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ABSTRACT. An interpretation of quantum mechanics that rejects hidden variables has
to say something about the way measurement can be understood as a transformation on
states of individual systems, and that leads to the core of the interpretive problems posed
by Luders' projection rule: What, if any, is its physical content? In this paper I explore
one suggestion which is implicit in usual interpretations of the rule and show that this
view does not stand on solid ground. In the process, important aspects of the role played
by the projection postulate in the conceptual structure of quantum mechanics will be
clarified. It will be shown in particular that serious objections can be raised against the
(often implicit) view that identifies the physical relation of compatibility preserved by
Luders' rule with the relation of simultaneous measurability.

1. INTRODUCTION

Preparatory measurements are measurements for which we can con-
clude on the basis of the result of measurement that the system is
(immediately after measurement) in an eigenstate of the eigenvalue
corresponding to the given result. Preparatory measurements are first of
all experimental processes that select an ensemble to which a quantum
(statistical) state can be assigned. Statistical interpretations of the state
vector take as fundamental this assignment of a quantum state to
(sub)ensembles selected by experimental procedures. But if the exist-
ence of hidden variables is denied, then it seems that it should be
possible to interpret preparatory measurements in terms of individual
state transformations. This can be done by thinking of these measure-
ments as idealized measurement transformations satisfying the so-called
first kind condition: an immediate repetition of the same measurement
gives the same result as the initial measurement. This idealization
(taken here for the sake of simplicity) will be assumed here to be
non-controversial. Furthermore, it will be assumed here that every
measurement can be represented as a first kind measurement: thus, a
'measurement' in this investigation is always to be a 'first kind measure-
ment'.
For measurements of maximal magnitudes (i.e., magnitudes with no

degenerate eigenvalue) Von Neumann argued (1955) that the final state
is given by the (unique) eigenstate of the eigenvalue representing the
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measurement result. This is Von Neumann's projection rule for the
assignment of a final state on (maximal) measurement. For first kind
measurements the rule follows immediately from the basic quantum
mechanical assumption that if a system has a given eigenvalue with
certainty (with probability one) then the system is in an eigenstate of
this eigenvalue.
Von Neumann suggested that non-maximal measurements be treated

as maximal measurements with less than full information about the
(nature of the) measurement. A non-maximal measurement for Von
Neumann is a maximal measurement in disguise. Von Neumann's rule
then, when applied to non-maximal measurements, would make the
choice of the final state after measurement dependent on the maximal
magnitude implicitly measured. Luders (1951) was apparently the first
to suggest that we also need a principle describing genuine non-maximal
measurements in quantum mechanics: measurements that supposedly
take place independently of the measurement of a maximal magnitude.
As I show in the next section, Luders attempted to justify his pro-

posed rule by construing it as a rule describing a change of statistical
state on measurement that generalizes the process of state preparation.
Indeed, Luders' projection rule receives a strong justification along
these lines. But a very important question remains, a question that is
the seed of a long debate on the projection postulate: the problem of
characterizing the physical process that Luders' rule is supposed to
describe as a transformation on individual systems. If we want to charac-
terize Luders' rule as a rule describing a physically distinguishable class
of individual state transformations, what are these transformations and
how they do come about physically? I will argue that even though some
derivations in the literature suggest, or claim to provide the basis for
an interpretation of Luders' rule as a description of individual state
transformations, such claims cannot be made precise. Ultimately they
seem to rely on a confusion between two different problems of justifi-
cation, the problem of justifying Luders' rule as a statistical principle
and that of justifying Luders' rule as a description of individual measure-
ment transformations.

2. LUDERS' MODIFICATION OF VON NEUMANN'S FORMULA

In terms of ensembles the preparatory measurement of magnitude R
with eigenvalues {rk} and spectral decomposition R="i.krkPk is repre-
sented by the following ensemble:
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where Z; describes the subensemble of those physical systems for which
the eigenvalue rk is obtained.
For maximal magnitudes formula (2.1) would provide a full descrip-

tion of the change of state on a measurement of R. For measurement
of non-maximal magnitudes, however, formula (2.1) is ambiguous since
for a degenerate eigenvalue there is not a unique eigenvector but
infinitely many eigenvectors satisfying (2.1). Von Neumann suggested
that in this case the state of the system after measurement should be
described as a mixture of the eigenstates in the eigenspace of the
measurement result.
Luders raised two objections against Von Neumann's analysis of non-

maximal measurements:

(a) The measurement of a highly degenerate magnitude allows
only relatively weak assertions about the given ensemble.
The corresponding change of state should thus be corre-
spondingly small, while precisely in this case Von Neumann's
proposal provides a very complicated ensemble.

(b) One could expect that just as in the formula (2.1) for the
calculation of the result of measurement, also the change of
state would depend only on Z and rk (and R). In particular,
that the change of state by measurement of R with result rk
is such that if the initial state is pure then the final state is
also pure.

In order to see the point of Luders' first objection consider the
extreme case of a measurement of the unity (identity) operator. In this
case all vectors are eigenstates of the eigenvalue 1. Von Neumann's
proposal would lead us to assign as a final state a mixture in which all
vectors are assigned the same weight. But in this case it seems obvious
that we should expect no change at all in the initial state of the system.
Luders did not explicitly attempt a derivation of his rule. He argued,

instead, that if his generalized projection rule (Luders' rule) is assumed,
the commutativity of operators representing given observables is
equivalent to the compatibility of those observables. The proof of this
equivalence will be called here the compatibility theorem. Von Neu-
mann had attempted to prove the equivalence between compatibility
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and commutativity using a rather questionable characterization of com-
patibility of observables that required an unwarranted assumption (see
Section 6). Luders instead provided a mere abstract definition of com-
patibility in terms of ensembles and selection of subensembles. On the
basis of this he was able to prove the compatibility theorem within the
purely statistical (Hilbert space) framework of the theory. Previous to
a discussion of the significance of Luders' theorem I start with an
outline of his analysis of compatibility.

(2.2) DEFINITION (Luders'). In an ensemble a magnitude R is meas-
ured and the subensemble corresponding to a particular measurement
value r is selected. Immediately after (so that one can abstract from
the change due to dynamical evolution) one measures on this subensem-
ble the magnitude S and the subensemble corresponding to the meas-
ured value is selected. The measurement of Rand S are called mutually
compatible when a subsequent measurement of R [on the second ensem-
ble] gives the result r with certainty.

(2.3) DEFINITION (Luders'). Two measurements of Rand S are
mutually compatible when the interposition of the measurement of R
[in between two measurements of S] without selection of a subensemble
does not alter the result of the S measurement.

