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2 It is claimed that category theory cannot pro-
vide an adequate foundation for mathematics.
The main reasons seems to be the following:

1. category theory cannot provide an adequate foundation for mathematics
for epistemological reasons, i.e. it presupposes other, more simple, con-
cepts for its understanding;

2. Category theory, perhaps useful in certain areas of mathematics, for in-
stance in algebraic topology, homological algebra, algebraic geometry, ho-
motopical algebra, K-theory, theoretical computer science or even math-
ematical physics, cannot provide a comparable picture of mathematics
as set theory does. First, there is an informal set theory that provides
a framework for mathematics. What this informal set theory amounts
to is not entirely clear, but it seems to play an important role. Second,
there is a well-known and well-understood universe, namely the cumula-
tive hierarchy, and a well-known and well-understood theory written in
a well-known and well-understood formal language, namely ZF (of NBG)
written in first-order logic. Thus, the objection goes, category theory does
not fulfill some obvious philosophical and metamathematical requirements
one might expect or ask from a foundational framework.

In this paper, we want to address these issues in the following manner. I want
to argue that:

1. category theory, as it already is, is based on a conception of mathematical
object which is, from an ontological point of view, radically different from
the conception underlying set theory; this fact has numerous consequences,
one of which is that the epistemological argument against category theory
is ill-founded and therefore can be discarded;

2. although many category theorists believe that category theory is fine as it
is, even for foundational purposes1 — a view that I will not examine here,

1Probably one of the best illustration of that position can be found in Taylor’s fascinating
book. See Taylor 1999.
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for it would take us away from our main concern — an alternative pic-
ture is being developed, mostly by the logician Michael Makkai at McGill
and upon which I will rely heavily, a picture that comprises a universe
of mathematics based on a different conception of sets, radically different
from the cumulative hierarchy, although there is a hierarchy of a differ-
ent nature, and a formal language in which a theory of that universe can
be presented and developed. In a nutshell, the universe, technically the
universe of weak ω-categories, is highly heterogeneous in the sense that
there are various kinds of entities and the variety of these kinds is reflected
by the variety of criteria of identity for them. The formal language is an
extension of first-order logic, namely it is first-order logic with dependent
sorts, FOLDS, which in this context takes the form of a diagrammatic lan-
guage. We should add immediately that this picture extends radically the
nature of mathematical objects presented in the first step of the argument.
When we get to this stage of the presentation, I submit that, not only do
we have answers to the main objections to a categorical framework, but
we can see clearly that the views involved are based on radically different
conceptions of mathematical objects. At that point, we can evaluate the
situation both from a technical point of view, i.e. what are the techni-
cal benefits and the drawbacks of each view, from a philosophical point
of view, i.e. which view, if any, is philosophically justified, in particular,
which view represents best the way mathematicians work and think about
mathematical objects.

The nature of mathematical entities Let us start with the nature of math-
ematical entities in general and with a rough and classical distinction that will
simply set the stage for the picture we want to develop. We essentially follow
Lowe 1998 for the basic distinctions. We need to distinguish between abstract
and concrete entities, on the one hand, and universals and particulars on the
other hand. For our purpose, it is not necessary to specify a criterion of de-
marcation between abstract and concrete entities. We simply assume that such
a distinction can be made, e.g. concrete entities can change whereas abstract
entities cannot. We assume that a universal is an entity that can be instanti-
ated by entities which themselves are not instantiable, the latter being of course
particulars. Given these distinctions, an entity can be a concrete particular, a
concrete universal, an abstract particular or an abstract universal.

