CARDINAL SEQUENCES OF LCS SPACES UNDER GCH

JUAN CARLOS MARTINEZ AND LAJOS SOUKUP

Abstract. Let $\mathcal{C}(\alpha)$ denote the class of all cardinal sequences of length α associated with compact scattered spaces. Also put

$$
\mathcal{C}_{\lambda}(\alpha)=\{f \in \mathcal{C}(\alpha): f(0)=\lambda=\min [f(\beta): \beta<\alpha]\} .
$$

If λ is a cardinal and $\alpha<\lambda^{++}$is an ordinal, we define $\mathcal{D}_{\lambda}(\alpha)$ as follows: if $\lambda=\omega$,

$$
\mathcal{D}_{\omega}(\alpha)=\left\{f \in{ }^{\alpha}\left\{\omega, \omega_{1}\right\}: f(0)=\omega\right\},
$$

and if λ is uncountable,

$$
\begin{aligned}
\mathcal{D}_{\lambda}(\alpha)=\{f & \mathcal{}^{\alpha}\left\{\lambda, \lambda^{+}\right\}: f(0)=\lambda, \\
& \left.f^{-1}\{\lambda\} \text { is }<\lambda \text {-closed and successor-closed in } \alpha\right\} .
\end{aligned}
$$

We show that for each uncountable regular cardinal λ and ordinal $\alpha<\lambda^{++}$it is consistent with GCH that $\mathcal{C}_{\lambda}(\alpha)$ is as large as possible, i.e.

$$
\mathcal{C}_{\lambda}(\alpha)=\mathcal{D}_{\lambda}(\alpha) .
$$

This yields that under GCH for any sequence f of regular cardinals of length α the following statements are equivalent:
(1) $f \in \mathcal{C}(\alpha)$ in some cardinal preserving and GCH-preserving generic-extension of the ground model.
(2) for some natural number n there are infinite regular cardinals $\lambda_{0}>\lambda_{1}>\cdots>\lambda_{n-1}$ and ordinals $\alpha_{0}, \ldots, \alpha_{n-1}$ such that $\alpha=\alpha_{0}+\cdots+\alpha_{n-1}$ and $f=f_{0} \frown f_{1} \frown \ldots \frown f_{n-1}$ where each $f_{i} \in \mathcal{D}_{\lambda_{i}}\left(\alpha_{i}\right)$.
The proofs are based on constructions of universal locally compact scattered spaces.

[^0]
1. Introduction

Given a locally compact scattered T_{2} (in short : LCS) space X the $\alpha^{\text {th }}$ Cantor-Bendixson level will be denoted by $\mathrm{I}_{\alpha}(X)$. The height of $X, \operatorname{ht}(X)$, is the least ordinal α with $\mathrm{I}_{\alpha}(X)=\emptyset$. The reduced height $\mathrm{ht}^{-}(X)$ is the smallest ordinal α such that $\mathrm{I}_{\alpha}(X)$ is finite. Clearly, one has $\mathrm{ht}^{-}(X) \leq \mathrm{ht}(X) \leq \mathrm{ht}^{-}(X)+1$. The cardinal sequence of X, denoted by $\operatorname{SEQ}(X)$, is the sequence of cardinalities of the infinite Cantor-Bendixson levels of X, i.e.

$$
\operatorname{SEQ}(X)=\langle | I_{\alpha}(X)\left|: \alpha<\operatorname{ht}(X)^{-}\right\rangle .
$$

A characterization in ZFC of the sequences of cardinals of length $\leq \omega_{1}$ that arise as cardinal sequences of LCS spaces is proved in [4]. However, no characterization in ZFC is known for cardinal sequences of length $<\omega_{2}$.

For an ordinal α we let $\mathcal{C}(\alpha)$ denote the class of all cardinal sequences of length α of LCS spaces. We also put, for any fixed infinite cardinal λ,

$$
\mathcal{C}_{\lambda}(\alpha)=\{s \in \mathcal{C}(\alpha): s(0)=\lambda \wedge \forall \beta<\alpha[s(\beta) \geq \lambda]\} .
$$

In [2, the authors show that a class $\mathcal{C}(\alpha)$ is characterized if the classes $\mathcal{C}_{\lambda}(\beta)$ are characterized for every infinite cardinal λ and every ordinal $\beta \leq \alpha$. Then, they obtain under GCH a characterization of the classes $\mathcal{C}(\alpha)$ for any ordinal $\alpha<\omega_{2}$ by means of a a full description under GCH of the classes $\mathcal{C}_{\lambda}(\alpha)$ for any ordinal $\alpha<\omega_{2}$ and any infinite cardinal λ. The situation becomes, however, more complicated when we consider the class $\mathcal{C}\left(\omega_{2}\right)$. We can characterize under GCH the classes $\mathcal{C}_{\lambda}\left(\omega_{2}\right)$ for $\lambda>\omega_{1}$, by using the description given in [2] and the following simple observation.

Observation 1.1. If $\lambda \geq \omega_{2}$, then $f \in \mathcal{C}_{\lambda}\left(\omega_{2}\right)$ iff $f \upharpoonright \alpha \in \mathcal{C}_{\lambda}(\alpha)$ for each $\alpha<\omega_{2}$.

Proof. If $\operatorname{SEQ}\left(X_{\alpha}\right)=f \upharpoonright \alpha$ for $\alpha<\omega_{2}$ then take X as the disjoint union of $\left\{X_{\alpha}: \alpha<\omega_{2}\right\}$. Then $\operatorname{SEQ}(X)=f$ because for any $\beta<\omega_{2}$ we have $\mathrm{I}_{\beta}(X)=\bigcup\left\{\mathrm{I}_{\beta}\left(X_{\alpha}\right): \beta<\alpha<\omega_{2}\right\}$ and so

$$
\left|\mathrm{I}_{\beta}(X)\right|=\sum_{\beta<\alpha<\omega_{2}}\left|\mathrm{I}_{\beta}\left(X_{\alpha}\right)\right|=\omega_{2} \cdot f(\beta)=f(\beta) .
$$

If α is any ordinal, a subset $L \subset \alpha$ is called κ-closed in α, where κ is an infinite cardinal, iff $\sup \left\langle\alpha_{i}: i<\kappa\right\rangle \in L \cup\{\alpha\}$ for each increasing sequence $\left\langle\alpha_{i}: i<\kappa\right\rangle \in{ }^{\kappa} L$. The set L is $<\lambda$-closed in α provided it
is κ-closed in α for each cardinal $\kappa<\lambda$. We say that L is successor closed in α if $\beta+1 \in L \cup\{\alpha\}$ for all $\beta \in L$.