The above definitions characterize the concepts of compatibility for
magnitudes with and without selection of subensembles (Luders 1951,
p. 323). Two magnitudes Rand S are mutually compatible tor-noninter-
fering) if there are mutually compatible measurements of Rand S. Notice
that the above definitions of compatibility apply in the first place to
(preparatory) measurements characterized statistically. But whereas the
first definition is framed in a purely statistical language of ensembles
and selection of subensembles, the second definition is more neutral in
its formulation lending itself (contrary to the first), at least in principle,
to use as a definition of compatibility in an individual state interpre-
tation. I will refer to Luders' definition of the compatibility relation as
L-compatibility. When a precise reference to one of the two definitions
of compatibility is needed I will distinguish between L1-compatibility
and Lrcompatibility. Since I am interested in individual interpretations
of Luders' rule I will usually focus on Lz-compatibility.
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Guided by the two objections presented above, Luders argued that
Von Neumann's rule should be replaced by the following formulae:
(1) If an ensemble initially in state Z, is measured for magnitude R

with result rk, then after the measurement the state of the corresponding
subensemble represented by P; is

(2) After the same measurement, the state of the whole (original)
ensemble is

(2.5) Z' = L PkZPk.
k

It is easy to see that Z' fulfills the desired mathematical requirements
(Z' is Hermitian and positive). Luders' main theorem follows.

(2.6) THEOREM (Luders). If after measurement (without selection)
of an ensemble in state Z the final state is given by Luders' rule (formula
(2.5)) then the observables Rand S are (Lr) compatible if and only
if the operators representing Rand S commute.

The proof of this theorem can be found in Luders (1951).
Luders' theorem is the core of Luders' justification of his proposed

formula. Luders' theorem shows that if one assumes that his formula
describes the state after measurement, the physical significance of the
relation of compatibility can be made precise in terms of the existence
of non-interfering measurements (interpreted statistically). If the prob-
lem is that of providing a justification for the selection of Luders' rule
among all possible rules that select a pure state after measurement of
a pure state, Luders' theorem provides a strong justification. It is not
difficult to see that if we take any other projection rule instead of
Luders' projection rule, L-compatibility is not equivalent to commuta-
tivity. The possibility exists that a contrived modification of compati-
bility would still allow a proof of Luders' theorem to go through. But
even this far fetched possibility is taken care of by a derivation of
Luders' rule to be reviewed later. The problem of justification referred
to above, the problem to which Luders' theorem provides a convincing
answer, is the problem of finding the rule that selects the 'right' statistics
on remeasurement of a magnitude (after a non-maximal measurement).
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An additional and more elaborated justification will be obtained from
the different derivations to be reviewed later. Luders' rule will be
shown to follow from some basic principle of 'minimal change' or 'non-
interference'. But this problem must be distinguished from the problem
of interpretation of Luders' rule as a description of the process of individ-
ual measurement.
It is possible that there is no underlying physical process to be inter-

preted as an instance of an individual measurement. This would be a
very bad state of affairs for anyone believing in an individual state
interpretation. At the very least one should be able to give a plausible
account of Luders' rule as a description of individual processes. Else-
where (1987) I argue that once an important presupposition of individ-
ual state interpretations is dropped (that an individual state is repre-
sented by the set of properties to which a given state vector assigns
probability one), it is possible to provide a clear and precise interpre-
tation of Luders' rule. But the first step is the separation of different
problems.
One can distinguish two types of derivations. On the one hand we

have derivations that assume the Hilbert space structure as a whole
and only add to this whatever assumption is considered needed for a
derivation of Luders' rule with a desired semantical interpretation. On
the other hand one could think of derivations that do not include the
Hilbert space structure as a whole among its premises, but rather try
to provide a derivation of Luders' rule from individually motivated
principles.
The rationale of such distinction is the following. Since the Hilbert

space structure provides a non-controversial formulation of the statist-
ical structure of the theory, it turns out to be an easy task to provide
a purely statistical interpretation of Luders' rule based on derivations
in which the Hilbert space structure is assumed from the onset. Such
statistical interpretations do not require the presupposition that there
is a process of individual measurement described by Luders' rule.
Therefore, in order to justify an individual state interpretation one
cannot assume indiscriminately the Hilbert space structure as a whole.
The justification of individual state interpretations of Luders' rule seems
to require the use of principles that can be justified as fundamental
principles describing the behavior of individual systems. That is, an
individual state interpretation of Luders' rule requires the derivation
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of Luders' rule from principles which are semantically relevant for
states and processes of individual systems.
It must be emphasized that the above distinction between statistical

and individual state interpretations concerns the physical interpretation
of Luders' rule. The issue is the justification of whatever physical con-
tent we attribute to the rule via the justification of the semantic interpre-
tation of the principles from which it is derived. Since the above dis-
tinctions are not usually made, claims about the different problems of
justification are usually conflated.

3. DERIVATIONS OF LUDERS' RULE

The question whether Luders' rule can be derived in quantum mechan-
ics is a long standing issue and it is often taken as the focus of discussion
on the projection postulate. Often outlines or suggestions for a putative
derivation are given, but the details (and often not only the details) of
the derivations are missing. More often Luders' rule is only motivated
as a 'convenient idealization'. Jauch (1968) for example motivates Lu-
ders' rule by noticing that for projections P with one-dimensional range
and state (represented by operator) Z, PZP = (TrZP)P After a pre-
paratory measurement then, the state describing the system is given by
Z' = L.kPkZPk for anyone-dimensional projections Pi; where R =
L.krkPk is the spectral decomposition of a magnitude R with eigenvalues
r.. Now Jauch (1968) says:

It is therefore convenient to introduce the notion of the ideal measurement which affects
the state in a minimal way, and for which the state after measurement is still given
by the formula [Z' = LkPkZPk] but without the requirement that the projection
operators be one-dimensional. (p. 166)