Our focus here is between the last two possibilities. For we claim that the
current conception of sets makes them abstract particulars whereas for objects
defined within categories, mathematical entities are abstract universals2. This,

2Our choice of terminology is radically different from Ellerman 1987 where a similar pro-
posal is made. However, Ellerman argues that category theory is a theory of concrete univer-
sals whereas set theory is a theory of abstract universals. Needless to say, the difference lies in
the way the abstract/concrete distinction is articulated. Thus, whereas Ellerman argues that
both concepts of category theory and set theory are universals and that the difference lies in
the fact that the former is concrete whereas the latter is abstract, we believe that both are
abstract and the former are universals and the latter are particulars. See Marquis 2000 for
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we claim, is true of category theory as it is.
Sets, as they are generally conceived and as they are represented in ZFC or

NBG, are indisputably abstract particulars. We assume that they are abstract.
The fact that they are particulars is established by looking at the criterion of
identity for sets in these theories, namely the axiom of extensionality. As is
well known, a set is completely determined by its elements and two sets are
identical if and only if they have the same elements. Thus a specific set cannot
be instantiated by another entity and is therefore a particular. It could be claim
that sets are particulars because there is a unique criterion of identity for them.
A theory in which some entities are universal in the previous sense has to have
at least two different criteria of identity: one for the universals themselves and
one for the particulars that instantiate these universals. In category theory
as it is, we find many different criteria of identity. Three are well-known and
common to standard category theory. Others arise in more complex situations.
In the universe of categories, there is a whole spectrum of criteria of identity: at
one end of the spectrum, we have criteria of identity for particulars, and at the
other end, we have a hierarchy of criteria of identity for universals, all related
to one another in a systematic manner. What is philosophically interesting, is
that the traditional distinction between universal and particular is in some ways
inadequate.

Criteria of identity in a categorical context
A brief look at the axioms of a category should be enough to convince anyone

that there is an implicit criterion of identity at work for morphisms. Indeed,
we have that, for instance, f(gh) = (fg)h, the associativity for morphisms, is an
identity. Morphisms are treated as particulars from the very beginning. Recall
that a morphism f: X // Y is an isomorphism if there is a morphism g:
Y // X such that fg = 1Y and gf = 1X . Two objects X and Y are said to
be isomorphic if there is an isomorphism between them (at least one). Thus
a specific pair of maps is used to identify objects as being isomorphic. One
could of course immediately stop at this point and reflect on the necessity that
these morphisms be particulars. It seems reasonable to ask for a certain type of
morphisms that should satisfy certain conditions, as is clear already in the case
of a homotopy category. We will come back to this point in due course.

A second criterion of identity appears when we consider how objects are
defined in a category. Consider the simple and well-known case of the definition
of a product for two objects X and Y in a category C. A product for X and Y
in a category C is an object P of C together with morphisms πX : P // X
and πY : P // Y such that for any object Q of C together with morphisms f
: Q // X and g : Q // Y, there is a unique morphism h : Q // P such
that πXh = f and πY h = g. The important point here is that this definition

some critical remarks on Ellerman 1987. We should point out, however, that the terminology
is not clarified in Marquis 2000. We should also point out that our terminology is different
from the one found in Makkai 1998 and 1999 where Makkai argues that the concept of collec-
tion implicit in a categorical framework is abstract. Once more, the terminology is justified if
it is made in a certain way. However, our overall point of view owes a great deal to Makkai’s
technical work.
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characterizes P up to a unique isomorphism. This means that for any object
Q isomorphic to P in C, if P is a product of X and Y, then Q is a product of
X and Y and, moreover, if Q and P are both products of X and Y, then they
are isomorphic. Thus, this definition does not give us a particular object as
a product, nor does it characterize P by stipulating what its elements should
be. It specifies under what conditions an object is an instance of the universal
product, when a given object is a token of the product type. The criterion of
identity in this case is given by the unique isomorphism existing between two
tokens of the product of two objects of the category. From a global point of
view, the criterion of identity is given by the underlying groupoid of the category
C.