For a cardinal λ and ordinal $\delta<\lambda^{++}$we define $\mathcal{D}_{\lambda}(\delta)$ as follows: if $\lambda=\omega$,

$$
\mathcal{D}_{\omega}(\delta)=\left\{f \in^{\delta}\left\{\omega, \omega_{1}\right\}: f(0)=\omega\right\}
$$

and if λ is uncountable,

$$
\left.\left.\begin{array}{rl}
\mathcal{D}_{\lambda}(\delta)=\left\{s \in{ }^{\delta}\{\lambda,\right. & \left.\lambda^{+}\right\}: s(0)
\end{array}\right)=\lambda, ~ 子 \text {-closed and successor-closed in } \delta\right\} .
$$

The observation 1.1 above left open the characterization of $\mathcal{C}_{\omega_{1}}\left(\omega_{2}\right)$ under GCH. In [2, Theorem 4.1] it was proved that if GCH holds then

$$
\mathcal{C}_{\omega_{1}}(\delta) \subseteq \mathcal{D}_{\omega_{1}}(\delta)
$$

and we have equality for $\delta<\omega_{2}$. In Theorem 1.3 we show that it is consistent with GCH that we have equality not only for $\delta=\omega_{2}$ but even for each $\delta<\omega_{3}$.

To formulate our results we need to introduce some more notation.
We shall use the notation $\langle\kappa\rangle_{\alpha}$ to denote the constant κ-valued sequence of length α. Let us denote the concatenation of a sequence f of length α and a sequence g of length β by $f \frown g$ so that the domain of $f \frown g$ is $\alpha+\beta$ and $f \frown g(\xi)=f(\xi)$ for $\xi<\alpha$ and $f \frown g(\alpha+\xi)=g(\xi)$ for $\xi<\beta$.

Definition 1.2. An LCS space X is called $\mathcal{C}_{\lambda}(\alpha)$-universaliff $\operatorname{SEQ}(X) \in$ $\mathcal{C}_{\lambda}(\alpha)$ and for each sequence $s \in \mathcal{C}_{\lambda}(\alpha)$ there is an open subspace Y of X with $\operatorname{SEQ}(Y)=s$.

In this paper we prove the following result:
Theorem 1.3. If κ is an uncountable regular cardinal with $\kappa^{<\kappa}=\kappa$ and $2^{\kappa}=\kappa^{+}$then for each $\delta<\kappa^{++}$there is a κ-complete κ^{+}-c.c poset P of cardinality κ^{+}such that in V^{P}

$$
\mathcal{C}_{\kappa}(\delta)=\mathcal{D}_{\kappa}(\delta)
$$

and there is a $\mathcal{C}_{\kappa}(\delta)$-universal LCS space.
How do the universal spaces come into the picture? The first idea to prove the consistency of $\mathcal{C}_{\lambda}(\alpha)=\mathcal{D}_{\lambda}(\alpha)$ is to try to carry out an iterated forcing. For each $f \in \mathcal{D}_{\lambda}(\alpha)$ we can try to find a poset P_{f} such that

$$
1_{P_{f}} \Vdash \text { There is an LCS space } X_{f} \text { with cardinal sequence } f \text {. }
$$

Since typically $\left|X_{f}\right|=\lambda^{+}$, if we want to preserve the cardinals and $C G H$ we should try to find a λ-complete, λ^{+}-c.c. poset P_{f} of cardinality λ^{+}. In this case forcing with P_{f} introduces λ^{+}new subsets of λ because P_{f} has cardinality λ^{+}. However $\left|\mathcal{D}_{\lambda}(\alpha)\right|=\lambda^{++}$! So the length of the iteration is at least λ^{++}, hence in the final model the cardinal λ will have $\lambda^{+} \cdot \lambda^{++}=\lambda^{++}$many new subsets, i.e. $2^{\lambda}>\lambda^{+}$.

A $\mathcal{C}_{\lambda}(\delta)$-universal space has cardinality λ^{+}so we may hope that there is a λ-complete, λ^{+}-c.c. poset P of cardinality λ^{+}such that V^{P} contains a $\mathcal{C}_{\lambda}(\delta)$-universal space. In this case $\left(2^{\lambda}\right)^{V^{P}} \leq\left(\left(|P|^{\lambda}\right)^{\lambda}\right)^{V}=\lambda^{+}$. So in the generic extension we might have $G C H$.

In this paper, we shall use the notion of a universal LCS space in order to prove Theorem 1.3, Further constructions of universal LCS spaces will be carried out in [6].

Problem 1.4. Assume that s is a sequence of cardinals of length α, $s \notin \mathcal{C}(\alpha)$. Is it possible that there is a $|\alpha|^{+}$-Baire $\left(|\alpha|^{+}\right.$-complete) poset P such that $s \in \mathcal{C}(\alpha)$ in V^{P} ?

For an ordinal $\delta<\kappa^{++}$let $\mathcal{L}_{\kappa}^{\delta}=\left\{\alpha<\delta: \operatorname{cf}(\alpha) \in\left\{\kappa, \kappa^{+}\right\}\right\}$.
Definition 1.5. An LCS space X is called $\mathcal{L}_{\kappa}^{\delta}$-good iff X has a partition $X=Y \cup^{*} \bigcup^{*}\left\{Y_{\zeta}: \zeta \in \mathcal{L}_{\kappa}^{\delta}\right\}$ such that
(1) Y is an open subspace of $X, \operatorname{SEQ}(Y)=\langle\kappa\rangle_{\delta}$,
(2) $Y \cup Y_{\zeta}$ is an open subspace of X with $\operatorname{SEQ}\left(Y \cup Y_{\zeta}\right)=\langle\kappa\rangle_{\zeta}{ }^{\frown}\left\langle\kappa^{+}\right\rangle_{\delta-\zeta}$.