A rather unconvincing motivation for such a controversial principle.
Jauch's observation, however, seems to suggest a derivation once we
notice the formal analogy made explicit by Jauch between the descrip-
tion offered by Luders' rule and the description of preparatory measure-
ments. Such analogy is cashed in for example in Herbut's derivation to
be reviewed later (Section 3.7).
Attending to the descriptive account of measurement implicit in the

derivations one can distinguish two different sorts of derivations. One
sort is framed in the language of statistical operators and selection of
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subensembles. Another sort of derivation uses the language of eigen-
values or 'sharp-values' instead of the language of selection of suben-
sembles in the description of measurement. There is of course not a
clear cut distinction between what we can call 'statistical' and 'sharp
value' derivations. A derivation can use a mixed language of statistical
operators and 'sharp values'. But as we shall see it is worth drawing
the distinction as a preliminary classification of the available deri-
vations. Sharp value derivations suggest the sort of interpretation of
Luders' rule which if justified could (at least in principle) provide us
with an individual-state derivation of Luders' rule. Next I layout several
derivations of Luders' rule and make explicit the presuppositions in-
volved.
Luders seems to have shared Von Neumann's idea that what he

was proposing was a basic principle on measurement, required as an
indispensable postulate for the interpretation of the theory. He seemed
to be satisfied with a clear formulation of his principle within the
statistical framework of the theory and the justification of his proposal
on the basis of its consequences for the interpretation of the mathemat-
ical structure of Hilbert spaces. But it is not difficult to see how Luders'
formal results presented in (1951) can be used (as the following theorem
shows) to generate a derivation of the projection rule, in the Hilbert
space framework under a very plausible assumption of compatibility.

(3.4) THEOREM (Luders' converse). For preparatory measurements,
if it is assumed that whenever two operators commute the correspond-
ing magnitudes are L-compatible then the change of state by a measure-
ment is described by Luders' rule.

The proof of the theorem uses the following simple result from operator
theory:

(3.5) LEMMA. Let P and Q be two commuting operators. Suppose
P=2:.P", and Q=2:.P"QP".

" "
The proof of Luders' converse follows.
Suppose that P and Q are two commuting magnitudes and that the

initial state is Z, then after measurement of P TrZ'Q = TrZQ since P
and Q are L-compatible. Now,
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TrZQ = TrZ(~ PnQPn)

= TrQ(~ PnZPn)

By lemma 3.5

by properties of trace

thus,

TrZ'Q = Tr(~ PnZPn)Q

since Q is arbitrary (see Von Neumann 1955, p.188)

Z' =2.PnZPn
n Q.E.D.

This last proof is implicit in Furry (1965).
Herbut (1969) argued similarly to Luders that if we take the measure-

ment of a non-maximal magnitude R in the sense of Von Neumann, as
the implicit measurement of a maximal magnitude M we will in general
overmeasure R in the sense that measuring M gives in general finer
subensembles than what one would expect on the ground of measuring
R alone. Herbut claimed that what is required is to develop the idea
of the 'minimal measurement of an observable'. For any operators R
and 5 belonging to the operator Hilbert space there is a unique concept
of distance defined by

(3.6) d(R, 5) = II R - 5 II = (R - 5, R - 5)112.

Herbut used this metric to put the idea of minimal (preparatory)
measurement of an observable R in precise mathematical form: the
minimal measurement of an observable R should transform an arbitrary
quantum state Z into a state Z' which is as close as possible to Z in
this metric. This is the content of Herbut's first theorem.

(3.7) HERBUTS FIRST THEOREM. For preparatory measure-
ments, if the change of state by measurement is minimal in the metric
of the operator Hilbert space f (as defined above, p. 5) then Z' is given
by Luders' rule, that is Z' = L: PnZPn.

n

For the proof see Herbut (1969).
In 1974, Herbut provided a different derivation of Luders' rule. Ac-

cording to Herbut one can characterize Luders' rule as describing
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minimally disturbing measurements via the concept (Dirac's) of 'com-
plete observable'. Given a non-maximal observable R one can form a
sequence of compatible observables R, S, ... to achieve a complete
set. The measurement of this sequence of observables generates a
corresponding sequence of eigenvalues (sharp values) r, s, ... which
enables one to arrive at a pure state: for this accumulation of sharp
values it is indispensable that "each measurement should preserve the
ones already acquired by the system in the previous measurement of
compatible observables" (Herbut 1974, p. 196). Thus, he claimed, we
are led to impose the following requirement on preparatory measure-
ments:

Requirement H: If a physical system in state Z has the sharp
value d of an observable D and if this observable is compat-
ible with the measured observable R, then whichever result
r of the measured observable R is obtained, the N systems
having produced this result have to be in a state Z in which
the sharp value d of D is preserved.

With this requirement Herbut proved the following theorem.

(3.8) HERBUTS SECOND THEOREM. (A) If the preparatory
measurement of an observable R (with spectral decomposition R =
2: rnPn) satisfies requirement H then an arbitrary state Z is changed
n

into the state Z' given by Luders' rule. (B) If TrZPn ~ 0 implies
Luders' rule for the change of state by measurement then requirement
H is valid.

Notice that requirement H could be more precisely formulated by
assuming the commutativity (not the compatibility) of the correspond-
ing observables. This makes clear in particular that Herbut's Theorem
(B) is a sharp-value reformulation of Luders' rule. As Herbut points
out, his derivation of Luders' rule is an improvement over Luders' own
formulation because the class of observables having a sharp value d in
the initial state and being compatible with R is a very restricted subclass
of the class of all observables compatible with R. But even more import-
ant for us is the fact that Herbut's theorem provides a way of extending
Luders' characterization of compatibility (and his formula for the change
of state by measurement) to (states of) individual systems. Requirement
H can be seen as a reformulation of the relation of compatibility that
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can be applied to individual systems since sharp values can be interpre-
ted as belonging to each system in the ensemble (corresponding to
the given value). Implicit in Herbut's approach is then the following
characterization of compatibility for magnitudes of individual systems:
two magnitudes are compatible if sharp values are preserved by
measurement. Instead of going into the proof of Herbut's theorem I
will present a simplified derivation of Luders' rule given by Stairs in
1982. Whereas Herbut formulated his result in a mixed language of
statistical states and sharp values Stairs provides a derivation using the
definition of compatibility implicit in Herbut's account in a formulation
of quantum mechanics entirely within the framework of individual sys-
tem interpretations. Stairs' derivation can be seen as a paradigm of
what I call 'sharp-value' derivations.

Stairs' derivation of Luders' rule. Stairs characterizes the compatibility
of magnitudes in terms of non-interfering measurements. Two magni-
tudes are compatible if there exist non-interfering measurements of the
magnitudes. What this means in idealized experimental terms is that if
QI and Qz are two compatible magnitudes then there exists measure-
ments of QI and Qz such that

(i) if performed simultaneously the system will be left in a
common QI-QZ eigenstate, and

(ii) if performed in sequence (Qh Qz, Qh ... ) the measured
values will be stable. Stairs then characterizes ideal measure-
ments as those which are non-interfering for compatible
magnitudes. Stairs proves that if one accepts the possibility
of sequences of measurements on a single system and agrees
that ideal measurements of compatible magnitudes should
be non-interfering one can derive Luders' rule.

