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Abstract. Feferman’s argument presented in 1977 seemed to block any possibility for
category theory to become a serious contender in the foundational game. According to Feferman, two
obstacles stand in the way: one logical and the other psychological. We address both obstacles in this
paper, arguing that although Feferman’s argument is indeed convincing in a certain context, it can be
dissolved entirely by modifying the context appropriately.

§1. Introduction: Feferman’s challenge in 1977.

To avoid misunderstanding, let me repeat that I am not arguing for
accepting current set-theoretical foundations of mathematics. Rather, it
is that on the platonist point of view of mathematics something like
present systems of set theory must be prior to any categorical founda-
tions. More generally, on any view of abstract mathematics priority must
lie with notions of operation and collection.(Feferman, 1977, p. 154)
[I emphasize the second part.]

My goal in this paper is to argue that indeed, on any view of abstract mathematics, prior-
ity must lie with notions of operation and collection, but that, contrary to what
Feferman claimed, categories play an indispensable role in such a foundational framework.
Put differently, I claim that categories are at the core of an alternative formalization of the
naive conception of collections and operations.1

Here is the passage that expresses clearly and directly Feferman’s argument:

The point is simply that when explaining the general notion of structure
and of particular kinds of structure such as groups, rings, categories, etc.
we implicitly presume as understood the idea of operation and collec-
tion; ... Thus at each step we must make use of unstructured notions of
operation and collection to explain the structural notions to be studied.
The logical and psychological priority if not primacy of the notions of
operation and collection is thus evident. (Feferman, 1977, p. 150)

Received: March 28, 2012.
1 Notice that Feferman argues that on the platonist point of view, there must be something prior

to category theory. It is far from clear that a categorical standpoint is wedded to a platonist point
of view. Indeed, it is entirely possible to develop constructive foundations of mathematics in a
categorical framework. I will ignore this point in this paper and rather focus on the more central
issue raised by Feferman.
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A series of remarks is in order.

• First, notice that Feferman places the notion of category alongside those of groups,
rings, etc., in other words alongside algebraic notions. Although this is at first sight
perfectly reasonable, since, on the one hand, the concept of category can be seen as
a generalization of the concept of monoid (and the notion of preorder), and, on the
other hand, the notion of category is, in a precise technical sense of categorical logic,
an algebraic notion, it is debatable in the context of foundational research. Indeed,
in that context, one has to consider not an individual category,2 but categories of
categories and the latter turns out to be a rather different beast, a rich mixture of
algebra and geometry.

• Second, the argument rests on two interrelated understandings of priority: the log-
ically prior and the psychologically prior. The first argument is that the notions of
operation and collection are logically prior to any structured concept and since the
notion of category is a structured concept, it cannot be used to define the former
notions. I will not challenge this argument directly. I do want to underline, however,
that it is more complex and subtle than it appears. At the time when Feferman wrote
his paper and even today, a lot of implicit theoretical developments were and still
are automatically attached to the argument: standard ZF set theory, first-order logic,
model theory, and the development of modern mathematics. Nothing in all this tells
us precisely what is meant by abstract mathematics and its epistemology. If the
expression “abstract mathematics” merely denotes set-based mathematics and the
latter can only be captured by ZF set theory, then, clearly, the argument is begging
the question. One of the larger themes I will touch upon in this paper is precisely the
fact that abstract mathematics, like the concept of mathematical structure, is open,
in the sense that what it denotes changes with respect to the theoretical tools used to
interpret and illustrate the concept. For instance, if abstract mathematics is obtained
from a process of mathematical abstraction and if this latter process goes from the
complex to the simple, it is entirely possible that in order to explain certain abstract
notions, one has to start from complex, structured contexts, in sharp contrast with
what Feferman is here claiming.

• Third, even if the latter possibility might not seem palatable from a logical point
of view—after all, the process of abstraction has been considered suspicious by
logicians from Frege onwards—it might still be defensible from a psychological
point of view. It might be entirely reasonable to claim that, at least during the
period before someone has fully assimilated logic and logical notions, that a process
of abstraction plays an essential role in our understanding of important abstract
mathematical concepts. One might even go as far as claiming that understanding
formal logic itself is an illustration of a process of abstraction, that is, going from a
rich, complex context, to a more simple but polysemous context.

Be that as it may, Feferman is essentially correct. The main problem is that in an abstract
framework, one has to start with a notion of abstract set and operation on those and I claim
that the standard formal set theories, be it ZF, NBG, or Morse–Kelley, simply do not refer
to abstract sets.

2 I should immediately point out that even in the practice of category theory, one usually considers
categories and functors between them. This is inescapable.
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Furthermore, I also believe that the logical dimension has to be separated from the
psychological dimension. Mostly because, as Feferman has underlined, we are dealing with
abstract mathematics. Although I won’t be able to argue for this claim in the present paper,
I do believe that as far as abstract mathematics is concerned, Feferman has the order of
presentation backwards. We simply do not explain group theory to students by starting with
sets and operations. We don’t teach group theory in grade 10. We teach geometry, algebra,
and, later, number theory. Then, once we believe that students have grasped the concepts
involved in these contexts, we introduce the idea of a group and give the abstract definition.
I thus separate the order of definition from the order of explanation, which very often has
more to do with the function the concept plays in the overall system of mathematics. From
the abstract point of view, one can then clarify various results, shed some light on various
theories and theorems and even reconstruct a field completely from that perspective. The
“explanation”—as Feferman calls it, whatever this expression means in this context—is
not provided by the abstract definition, but rather by the various instances of the concepts
in different mathematical contexts. In general, the relationships between the abstract and
the “concrete” are rather subtle. One should take a careful look at the rise of abstract group
theory as well as the role of representation theory—which we take to be the opposite of the
process of abstraction—in the latter to see how they interact and contribute to one another.
(See, for instance, Curtis, 1999; Wussing, 1984.) Finally, and I think this aspect has to be
kept in mind also, it is entirely possible that various concepts come to be understood in
parallel so to speak, by an interaction between them. Thus, it is theoretically plausible that
our understanding of set theory and first-order logic, in fact, goes hand in hand in some
sort of feedback mechanism. I will leave these empirical speculations aside. However, I
hope the moral is clear: thinking in terms of priority issues might be considerably subtle
and complex when we are dealing with understanding.

To recapitulate: I want to show that it is possible to develop an alternative conception of
the notions of collections and operations such that categories play a crucial conceptual role
in this conception. For this conception to be developed theoretically, one has to modify
certain aspects of first-order logic, the conception of sets and also the notion of categories.
The main elements of the motivation and of the required modifications are taken from
Makkai (1998). I will then move to the issue of psychological priority and make a series of
remarks. My goal in these latter sections is merely to make room for alternatives that seem
to be discarded by Feferman.

§2. Logical priority. In the 1960s and 1970s, when one thought of sets and categories,
one thought of classical first-order logic, ZF(C), and the usual definition of category in
terms of Hom-sets. If these specific notions are the only ones available, then Feferman
wins the argument and this paper is over, or almost. It would seem that the only issue
left in these circumstances is the question of size: can we extend standard ZF(C) to make
room for large categories in a “natural” way? Although this is certainly an interesting and
important issue, I will simply ignore it altogether, for I believe that one has now to attend
to more fundamental conceptual aspects of the situation. After all, it is far from clear that
ZF(C) is an appropriate framework for abstract mathematics, that is, that it is faithful to
the nature of abstract mathematics.3

3 In fact, from an historical point of view, one can claim that ZF(C) was developed in parallel to
the abstract approach to mathematics. See, for instance, Corry (1996). Sets played a crucial role
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I assume that we all have a naive, preformal, and rudimentary notion of set and that
we also have a naive, preformal, and rudimentary notion of operation. This is in fact
an empirical claim that seems to be reasonably well supported by recent inquiries in
the new field of cognitive mathematics. (See, for instance, Feigenson, 2011.) ZF(C) is a
sophisticated theoretical development of a specific encoding of the combinatorial aspects
of that notion, with many virtues but also with numerous drawbacks.4

Thus, my claim is that there is an alternative theoretical development of the naive notion
in which categories are inescapable. I am not claiming that category theory as it is provides
such a theoretical development, but that when one attends to specific features of a concep-
tion of abstract sets, the universe of mathematics thus arising comprises categories in its
bones.