This is typical of the way objects are defined in category theory. Math-
ematical entities and their properties in a category C are only given up to
isomorphism. It is also true of other entities, e.g. adjoint functors. Category
theory specifies what are the abstract universals of mathematics and to know
the abstract universals of a domain is to know the fundamental features of that
domain. For instance, once one has shown that a given category C has finite
products, more generally finite limits, then one knows about various construc-
tions and results that hold in C. A more important example is provided by the
notion of abelian category, given by the existence of certain limits (and colimits)
and what are called “exactness conditions” (the terminology comes from homo-
logical algebra). Another example is provided by the categorical definition of
the natural numbers: they too are presented as abstract universals3. There is no
doubt that the use of category theory in certain contexts, e.g. algebraic topol-
ogy, homological algebra or algebraic geometry, reveals what is fundamental in
these domains.

Now, collections or sets are a special kind of mathematical entities. Can
they be thought of as entities like any other entity in a category? Already in
the mid-seventies, Lawvere had suggested a way to think of sets in this context.
Unfortunately for us, he called them “abstract sets”, using the term “abstract”
in the different sense from what we have assumed here4. Here is how he describes
these “abstract sets”:

An abstract set X has elements each of which has no internal structure
whatsoever; X has no internal structure except for equality and inequality of
pairs of elements, and has no external properties save its cardinality; (Lawvere,
1976, 119)

The first sentence could be reformulated by saying that the elements of an

3Lowe 1998 also argues, but on different grounds, that the natural numbers are abstract
universals. For a categorical analysis of the natural numbers, see for instance McLarty 1993.

4We are using “abstract” in an ontological sense, whereas Lawvere clearly has an epis-
temological notion in mind, something which is not uncommon among mathematicians. In
the paper we are referring to, Lawvere says that his notion of sets is “less abstract” than the
notion of cardinality. Clearly, one entity cannot be more (or less) abstract than another entity
in the ontological sense. However, in the epistemological sense, one can have different levels
of abstraction, assuredly a common phenomenon within mathematics. This is an issue we will
explore elsewhere. See Marquis 2002.
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abstract set are “atoms” or faceless points5. Nonetheless, there is an internal
criterion of identity for the elements of each sets: we can tell, given two elements
of a given set whether they are the same or they are different. Thus, a set in
this sense comes equipped with a criterion of identity for its elements. There is
no global criterion of identity for elements: one cannot ask, given two arbitrary
objects (“elements”), whether they are the same or not. The criterion of identity
is always relative to a given abstract set. Furthermore, there is no global relation
of elementhood: one cannot ask, for any object x and any set A, whether x is an
element of A or not. Finally, one cannot ask, given two sets X and Y, whether X
= Y or not. Sets in the above sense are isomorphic or not. This is what the last
sentence of the quote means: their only external property is their cardinality,
i.e. two sets are “identical” when they are isomorphic. However, as Lawvere
remarks, these sets are “more refined (less abstract) than a cardinal number in
that it does have elements while a cardinal number does not.”(Lawvere, 1976,
119) It is as if such a set would be a representative of a cardinal number, or
I would like to say a token of a cardinal number, but seen as a token of that
cardinal number, i.e. with any specific property erased. Notice that this is
in general how we look at tokens as tokens of a type: we ignore all specific
properties of the token and see only the properties that exemplify the type.
In Aristotelian terminology, one would say that such a set is a collection qua
collection.

Should these sets be treated as particulars or as universals? Since we do
not have the standard axiom of extensionality — we cannot compare elements
that belong to different sets, it seems that we cannot treat them as particulars.
One could argue, though, as follows: since these sets can be the domain or the
codomain of morphisms, in particular, they are the domain and the codomain
of their own identity morphism. Since the latter are assumed to be particulars,
the sets have to be particulars too. But this argument fails for two reasons.
First, it fails because the criterion of identity for sets is given by isomorphisms.
Thus, in particular, any automorphism is acceptable, i.e. a set can be identical
with itself in more than one way. This might sound odd, but we are perfectly
at ease with this idea for geometrical objects. Second, it fails because in the
universe we will be considering, even morphisms won’t be treated as particulars.
The identities are replaced by isomorphisms systematically.