Following Stairs we proceed to the derivation of Luders' rule in terms
of an example. Here I follow Teller's 'no frills' reformulation in (1983).
Suppose our system is represented by a 3-dimensional Hilbert space H.
A state of the system is then a linear combination of an arbitrary basis
for H, say {aI, az, a3}' Consider the magnitudes (represented by)
A = asPs, + aZP"'2 + a3P"'3 B = blP"'l + bZ(P"'2 + Pa,). If the initial state
of the system is cP and we measure B getting result bz, the resultant
state must be an eigenvector in the az - a3 plane. Now consider a
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magnitude D with two eigenvalues d, and dz such that the eigenspace
corresponding to d, is the Pb2 - at plane and the eigenspace corre-
sponding to dz is the orthogonal plane. Measure magnitude D, compat-
ible with B, and suppose the result is d I. The state after measurement
lies in the az - a3 plane. But on the assumption that compatible (sharp)
values are respected it must also lie in the pt2 - al plane. Thus, the
final state must be in the intersection of both planes and this is just
Pb2•

A quantum logical derivation. In the quantum logical framework
Luders' rule can be derived via the equivalence relation generated by
the Sasaki-hook. Suppose that initial state is a and we measure non-
maximal magnitude M with result (represented by proposition) r. In
general there will be an infinite number of possible state transformations
describing this measurement. The state transformation described by
Luders' rule is singled out, however, by the fact that, given that a is
the initial state then r and the state selected by Luders' rule, L(a, r),
are equivalent under the following equivalence relation:

(E) if and only if (x3Jy)/\(y3Jx)=1

where 3J stands for the Sasaki hook: x 3Jy = xl- V (x /\ y). For details
and discussion of this derivation see Friedman and Putnam (1978),
Hellman (1981) and Stairs (1982). Friedman and Putnam argued that
the equivalence relation (E) is a logical equivalence relation already
built into quantum logic (generated by the quantum logical bicon-
ditional) which allows the derivation of the projection postulate (in
'real quantum logic') without any additional postulates.

4. THE PRESUPPOSITIONS INVOLVED IN THE DERIVATIONS

At first sight it is not quite clear what assumptions on the compatibility
relation are required by Herbut's second theorem and Stairs derivation.
One could be inclined to think, from the way in which they describe
the relation of compatibility, that the fact that two magnitudes are
compatible implies the existence of the sharp values that are to be
preserved in the process of measurement. But to assume this strong
characterization of compatibility at this point would be inappropriate.
Remember that Luders' theorem only shows the equivalence between
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L-compatibility (compatibility as defined by Luders) and the commuta-
tivity of the corresponding operators under the assumption of Luders'
formula for the change of state.
It is not difficult to check, however, that Herbut's requirement H only

requires that commutativity is a sufficient condition for compatibility. In
order to see this simply replace in requirement H the assumption that
Rand D are compatible by the assertion that Rand D commute, and
assume that commutativity is a sufficient condition for compatibility.
Similarly, notice that the first condition that Stairs put forward as
characterizing compatibility (condition (i)) is not really needed in Stairs'
derivation, all that is needed, again, is that commutativity is a sufficient
condition for simultaneous measurability (which implicitly is identified
with physical compatibility). Stairs' derivation is thus a version of Lu-
ders' converse in which (as in Herbut's second derivation) compatibility
is characterized in terms of preservation of sharp values.
Luders' converse theorem, as well as Stairs' and Herbut's second

theorem only need to assume that commutativity is a sufficient condition
for compatibility. As an assumption on a physical relation of compati-
bility this should be uncontroversial. It would make little sense to think
of the possibility of commuting magnitudes that are not compatible.
But the physical interpretation of Luders' rule as a state transformation
respecting sharp values also implicitly assumes more than what is gr-
anted by the derivations.
Notice that in Luders' converse theorem when we talk of the change

of state by measurement we mean a measurement that is 'non-interfer-
ing'. If we think of Luders' rule as an algorithm generating the statistical
state after measurement, 'non-interference' has a straightforward inter-
pretation in terms of preservation of relative probabilities or sharp-
values (see discussion below). But when Luders' converse theorem is
interpreted as referring to individual processes it is not even clear, to
start with, what is meant by a 'non-interfering' measurement. If we
assume that the compatibility of magnitudes implies the commutativity
of the corresponding observables we would have, at least in principle,
a clear notion of non-interference. For in this case 'respecting compati-
bility', could mean nothing more and nothing less than what is stated
in Herbut's requirement, that sharp values are preserved (as Von Neu-
mann has shown in (1955) commuting magnitudes have all of their
eigenvalues in common). But if the physical relation of compatibility is
stronger than the commutativity of the corresponding observables the
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idea of 'respecting compatibility' would need to be reformulated since
now preservation of sharp values could not be used to fully describe
preservation of a physical relation of compatibility stronger than T-com-
patibility . It is possible to think of weakening the idea of sharp value
so that sharp values can arise also in connection with non-commuting
magnitudes, but it is far from clear how this idea could be implemented
in the framework of Luders' type derivations.
One could think of using Herbut's second derivation to improve on

this state of affairs. Indeed, as we have seen, Herbut's derivation is an
improvement insofar as it requires less information to be preserved in
measurement. But when Luders' rule is seen as a description of what
happens at the level of individual processes very similar questions about
the nature of non-interference arise anew. Herbut's second derivation
allows for an alternative reading of non-interference as a description
of a sequence of observables and a corresponding sequence of measure-
ments zeroing on a pure state. This approach provides a way of describ-
ing after the fact a plausible way of arriving at the state selected by
Luders' rule through a series of measurements satisfying some adequacy
condition. But that sort of analysis cannot provide an answer to the
question of why a single measurement ends up in the state described
by Luders' rule. Luders' rule would describe only the limit of an (infi-
nite) series of physical transformations, not the result of a single trans-
formation. Nor would this analysis explain why Luders' rule comes up
with the 'right' final state for remeasurement.
Furthermore, sharp value derivations have to confront an additional