Theorem 1.3 follows immediately from Theorem 1.6 and Proposition 1.7 below.

Theorem 1.6. If κ is an uncountable regular cardinal with $\kappa^{<\kappa}=\kappa$ then for each $\delta<\kappa^{++}$there is a κ-complete κ^{+}-c.c poset \mathcal{P} of cardinality κ^{+}such that in $V^{\mathcal{P}}$ there is an $\mathcal{L}_{\kappa}^{\delta}$-good space.

Proposition 1.7. Let κ be an uncountable regular cardinal, $\delta<\kappa^{++}$ and X be an $\mathcal{L}_{\kappa}^{\delta}$-good space. Then for each $s \in \mathcal{D}_{\kappa}(\delta)$ there is an open subspace Z of X with $\operatorname{SEQ}(Z)=s$. Especially, under $G C H$ an $\mathcal{L}_{\kappa}^{\delta}$-good space is $\mathcal{C}_{\kappa}(\delta)$-universal.

Proof. Let $J=s^{-1}\left\{\kappa^{+}\right\} \cap \mathcal{L}_{\kappa}^{\delta}$. For each $\zeta \in J$ let

$$
f(\zeta)=\min \left((\delta+1) \backslash\left(s^{-1}\left\{\kappa^{+}\right\} \cup \zeta\right)\right) .
$$

Let

$$
Z=Y \cup \bigcup\left\{\mathrm{I}_{<f(\zeta)}\left(Y \cup Y_{\zeta}\right): \zeta \in J\right\}
$$

Since $Y \cup Y_{\zeta}$ is an open subspace of X it follows that $\mathrm{I}_{<f(\zeta)}\left(Y \cup Y_{\zeta}\right)$ is an open subspace of Z. Hence for every $\alpha<\delta$

$$
\begin{align*}
\mathrm{I}_{\alpha}(Z)=\mathrm{I}_{\alpha}(Y) & \cup \bigcup\left\{\mathrm{I}_{\alpha}\left(\mathrm{I}_{<f(\zeta)}\left(Y \cup Y_{\zeta}\right)\right): \zeta \in J\right\} \tag{1}\\
& =\mathrm{I}_{\alpha}(Y) \cup \bigcup\left\{\mathrm{I}_{\alpha}\left(Y \cup Y_{\zeta}\right): \zeta \in J, \zeta \leq \alpha<f(\zeta)\right\}
\end{align*}
$$

Since $[\zeta, f(\zeta)) \subset s^{-1}\left\{\kappa^{+}\right\}$for $\zeta \in J$ it follows that if $s(\alpha)=\kappa$ then $\mathrm{I}_{\alpha}(Z)=\mathrm{I}_{\alpha}(Y)$, and so

$$
\begin{equation*}
\left|\mathrm{I}_{\alpha}(Z)\right|=\left|\mathrm{I}_{\alpha}(Y)\right|=\kappa . \tag{2}
\end{equation*}
$$

If $s(\alpha)=\kappa^{+}$, let $\zeta_{\alpha}=\min \left\{\zeta \leq \alpha:[\zeta, \alpha] \subset s^{-1}\left\{\kappa^{+}\right\}\right\}$. Then $\zeta_{\alpha} \in J$ because $s(0)=\kappa$ and $s^{-1}\{\kappa\}$ is $<\kappa$-closed and successor-closed in δ. Thus $\zeta_{\alpha} \leq \alpha<f\left(\zeta_{\alpha}\right)$ and so

$$
\begin{equation*}
\left|\mathrm{I}_{\alpha}(Z)\right| \geq\left|\mathrm{I}_{\alpha}\left(Y \cup Y_{\zeta_{\alpha}}\right)\right|=\kappa^{+} \tag{3}
\end{equation*}
$$

Since $|Z| \leq|X|=\kappa^{+}$we have $\left|\mathrm{I}_{\alpha}(Z)\right|=\kappa^{+}$. Thus $\operatorname{SEQ}(Z)=s$.
Theorem 1.3 yields the following characterization:
Theorem 1.8. Under GCH for any sequence f of regular cardinals of length α the following statements are equivalent:
(A) $f \in \mathcal{C}(\alpha)$ in some cardinal preserving and GCH-preserving genericextension of the ground model.
(B) for some natural number n there are infinite regular cardinals $\lambda_{0}>$ $\lambda_{1}>\cdots>\lambda_{n-1}$ and ordinals $\alpha_{0}, \ldots, \alpha_{n-1}$ such that $\alpha=\alpha_{0}+\cdots+$ α_{n-1} and $f=f_{0} \frown f_{1} \frown \ldots \frown f_{n-1}$ where each $f_{i} \in \mathcal{D}_{\lambda_{i}}\left(\alpha_{i}\right)$.
Proof. (A) clearly implies (B) by [2].
Assume now that (B) holds. Without loss of generality, we may suppose that $\lambda_{n-1}=\omega$. Since the notion of forcing defined in Theorem 1.3 preserves GCH, we can carry out a cardinal-preserving and GCHpreserving iterated forcing of length $n-1,\left\langle P_{m}: m<n-1\right\rangle$, such that for $m<n-1$

$$
V^{P_{m}} \models \mathcal{C}_{\lambda_{m}}\left(\alpha_{m}\right)=\mathcal{D}_{\lambda_{m}}\left(\alpha_{m}\right)
$$