I suggest that we call these sets “transcendental sets” since they are purely
the form of sets6. Another possibility would be to call them “perfect sets”
or again, following a suggestion also made by Lawvere, “pure sets”, but I fa-
vor the previous terminology. We have already underlined the fact that the
totality of these transcendental sets cannot constitute a set. (For there is no

5It could certainly be argued that Cantor was developing a conception of sets along these
lines. For the process of double abstraction underling Cantor’s conception yields a “ form ”,
not a particular entity. This is especially clear when one looks at order-types. Ordinals are
tokens of a type for Cantor, they are not abstract particulars à la Von Neumann. Lawvere
has himself recently developed this idea along a different line by looking at abstract sets as
Kardinalen. See Lawvere 1994.

6I am using the term “transcendental” based on an analogy with Kant’s usage. It has
nothing to do with the expression “transcendental numbers”.

5



set-theoretical criterion of identity for them.) As Lawvere has already observed,
these transcendental sets can support mappings, the latter notion being taken
as a primitive notion. Composition of mappings can be defined and it clearly
satisfies the usual axioms of a category. Thus, the totality of transcendental sets
constitute a category. It is a different kind of entity. As Lawvere has argued
in his paper, it is reasonable to say that the universe of these transcendental
sets form a topos. In fact, in a topos, any object can be considered to be a
transcendental set.

The first conclusion we can immediately draw is that a coherent conception
of sets can be developed in a categorical context; this conception is different
from the conception inherent to traditional set theory; thus, at the very least
we can say that there are various conceptions of sets (of course, there is also the
näıve conception, but to claim that, say ZFC, with the cumulative hierarchy, is
the correct formalization of that conception is a problematic claim).

We could stop here and start arguing for the foundational relevance of cat-
egory theory as it is. We could give various technical results obtained within
toposes or about toposes and expose their foundational significance and impor-
tance. We could also articulate a view in which mathematics is done in toposes.
The main claim, I guess, would be the following: given any piece of mathematics
M, it is possible to find a topos E in which the concepts and theorems of M
can be defined and proved. This in itself is an interesting position that deserves
to be examined carefully. But we will rather move on to a different, emerging,
position, a position that has an intrinsic beauty and that can be presented as
an alternative to the set theoretical picture.

Systems of categories
Let us come back to categories. Given the importance of isomorphisms in

categories, one would expect that the notion of isomorphism would provide the
criterion of identity for categories. However, this is not the case7. A criterion
of identity for categories is given by the notion of equivalence of categories: two
categories C and D are equivalent if there are functors F: C // D and G:
D //C such that the composite FG is isomorphic to 1D and GF is isomorphic
to 1C . Notice that the identity between the composites FG and GF and the
respective identity functors are replaced by isomorphisms. We can immediately
conclude two important facts from this situation: a category of categories, no
matter what it turns out to be, cannot simply be a category. For, as we have
seen, in a category, the criterion of identity is given by the isomorphisms and
since categories are not individuated by isomorphisms, a category of categories
will have to be something else. Second, transcendental sets and categories have
different criteria of identity; for transcendental sets, it is given by isomorphisms,
for categories it is (at least at this level) given by equivalences; hence, categories
cannot be said to be structured sets, in the same sense, say, that one can say
that groups are structured sets. This is now crucial: categories in our universe
cannot be said to be (structured) sets.

7As far as I can tell, this was first discovered, or at the very least emphasized, by
Grothendieck in his Tohoku paper, published in 1957. However, it might have been discovered
by Yoneda some times before. This is an open problem.
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Before we move on to the universe as a whole, let us briefly consider how
the criteria of identity build up in a categorical context.

Often in category theory, the objects of investigation are functors F: C // D,
G: A // B. One has to determine the correct criterion of identity for such
functors. It turns out that the right notion can be presented as follows: two
functors F: C // D and G: A // B are equivalent if there are equiva-
lence of categories E1: C // A and E2: D // B and an isomorphism
η: GE1

// E2F. This situation can be represented by the following diagram:

C
F−→ D

E1 ↓ η ↗ ↓E2

A −→
G

B

A B
G

//

C

A

E1

��

C D
F // D

B

E2

��
;C

We see that this is more involved: we use the notion of equivalence of categories
together with the notion of isomorphism of parallel functors.