problem. Let us assume for the sake of the argument that for each pair
of L-compatible magnitudes there is an individual state transformation
corresponding to the non-interfering measurement of one of the magni-
tudes, as would be required by Definition (2.3). In order to accept the
interpretation suggested by sharp-value derivations as a description of
individual state transformations, we would need to assume that there
is a transformation that is non-interfering 'simultaneously' with respect
to all relevant compatible pairs of magnitudes. This is an assumption
that is not obviously justified nor does it seem reasonable by itself. On
what grounds do we expect this transformation to exist? Why would
we expect that an 'ideal' (non-interfering) transformation exists at all
in the sense required by these derivations interpreted in terms of in-
dividual systems? According to Luders' type derivations there is no
underlying measurement of an all embracing maximal magnitude that
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would justify such a belief. This question would only be more pressing
if physical compatibility is a stronger relation than (the one represented
by) the commutativity of the corresponding magnitudes.
The 'real' quantum logical derivation of Friedman and Putnam claims

that the concept of ideal measurement is a purely logical concept. As
Hellman in (1981) has pointed out, however, it is not clear how to
represent conditional reasoning in quantum logic and the Sasaki-hook
provides only one of many possibilities for doing so. The equivalence
(E) presupposes the postulation of the Sasaki hook as generating a
privileged relation in quantum logic. This postulate, however, cannot
be justified but by appealing to principles that lie beyond the 'logic' of
the orthomodular structure. Here it is enough to notice that this deri-
vation presupposes the Hilbert space metric and to that extent the
derivation is redundant, since Luders' rule can clearly be derived under
this assumption without additional interpretational baggage (as Her-
but's first derivation shows).
Friedman and Putnam's point is that a quantum logical interpretation

allows us to derive Luders' rule whereas the Copenhagen interpretation
has to assume it as an ad hoc principle. But the problem of justifying
Luders' rule that they claim to address is the problem of trying to
characterize individual processes responsible for quantum statistics in
such a way that the statistics can be grounded, at least in principle, on
such individual processes. To the extent that quantum logic considers the
statistical structure as directly reflecting the structure of individual systems
(events) Luders' rule is simply assumed in the process. That is because
this statistical structure includes the Hilbert space metric and minimal
disturbance in that metric is equivalent to the choice of the Sasaki
conditional (see Hardegree 1976). Quantum logic cannot claim any
advantage from the possibility of deriving Luders' rule in quantum logic.
This derivation is just a lattice theoretical formulation of a mathematical
theorem (Herbut'sfirst theorem) which is available to all interpretations.
If all we are concerned with is the statistics of measurement results,

Herbut's derivation together with its statistical interpretation provides
a solid justification of Luders' rule. This is an important issue and one
that is definitely solved. The problem that is left is how to interpret
Luders' rule, if possible, as a description of a process corresponding to
a change in the state of an individual system, and how to justify such
an interpretation.
Luders' converse theorem suggests a way. Herbut's second theorem
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and Stairs' derivation can be seen as attempts to elaborate on this
suggestion by providing derivations in terms of the accumulation or
preservation of 'sharp values'. But I am claiming that these theorems
(as individual state derivations) fail in that the interpretation of Luders'
rule they try to justify is suggested by the statistical interpretation, but
there do not seem to be a firm basis for such an interpretation at
the level of individual processes. In particular the usual interpretation
assumes something that is not granted by the derivation, namely, that
the relation of compatibility respected by Luders' rule is (what I call
in the next section) T-compatibility. As it will be shown in the second
part of this paper such an assumption does not seem to be justifiable. A
natural construal of a relation of simultaneous measurability in quantum
mechanics leads us to a relation of physical compatibility that is not
the relation of compatibility presupposed by usual interpretations.
We have seen that different derivations of Luders' rule require differ-

ent presuppositions. Derivations most easily construed as assuming
statistical interpretations of the quantum mechanical state (the para-
digm of which is Herbut's first theorem) are rather simple and show
that the interpretation of the metric of operators provides a statistical
interpretation of Luders' rule. Sharp value derivations on the other
hand suggest (and usually are taken to support) the stronger claim that
they provide a physical derivation (interpretation) of Luders' rule that
takes a single system interpretation of state. I have argued that these
derivations do not justify such a strong physical interpretation of Lu-
ders' rule. In the following section I provide a formal analysis of the
relation of compatibility and the concept of ideality as they are implicit
in the derivations reviewed above. This will provide us with a 'map' to
guide us through the maze of different versions of Luders' rule, allowing
us to draw general conclusions and making more precise our earlier
discussion. This analysis as well as its relevance for my discussion of
Luders' rule was suggested to me by G. Hellman.

5. A FORMAL ANALYSIS OF COMPATIBILITY

Luders' rule is supposed to 'respect' or 'preserve' the relation of com-
patibility. If this is taken as statistically characterizing the physical
content of Luders' rule (as Luders seems to have intended) there should
be no additional quarrel. The derivations we have reviewed above
provide a firm basis for such a view. But the usual view is that Luders'
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rule describes a privileged class of state transformations that play a
fundamental role in the interpretation of the theory and for justifying
this view it is not sufficient to take Luders' rule to be a rule describing
state transformations respecting compatibility. The relation of compati-
bility at stake must be physically interpreted in such a way that the
preservation of this relation by Luders' rule can be justified.
There are several alternative ways of defining a relation of compati-

bility satisfying some minimal requirements. Some of these relations
are (or might be) physically relevant in the Hilbert space formulation
of quantum mechanics. In (1978) Hardegree has argued for the impor-
tance of a relation of 'partial compatibility' in order to understand
certain aspects of the process of measurement. This last relation corre-
sponds to what I call P-compatibility (see Definition (5.1) below).
Below M, are taken to be magnitudes, that is, orthonormal sets of
eigenvectors. The closed subspaces generated by a magnitude M, will
also be denoted by Mi.

(5.1) DEFINITION. M1 ~M2 =defMl is P-compatible with M2 if M1
p

and M2 have some eigenvectors in common.

(5.2) DEFINITION. M1 ~M=defMl is T-compatible with M2 if M1
T

and M2 have all eigenvectors in common.

(5.3) THEOREM
(i) Ml~M2~Ml~M2.

T P

(ii) Ml~M2::tMl~M2.
P T

A measurement transformation is a transformation Tta., r) = af where
a, is (an eigenvector representing) the initial state, r is the result of
measuring a magnitude M and af is an eigenstate of the measurement
result. We say that a measurement preserves (respects) a magnitude X
if for x E X, x E [ai) then x E [af). Here [x) is the principal filter genera-
ted by the element (ray) x (i.e., [x) is the set {y; x ~ y, where the
relation ~ stands for the relation of inclusion among closed subspaces}.
This definition makes use of the usual ambiguity between elements of
a Hilbert space and the generated one-dimensional subspaces (rays).
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(5.4) DEFINITION. A measurement of M, on a system in state a, is
P-ideal if it preserves all X, such that X is a magnitude P-compatible
with M.