How does one go about developing an alternative theoretical framework of the naive
conception of collection and operation? I submit that in order to have a theoretically useful
and valuable framework, one needs to develop three interrelated components, namely:

1. A logic with an explicit syntax;
2. A semantic universe;
3. A theory presented by some axioms written in the logical system or the deduction

system; the axioms should have, but it is certainly not required, some sort of imme-
diate plausibility with respect to the semantic universe.5

I assume that Feferman would agree with these desiderata and that what he has in mind
when he speaks of the set-theoretical foundations (on the platonist point of view) is the
usual combination of 1) classical first-order logic with its usual syntax; 2) the cumulative
hierarchy; and 3) the axioms of ZF(C). I believe that as I write this paper, researchers
in categorical foundations would agree that any categorical framework has to rest on
three similar components. Thus, I believe that any category theorist who is sensitive to
foundational issues would claim that the underlying logic has to be (more or less) modified,
that the universe of interpretation has to have a different structure than the cumulative
hierarchy, and that the axioms presented have to be based on a different notion of set than
the one usually assumed by ZF(C). Then, one has to argue that these modifications are
still playing the same role as that played by classical first-order logic, the axioms of ZF,
and the cumulative hierarchy. I am not claiming that category theorists would all agree
on how these modifications have to be made. Indeed, there might be unending debates

in the development of the later and I am not denying that. I am claiming that ZF(C), the specific
theory, is not faithful to the abstract approach.

4 One of the most interesting properties of ZF is in fact revealed by a categorical analysis of its
features as a certain algebra: it turns out to be universal among a class of algebras. See Joyal
& Moerdijk (1995). I believe that this is one of the strengths of category theory: the notion of
universal morphisms should certainly be at the center of any cognitive analysis of mathematical
concepts and even cognition in general. See Macnamara & Reyes (1994).

5 Although I won’t argue for this claim here, I think that there are very good reasons why these
three components are present. They are the result of the development of foundational research in
the twentieth century and should now be seen as norms for mathematical knowledge. I would have
to argue for each one of these components and show what its contribution as a norm amounts to.
I will leave this part to another paper and merely assume that there is today an implicit consensus
on these norms, at least when they are considered from a sufficiently general angle and from a
foundational point of view.
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regarding various details but also with respect to fundamental aspects of the larger or global
framework.6

I will argue here for one such series of modifications. In the framework that I will
articulate, one can stick to first-order logic, but with a slightly different syntax, one can start
with a certain notion of abstract set and introduce categorical universes naturally. Notice,
however, that I will not present axioms, that is, a specific theory. I will merely sketch the
conceptual motivation underlying such a program. Its implementation might in fact vary
somewhat according to some decisions regarding specific aspects of the syntax and the
semantics. What I will try to underline is the fact that when one attends to the abstract
nature of mathematics—and I would be tempted to say on any conception of abstract
mathematics—as exhibited by category theory, one has to slightly modify the underlying
logic, the notion of set and the notion of category.

2.1. Logic. Here is a platitude: first-order logic has a history.7 But that platitude is
relevant to our story. It took some times before the precise formulation of first-order logic
(FOL) crystallized and found its niche in the foundational landscape.

Presenting in a nutshell the results of our quick historical overview, we
can say that around 1900 logic was conceived as a theory of sentences,
sets and relations; after World War I and as late as 1930 the exemplar of
modern logic was a higher-order system, simple type theory; and only
around 1940-1950 did the community of logicians as a whole come to
agree that the paradigm logical system is FOL. (Ferreirós, 2001, p. 448)

We tend to forget that the development and status of FOL is intimately linked to the
formalization of set theory and the crystallization of foundational studies in the framework
of ZF. It is not entirely absurd to affirm that FOL and ZF were two sides of the same
constitutive movement. FOL was enough to formalize set theories like ZF and the latter was
enough to express and prove basic properties of FOL. Furthermore, modern mathematics
could be written and developed rigorously in this framework.

The earliest systems formalized in an elementary way, within FOL, were
actually axiom systems for set theory — the Zermelo system with the
work of Skolem, and Von Neumann’s system in his own work. During
the 1930s several authors emphasized the fact that an axiomatization of
set theory, and therefore the foundations of abstract mathematics, only
required the FOL system. This was the case with Tarski . . . , Quine . . . ,
Bernays . . . , Gödel, . . . . (Ferreirós, 2001, p. 448)

Notice that logicians of that period, like Feferman, assimilated the axiomatization of set
theory with the foundations of abstract mathematics. I believe that this assimilation made
perfect sense in the 1930s and that many mathematicians identified abstract or modern

6 For a brief overview of some of the views defended within the community, see Landry & Marquis
(2005). I should also mention the fact that many category theorists would probably be wiling to
endorse some form of pluralism with respect to the foundations of mathematics. I will also ignore
these important issues here. For more on pluralism in the foundations of mathematics, see for
instance Hellman & Bell (2006).

7 Some standard references are Moore (1987, 1988).
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mathematics with the set-based mathematics developed at that time. There was, however,
a hiatus introduced between the practice of abstract mathematics and the foundational
research. In some sense, the latter still had deep roots in nineteenth century mathemat-
ics via the works of Frege, Peano, and Russell & Whitehead. This divergence increased
considerably with the introduction of categorical methods in algebraic geometry, homo-
logical algebra, algebraic topology, and homotopy theory in the 1960s, allowing various
mathematicians to realize, with hindsight, that set theoretical foundations were not faithful
to the abstract character of modern mathematics.

As Ferreiros rightly emphasizes and is well-known, sets have been for a long period of
time considered as being a part of logic. The roots of this identification are, again according
to Ferreiros, probably linguistic.

This strong tendency to regard classes or sets as a part of logic, from
about 1850, can be explained briefly as follows. The copula has three
different meanings, carefully analyzed by Peano and Frege. As Peano
said, we have the meaning of identity, the meaning of membership, and
the meaning of inclusion, and one should very carefully differentiate
them (otherwise one gets into contradictions). The first meaning justifies
considering the theory of identity as a part of elementary logic; even
today we frequently employ FOL with identity as a logical framework.
On the other hand, membership and inclusion are basic relations of set
theory; quite naturally, then, set theory belongs to logic. This standpoint
was still defended or at least represented by Quine and Tarski as late as
1940. (Ferreirós, 2001, p. 464)

Category theory introduces a new, original linguistic component in mathematics: the
language of arrows, commutative diagrams and, in the case of monoidal categories and in
the higher-dimensional case, of geometric transformations of diagrams. Although these
were for a long time considered to be merely linguistic devices, they should be seen
as genuine conceptual ingredients of mathematical knowledge which capture conceptual
dependencies. Thus, in the same way that the theoretical development of the combinatorial
conception of set rested on the formal distinctions between identity, membership, and
inclusion, the theoretical development of an abstract notion of set forces us to modify in
subtle but crucial manners the formalizations of identity, membership, and inclusion. Cate-
gory theory requires a completely original articulation of identities between mathematical
entities of various kinds and this articulation has to be clarified and implemented in the
syntax right from the start. Thus, in the same way that FOL and standard formulations
of set theory have developed together to give us our current foundational framework, one
has to devise the modified logic together with the modified set theory, make the necessary
adjustments to both of them to find the appropriate fit between them.