Put $k=n-2, \beta=\alpha_{0}+\cdots+\alpha_{k}$ and $g=f_{0} \frown f_{1} \frown \ldots \frown f_{k}$. Since $f_{m} \in \mathcal{D}_{\lambda_{m}}\left(\alpha_{m}\right) \cap V$, in $V^{P_{k}}$ we have $f_{m} \in \mathcal{C}_{\lambda_{m}}\left(\alpha_{m}\right)$ for each $m<n-1$. Hence in $V^{P_{k}}$ we have $g \in \mathcal{C}(\beta)$ by [2, Lemma 2.2]. Also, by using [4, Theorem 9], we infer that $f_{n-1} \in \mathcal{C}\left(\alpha_{n-1}\right)$ in ZFC. Then as $f=g \frown f_{n-1}$, in $V^{P_{k}}$ we have $f \in \mathcal{C}(\alpha)$ again by [2, Lemma 2.2].
Problem 1.9. (1) Are (A) and (B) below equivalent under GCH for every sequence f of regular cardinals?
(A) $f \in \mathcal{C}(\alpha)$.
(B) for some natural number n there are infinite regular cardinals $\lambda_{0}>$ $\lambda_{1}>\cdots>\lambda_{n-1}$ and ordinals $\alpha_{0}, \ldots, \alpha_{n-1}$ such that $\alpha=\alpha_{0}+\cdots+$ α_{n-1} and $f=f_{0} \frown f_{1} \frown \ldots \frown f_{n-1}$ where each $f_{i} \in \mathcal{D}_{\lambda_{i}}\left(\alpha_{i}\right)$.
(2) Is it consistent with $G C H$ that (A) and (B) above are equivalent for every sequence of regular cardinals?

Juhász and Weiss proved in [3] that $\langle\omega\rangle_{\delta} \in \mathcal{C}(\delta)$ for each $\delta<\omega_{2}$.
Also, it was shown in [5] that for every specific regular cardinal κ it is consistent that $\langle\kappa\rangle_{\delta} \in \mathcal{C}(\delta)$ for each $\delta<\kappa^{++}$. However, the following problem is open:
Problem 1.10. Is it consistent with $G C H$ that $\left\langle\omega_{1}\right\rangle_{\delta} \in \mathcal{C}(\delta)$ for each $\delta<\omega_{3}$?

2. Proof of theorem 1.6

This section is devoted to the proof of Theorem 1.6, so κ is an uncountable regular cardinal with $\kappa^{<\kappa}=\kappa$, and $\delta<\kappa^{++}$is an ordinal.

If $\alpha \leq \beta$ are ordinals let

$$
\begin{equation*}
[\alpha, \beta)=\{\gamma: \alpha \leq \gamma<\beta\} \tag{4}
\end{equation*}
$$

We say that I is an ordinal interval iff there are ordinals α and β with $I=[\alpha, \beta)$. Write $I^{-}=\alpha$ and $I^{+}=\beta$.

If $I=[\alpha, \beta)$ is an ordinal interval let $\mathrm{E}(I)=\left\{\varepsilon_{\nu}^{I}: \nu<\operatorname{cf}(\beta)\right\}$ be a cofinal closed subset of I having order type $\operatorname{cf} \beta$ with $\alpha=\varepsilon_{0}^{I}$ and put

$$
\begin{equation*}
\mathcal{E}(I)=\left\{\left[\varepsilon_{\nu}^{I}, \varepsilon_{\nu+1}^{I}\right): \nu<\operatorname{cf} \beta\right\} \tag{5}
\end{equation*}
$$

provided β is a limit ordinal, and let $\mathrm{E}(I)=\left\{\alpha, \beta^{\prime}\right\}$ and put

$$
\begin{equation*}
\mathcal{E}(I)=\left\{\left[\alpha, \beta^{\prime}\right),\left\{\beta^{\prime}\right\}\right\} \tag{6}
\end{equation*}
$$

provided $\beta=\beta^{\prime}+1$.
Define $\left\{\mathcal{I}_{n}: n<\omega\right\}$ as follows:

$$
\begin{equation*}
\mathcal{I}_{0}=\{[0, \delta)\} \text { and } \mathcal{I}_{n+1}=\bigcup\left\{\mathcal{E}(I): I \in \mathcal{I}_{n}\right\} . \tag{7}
\end{equation*}
$$

Put $\mathbb{I}=\bigcup\left\{\mathcal{I}_{n}: n<\omega\right\}$. Note that \mathbb{I} is a cofinal tree of intervals in the sense defined in [5]. Then, for each $\alpha<\delta$ we define

$$
\begin{equation*}
\mathrm{n}(\alpha)=\min \left\{n: \exists I \in \mathcal{I}_{n} \text { with } I^{-}=\alpha\right\} \tag{8}
\end{equation*}
$$

and for each $\alpha<\delta$ and $n<\omega$ we define

$$
\begin{equation*}
\mathrm{I}(\alpha, n) \in \mathcal{I}_{n} \text { such that } \alpha \in \mathrm{I}(\alpha, n) \tag{9}
\end{equation*}
$$

Proposition 2.1. Assume that $\zeta<\delta$ is a limit ordinal. Then, there is a $j(\zeta) \in \omega$ and an interval $J(\zeta) \in \mathcal{I}_{j(\zeta)}$ such that ζ is a limit point of $E(J(\zeta))$. Also, we have $\mathrm{n}(\zeta)-1 \leq j(\zeta) \leq \mathrm{n}(\zeta)$, and $j(\zeta)=n(\zeta)$ if $c f(\zeta)=\kappa^{+}$.

Proof. Clearly $j(\zeta)$ and $\mathrm{J}(\zeta)$ are unique if defined.
If there is an $I \in \mathcal{I}_{\mathrm{n}(\zeta)}$ with $I^{+}=\zeta$ then $J(\zeta)=I$, and so $j(\zeta)=\mathrm{n}(\zeta)$. If there is no such I, then ζ is a limit point of $\mathrm{E}(\mathrm{I}(\zeta, \mathrm{n}(\zeta)-1))$, so $J(\zeta)=\mathrm{I}(\zeta, \mathrm{n}(\zeta)-1)$ and $j(\zeta)=\mathrm{n}(\zeta)-1$.