We could go on like this and introduce the criterion of identity for fibrations,
bicategories, etc. In each case, the criterion of identity would be more involved.
The thrust should however be clear: the identity of objects in a categorical
context is derived from that context, i.e. the underlying category in each case.
Furthermore, there is a hierarchy of criteria of identity that seems to be endless.
This is the first sense in which the categorical universe is heterogeneous: the
criterion of identity for objects in a category is not the same as the criterion
of identity for categories, which in turn, is not the same as the criterion of
identity for functors, which in turn, is not the same as the criterion of identity
for fibrations, etc. We cannot refrain at this moment to quote from Lowe:

The idea that one can “introduce” a kind of objects simply by laying down
an identity criterion for them really inverts the proper order of explanation. As
Locke clearly understood, one must first have a clear conception of what kind
of objects one is dealing with in order to extract a criterion of identity for them
from that conception. (. . . ) So, rather than “abstract” a kind of objects from a
criterion of identity, one must in general “ex tract” a criterion of identity from
a metaphysically defensible conception of a given kind of objects. (Lowe, 1995,
517)

In categorical practice, the kind of objects one has to deal with are very often
clear from the context. One then determines the proper criterion of identity for
the objects of that kind8. This is strikingly different from the prevalent situation

8Indeed, in many textbooks, various notions are defined, examined and developed and the
criterion of identity for these objects is not even mentioned, e.g. fibrations. See for instance
Borceux 1994, Jacobs 1999.
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in set theory. A general theory of identity reflecting the order of presentation we
have just given has been proposed by Michael Makkai in the form of FOLDS. It
is the very purpose of that formal framework to be able to formulate in a precise
and rigorous fashion, for various kinds of mathematical entities, corresponding
criteria of identity. We will come back to FOLDS later.

This informal hierarchy of criteria of identity already indicate the heterogene-
ity of the universe. At the bottom of the universe, we find the transcendental
sets with their criterion of identity: isomorphisms. Thus, their totality does
not constitute a set. In fact, they form various categories. These categories, in
turn, can be collected into totalities: what are these totalities? They certainly
cannot be categories. There is more structure involved. They are at least what
are called strict 2-categories or 2-categories. Then again, 2-categories form to-
talities and these totalities, to be described accurately, require more structure:
they form weak 3-categories. In order to see this more clearly, let us look at
equivalences more carefully.

An equivalence is given by a pair of functors F: C // D, G:D // C
and natural isomorphisms α : FG // 1D and β : GF // 1C . The fact that α
and β are isomorphisms means that the identities αα−1 = 11D and α−1α = 1FG
hold. In other words, we have reintroduced particulars at the last stage. To be
entirely consistent with the underlying conception of object we are assuming,
these identities should be replaced by isomorphisms (of the right type, i.e. sat-
isfying certain conditions.) A complete description of this situation is given by
what are called bicategories, or, more commonly nowadays, weak 2-categories.
The next step is provided by tricategories or weak 3-categories9. The latter
notion takes six pages to be defined and 13 pages are required to present the
various conditions that have to be satisfied by the various levels. Fortunately,
a general and very compelling picture is emerging. I want to insist on the fact
that it is technically and philosophically compelling. The general picture of the
resulting universe is given by what are called “higher dimensional categories”
or weak ω-categories. (See Leinster 2002 for a review of different definitions.)

Here is an extremely simplistic sketch of the universe of weak n-categories.
0-categories are transcendental sets. One and the same set can be the same as
itself in various ways; i.e. it can have various automorphisms. More generally,
two sets can be the same in different ways. Each and every isomorphism be-
tween them stipulates how they are the same and we can keep track of these
various identities. Moreover, 0-categories, i.e. sets, are linked to one another
by morphisms and these morphisms compose in the obvious way. Let us call
morphisms between 0-categories 1-morphisms. There is a motivation behind
the terminology, for 0-categories can be represented as points and 1-morphisms
as directed lines between points. It would be tempting to say that 1-morphisms
satisfy various identities, e.g. associativity, and that they form a category.