Thus, four components of logic have to be modified to capture the abstract character of
contemporary mathematics. First, logic has to be multisorted or typed; second, one has to
introduce the notion of a context (for terms and formulas); third, the notion of dependent
sort or of conceptual dependence must be incorporated in the logical framework right
from the start; and fourth, the notion of identity has to receive special attention, since it is
articulated differently in a categorical framework and, I should add, in a way that appears to
be faithful to the abstract nature of contemporary mathematics. I will not give full technical
expositions of these four components. Rather, I will try to motivate these modifications and
give pointers in the literature for more technical presentations.
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2.1.1. Multisorted logic. As soon as one tries to develop logic in a categorical frame-
work, one has to introduce sorts or types, which we will denote by X, Y, Z , . . .. Traditional
first-order logic becomes a special case in which there is but one sort, the usual domain of
interpretation. This is thus a natural generalization of the standard Tarskian semantics.
Although sorts arise naturally in a categorical framework, there is nonetheless another
motivation to work in such a framework. Indeed, in a context of abstract mathematics, one
considers entities of different kinds, each kind having its own criterion of identity and the
sorts reflect this situation.

A multisorted language has a slightly different syntax and, in this case, certain gram-
matical choices and rules are introduced. Thus, one has right from the start to declare the
variables, that is, to stipulate that a given variable x is of a given sort X . This is usually
written x : X . These declarations are not propositions, they are part of the grammar of
the language. In other words, one does not assert x : X . It follows that one cannot write
¬(x : X), for only a proposition can be negated. The latter is simply not grammatical,
and therefore meaningless. This simple fact underlines the basic differences with the usual
syntax of set theory with the membership relation. Notice also that since we are still in
first-order logic, variables are for individuals. There are no variables for higher-order types
or sorts.

2.1.2. Free logic and Contexts. This is also a slight modification of the logic that arises
naturally when logic is interpreted in a categorical framework. Indeed, in a category one
can have empty sorts, whereas the latter is always ignored in a classical setting. There are
of course numerous ways of dealing with empty sorts, but category theorists essentially
retained two options. The first option rests on the introduction of an existence predicate
E and one reads Ex as “x exists.” Axioms relating the predicate to the other aspects of the
language are then introduced. (See Fourman, 1977; Fourman & Scott, 1979; Scott, 1979.)
The second option consists in making a slight modification to the syntax and the entailment
relation and is somewhat more general than the first. (See Marquis & Reyes, 2011 for some
of the motivation and the history.)

The definition is very simple and straightforward: a context is a finite list (or set) �x =
x1, . . . , xn of distinct variables, where n = 0 is admitted. Given any formula φ of our
language, the free variables of φ, usually denoted by Var(φ), is a context.

A term t and a formula φ have to be interpreted in a context �x . This is spelled out
by recursion on the complexity of the term and of the formula φ. The notion of logical
consequence is also defined with respect to a context �x . A sequent is a sequence of symbols
of the form (φ ��x ψ), where φ and ψ are formulas and �x is a context containing all the free
variables of φ and ψ . As I have already mentioned, the interpretation of these ingredients
in categories then becomes almost automatic. (See, for instance, Makkai & Reyes, 1977 or
Johnstone, 2002 for details.)

In practice, contexts introduce certain constraints in the grammar and the logic of the
system which turn out to be important, especially when they are used in a system of
dependent sorts, to which we now turn.

2.1.3. Dependent sorts. Considering sorts and contexts arise naturally and are natural
adjustments to the standard framework to do logic in categories. The notion of dependent
sorts, although as natural, has a different flavor and is not an intrinsic part of categorical
logic. The main, simple, idea is that some sorts depend upon other sorts. One standard
example in mathematical practice is the notion of an indexed family of sets or structures
of some kind. Thus, it is very common to consider a family {Xi }i∈I of objects of a certain
kind, which can easily seen to be another way of writing that there is a morphism X → I ,
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which indicates the dependence. In the terminology of dependent sorts, one says that the
family of sorts Xi depends upon the sort I . Dependent sorts thus underly basic mathemati-
cal constructions. What we are doing here is to push the dependence relations in the syntax.
It turns out to have an important impact on the definition of various concepts and brings to
the forth (logical) priority issues!

Let us illustrate some of the simple dependences that arise. As Feferman himself has
underlined, operations are fundamental in mathematics and they are usually represented
by functions between collections: f : X → Y . In the language of dependent sorts, one
would say that f is of the sort Mor(X, Y ). However, there is an implicit order in this
declaration. It has to be specified that X, Y : Object and then that f : Mor(X, Y ). Thus
in certain approaches, this would yield an explicit presentation of the dependence between
the various concepts involved in the foundational framework.

2.1.4. Identity. This is perhaps the most delicate and subtle issue. Identity is usually
added to first-order logic as a primitive and logical relation satisfying the usual properties
of reflexivity, symmetry, and transitivity. When one turns to sets in ZF, identity is cap-
tured by the axiom of extensionality. This is precisely where certain aspects of abstract
mathematics escape the standard analysis or explication in terms of ZF-sets, or any other
notion of set based on extensionality. (For more, see Marquis, 2011.) I will give a specific
example in the next section, but it seems to me that the failure of Feferman’s argument
rests on this specific aspect of the situation. Feferman failed to notice that, on any view of
abstract mathematics, the notion of identity has a rich, complex structure which is not prior
to the abstract objects present. I will start by giving certain general remarks about identities
in categories to illustrate what I have in mind.

Recall that the notion of isomorphism is directly defined in the language of categories:
two objects X and Y of a categoryC are said to be isomorphic, denoted as usual by X ∼= Y ,
if there is an isomorphism f : X → Y between them, that is, a morphism f : X → Y and
a morphism g : Y → X such that f ◦ g = idY and g ◦ f = idX .

This data can be displayed in the following diagram:

XXXXidXg◦ f X Y

f

X Y

g

YYYY idY f ◦g

Very often in an abstract framework, results are proved “up to isomorphism,” that is, if
something is proved of a given object X , then it holds for any other object Y isomorphic to
X . More formally, this can be written thus: given a property P of the objects under study,
if P(X) and X ∼= Y , then P(Y ). This is simply a form of Leibniz’s principle. Two elements
immediately stand out in this formulation: first, one has to have a way of determining what
is a meaningful property P for the objects of the given sort; second, the proper notion
of isomorphism for objects of the given sort has to be determined too.8 In fact, it might
be wise to replace the term “isomorphism” by a more neutral term that evokes a type
of identity. Notice that one could stipulate that once the proper criterion of identity has
been discovered, then the meaningful properties are precisely those that satisfy Leibniz’s
principle. I would even dare suggest that the latter is a key property of what it means to be

8 This is not as trivial as it might sound. For instance, it took a surprisingly long time for
mathematicians to carve out the notion of homeomorphism between topological spaces. See
Moore (2007) for an historical exposition.
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abstract for mathematical objects.9 If, moreover, this criterion of identity can be determined
on a logical basis, then one can indeed determine the meaningful properties in a systematic
manner. We will come back to this important point in a later section.

For many mathematicians, being isomorphic is precisely what being abstract amounts
to. This means that X and Y are, from an abstract point of view, essentially the same. In
many cases, however, one does not want to “identify” isomorphic objects, but rather to
keep the isomorphism as indicating one of the ways that the objects can be considered “the
same.” For the isomorphism very often contain relevant and revealing information about
the objects. In fact, in many cases, one wants to consider all the isomorphisms between
two objects, and more globally, the groupoid of isomorphism between objects of the same
sort.

