categorical representation
theorems, but it is enriched with a categorical notion of formal proof
in the set-up of (generalized) sketches. (see Makkai, 1997a,b,c).

Incompleteness

We have to say a few words about Gödel’s incompleteness theo-
rems. Is it possible to identify abstract mathematical structures that
underly these theorems? Is it possible to deduce these theorems from
a theorem or theorems about these abstract mathematical structures?
There are some pieces in place, although the complete picture—no
pun intended—has still to be presented.

First, already in the 1960s, Lawvere presented a categorical anal-
ysis of various phenomena related to Gödels’s incompleteness theo-
rems. In his (1969b), Lawvere presents what he takes to be the abstract
mathematical structure underlying Cantor’s theorem that there is no
surjection X → 2X and its variants in the heads of Russell, Gödel
and Tarski. The starting point here is the notion of a cartesian closed
category. A cartesian closed category is a nice example of a categori-
cal doctrine since it can be given entirely by stipulating the existence
of certain adjoint functors to elementary, that is first-order, functors.
More precisely, a cartesian closed category C is a category such that

1. The functor ! : C→ 1 has a right adjoint;
2. The diagonal functor ∆ : C → C × C has a right adjoint,

namely the product functor;
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3. For each object X of C, the functor X × (−) : C → C has a
right adjoint (−)X .

Given a cartesian closed category C, it is possible to then define
what D. Pavlovic has called a “paradoxical structure” on an object
of C that satisfies a fixed-point property. By specifying the adequate
cartesian closed category C and the paradoxical structure on objects of
C, it is possible to prove Cantor’s theorem, Russell’s paradox, Gödel’s
first incompleteness theorem, Tarski’s theorem of the impossibility of
defining truth in a theory and many others (see Pavlović, 1992 and
Yanofsky, 2003).

In a series of unpublished lectures presented in the 1970s, André
Joyal introduced another abstract mathematical structure, in a precise
sense weaker than Lawvere’s proposal, to pursue the analysis of
Gödel’s incompleteness results, in particular the second theorem,
namely what he called ‘arithmetical universes’. Very roughly, an
arithmetic universe U is a pretopos such that the free category object
constructed from a graph object in U exists. This is the abstract
structure in which one can do recursive arithmetic and prove versions
of the two incompleteness theorems (see Maietti, 2010 for a different
definition).

Type theories

We will be very succinct, not because this area is not impor-
tant, quite the contrary, but simply because there is no need to cover
everything in details given the goal of this paper.

The first and well-known result in this area is the correspondence
between cartesian closed categories with a natural number object and
typed λ-calculus. We finally get to elementary toposes. These were
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introduced by Lawvere and Tierney in 1970 to provide an elementary
treatment of sheaves over a site, thus of Grothendieck toposes. It is
another remarkable example of a categorical doctrine. An elementary
topos E is a category with finite limits, cartesian closed, and has a
subobject classifier. These three conditions do amount to the exis-
tence of certain adjoint functors to given (elementary) functors. As
is well known now, it is possible to construct an intuitionistic type
theory from a given topos E and, conversely, it is possible to specify
an intuitionistic type theory such that its conceptual category is an
elementary topos and it can be interpreted in an elementary topos.
There is then a correspondance between categorical properties of the
topos and logical properties of the type theory (see Boileau and Joyal,
1981; Lambek and Scott, 1988).

The same can be said about homotopy type theory. Homotopy
type theory comes form Martin-Löf’s intensional type theory (see
The Univalent Foundations Program, 2013). It has models in various
categories, but a homotopy type theory ought to correspond to a kind
of abstract categories. It has been conjectured, by Steve Awodey,
that homotopy type theory should correspond to the internal logic of
higher-dimensional elementary toposes. As of this writing, the full
conjecture has still to be proved, although certain advances have been
made (see Kapulkin and Lumsdaine, 2018).

One last thing...

Last but not least, connections between linear logic and category
theory appeared almost immediately after the creation of linear logic
by Girard in (1987) (see Lafont, 1988; Seely, 1989). It took almost
twenty years of research before a consensus emerged as to what
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constitutes a categorical model of linear logic (see Bierman, 1995;
Blute and Scott, 2004; Melliès, 2009; de Paiva, 2014). We will not
introduce nor discuss the categorical framework here. It would require
defining and explaning a lot of categorical structures, e.g. symmetric
monoidal categories, symmetric monoidal adjunctions, etc., as well
as an explanation of how the various frameworks proposed converge
towards a basic structure. The point is: we may be seeing the beginning
of a stable picture that will allow us to start building a conceptual
interpretation of linear logic. In as much as homotopy type theory
seems to be intimately connected to the basic constituents of spaces,
the “atoms of space” to use Baues’s expression in (2002), namely
homotopy types, linear logic seems to be intimately tied to generalized
vector spaces and the mathematics inherent to the latter (see Melliès,
n.d.). If this reading is correct, it may lead to new interpretations
and developments of conceptual spaces and the categorical structures
would naturally find their place in that context. But this is sheer
speculation at this point and it does not affect our main point.

5. Conclusion

We insist that this way of framing logic and metalogic is a direct
continuation of mathematical logic as it developed in the first half
of the 20th century and the rise of the abstract axiomatic method at
the same time. Category theory itself is an offspring of this period,
and as such, does not constitute a radical methodological change. It
is, undoubtedly, a rise in abstraction. It reveals new types of abstract
mathematical structures.

We hope we have convinced the reader that it is possible to iden-
tify the abstract mathematical structures underlying (fragments of, and
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extensions of) first-order logic and type theories. It is also possible to
see how the important metalogical results correspond to theorems on
these abstract mathematical structures. Finally, the invariance property
at the core of any abstract mathematical structuralism comes natu-
rally and automatically in this framework. Thus, the standard logical
systems—and some non-standard logical systems as well—find a nat-
ural place in this structuralist context. Pure logic is seen as a specific
type of abstract structure. We can thus answer our own challenge
positively and precisely. We leave to other structuralists to provide
their answer to our challenge.
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