9It can be shown that any weak 2-category is equivalent, in a specific sense, to a strict
2-category. Thus, it would appear that weak 2-categories, those we are describing here and
that are relevant to this discussion, are dispensable. However, this is no longer true for 3-
categories. In the latter case, there are weak 3-categories which cannot be replaced by strict
3-categories.

8



But as we have seen, that would amount as treating them as abstract particu-
lars. Hence, instead of having identities between 1-morphisms, we require that
isomorphisms exist between them (with extra conditions). This implies that 2-
morphisms between 1-morphisms have to be introduced and that they provide a
criterion of identity for 1-morphisms. When this is done, it can be seen that the
collection of 1-morphisms form a weak 2-category. How about 2-morphisms?
Clearly, once more, we have to go up the ladder and introduce 3-morphisms.
These will stipulate how 2-morphisms behave, how they compose and under
what conditions they are identical. The general pattern should now be obvious:
to connect and identify n-morphisms, (n+1)-morphisms are required. Notice
that it is possible to stop at any n and stipulate that at that point, equali-
ties between n-morphisms exist but that for all j < n, identities are given by
(j+1)-morphisms.

The general picture is therefore this. The collection of 0-categories forms a
1-category. If we were to stop at this stage, it would mean that we take equali-
ties between 1-morphisms and that the latter are treated as abstract particulars.
But we can consider the collection of 1-categories and this is a 2-category. Again,
if we were to stop at this point, it would mean that we consider equalities be-
tween 2-morphisms but that 1-morphisms, that is 1-categories, are now treated
as abstract universals. Thus, for each n, there is an (n+1)-category of all n-
categories. Of course, one can consider the ω-category of n-categories for all n:
this amounts to defining n-categories for all n simultaneously. The ω-category
of weak n-categories is the alternative picture to the cumulative hierarchy of
sets.

The technical problems involved in the study of higher-dimensional category
theory are daunting. We have not even mentioned the simplest obstacle. We
refer the reader to the literature. (See Baez 1997, Baez & Dolan 1998a, Baez
& Dolan 1998b, Batanin 1998, Makkai 1998, Makkai 1999 and Leinster 2002.)
The point I wanted to make is purely conceptual. I am deliberately ignoring
the practical motivations underlying actual research into higher dimensional
categories, although they are probably more important than the conceptual ones
within the research community, for they go from computer science to topological
quantum field theory via homotopy theory. What I do want to emphasize are
the following points:

1. although we have started with a simple opposition between universals and
particulars, the final picture forces us to think about this opposition with
care. In the original picture, we had abstract universals and abstract par-
ticulars. Now, we seem to be forced to think about the realm of abstract
universals in a more elaborate way: within abstract universals, there is a
complex structure of relationships between kinds of universals. A simple
case of a similar hierarchy can be given: start with a specific metric space
X, given as a particular. Consider its group of automorphisms. As such,
the latter group is also a particular. However, as a group, it is a token of
a type: a group whose elements are unidentified but with an isomorphic
structure. In turn, this group can be seen as a one object category, that is
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an object in the universe of categories. At this stage, we are back in the
foregoing picture. Now, the elements of the original groups are automor-
phisms of the one object category and they can be related to one another
either by equalities, in which case we treat them as particulars, or they
can be related by morphisms of higher order, in which case they are uni-
versals. There is a general ontological picture emerging from this analysis
that will force us to look more carefully at the nature of universals.

2. The argument against category theory usually rests on the way categories
are presented, i.e. as classes or sets with a certain structure. Thus, it
is assumed that category theory has to be presented or understood in a
set-theoretical framework. As we have seen in the foregoing section, this
misses the fundamental aspect of categories; if the nature of categories is
revealed by its criterion of identity, then we can say that categories are
not structured sets.