As is well-known, the set-theoretical notion of isomorphism fails as a criterion of iden-
tity for categories themselves. As was pointed out for the first time by Grothendieck in
the 1950s, the proper notion of identity for categories is the notion of equivalence of
categories.10 Recall the definition: an equivalence between categories C and D is a pair
of functors F : C → D and G : D → C, together with two natural isomorphisms
α : idC → G ◦ F and β : F ◦ G → idD. Notice that we have replaced the equalities in the
notion of isomorphism by isomorphisms! Thus, the foregoing diagram for isomorphisms
can be slightly modified to represent the situation thusly:

CCCCidCG◦F C D

F

C D

G

DDDD idD F◦G

Equalities have not entirely disappeared from the picture however: there are new iden-
tities in this diagram, although they are not exhibited. Indeed, since α and β are (natural,
but I won’t explain what this mean here) isomorphisms, one has to have α ◦ α−1 = idG◦F ,
α−1 ◦ α = ididC , β−1 ◦ β = idF◦G , and β ◦ β−1 = ididD . Thus, the equalities reappear at
a “higher-level,” so to speak and the identities below this highest level are isomorphisms.

And the process does not step there: the equalities between the natural isomorphisms
could themselves be replaced by natural isomorphisms, thus going one level up, and so on.
Although this idea seems to be a pointless game at first, in turns out to be conceptually
well-motivated, as I will indicate in a later section.

What this shows is that a foundational framework adequate for abstract mathematics has
to make room for these various notions of identity in one way or another. Put differently,
there is no unique, global, and universal relation of identity for abstract objects. But as
we will indicate later, there is a uniformity between these various criteria of identity, a
fundamental feature of abstract mathematics that the universe of ZF-sets does not capture
directly at the level of the principle of extensionality.

2.2. Set. All the foregoing considerations are necessary adjustments that have to be
made to logic if it has to cover the abstract nature of mathematics, in particular the notion
of abstract set. This is clearly the key component of our argument. I claim that Feferman
had something like the standard ZF notion of set in mind when he articulated his argument

9 I will develop this idea elsewhere. As it should be obvious by now, I think that a proper analysis
of what it is to be abstract for mathematical objects is long overdue.

10 See Krömer (2007) for more details on this point.
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and failed to see that category theory rests on a different notion of set, namely the abstract
notion.

Let me first illustrate why the standard notion of set is inadequate to capture the abstract
nature of contemporary mathematics.11 Consider two abstract groups G and H . Suppose
we want to define an operation G � H on groups and suppose we want the underlying set
of G � H to be G ∪ H . The main problem, from the abstract point of view, is that given
this definition the new operation G � H cannot be invariant under isomorphism. Indeed,
to be invariant in this case means that

G ∼= G ′ and H ∼= H ′ ⇒ G � H ∼= G ′ � H ′.

But clearly, with standard sets, the union operation will not provide the proper answer for
the respective underlying sets. In other words, the operation cannot satisfy this condition
for cardinality reasons. In fact, the traditional union operation does not even make sense
for abstract sets! This can be seen at the level of the grammar of the language already. The
usual union is defined thus:

x ∈ X ∪ Y ⇔ x ∈ X ∨ x ∈ Y.

However, as we have seen, this proposition cannot be written down in a multisorted formal
system, for the variable x is untyped in this sentence. We should immediately point out
that for similar reasons the usual operation of intersection cannot be defined either. Thus,
the standard set-theoretical operations do not respect isomorphism of sets. If the latter is
taken as a necessary condition in the characterization of what it is to be abstract, then one
could conclude that standard set theory fails for abstract mathematical notions!

However, the product of two abstract sets as well as the disjoint union make perfect
sense when they are defined categorically. In other words, the categorical language simply
reflects the abstract character of sets.

Feferman explicitly mentions abstract mathematics. I submit that underlying abstract
mathematics, one can find a notion of abstract set, a notion that appeared around the same
time as Zermelo’s axiomatization of the extensional notion of set. Some of the first explicit
mention of this notion can be found in Fréchet’s writings. I will here give a quote from a
rather late paper, but it essentially goes back to his early work on metric spaces and this
conception is probably closer to Cantor’s conception of set:12

In modern times it has been recognized that is is possible to elaborate full
mathematical theories dealing with elements of which the nature is not
specified, that is, with abstract elements. A collection of these elements
will be called an abstract set. (Fréchet, 1951, p. 147)

Thus, an abstract set is a set in which the elements are abstract. This is taken to mean
that the nature of the elements is not specified. In other words, the elements have no other
properties than those that they have in virtue of being elements of that specific set. This

11 This argument is taken from Makkai (1998).
12 Cantor did explicitly mentioned abstraction in his papers: recall how he defined ordinals M̄ and

cardinals ¯̄M with his bar denoting a process of abstraction. What he meant by that process is, of
course, rather nebulous and is not what we mean here. Unfortunately, I cannot give more details
in the present paper.
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obscure claim will be clarified in a short while. Clearly, the sets of ZF are not abstract in
that sense.13

The abstract notion of set was explicitly endorsed by Lawvere in the 1970s. To wit:

These considerations lead one to formulate the following “purified”
concept of (constant) abstract set as the one actually used in naive set-
theoretic practice of modern mathematics: An abstract set X has ele-
ments each of which has no internal structure whatsoever; X has no
internal structure except for equality and inequality of pairs of elements,
and has no external properties save its cardinality: still an abstract set is
more refined (less abstract) than a cardinal number in that it does have
elements while a cardinal number does not. (Lawvere, 1976, p. 119)

This conception is very close to Fréchet’s conception: nothing is known about the ele-
ments of a set X except that there is an internal identity relation between the elements.

How do we know these sets? On the standard, extensional, conception of set, one looks
at the elements of the sets. Since the latter are fully identifiable individuals, they can be
known and knowing a set amounts to knowing these elements. Here, we take a different
route: to know a set and its components, including its elements since these become a special
case of the more general notion of component, one looks at it “geometrically,” that is by
considering morphisms going in the set and morphisms going out of the set. This is the
key epistemological or methodological component of the picture unraveling before us:
objects cannot be broken up into atoms, rather they can be known only by investigating how
they project and transform into other objects in a given conceptual environment.14 We can
therefore postulate that there are functions between abstract sets, denoted by f : X → Y .
Such a function is informally a projection or an image of X into Y . By considering these
images, one can know properties of X and properties of Y . Moreover, one can combine
these functions to define operations on the abstract sets.

If one considers the properties that these functions have to satisfy, one quickly comes to
the conclusion that the collection of abstract sets is simply a category, in the standard sense
of that expression: it has as objects abstract sets and morphisms, functions between these
sets and the latter satisfy the usual data of a category, namely compositions of morphisms
exist whenever it is possible, it is associative and composition has a left and a right unit.

What, then, is the identity between abstract sets? In the extensional conception of sets,
it is captured by the axiom of extensionality:

X = Y ⇔ ∀x(x ∈ X ⇔ x ∈ Y ).

Again, as with the union operation, this sentence is simply meaningless in our logical
framework. The variable x is untyped or, put differently, it would have to be untied for the
sentence to make sense. Putting the types in, we would get the sentence:

X = Y ⇔ (∀x : X)(∃y : Y )(y = x) ∧ (∀y : Y )(∃x : X)(x = y),

which is different indeed.

13 In fact, they are abstract only in a very weak ontological sense, that is in the same sense that
any concept is abstract, which is usually identified as being not concrete. This fails to reflect the
nature of mathematical abstractness, a crucial issue in this context.

14 For more on this point of view, see Marquis (2009).
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How do we express identity of abstract sets? It is not a relation, but rather a structure.
What can be declared in the given language is that abstract sets can be isomorphic. But we
do not identify isomorphic sets, unless it is useful for some specific mathematical purpose.

If the criterion of identity for abstract sets is given by the notion of isomorphism of sets,
what can we say of the totality of these abstract sets? At this point, the natural answer
is that this totality constitutes a category. It is precisely at this juncture that the notion of
category comes into play. All we had to start with were the notions of (abstract) collection
and operation. When we put those together and want to consider in a first-order multisorted
logic the various constructions available on these sets and operations, the fact that it forms
a category seems inescapable and more than useful. Indeed, turning to the language of
category theory, one can define products, coproducts, equalizers, coequalizers, pull-backs,
push-outs, etc., that is, various limits and colimits and prove various properties of the
universe of abstract sets. Notice that the universe of abstract sets is not a set nor a class:
it is a category.15 Thus, from the point of view of abstract mathematics, category theory
is inescapable. The real surprise is probably not that the notion of category is essential to
articulate and develop a totality of abstract collections and operations, but rather that it
is not enough. Let us now see how the third notion in the picture, namely the notion of
category itself, has to be developed from the point of view of abstract mathematics.