Assume now that $\operatorname{cf}(\zeta)=\kappa^{+}$. Then $\zeta \in \mathrm{E}(\mathrm{I}(\zeta, \mathrm{n}(\zeta)-1))$, but $|\mathrm{E}(\mathrm{I}(\zeta, \mathrm{n}(\zeta)-1)) \cap \zeta| \leq \kappa$, so ζ can not be a limit point of $\mathrm{E}(\mathrm{I}(\zeta, \mathrm{n}(\zeta)-1))$. Therefore, it has a predecessor ξ in $\mathrm{E}(\mathrm{I}(\zeta, \mathrm{n}(\zeta)-1))$, i.e $[\xi, \zeta) \in \mathcal{I}_{\mathrm{n}(\zeta)}$, and so $J(\zeta)=[\xi, \zeta)$ and $j(\zeta)=\mathrm{n}(\zeta)$.

Example 2.2. Put $\delta=\omega_{2} \cdot \omega_{2}+1$. We define

$$
\begin{aligned}
& E([0, \delta))=\left\{0, \omega_{2} \cdot \omega_{2}\right\} \\
& E\left(\left[0, \omega_{2} \cdot \omega_{2}\right)\right)=\left\{\omega_{2} \cdot \xi: 0 \leq \xi<\omega_{2}\right\} \\
& E\left(\left[\omega_{2} \cdot \xi, \omega_{2} \cdot(\xi+1)\right)\right)=\left\{\zeta: \omega_{2} \cdot \xi \leq \zeta<\omega_{2} \cdot(\xi+1)\right\}, \\
& E(\{\zeta\})=\{\zeta\} \text { for each } \zeta \leq \omega_{2} \cdot \omega_{2} .
\end{aligned}
$$

Then, we have $\mathrm{n}\left(\omega_{2} \cdot \omega_{2}\right)=1, \mathrm{n}\left(\omega_{2} \cdot \omega_{1}\right)=2, \mathrm{n}\left(\omega_{2} \cdot \omega_{1}+\omega\right)=3$. Also, we have $j\left(\omega_{2} \cdot \omega_{2}\right)=\mathrm{j}\left(\omega_{2} \cdot \omega_{1}\right)=1$ and $J\left(\omega_{2} \cdot \omega_{2}\right)=J\left(\omega_{2} \cdot \omega_{1}\right)=$ $\left[0, \omega_{2} \cdot \omega_{2}\right)$.

If $\operatorname{cf}\left(J(\zeta)^{+}\right) \in\left\{\kappa, \kappa^{+}\right\}$, we denote by $\left\{\epsilon_{\nu}^{\zeta}: \nu<\operatorname{cf}\left(J(\zeta)^{+}\right)\right\}$the increasing enumeration of $\mathrm{E}(J(\zeta))$, i.e. $\epsilon_{\nu}^{\zeta}=\varepsilon_{\nu}^{J(\zeta)}$ for $\nu<\operatorname{cf}\left(J(\zeta)^{+}\right)$.

Now if $\zeta<\delta$, we define the basic orbit of ζ (with respect to \mathbb{I}) as

$$
\begin{equation*}
\mathrm{o}(\zeta)=\bigcup\{(\mathrm{E}(\mathrm{I}(\zeta, m)) \cap \zeta): m<\mathrm{n}(\zeta)\} \tag{10}
\end{equation*}
$$

Note that this is the notion of orbit used in [5] in order to construct by forcing an LCS space X such that $\operatorname{SEQ}(X)=\langle\kappa\rangle_{\eta}$ for any specific regular cardinal κ and any ordinal $\eta<\kappa^{++}$. However, this notion of orbit can not be used to construct an LCS space X such that SEQ $(X)=$ $\langle\kappa\rangle_{\kappa^{+}} \frown\left\langle\kappa^{+}\right\rangle$. To check this point, assume on the contrary that such a space X can be constructed by forcing from the notion of a basic orbit. Then, since the basic orbit of κ^{+}is $\{0\}$, we have that if x, y are any two different elements of $I_{\kappa^{+}}(X)$ and U, V are basic neighbourhoods of x, y respectively, then $U \cap V \subset I_{0}(X)$. But then, we deduce that $\left|I_{1}(X)\right|=\kappa^{+}$.

However, we will show that a refinement of the notion of basic orbit can be used to proof Theorem 1.6.

If $\zeta<\delta$ with $\operatorname{cf} \zeta \geq \kappa$, we define the extended orbit of ζ by

$$
\begin{equation*}
\overline{\mathrm{o}}(\zeta)=\mathrm{o}(\zeta) \cup(\mathrm{E}(J(\zeta)) \cap \zeta) \tag{11}
\end{equation*}
$$

Consider the tree of intervals defined in Example-2.2. Then, we have $\mathrm{o}\left(\omega_{2} \cdot \omega_{1}\right)=\bar{o}\left(\omega_{2} \cdot \omega_{1}\right)=\left\{\omega_{2} \cdot \xi: 0 \leq \xi<\omega_{1}\right\}$, o $\left(\omega_{2} \cdot \omega_{2}\right)=\{0\}$, $\bar{o}\left(\omega_{2} \cdot \omega_{2}\right)=\left\{\omega_{2} \cdot \xi: 0 \leq \xi<\omega_{2}\right\}$.

Note that if $\zeta<\delta$, the basic orbit of ζ is a set of cardinality at most κ (see [5, Proposition 1.3]). Then, it is easy to see that for any $\zeta<\delta$ with $\operatorname{cf} \zeta \geq \kappa$, the extended orbit of ζ is a cofinal subset of ζ of cardinality of ζ.

In order to define the desired notion of forcing, we need some preparations. The underlying set of the desired space will be the union of a collection of blocks.