(5.5) DEFINITION. A measurement of M, on a system in state a, is
T-ideal if it preserves all X, such that X is a magnitude T-compatible
with M.

P-ideality and T-ideality are special cases of a more general (mathemat-
ically and physically feasible) definition of ideality.

(5.6) DEFINITION. A W-ideal measurement is a measurement that
preserves all X, such that X is a T-compatible magnitude with M and
(that also preserves) a given set of magnitudes {XJ = W such that
Xi-,>M.

I'

A W-ideal measurement is a T-ideal measurement which in addition
preserves some partially compatible magnitudes. Even though the idea
of W-ideal measurement (and the implicit relation of W-compatibility)
might appear strange at first sight, consideration of this version of
ideality cannot be dismissed on a priori grounds. Physical reasons might
be invoked to select the set {Xj. One could very well make sense of
this idea in analogy with the existence of superselection rules; since as
in the case of the existence of superselection rules one could argue that
there is a set of magnitudes which have a privileged status in that
they do not only require T-preservation by measurement but also P-
preservation. Suppose M is such a quantity. The idea would be that if
we measure magnitude M then an ideal measurement preserves not
only all T-compatible magnitudes with M but it also preserves M' if M'
is P-compatible with M. We assume here, however, that, in accordance
with our discussion in Section 4, any (physically acceptable) concept of
ideal measurement includes T-ideality as special case.
The paradigmatic candidate for a concept of a physically ideal

measurement is suggested by Von Neumann's theorem (see 1955, chap.
III): Two magnitudes are simultaneously measurable if and only if their
corresponding operators commute.
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(5.7) DEFINITION. A measurement of M with initial state a is S-
ideal if it preserves all X, such that X is a magnitude simultaneously
measurable with M.

(5.8) THEOREM. For any R-concept of ideal measurement, where R
can stand for P, T, W, or S, M is R-ideal ~ M is T-ideal.
The proof follows immediately from definitions above and from the

fact that whenever A and Bare T-compatible then A and B are simul-
taneously measurable. Notice that this theorem only requires the 'easy'
direction of Von Neumann's theorem.

(5.9) DEFINITION SCHEMA. R-Luders ~def VS, S is a measurement
state transformation, S is R-ideal~S obeys Luders' rule.

The following is then immediate:

(5.10) THEOREM. T-Luders~R-Luders for R = P, W, or S.

This theorem provides a more precise statement in terms of ideal
measurements of the core of the sharp value derivations as these have
been formulated above.
Now I can make some of my earlier criticisms of the usual interpre-

tation more precise. Luders' rule describes ideal measurements in-
dependently of the physical interpretation of the concept of ideal
measurement as long as an ideal measurement satisfies the minimal
requirement that T-compatible magnitudes are preserved. But, if not
on the basis of Luders' rule, on what basis do we select a physically
privileged relation of compatibility which is supposed to be preserved
by individual measurement transformations? More importantly, how
can we justify such a selection of a compatibility relation without merely
postulating in an ad hoc manner the existence of such relation and the
fact that ideal (first-kind) measurements respect it, as opposed to any
other possible relation? As we have seen, the usual arguments for the
identification of such a relation in terms of minimal disturbance of
'sharp values' are far from conclusive. Furthermore, the usual interpre-
tation seems to be committed to the unwarranted assumption that the
relation to be respected is T-compatibility. Because if the relation to
be respected is stronger than T-compatibility the idea of characterizing
Luders' rule in terms of preservation of sharp values loses its intuitive
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appeal. Next I explore the possibility of emending the usual view by
arguing that indeed the physical relation of T-compatibility can be
singled out as the fundamental physical relation of compatibility that
Luders' rule is supposed to respect, by identifying T-compatibility with
the physical relation of simultaneous measurement in quantum mechan-
ics.

6. SIMULTANEOUS MEASURABILITY AND LUDERS' RULE

If we are able to interpret T-compatibility as a fundamental physical
relation for individual systems then we would in principle have a way
of understanding the physical significance of Luders' rule. Von Neu-
mann's theorem of simultaneous measurability (in 1955, chap. III)
provides what is usually taken as the basis for the view that T-compati-
bility is to be identified with simultaneous measurability. In this theorem
Von Neumann proved the equivalence between an implicit notion of
simultaneous measurability for observables and the commutativity of
the corresponding observables. If Von Neumann's proof could be ac-
cepted in reference to individual states then it would seem we would
have a way, at least in principle, of understanding the physical content
of Luders' rule in terms of individual state transformations that respect
the physically fundamental relation of simultaneous measurability. We
shall see however that Von Neumann's proof of his theorem relies on
a highly questionable assumption which can only be justified by as-
suming from the outset the Hilbert space structure. An alternative
proof of Von Neumann's theorem by T. Jordan appears to bypass the
criticism raised against Von Neumann's proof, but Jordan's proof will
be shown to be arbitrarily restrictive. Removing this arbitrariness leads
to a theory of joint measurements for non-compatible observables in a
sense which directly undermines the usual characterization of Luders'
rule.
For the proof of his compatibility theorem Von Neumann argued

that, given physical magnitudes (quantities) A and B, a new physical
magnitude A + B can be constructed on the basis of the additivity of
the eigenvalues of the corresponding observables. The new physical
magnitude A + B corresponds to an operator with eigenvalues a + b.
This assumes what can be called 'the postulate of additivity'. The
postulate of additivity is the claim that the addition of the results of
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measurement provides ground for the definition of a compound magni-
tude A + B which is supposed to represent the physical process of
simultaneous measurement. Once this postulate is accepted the physical
problem of characterizing simultaneous measurability is readily trans-
formed into a problem in Hilbert space theory, and the proof of the
theorem follows as a rather simple derivation from Von Neumann's
axioms.
Bell has argued, in the context of a discussion of hidden variable

theories (but see also Bell 1982), that if two operators Sx, S; (with
eigenvalues s; and Sy) do not commute then the sum observable repre-
sented by the operator Sx + S, need not have eigenvalues s; + Sy' Bell
presented the following example in (1982): For spin-ll2 particles: Let
P and Q be components of spin angular momentum in perpendicular
directions, P = S«, Q = Sy and let 0 be the component along an interme-
diate direction, 0 = (P + Q)/V2. The eigenvalues of 0, p, Q are all
magnitude 1/2 whereas Von Neumann's postulate would require
(:±:1/2:±:1/2)V2 = :±:1/V2. Thus, we have to conclude that Von Neu-
mann begs the question when he assumes his additivity postulate, since
only operators represented by commuting operators must satisfy his
axioms - others need not. Thus the interpretation of the physical re-
lation of compatibility as this would be required by the usual interpre-
tation of Luders' rule is not settled by Von Neumann.
T. Jordan takes in (1969) a different approach to the concept of

simultaneous measurability. On the basis of a simple definition of simul-
taneous measurability this approach seems to bypass the problems with
Von Neumann's theorem. Jordan provides the following explicit necess-
ary condition for simultaneous (joint) measurability: suppose A and B
represent quantities that are simultaneously measurable with unlimited
precision. Then for any real numbers x and y measurements can deter-
mine if the values of the quantities represented by A and B are either

Sx and Sy,
sx and >y,
>x and Sy,
>x and >y.