2.3. Category. In mathematical practice, one needs to consider, at one point or another,
more than one category and the latter usually have a structure of some kind, for example,
finite products, finite limits, monoidal, etc. In fact, in the practice of category theory,
one has to construct, define, and prove properties of functors, and especially structure
preserving functors, between categories, some of which are very often functor categories
themselves, as it so often occurs when the Yoneda lemma is used. In the same way that
collections and operations are inescapable, totality of categories with structures are just as
inescapable as soon as one admits that they are mathematically indispensable. So, what
is the totality or a totality of categories, for example, the totality of categories with finite
products or the totality of cartesian closed categories?

Before we answer this question, we must pause and examine what it means for a functor
F : C → D to preserve the structure of a category. This is important since many results
in category theory amounts to the claim that certain functors preserve limits or colimits,
for example, if a functor U : C → D has a left-adjoint F : D → C, then F preserves
whatever colimits exist in D. So, what does it mean for a functor to preserve, say products
from C to D? Given a product X × Y in C, F preserves products whenever, for all X and
Y , F(X × Y ) ∼= F(X) × F(Y ). The important point to notice here is that F(X × Y ) has to
be isomorphic, not equal, to F(X) × F(Y ), which is a product of F(X) and F(Y ) in D.16

In fact, as is well known, any isomorphic object will do.17

15 This is not to mean that issues of sizes are ignored. One still has to postulate that there is an
infinite set, etc. Other issues related to the standard paradoxes are still lurking in this picture, at
least at this stage of the game.

16 Recall that products are defined up to (a unique) isomorphism. Recall also that the notion of
product can itself be analyzed as a functor (−, −) : C× C → C.

17 This raises a question as to the very definition of functor: usually, functors are defined with the
usual equality, whereas the codomain of a functor evaluated at an object of the domain could very
well be defined up to isomorphism. How this should be done precisely is a rather subtle technical
issue which we will leave aside. We will come back to this question is Section 3.3.
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Why does this matter? We are now considering totalities like the totality CAT of all
categories, or the totality Cart of all cartesian categories, etc. Consider the latter. From
the ordinary categorical point of view, Cart does not have an initial object.18 Here is the
argument: suppose that Cart has an initial object, the category denoted by 0. By definition,
the category 0must have at least one object, since it has a terminal object. Consider now the
category 2 which contains two objects and an isomorphism between them (together with
the usual trivial morphisms). It can easily be verified that the category 2 is cartesian closed,
thus an object of Cart. It is as easy to verify that there are two constant functors from 0 to
2 in Cart, contradicting the fact that 0 is initial. But, there is a sense in which Cart does
have an initial object!19 The usual definition of an initial object in a category cannot be
transferred directly to a totality of categories. This is not merely a technical point, for it
is an indication that a totality of categories, with or without a certain structure, cannot be
a mere category. The latter theory simply lacks the concepts to capture crucial features of
the situation.

For similar reasons, one can claim that the totality of categories with a given structure
cannot be a set or a class: the criterion of identity for sets is totally inadequate. Can it be
a category? Recall that the proper criterion of identity within a category C is the notion
of isomorphism for the objects of C. Thus, if a totality of category is a category, this
means that the criterion of identity for categories would be the notion of isomorphism of
categories, which, as we have indicated, is not only inadequate from the point of view of
the practice of abstract mathematics, but also from the logical point of view we are now
articulating.

Abstract objects are of different sorts and this should mean, almost by definition, that
there is no global, universal notion of identity for sorts.20 Each sort X is equipped with an
internal identity relation but there is no identity relation that would apply to all sorts. As
we have seen, for abstract sets themselves, the identity structure is given by the notion of
isomorphism. This is logically possible for the identity within sorts is used to determine
whether two functions are identical or not. When we try to do the same for categories,
it fails to be meaningful. Indeed, in this case we would have two functors F : C → D,
G : D → C such that, and here are the equalities, G ◦ F = idC and F ◦ G = idD.
But we are dealing here with functors and, therefore, what we have is that for all objects
X of C, idC(X) = G F(X), that is X = G F(X). But this is now an identity between
objects, that is, between sorts and this is simply not given a priori in our language. We are
thus lead, for purely conceptual reasons, to the notion of equivalence of categories defined
above. In that definition, we simply mentioned natural isomorphisms between functors,
that is, we used the notion of natural transformation, morphisms between functors. This
is an additional structure and lead to the notion of a 2-category. More precisely, but still
informally, a 2-category C has objects X,Y, . . ., and for all objects X and Y, a category

18 Recall that an object 0 is a initial object of a category C if there is a unique morphism 0 → X for
all objects X of C.

19 Needless to say, this is directly related to the foregoing question regarding functors preserving
structure. For the existence of an initial object in a category amounts to the existence of an adjoint
functor to a trivial functor. The reader can certainly guess at this stage that the notion of adjunction
also has to be modified for a totality of categories.

20 Notice that this is also confirmed by mathematical practice: each sort of abstract entity, for
example, monoid, group, ring, field, topological space, partial order, etc., has its criterion of
identity. It is certainly a nice feature of category theory that it provides a unified analysis of
these criteria of identity as being isomorphisms in the appropriate category.
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C(X,Y) of morphisms, with the usual composition of functors and the usual three axioms
of a category, namely associativity of composition and the left and right unit laws. An
ordinary category is usually defined has having, for all objects X , Y a set Hom(X, Y ) of
morphisms with a partial composition, etc.

Thus, the short answer is that a totality of categories is not a category, but a 2-category.
And in the same way that the notion of category organizes a totality of sets with operations,
the notion of 2-category organizes a totality of categories and functors.

It is possible to define various constructions for 2-categories, for example, 2-functors,
2-natural transformations, 2-adjunctions, etc. In other words, 2-categories may have a
structure. . . It is therefore natural and inescapable to consider a totality of 2-categories
(with a given structure, say). What kind of mathematical object is such a totality of 2-
categories? It would be fairly easy to adapt the foregoing argument to conclude that a
totality of 2-categories cannot be a 2-category. It has to be a 3-category. And we could go
on like this and introduce n-categories, for an arbitrary n.

This is very far from being the whole story. One must also define bicategories and
double categories. And then n-categories come in two versions: there are strict n-categories
and weak n-categories and both play a role in the foundational environment.21 Our only
concern here is to convince the reader that one cannot simply stop at categories. When one
considers totality of categories, then new kinds of abstract entities arise.

§3. Putting the pieces together. There are at least three different ways of putting the
foregoing components together. Needless to say, I won’t give precise, complete formal
presentations of these systems, especially since two of these systems are still undergo-
ing important and fundamental developments. These sections will be rather short and
sketchy.

3.1. ETCS. The Elementary Theory of the Category of Sets (ETCS) was introduced
by Lawvere as early as 1964. (See Lawvere, 1964, 2005.) In this paper, Lawvere pro-
posed an axiomatization of set theory in a categorical framework. The axiomatization
was later subsumed under the notion of an elementary topos where it became a special
type of topos. This is probably the combination of the three components mentioned above
that is the closest to the standard set theoretical framework. It is developed in the stan-
dard first-order logic without dependent sorts. One starts with the (first-order) axioms
for an elementary topos and add axioms to get as close as possible to ZFC. To be more
precise, one adds to the axioms of an elementary topos, the existence of a Natural Number
Object (NNO), that the terminal object 1 is a generator and that every epimorphism splits
(an equivalent version of the axiom of choice in the context of toposes). It is well-known
that such toposes are necessarily Boolean. It can be shown that such a topos is equivalent
to Bounded Zermelo set theory with choice (BZC). As such, the axiom of replacement
is absent. But there are natural ways to add it to the theory. Thus, one gets a somewhat
weaker theory than the usual ZFC and the question is whether it is enough for the usual
mathematical purposes. (See also McLarty, 1992 and Shulman, 2008 for details.)