Let

$$
\begin{equation*}
\mathbb{B}=\{S\} \cup\left\{\langle\zeta, \eta\rangle: \zeta<\delta, \operatorname{cf} \zeta \in\left\{\kappa, \kappa^{+}\right\}, \eta<\kappa^{+}\right\} \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
B_{S}=\delta \times \kappa \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{\zeta, \eta}=\{\langle\zeta, \eta\rangle\} \times[\zeta, \delta) \times \kappa \tag{14}
\end{equation*}
$$

for $\langle\zeta, \eta\rangle \in \mathbb{B} \backslash\{S\}$.
Let

$$
\begin{equation*}
X=\bigcup\left\{B_{T}: T \in \mathbb{B}\right\} \tag{15}
\end{equation*}
$$

The underlying set of our space will be X. We should produce a partition $X=Y \cup^{*} \bigcup^{*}\left\{Y_{\zeta}: \zeta \in \mathcal{L}_{\kappa}^{\delta}\right\}$ such that
(1) Y is an open subspace of X with $\operatorname{SEQ}(Y)=\langle\kappa\rangle_{\delta}$,
(2) $Y \cup Y_{\zeta}$ is an open subspace of X with $\operatorname{SEQ}\left(Y \cup Y_{\zeta}\right)=\langle\kappa\rangle_{\zeta} \prec\left\langle\kappa^{+}\right\rangle_{\delta-\zeta}$.

We will have $Y=B_{S}, Y_{\zeta}=\bigcup\left\{B_{\zeta, \eta}: \eta<\kappa^{+}\right\}$for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$.
Let

$$
\pi: X \longrightarrow \delta \text { such that } \begin{align*}
& \pi(\langle\alpha, \nu\rangle)=\alpha, \tag{16}\\
& \pi(\langle\zeta, \eta, \alpha, \nu\rangle)=\alpha
\end{align*}
$$

Let

$$
\pi_{-}: X \longrightarrow \delta \text { such that } \begin{align*}
& \pi_{-}(\langle\alpha, \nu\rangle)=\alpha \tag{17}\\
& \pi_{-}(\langle\zeta, \eta, \alpha, \nu\rangle)=\zeta
\end{align*}
$$

Define

$$
\begin{equation*}
\pi_{B}: X \longrightarrow \mathbb{B} \text { by the formula } x \in B_{\pi_{B}(x)} \tag{18}
\end{equation*}
$$

Define the block orbit function $\mathrm{o}_{\mathrm{B}}: \mathbb{B} \backslash\{S\} \longrightarrow[\delta]^{\leq \kappa}$ as follows:

$$
\mathrm{o}_{\mathrm{B}}(\langle\zeta, \eta\rangle)= \begin{cases}\overline{\mathrm{O}}(\zeta) & \text { if } \operatorname{cf} \zeta=\kappa \tag{19}\\ \mathrm{o}(\zeta) \cup\left\{\epsilon_{\nu}^{\zeta}: \nu<\eta\right\} & \text { if } \operatorname{cf} \zeta=\kappa^{+}\end{cases}
$$

That is, if $\operatorname{cf} \zeta=\kappa^{+}$then

$$
\mathrm{o}_{\mathrm{B}}(\langle\zeta, \eta\rangle)=\overline{\mathrm{o}}(\zeta) \cap \epsilon_{\eta}^{\zeta} .
$$

Finally we define the orbits of the elements of X as follows:

$$
\mathrm{o}^{*}: X \longrightarrow[\delta]^{\leq \kappa} \text { such that } \begin{align*}
& \mathrm{o}^{*}(\langle\alpha, \nu\rangle)=\mathrm{o}(\alpha), \tag{20}\\
& \mathrm{o}^{*}(\langle\zeta, \eta, \alpha, \nu\rangle)=\mathrm{o}_{\mathrm{B}}(\langle\zeta, \eta\rangle) \cup(\mathrm{o}(\alpha) \backslash \zeta) .
\end{align*}
$$

Let $\Lambda \in \mathbb{I}$ and $\{x, y\} \in[X]^{2}$. We say that Λ isolates x from y if
(i) $\Lambda^{-}<\pi(x)<\Lambda^{+}$,
(ii) $\Lambda^{+} \leq \pi(y)$ provided $\pi_{B}(x)=\pi_{B}(y)$,
(iii) $\Lambda^{+} \leq \pi_{-}(y)$ provided $\pi_{B}(x) \neq \pi_{B}(y)$.

Now, we define the poset $\mathcal{P}=\langle P, \leq\rangle$ as follows: $\langle A, \preceq, i\rangle \in P$ iff
(P1) $A \in[X]^{<\kappa}$.
(P2) \preceq is a partial order on A such that $x \preceq y$ implies $x=y$ or $\pi(x)<\pi(y)$.
(P3) Let $x \preceq y$.
(a) If $\pi_{B}(y)=\langle\zeta, \eta\rangle$ and $\zeta \leq \pi(x)$ then $\pi_{B}(x)=\pi_{B}(y)$.
(b) If $\pi_{B}(y)=\langle\zeta, \eta\rangle$ and $\zeta>\pi(x)$ then $\pi_{B}(x)=S$.
(c) If $\pi_{B}(y)=S$ then $\pi_{B}(x)=S$.
(P4) i : $[A]^{2} \longrightarrow A \cup\{$ undef $\}$ such that for each $\{x, y\} \in[A]^{2}$ we have

$$
\forall a \in A([a \preceq x \wedge a \preceq y] \text { iff } a \preceq \mathrm{i}\{x, y\}) .
$$

(P5) $\forall\{x, y\} \in[A]^{2}$ if x and y are \preceq-incomparable but \preceq-compatible, then $\pi(\mathrm{i}\{x, y\}) \in \mathrm{o}^{*}(x) \cap \mathrm{o}^{*}(y)$.
(P6) Let $\{x, y\} \in[A]^{2}$ with $x \preceq y$. Then:
(a) If $\pi_{B}(x)=S$ and $\Lambda \in \mathbb{I}$ isolates x from y, then there is $z \in A$ such that $x \preceq z \preceq y$ and $\pi(z)=\Lambda^{+}$.
(b) If $\pi_{B}(x) \neq S, \pi(x) \neq \pi_{-}(x)$ and $\Lambda \in \mathbb{I}$ isolates x from y, then there is $z \in A$ such that $x \preceq z \preceq y$ and $\pi(z)=\Lambda^{+}$.
The ordering on P is the extension: $\langle A, \preceq, \mathrm{i}\rangle \leq\left\langle A^{\prime}, \preceq^{\prime}, \mathrm{i}^{\prime}\right\rangle$ iff $A^{\prime} \subset A$, $\preceq^{\prime}=\preceq \cap\left(A^{\prime} \times A^{\prime}\right)$, and $\mathrm{i}^{\prime} \subset \mathrm{i}$.