3. It might very well be that the concept of a collection as an abstract uni-
versal rests on our understanding of abstract particulars. One cannot but
think of representation theory of groups where interplay between an ab-
stract universal, e.g. an abstract group, and abstract particulars, e.g. its
representations, is crucial. However, it by no means implies that a coher-
ent conception of such collections cannot be developed and depends for
its development upon a specific choice of abstract particulars.

The requirements of a foundation for mathematics might vary, depending upon
one’s conception of the foundational enterprise10. We do believe that category
theory is such that it can answer any requirement one might expect from a
foundational framework. But one has to look at it properly and see how and in
what sense it is universal. John Bell, in his paper on category theory and the
foundations of mathematics, claimed that “far from being in opposition to set
theory, [category theory] ultimately enables the set concept to achieve a new
universality.”(Bell, 1981, 358) Bell could not be closer to the point: sets are
not particulars in a categorical framework, they are universals and they are the
first universals in a complex and rich hierarchy that ought to be foundationally
appealing.

Bibliography
Baez, J., 1997, An Introduction to n-Categories, in 7th Conference on Cat-

egory Theory and Computer Science, E. Moggi & G. Rosolini, eds., SNCS, vol.
1290, Berlin: Springer-Verlag, 1-33.

Baez, J. & Dolan, J., 1998a, Higher-Dimensional Algebra III. N-Categories
and the Algebra of Opetopes, Advances in Mathematics, 135, 145-206.

Baez, J. & Dolan, J., 1998b, Categorification, in Higher Category Theory, E.
Getzer & M. Kapranov, eds., Contemporary Mathematics, vol, 230, Providence:
AMS, 1-36.

Batanin, M., 1998, Monoidal Globular Categories as a Natural Environment
for the Theory of Weak n-Categories, Advances in Mathematics, 136, 39-103.

10See, for instance, Mayberry 1994 and Marquis 1995.

10



Bell, J., 1981, Category Theory and the Foundations of Mathematics, British
Journal for the Philosophy of Science, 32, 349-358.

Borceux, F., 1994, Handbook of Categorical Algebra 2: categories and struc-
tures, Cambridge University Press.

Ellerman, D. P., 1988, Category Theory and Concrete Universals, Erkennt-
nis, 28, 409-429.

Jacobs, B., 1999, Categorical Logic and Type Theory, New York: Elsevier.
Lawvere, W., 1976, Variable quantities and variable structures in topoi,

Algebra, topology, and category theory, New York, Academic Press, 101-131.
Lawvere, W., 1994, Cohesive Toposes and Cantor’s ‘lauter Einsen’, Philosophia

Mathematica, (3), Vol. 2, 5-15.
Leinster, T., 2002, A Survey of definitions of n-category, Theory and Appli-

cations of Categories, vol. 10, 1-70.
Lowe,E.J.,1995, The Metaphysics of Abstract Objects, Journal of Philoso-

phy, 92(10), 509-524.
Lowe, E.J., 1998, The Possibility of Metaphysics, Oxford: Clarendon Press.
Makkai, M., 1998, Towards a Categorical Foundation of Mathematics, Logic

Colloquium ‘95(Haifa), LNL 11, Berlin: Springer, 153-190.
Makkai, M, 1999, On Structuralism in Mathematics, in Language, Logic, and

Concepts, Essays in Memory of John Macnamara, R. Jackendoff, P. Bloom, K.
Wynn, eds., Cambridge: MIT Press, 43-66.

Marquis, J.-P., 1995, Category Theory and the Foundations of Mathematics :
Philosophical Excavations, Synthese, 103, 3, 421-447.

Marquis, J.-P., 2000, Three kinds of Universals in Mathematics?, in Logical
Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic,
Mathematics and Science, Vol. II, B. Brown & J . Woods, eds., Oxford: Hermes,
191-212.

Mayberry, J., 1994, What is Required of a Foundation for Mathematics?,
Philosophia Mathematica, (3), Vol. 2, 16-35.

McLarty, C., 1993, Numbers Can be Just What They Have to, Noûs, 27,
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