It is well-known that an elementary topos is equivalent, in a precise technical sense, to
a type theory and, in that case, it is not a dependent type theory and it is higher order, for

21 Thus, I am deliberately being technically vague at this point. There are, at the moment,
various versions of the notion of n-categories and it is still unclear which one is preferable for
foundational purposes. Only time and more research will tell.
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example, given two types X and Y , one can construct the type Y X . (See Boileau & Joyal,
1981 or Lambek & Scott, 1986.) This illustrates how the logic can vary in a categorical
context. We nonetheless have a logical framework, specific axioms, and a universe.

It should be emphasized that this has always been presented by Lawvere as being a set
theory and that Lawevere’s claim was meant to cover any elementary topos, not only ETCS.
As we have seen, the theory elementary toposes is, according to him, the theory of abstract-
constant sets. An arbitrary elementary topos ought to be seen, according to Lawvere,
as a universe of variable sets. And, indeed, it is possible to build a translation between
elementary toposes (with a natural number object) and (intuitionistic and bounded) set
theories in general, also called Basic Intuitionistic Set Theory (BIST) in the literature. (See
Awodey et al., 2007; Awodey, 2008; van den Berg & Moerdijk, 2009.) In particular, BIST
contains the full axiom of replacement and the logic is the usual first-order logic, that is,
the quantifiers are not bounded.

Quite a lot of mathematics can be developed in an arbitrary topos, and most of nineteenth
century and early twentieth century classical mathematics can be reconstructed in ETCS.
But as we have already indicated, when one is considering a category with structure,
like a topos, one quickly has to consider functors between such categories, in particular
a category of toposes and the latter is a 2-category. When one gets to that point, one is no
longer in the framework of elementary topos theory. It is at least a 2-topos and important
results in categorical logic, for example, completeness theorems, arise naturally in that
context. We are now moving towards the picture I want to discuss.

3.2. Makkai’s FOLDS and higher-dimensional categories. Michael Makkai has been
developing a categorical foundational framework which is explicitly based on the notion
of abstract sets since the mid 1990s.22 In contrast with the previous approach, Makkai’s
approach is based on a general purpose formal system, namely First-Order Logic with
Dependent Sorts (FOLDS). FOLDS is a general purpose formal system which could have
the same status as first-order logic in foundational studies. As Makkai has himself pointed
out, FOLDS was inspired by Martin-Löf type theory and, in the same way that first-order
logic can be considered to be a proper part of a type theory, in can be considered to be a
proper part of Martin-Löf’s type theory. Thus, the first, syntactical, component is first-order
logic with dependent sorts.

I will not give a detailed technical description of FOLDS.23 I will limit myself to some
of its salient features that are relevant to this discussion.

The most striking feature of FOLDS is that identity is no longer a primitive notion,
although it is still a logical notion. The proper identity relation is extracted from given
data by a purely logical manipulation and the identity relation thus extracted automatically
satisfies Leibniz’s principle presented above. Hence, in the context of FOLDS, whatever
one writes down about a given type of mathematical object in the given language will make
sense. In other words, only meaningful properties of the given objects can be expressed in
the language.

22 The basic reference here is certainly Makkai (1998). It contains a rather detailed account of what
we are about to sketch here. See also Makkai (1999) for a more general reflection on the type
of structuralism Makkai is defending. However, there is much more on his Web site. See, for
instance, http://www.math.mcgill.ca/makkai/, in particular the link to the foundation seminar.

23 A detailed description can be found on Makkai’s Web site under the title “First Order Logic with
Dependent Sorts, with Applications to Category Theory.”
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To do this, one starts with the notion of a FOLDS signature L. The latter can be given
a slick characterization by saying that a FOLDS signature is a category L that satisfies
two simple conditions: i) it is reverse well-founded, that is, there are no infinite paths

X0
f0

X1
f1 · · · fn−1

Xn
fn · · · , n < ω, such that for all n, fn �= idXn ; it

is finite fan-out, that is for every object X , there are finitely many arrows with domain X .
This is it.

Here is a simple illustration of a FOLDS signature, the signature LCat for categories. A
presentation of this signature is given by the following diagram:

T

A

t1

T

A

t2

T

A

t0

I

A

i

E

A

e0

E

A

e1

A

O

d

A

O

c

with the following identities:

d ◦ t0 = d ◦ t2; (1)

c ◦ t0 = d ◦ t1; (2)

c ◦ t1 = c ◦ t2; (3)

d ◦ i = c ◦ i ; (4)

d ◦ e0 = d ◦ e1; (5)

c ◦ e0 = c ◦ e1. (6)

The presentation exhibits the dependencies between the sorts. They are of course chosen
with a specific interpretation in mind, which we will see in a few paragraph. At this stage,
one should start using the signature to write down sentences of theory and define various
obvious notions, for example, the notion of products.

Two remarks are in order. First, although the notion of a FOLDS signature is expressed
in the language of category theory, it is not a categorical notion, for the given properties
are not preserved under equivalences of categories. This is an interesting case where the
categorical symbolism is used for syntactical purposes. Second, there is an equivalent
definition of a FOLDS signature along that standard syntactical lines, for example, by
defining the syntactical elements explicitly. But it is considerably more intricate than the
one given in terms of categories.

Given a FOLDS signature L, an L-structure is a functor M : L Set.24 In our
foregoing example, an LCat -structure M : LCat Set yields a bona fide category. M(O)
is the set of objects of the category, M(A) is the set of arrows, the two arrows become
functions, namely the domain function and the codomain function. The set M(I ) is the
set of identities, M(T ) is the set of triangles, and the set M(E) is the set of equality of

24 Perhaps this should be called a Set-L-structure, but it is rather inelegant. The point is that the
functor does not have to be in Set, it could be any category C with the appropriate amount of
structure, for example, a regular category.
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parallel arrows. The interpretation of the arrows and the various identities between them
should be obvious. Given the notion of L-structure, one can define the category StrSet(L)
of L-structures in the category of sets in the obvious way and it would be possible at this
stage to develop a model theory for theories in languages with a FOLDS signature. Let us
turn to its use in the foundations of mathematics instead.

The key innovation is the notion of L-equivalence. The technical definition is as follows:
let M and N be L-structures. M �L N is an L-equivalence if and only if there exists an
L-structure P together with morphisms of L-structures m : P M and n : P N such
that m and n are fiberwise surjective.25 (We refer the reader to Makkai’s papers for the
technical details. Suffice it to say that a morphism is fiberwise surjective if it has the right
lifting property with respect to all injective morphisms.) It can be verified that this yields
an equivalence relation. This definition allows one to prove the following main theorem:
for all FOLDS sentence φ, if M �L N and M |� φ, then N |� φ, where M |� φ is the
usual model theoretical notion of truth in a structure. Makkai has shown that when one
gives the appropriate signatures for various notions, then one obtains the “right” notions of
equivalence, that is, the signature of categories yields the usual notion of equivalence, the
signature for bicategories yields the usual notion of biequivalence, etc.26 In contrast with
the usual notion of elementary equivalence of first-order logic, Makkai’s notion is more
sensible since it captures more natural—in the sense of naturally arising in the practice of
mathematics—notions of equivalence. FOLDS strikes a balance between expressiveness
and invariance.27

Makkai therefore proposes a general purpose formal system which has a general
semantics (in categories, not just in sets), just like first-order logic and incorporates all
the foregoing elements mentioned above since we are firmly in categorical logic.