By using (P3), we obtain:
Claim 2.3. Assume that x, y, z and Λ are as in (P6). Then we have:
(a) If $\pi_{B}(x)=\pi_{B}(y)$, then $\pi_{B}(z)=\pi_{B}(x)=\pi_{B}(y)$.
(b) If $\pi_{B}(x) \neq \pi_{B}(y)$ and $\Lambda^{+}<\pi_{-}(y)$, then $\pi_{B}(z)=\pi_{B}(x)$.
(c) If $\pi_{B}(x) \neq \pi_{B}(y)$ and $\Lambda^{+}=\pi_{-}(y)$, then $\pi_{B}(z)=\pi_{B}(y)$.

Since $\kappa^{<\kappa}=\kappa$ implies $\left(\kappa^{+}\right)^{<\kappa}=\kappa^{+}$, we have that the cardinality of P is κ^{+}. Then, using the arguments of [5] it is enough to prove that Lemmas 2.4, 2.5 and 2.6 below hold.

Lemma 2.4. \mathcal{P} is κ-complete.
Lemma 2.5. \mathcal{P} satisfies the κ^{+}-c.c.
Lemma 2.6. Assume that $p=\langle A, \preceq, \mathrm{i}\rangle \in P, x \in A$, and $\alpha<\pi(x)$. Then there is $p^{\prime}=\left\langle A^{\prime}, \preceq^{\prime}, \mathrm{i}^{\prime}\right\rangle \in P$ with $p^{\prime} \leq p$ and there is $b \in A^{\prime} \backslash A$ with $\pi(b)=\alpha$ such that $b \preceq^{\prime} y$ iff $x \preceq y$ for $y \in A$.

Since κ is regular, Lemma 2.4 clearly holds.
PROOF of Lemma 2.6. Let $\beta=\pi(x)$. Let K be a countable subset of $[\alpha, \beta)$ such that $\alpha \in K$ and $\mathrm{I}(\gamma, n)^{+} \in K \cup[\beta, \delta)$ for $\gamma \in K$ and $n<\omega$. For each $\gamma \in K$ pick $b_{\gamma} \in X \backslash A$ such that $\pi\left(b_{\gamma}\right)=\gamma$ and
(1) if $\pi_{B}(x)=S$ then $\pi_{B}\left(b_{\gamma}\right)=S$.
(2) if $\pi_{B}(x) \neq S$ and $\gamma \geq \pi_{-}(x)$ then $\pi_{B}\left(b_{\gamma}\right)=\pi_{B}(x)$.
(3) if $\pi_{B}(x) \neq S$ and $\gamma<\pi_{-}(x)$ then $\pi_{B}\left(b_{\gamma}\right)=S$.

Let $A^{\prime}=A \cup\left\{b_{\gamma}: \gamma \in K\right\}$,

$$
\begin{aligned}
\preceq^{\prime}=\preceq \cup\left\{\left\langle b_{\gamma}, b_{\gamma^{\prime}}\right\rangle: \gamma, \gamma^{\prime} \in K, \gamma \leq\right. & \left.\gamma^{\prime}\right\} \\
& \cup\left\{\left\langle b_{\gamma}, z\right\rangle: \gamma \in K, z \in A, x \preceq z\right\} .
\end{aligned}
$$

The definition of i^{\prime} is straightforward because if $y \in A^{\prime}$ and $\gamma \in K$ then either y and b_{γ} are \preceq^{\prime}-comparable or they are \preceq^{\prime}-incompatible.

Then $p^{\prime}=\left\langle A^{\prime}, \preceq^{\prime}, i^{\prime}\right\rangle$ and $b=b_{\alpha}$ satisfy the requirements.
Finally we should prove Lemma 2.5.
Proof of Lemma 2.5. Assume that $\left\langle r_{\nu}: \nu<\kappa^{+}\right\rangle \subset P$ with $r_{\nu} \neq r_{\mu}$ for $\nu<\mu<\kappa^{+}$.

Write $r_{\nu}=\left\langle A_{\nu}, \preceq_{\nu}, \mathrm{i}_{\nu}\right\rangle$ and $A_{\nu}=\left\{x_{\nu, i}: i<\sigma_{\nu}\right\}$.
Since we are assuming that $\kappa^{<\kappa}=\kappa$, by thinning out $\left\langle r_{\nu}: \nu<\kappa^{+}\right\rangle$ by means of standard combinatorial arguments, we can assume the following:
(A) $\sigma_{\nu}=\sigma$ for each $\nu<\kappa^{+}$.
(B) $\left\{A_{\nu}: \nu<\kappa^{+}\right\}$forms a Δ-system with kernel A.
(C) For each $\nu<\mu<\kappa^{+}$there is an isomorphism $h=h_{\nu, \mu}:\left\langle A_{\nu}, \preceq_{\nu}, \mathrm{i}_{\nu}\right\rangle \longrightarrow$ $\left\langle A_{\mu}, \preceq_{\mu}, \mathrm{i}_{\mu}\right\rangle$ such that for every $i<\sigma$ and $x, y \in A_{\nu}$ the following holds:
(a) $h \upharpoonright A=\mathrm{id}$.
(b) $h\left(x_{\nu, i}\right)=x_{\mu, i}$.
(c) $\pi_{B}(x)=\pi_{B}(y)$ iff $\pi_{B}(h(x))=\pi_{B}(h(y))$.
(d) $\pi_{B}(x)=S$ iff $\pi_{B}(h(x))=S$.
(e) $\pi(x)=\pi_{-}(x)$ iff $\pi(h(x))=\pi_{-}(h(x))$.
(f) if $\{x, y\} \in[A]^{2}$ then $\mathrm{i}_{\nu}\{x, y\}=\mathrm{i}_{\mu}\{x, y\}$.