Jordan constructs a real measurable quantity with values 1, 2, 3, 4
corresponding to these four mutually exclusive possibilities. This quan-
tity is represented by the operator
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I[ + 212 + 313 + 414
where II, Iz; 13, 14 are mutually orthogonal projection operators such
that

I) + l: + 13+ 14= 1.

Now he proceeds to prove the following theorem.

(6.1) THEOREM. (Real) quantities that are simultaneously measur-
able with unlimited precision are represented by Hermitian operators
A,B, such that [A,B] = O.

The proof can be found in Jordan (1969, p. 87). It is a straightforward
proof in the Hilbert space framework. Jordan seems to provide a proof
of Von Neumann's theorem which would avoid the difficulties we found
with Van Neumann's original proof. But that is not the end of the
story. 1
Following the analysis presented by Muynck et aI., in (1979), I will

show that Jordan's assumption that magnitudes can be measured with
unlimited precision is arbitrarily restrictive and that removing it leads
to the possibility of formulating joint measurement schemes for non-
compatible measurements in a sense that undermines the identification
of T-compatibility with simultaneous measurability in the strong sense
required by usual interpretations of Luders' rule.
Let us suppose that a system S described by a state function interacts

with two measuring apparatuses (for observables) A and B. Let us
symbolize the measurement procedure by TA,s. The magnitudes are
represented by Hermitian operators A and B with eigenvalues and
eigenvectors given by

A"m=amCim
Bf3n = bnf3n-

Following the usual (Von Neumann's) analysis of the evolution of the
combined system on measurement, the evolution of system S plus the
A- and B-apparatuses is assumed to take place according to the scheme

TAB

(M1) ljJi= ljJ@xo@go-'ljJf=2:Stmn(IjJ,TA,s)cPt@Om@nn
trn.n

in which {cPt}, {Om}, {nn} are complete orthonormal sets (in Hilbert space
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H) representing S, A and B respectively. XO and ~o are the initial states
of the A and B meters respectively. Slmn(ljJ, TAos) are coefficients de-
pending on the initial state ljJi of the object system and possibly on the
measurement procedure TAos,
The joint probability distribution W(am, b.; 1jJ; TAos) for A and B may

be then defined as the expectation value of the projection operators
Pm @ Qn == IOm)(Qml Tln)( TIn) in the final state IjJb thus yielding

(M2) W(an" b.; 1jJ; TAoS) = 2: ISlm,,(IjJ, TAoS)!2

2: W(an" btl; 1jJ; TAoS) = 1.
rn cn

In order to obtain a physically satisfactory definition of joint measure-
ment Muynck et al., want to impose restrictions on the scheme TA,s,
One obvious restriction is that the transformation TAos, being a quan-
tum mechanical process, should be linear. What additional restrictions
can be imposed on the scheme? Muynck et al., investigate the following
restriction: in the final state the relevant measuring apparatus should
have the corresponding pointer position with certainty if S is initially
in a state described by an eigenfunction of A and B. This represents
the requirement that the A-measurement is not disturbed by the B-
measurement (and vice versa). Omitting in the notation the dependence
on TA,S this requirement is expressed in the coefficients by the relations

(M3) Slmn(ar) = l)mr(Slrn(ar»; Slmn(f3s) = l)ns(Slms(f3s»
or equivalently

(M3') Slmn( 1jJ)= (amlljJ)Slmn( am) = (f3nlljJslmn(f3n)'

Park and Margenau (in 1973) have shown that a scheme obeying this
requirement is inconsistent if A and B do not commute. They draw the
conclusion that a scheme (M1) for joint measurement is not suitable
for expressing joint measurement of observables with non-commuting
operators. As Muynck et al., show, however, it is not scheme (M1)
that is to blame but rather the requirement (M3).
From (M2) and (M3) it follows that

(M4a)

(M4b)

W(am, b.; 1jJ)= I(am, 1jJ)12W(am, bn; am)

= 1(f3nlljJ)12W(am, b.; f3n)

which leads to the marginal distributions
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(MS)
~ W(am, bn; ljJ) = l<amlljJ)12
n

m

and thus, from (M4) and (MS) we get

The joint probability distribution W(am, b.: ljJ) is then fully determined
by (M4) and (M6) provided (M4a) and (M4b) are equal. As Bub has
shown (see Bub 1974, chap. 4) this requirement can only be fulfilled if
[A, B] = 0, thus accounting for the alleged inconsistency of the scheme
(Ml). It is then clear that if joint probability distributions are to be
defined in quantum mechanics for non-commuting magnitudes either
(Ml) or (M4) must be weakened. It is not difficult to see that (Ml) by
itself does not impose any additional requirement on the quantum
mechanical scheme (other than linearity) for single measurements. The
culprit then must be (M4).
Now, suppose we perform an ideal (preparatory) single measurement

of A and subsequently we measure A and B jointly on the microsystems
of a subensemble by a given pure state after the first measurement.
Then the right-hand side of (M4a) may be interpreted as the joint
probability distribution of A and B corresponding to this procedure as
a whole. However (M4b) may be interpreted in an analogous way as
the joint probability distribution of a joint measurement of A and B
preceded by an (ideal) single measurement of B.
If as Muynck et al. propose, whenever [A, B] "'"° measurements of

A and B are to be considered as totally different physical procedures,
it seems we do not have much reason to expect that the two different
procedures will give the same result. This provides a powerful insight
into the fact that equality of (4a) and (4b) involves the commutativity
of A and B; and that a joint measurement scheme incorporating this
equality is bound to be inconsistent with joint measurement of non-
commuting magnitudes.
Muynck et aI., go on to explore requirements milder than the (M4)

requirement. It is not important for us here to discuss and evaluate
their proposed formal scheme. What is important for our problem is to
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realize that a distinction must be made (or at least can be made) between
a relation of non-disturbance and a relation of simultaneous (joint)
measurement.
If we assume that joint probability distributions are functions of the

statistical state alone, as Park and Margenau, as well as Jordan (follow-
ing Von Neumann) do, a purely mathematical definition of simultane-
ous (joint) measurement is possible. That is so because if joint distribu-
tions are functions of state alone the experimental situation is not relevant
for the joint measurement. This is the key assumption that Muynck et
al., have made explicit in their analysis of the concept of simultaneous
measurability. It is this assumption that allows us to extend the unlim-
ited precision of measurement in the case of single measurement to joint
measurement. It is not surprising then that, as I show next, Jordan's
requirement of unlimited precision implies Muynck's requirement of
non-disturbance. I start by formulating both requirements explicitly.