When one considers the standard foundations of mathematics, one introduces the uni-
verse of sets, usually via the cumulative hierarchy. The latter is replaced by Makkai by
higher-dimensional categories, more specifically by what he calls the multitopic universe.
(See Hermida et al., 2000, 2001, 2002.) The informal picture should be immediately
clear from what I have said already: we start with abstract sets, which are our objects
at level 0. They are related by maps and the criterion of identity for abstract sets is given
by a structure: the notion of isomorphism of sets. Collecting sets together, say sets with a
structure, we get categories, or, more precisely, 1-categories (thus, sets should be thought
of as 0-categories), since these objects are now at level 1 and their criterion of identity is
given by the notion of equivalence of 1-categories. Collecting 1-categories together, we
get 2-categories, etc., and so on where n-categories have as objects (n − 1)-categories with
morphisms between them. Slightly more formally, meaning here that I will use formal
symbols to express some of the ideas involved, a n-category, n ≥ 0, consists of

• 0-cells or objects X, Y, . . .;
• 1-cells or morphisms f, g, h, . . . depicted by the usual arrow notation f : X → Y ;

25 The category of L-structures StrSet(L) has an internal notion of isomorphism. It can be shown
that two isomorphic structures are L-equivalent, as one would expect.

26 Makkai gives a nice example for Kan complexes. He defines a subcategory of the category of
simplicial sets that is a FOLDS signature and proves thatL-equivalent structures for this signature
are precisely homotopy equivalent.

27 I want to thank an anonymous referee for suggesting this formulation.
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• 2-cells or morphisms between morphisms α, β, . . ., depicted by

X Y

f

g

α

• 3-cells �,�, . . ., depicted (and here you have to visualize the diagram in three
dimensions) by

X Y

f

g

• . . .

• n-cells;

• These cells have to compose in various ways and satisfy various composition laws.

For instance, 1-cells compose in the usual manner, that is given X
f

Y and

Y
z

Z , one gets the usual X
g◦ f

Z . Things get rather tricky with higher
dimensional cells. For one thing, they can compose with cells of the same dimension
and one has to determine what happens with cells of lower dimensions. Thus, 2-cells
compose in two ways, vertically and horizontally so to speak. These compositions
are illustrated by these diagrams:

Given X Y

f

g

α

β

, the vertical composition is X Y

f

g

β◦α .

Given X Y

f

g

α Y Z

f ′

g′

α′ , the horizontal composition is X Z

f ′◦ f

g′◦g

α′	α .

• And various identities, that is specific i-cells, 0 ≤ i ≤ n, together with laws for them
have to be introduced.

Of course, this is not a mathematical definition but it gives a rough idea of the data
that one has to piece together. Furthermore, one would really want to give a definition of
ω-categories, that is, categories of n-categories for all n, and not just up to a fixed n. This
can now be done in a surprisingly compact way, provided various preliminary geometric
and combinatorial constructions have been given. For instance, Makkai has given the
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definition of a multitopic ω-category in four lines.28 But in order to do so, one has to define
multitopic sets and multitopes and these require, at least for now, a rather long presentation.
It should be noted that FOLDS comes in the description of these latter concepts. Be that as
it may, as I write this, there is still no consensus on what should be the right mathematical
definition. There are, in fact, many different definitions in the literature. (See Leinster,
2002.) Whether they are equivalent or not is a delicate issue and, in fact, even proving the
equivalence between these definitions is a subtle mathematical and conceptual problem.
(See, for instance, Makkai & Zawadowski, 2001.)

This universe might seem absurdly complicated and difficult to understand at first and,
thus, unsuitable as a foundational universe. We are back to the argument based on some sort
of simplicity or immediacy of foundational notions. I think that if one gets to that point,
it is because one has forgotten what we were trying to do in the first place: to provide
a foundational framework for abstract mathematics and that latter expression does not
merely means for abstract entities in the ontological sense of that expression.

I haven’t presented a system of axioms for the latter universe. These have still to be
provided. Be that as it may, it should be clear that we have, in the last two examples,
frameworks in which an abstract notion of sets is at work and and that are developed in a
way that the abstract nature of the objects involved is reflected down in the syntax and the
logic of the systems.

3.3. Homotopy type theory. This is a recent proposal undergoing a rapid and vigorous
development and I will not provide any technical detail about this framework. It is based
on Martin-Löf type theory, introduced in the early 1970s to provide a formal framework for
constructive mathematics. (See Martin-Löf, 1984 or Nordström et al., 2000.) Thus it might
be surprising to see it appear in the context of abstract mathematics. But as we have said,
Makkai’s FOLDS was directly inspired by Martin-Löf type theory and, not surprisingly, it
shares many of the key properties of Makkai’s theory, or at least the so-called intensional
theory does. Another indication that the theory is relevant to abstract mathematics is that
it has direct links to homotopy theory, in particular to homotopy types. These are not only
connected to abstract sets, indeed homotopy 0-types can be thought of as abstract sets,29

but they constitute in my opinion the perfect example of mathematical abstract entities that
cannot be captured by the purely extensional point of view of traditional set-theory. Notice,
and this is an important remark, that the extensional point of view can be recovered from
the more abstract point of view.

Homotopy type theory is a genuine type theory, not a first-order logic. Originally, all the
variations on Martin-Löf type theory were motivated by the well-known Curry–Howard
correspondence, that is, the propositions-as-types interpretation. The correspondence is
given by the following simple rule: a term x of a type X can be thought of as a proof of the
corresponding proposition. This interpretation is still useful, even when the formal system
is interpreted in the context of homotopy theory. (See Awodey & Warren, 2009; Awodey,
2012; Voevodsky, 2010.) It will be enough to underline two features of the theory.

28 J. Baez and J. Dolan who were the first to give such a compact definition of a n-category have
formulated a definition of opetopic ω-category in two lines. See Baez & Dolan (1998). Of course,
to understand these two lines, one has to go through the whole paper carefully.

29 I am using the traditional notation where a homotopy n-type is exhibited by a topological space
whose homotopy groups πm , m > n are all trivial. For reasons I will not discuss here, in
homotopy type theory, these are sometimes denoted by homotopy 2-types.
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1. The original feature of homotopy type theory is that it has an identity type Id(X, Y ),
which under the Curry–Howard interpretation can be read as the type of proofs that
X is identical to Y . But this type also has a geometric interpretation in homotopy
theory: it becomes a path object in that framework.

2. The theory satisfies the invariance principle which constitutes the core element of
the approach to abstract mathematics: for any property P definable in the language,
if P(X) and X � Y , then P(Y ). And here too the notion of equivalence is context
sensitive.

The main moral should be clear: we now have at the very least two formal systems
together with a semantics that can be used as frameworks to develop foundations for
abstract mathematics and in both cases, categories play a crucial role.

§4. Psychological priority. All the foregoing considerations should be sufficient to
convince anyone that priority issues are far from being trivial and transparent, especially
when dealing with abstract mathematics.30 Should logical priority reflect psychological
priority? How? Do we have a theory of psychological priority of mathematical concepts?
Do we have empirical studies upon which one could determine a proper order of un-
derstanding? How about historical priority, that is, the actual historical development of
mathematical concepts? Should this be taken into account in foundational studies? In many
cases, the simplest concepts come very late in the historical development, for example, the
concept of set itself.31

The issue of psychological priority is particularly delicate: Feferman ties it with under-
standing and not only concept acquisition. Understanding is certainly a thorny concept
and it might come in degrees, pretty much like our reading ability. We learn to read in
stages and some of us never get to the “higher” stages of reading which is ironically linked
to understanding. The parallel might be interesting to some extent. Some people learn
to read mathematics like children have learn to read in third or fourth grade and never
go beyond this stage. Others come to a deep understanding of mathematics. But there
might also be important differences between reading and learning mathematics. Indeed,
as recent research in cognitive neuroscience tend to indicate, mathematics seem to be
based on nonverbal core systems—one for arithmetic and one for geometry—that we seem
to have as a result of our evolutionary history. These core systems seem to play a key
role in our subsequent learning of mathematics. Thus, in some sense, the psychological
priority still seem to go to arithmetic and geometry. (See Dehaene & Brannon, 2011; Izard
et al., 2011; Spaepen et al., 2011.) Logic clearly comes in at some point—much earlier
than what Piaget had suggested—but it seems to rely more, although not exclusively, on
language. (See Goel, 2007 for a review.) The psychological relationships between logic
and mathematics still has to be elucidated. However, it appears to be implausible at this
stage to claim that, from the psychological point of view, mathematics rests on logic.32

30 I have tried to clarify some of the issues involved in an earlier paper: see Marquis (1995).
31 Piaget, for one, thought that by looking at how children acquire mathematical concepts, thus the

psychological order of acquisition, we might be able to understand or have a better idea of how
humans, as a species, came to develop mathematical concepts. It should also be mentioned that
Piaget thought that an abstraction process, the process of reflective abstraction in his terminology,
was at the core of the acquisition of concepts and systems of concepts.

32 Should we conclude that some form of mathematical constructivism is vindicated by
neuropsychology? This might rest on a confusion between different kinds of foundations.
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(See Houdé & Tzourio-Mazoyer, 2003 for an excellent review.) But this is very far from
abstract mathematics, at least in the sense that contemporary mathematics is abstract.
When Feferman wrote his argument, some still thought that the teaching of mathematics
should reflect its logical organization, that is, psychological priority should reflect logical
priority. This is now seen as profoundly mistaken.

Thus, bombarding the juvenile brain with abstract axioms is probably
useless. A more reasonable strategy for teaching mathematics would
appear to go through a progressive enrichment of children’s intuitions,
leaning heavily on their precocious understanding of quantitative ma-
nipulations and of counting. One should first arouse their curiosity with
some amusing numerical puzzles and problems. Then, little by little, one
may introduce them to the power of symbolic mathematical notation and
the shortcuts it provides — but at this stage, great care should be taken
never to divorce such symbolic knowledge from the child’s quantita-
tive intuitions. Eventually, formal axiomatic systems may by introduced.
Even then, they should never be imposed on the child, but rather they
should always be justified by a demand for greater simplicity and effec-
tiveness. Ideally, each pupil should mentally, in condensed form, retrace
the history of mathematics and its motivations. (Dehaene, 2011, p. 224)

And the history of mathematics is presently leaning heavily towards categories. But they
should be taught at the end, not at the beginning. And this, despite the fact categories might
provide a logical foundation for abstract mathematics. And despite the fact that category
theory might constitute a genuine alternative to ZF(C) as a theoretical development of a
naive and preformal understanding of the notions of collection and operation.

§5. Psychological and logical priority. I submit that, as far as abstract mathematics
is concerned, the order of logical priority and historical priority are dual or go in opposite
directions to each other. I also submit that the logical aspects, at least its purely formal
expression, is developed in parallel with our understanding of what it is to be abstract
mathematically. Thus, as we have seen, the very logic has somewhat to be modified,
slightly but surely, to accommodate the abstract nature of contemporary mathematics. What
is striking is the fact that conceptual dependencies have to be brought in right from the start.
What is even more surprising is that the dependencies required have a strong geometrical
flavor, reproducing, so to speak, the geometric dimensions of space. It is as if the concepts
themselves would have to be organized in a spatial manner. This is a genuinely new com-
ponent in the foundational landscape. Whereas the cumulative hierarchy is basically two-
dimensional, the categorical universe is ω-dimensional or, if you prefer, ∞-dimensional.
Thus, in this sense, the categorical universe is a generalization and an abstraction of the
standard picture of sets.

§6. Conclusion. When Feferman formulated his arguments in the mid 1970s, they
were certainly justified to a large extent. Category theory was still, in some sense, in its
infancy. Although the language of categories, functors, and natural transformations was
introduced in 1945 by Eilenberg and Mac Lane, the theory really took shape in the 1960s
after the introduction of some key concepts like adjoint functors, representable functors,
monads, Abelian categories, etc. Its successes in homological algebra, algebraic topology,
and algebraic geometry were certainly an indication of its potential in mathematics
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and, I would add, in abstract mathematics. For the methods of category theory are tailored
for abstract mathematics. It can be claimed that category theory introduces a new level of
abstraction in mathematics. When Lawvere suggested that the category of categories could
be taken as a foundation of mathematics, it was a bold and courageous claim to make.
Lawvere saw immediately that his claim was aiming at contemporary abstract mathematics
and I suppose that everyone thought that set theory had been devised precisely for that
purpose. But that is not quite right. Standard set theory does not provide a foundational
framework for abstract mathematics. I hope to have shown that on any conception of
abstract mathematics, category theory will have to play a key role in its foundations. And
sets and operations will still play a key role even in this framework. Thus, in some sense,
Feferman was correct, but not in the way he envisaged.
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Lambek, J., & Scott, P. J. (1986). Introduction to Higher Order Categorical Logic, Vol. 7.
Cambridge, UK: Cambridge University Press.

Landry, E., & Marquis, J.-P. (2005). Categories in context: Historical, foundational, and
philosophical. Philosophy of Mathematics, 12, 1–43.

Lawvere, F. W. (1964). An elementary theory of the category of sets. Proceedings of the
National Academy of Sciences of the United States of America, 52, 1506–1511.

Lawvere, F. W. (1976). Variable quantities and variable structures in topoi. In Algebra,
Topology, and Category Theory (A Collection of Papers in Honor of Samuel Eilenberg).
New York: Academic Press, pp. 101–131.

Lawvere, F. W. (2005). An elementary theory of the category of sets (long version) with
commentary. Reprints in Theory and Applications of Categories, 11, 1–35. Reprinted and



74 JEAN-PIERRE MARQUIS

expanded from Proc. Nat. Acad. Sci. U.S.A. 52 (1964) [MR0172807], With comments
by the author and Colin McLarty.

Leinster, T. (2002). A survey of definitions of n-category. Theory and Applications
of Categories, 10, 1–70.

Macnamara, J., & Reyes, G. E. (1994). The Logical Foundations of Cognition, Vol. 4. New
York: Oxford University Press.

Makkai, M. (1998). Towards a categorical foundation of mathematics. In Logic Colloquium
’95 (Haifa), Vol. 11 of Lecture Notes Logic. Berlin, Germany: Springer, pp. 153–190.

Makkai, M. (1999). On structuralism in mathematics. In Language, Logic, and Concepts,
Bradford Book. Cambridge, MA: MIT Press, pp. 43–66.

Makkai, M., & Reyes, G. E. (1977). First Order Categorical Logic. Lecture Notes in
Mathematics, Vol. 611. Berlin, Germany: Springer-Verlag. Model-theoretical methods
in the theory of topoi and related categories.

Makkai, M., & Zawadowski, M. (2001). Duality for simple ω-categories and disks. Theory
and Applications of Categories, 8, 114–243.

Marquis, J.-P. (1995). Category theory and the foundations of mathematics: Philosophical
excavations. Synthese, 103, 421–447.

Marquis, J.-P. (2009). From a Geometrical Point of View, Vol. 14 of Logic, Epistemology,
and the Unity of Science. Dordrecht, The Netherlands: Springer. A study of the history
and philosophy of category theory.

Marquis, J.-P. (2011). Mathematical forms and forms of mathematics: Leaving the shores
of extensional mathematics. Synthese, 1–24. 10.1007/s11229-011-9962-0.

Marquis, J.-P., & Reyes, G. E. (2012). The history of categorical logic: 1963-1977. In
Gabbay, D. M., Kanamori, A., and Woods, J., editors. Sets and Extensions in the
Twentieth Century, Vol. 6 of Handbook of the History of Logic, chapter 10. Amsterdam:
Elsevier, p. 689–800.
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