Requirement D (Muynck's requirement). In the final state the relevant
measurement instrument should have the corresponding pointer pos-
ition with certainty if S is initially in a state described by an eigenfunc-
tion of A or B.

Requirement J (Jordan's requirement). If cf> is a vector of length one for
which II cf> #- 0 then the probability that the quantities represented by
A and B have values ~x and ~y (for any x, y real numbers) is II1cf>1 =
Iell I = 1.
Now, if S is initially described by an eigenfunction l/J of A or B in a

simultaneous measurement of A and B, then l/J (normalized) is a vector
satisfying the condition for the vector cf> given in requirement J. Accord-
ing to this requirement then the probability is 1 that the quantity A has
value corresponding to eigenfunction l/J. Whence (assuming that the
measurement is perfectly revealing) requirement J implies requirement
D.
Thus a physical relation of simultaneous measurability relevant for

an individual state interpretation of Luders' rule cannot be identified
with T-compatibility, or at least, as it has been shown, this cannot be
done in the strong sense presupposed by usual interpretations of Luders'
rule. The physical interpretation of Luders' rule as a rule respecting a
physical relation of simultaneous measurability can be based on the
derivation sketched in Section 5, but the notion of minimal disturbance
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(or ideality) that plays a role in this argument is not independently
grounded on a physical notion of (ideal) individual state transformation.
The physical significance of s-ideality (see Definition 5.7 and Theorem
5.8) appears to be limited to a statistical interpretation of the Hilbert
space metric.

7. CONCLUSION

It has been argued that an important distinction must be made between
two problems of justification of Luders' rule. The justification of Luders'
rule as a purely statistical rule is straightforward. Luders' rule can be
proved to be the best statistical estimator of the final state conditional
on the result of measurement. In that sense the rule is a purely mathem-
atical result available to all interpretations. The problem of justification
that remains is the problem of understanding the physical content of
Luders' rule, if any, as a description of individual state transformations.
The present investigation has disclosed a fundamental tension in the
underpinnings of usual interpretations of Luders' rule. Luders' rule can
be derived within the Hilbert space framework under the assumption
that commutativity implies compatibility (Theorem 5.10), but the justi-
fication of the usual semantic interpretation of Luders' rule would
seem to require also the converse direction, that compatibility implies
commutativity. This tension, it seems to me, underlines the fact that
usual interpretations are misled by Luders' converse type derivations
in their attempt to grasp the physical content of Luders' rule. I have
shown in this paper that usual derivations can only be seen as sug-
gestions for a possible interpretation in terms of the idea of preserving
or respecting a physical relation of compatibility. The most natural way
of making sense of this idea is to think of Luders' rule as a state
transformation that respects 'sharp-values'. As Herbut has shown this
is sufficient for the derivation of Luders' rule. But we cannot be sure
that 'sharp-values' have more than statistical significance. A usual im-
plicit suggestion to overcome this difficulty is that Luders' rule can be
seen as preserving a fundamental relation of simultaneous measurability
which can be identified with T-compatibility. But I have shown that
there are good arguments supporting the view that, at least in the
strong sense required by the usual interpretation of Luders' rule, the
physical relation of simultaneous measurability is stronger than T-com-
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patibility. In this case the usual interpretation of Luders' rule as a
transformation preserving sharp-values is inadequate.
I am not suggesting that Luders' rule has no physical content as a

description of individual measurement transformations, but rather that
the usual approach to this content is at best inconclusive and/or unin-
formative. In Martinez (1987) I suggest a quite different approach to
the physical content of Luders' rule based on an altogether different
type of derivation.
The above analysis also points the way to another serious difficulty

of the usual interpretation of Luders' rule. The usual view takes Luders'
rule as describing transformations that are subject to dynamical con-
straints (via simultaneous measurability for example). There are import-
ant arguments in the literature that suggest that these constraints are
too strong, that there may not be any transformation satisfying the
implicit constraints (see, for example, the paper by Stein and Shimony
1971). This problem, what can be called the problem of vacuity is a
serious problem to the usual interpretation of Luders' rule. The prob-
lem of vacuity would only be more severe if the physical relation to be
respected by Luders' rule is a weaker relation than T-compatibility (see
Theorem 5.10).
It might be thought that I have left out of consideration an important

alternative reading of the usual approach, the view that Luders' rule
describes 'an approximation' which is 'ideal' in the sense that even
though there are no actual individual state transformations described
by it there are sequences of measurements that approximate Luders'
rule with increasing accuracy. But for such a proposal to work a physi-
cally significant criterion of minimal disturbance for individual transfor-
mations must be given, and the arguments that I have provided against
the 'literal' version of the usual interpretation can be made, mutatis
mutandi, against the view that Luders' rule provides only a criterion of
approximation. The suggestion that we take the metric (of the Hilbert
space of operators) as a measure of an approximation for individual
systems is only that, a suggestion, and I have shown that there is no
obvious way in which such suggestions can be transformed into an
argument.

NOTES

* This paper consists for the most part in material drawn from my dissertation (Martinez
1987) directed by Linda Wessels and Geoffrey Hellman.
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1 The reader might wonder whether Park and Margenau's theory of simultaneous
measurement (Park and Margenau 1968) is relevant to the issue here discussed. But it is
sufficient to point out that independently of any other consideration Park and Margenau's
notion of simultaneous measurement, even if we were willing to accept questionable
assumptions of their approach, would be irrelevant to the question of the physical
interpretation of Luders' rule as a description of individual state transformations. Park
and Margenau's notion of simultaneous measurability, as this notion is implicit in ex-
amples of the time-of-flight method, is at best approximate for any finite time t.
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