Note that in order to obtain (C)(f) we use condition (P5) and the fact that $\left|o^{*}(x)\right| \leq \kappa$ for every $x \in A$. Also, we may assume the following:
(D) There is a partition $\sigma=K \cup^{*} F \cup^{*} L \cup^{*} D \cup^{*} M$ such that for each $\nu<\mu<\kappa^{+}$:
(a) $\forall i \in K x_{\nu, i} \in A$ and so $x_{\nu, i}=x_{\mu, i} . A=\left\{x_{\nu, i}: i \in K\right\}$.
(b) $\forall i \in F x_{\nu, i} \neq x_{\mu, i}$ but $\pi_{B}\left(x_{\nu, i}\right)=\pi_{B}\left(x_{\mu, i}\right) \neq S$.
(c) $\forall i \in L \pi_{B}\left(x_{\nu, i}\right) \neq \pi_{B}\left(x_{\mu, i}\right)$ but $\pi_{-}\left(x_{\nu, i}\right)=\pi_{-}\left(x_{\mu, i}\right)$.
(d) $\forall i \in D \pi_{B}\left(x_{\nu, i}\right)=S$ and $\pi\left(x_{\nu, i}\right) \neq \pi\left(x_{\mu, i}\right)$.
(e) $\forall i \in M \pi_{B}\left(x_{\nu, i}\right) \neq S$ and $\pi_{-}\left(x_{\nu, i}\right) \neq \pi_{-}\left(x_{\mu, i}\right)$.
(E) If $\pi_{B}\left(x_{\nu, i}\right)=\pi_{B}\left(x_{\nu, j}\right)$ then $\{i, j\} \in[K \cup D]^{2} \cup[K \cup F]^{2} \cup[L]^{2} \cup$ $[M]^{2}$.
It is well-known that if $\gamma<\kappa=\kappa^{<\kappa}$ then the following partition relation holds:

$$
\kappa^{+} \longrightarrow\left(\kappa^{+},(\omega)_{\gamma}\right)^{2} .
$$

Hence we can assume:
(F) If $\nu<\mu<\kappa^{+}$then for each $i \in \sigma$ we have
(a) $\pi\left(x_{\nu, i}\right) \leq \pi\left(x_{\mu, i}\right)$,
(b) $\pi_{-}\left(x_{\nu, i}\right) \leq \pi_{-}\left(x_{\mu, i}\right)$.

By (F)(a) and (F)(b) the sequences $\left\{\pi\left(x_{\nu, i}\right): \nu<\kappa^{+}\right\}$and $\left\{\pi_{-}\left(x_{\nu, i}\right)\right.$: $\left.\nu<\kappa^{+}\right\}$are increasing for each $i \in \sigma$, hence the following definition is meaningful:

For $i \in \sigma$ let

$$
\delta_{i}= \begin{cases}\pi\left(x_{\nu, i}\right) & \text { if } i \in K, \\ \sup \left\{\pi\left(x_{\nu, i}\right): \nu<\kappa^{+}\right\} & \text {if } i \in F \cup D, \\ \pi_{-}\left(x_{\nu, i}\right) & \text { if } i \in L, \\ \sup \left\{\pi_{-}\left(x_{\nu, i}\right): \nu<\kappa^{+}\right\} & \text {if } i \in M .\end{cases}
$$

By using Proposition [2.1, (C)(c) and condition (P3), we obtain:
Claim 2.7. (a) If $i \in F \cup D \cup M$, then $c f\left(\delta_{i}\right)=\kappa^{+}$and $\sup \left(J\left(\delta_{i}\right)\right)=\delta_{i}$. Moreover for every $\nu<\kappa^{+}$we have $\pi\left(x_{\nu, i}\right)<\delta_{i}$ if $i \in F \cup D$, and $\pi_{-}\left(x_{\nu, i}\right)<\delta_{i}$ if $i \in M$.
(b) If $\{i, j\} \in[L]^{2} \cup[M]^{2}$ and $x_{\nu, i} \prec_{\nu} x_{\nu, j}$ for $\nu<\kappa^{+}$, then $\delta_{i}=\delta_{j}$.

Indeed, (b) holds for large enough ν, and so (C)(c) implies that it holds for each ν.

We put

$$
\begin{equation*}
Z_{0}=\left\{\pi_{-}\left(x_{\nu, i}\right): i \in F \cup K, \pi_{B}\left(x_{\nu, i}\right) \neq S\right\} \cup\left\{\delta_{i}: i \in \sigma\right\} \tag{21}
\end{equation*}
$$

Since $\pi^{\prime \prime} A=\left\{\delta_{i}: i \in K\right\}$ we have $\pi^{\prime \prime} A \subset Z_{0}$. Then, we define Z as the closure of Z_{0} with respect to \mathbb{I} :

$$
\begin{equation*}
Z=Z_{0} \cup\left\{I^{+}: I \in \mathbb{I}, I \cap Z_{0} \neq \emptyset\right\} . \tag{22}
\end{equation*}
$$

Since $|Z|<\kappa$, we can assume:
(G) $A=\left\{x_{\nu, i}: i \in K \cup F \cup D, \pi\left(x_{\nu, i}\right) \in Z\right\}$.

Equivalently,

$$
\begin{equation*}
\text { if } i \in F \cup D \text { then } \pi\left(x_{\nu, i}\right) \notin Z . \tag{23}
\end{equation*}
$$

Let us remark that for $i \in L \cup M$ we may have that $\pi\left(x_{\nu, i}\right) \in Z$.
Our aim is to show that there are $\nu<\mu<\kappa^{+}$such that r_{ν} and r_{μ} are compatible. Note that if $x, y \in A$ with $x \neq y$ then, by (C)(f), we may assure that $i_{\nu}\{x, y\}=i_{\mu}\{x, y\}$. However, if $x \in A_{\nu} \backslash A$ and $y \in A_{\mu} \backslash A$ it may happen that for infinitely many $v \in A$ we have $v \preceq_{\nu} x$ and $v \preceq_{\mu} y$. Then, in order to amalgamate r_{ν} and r_{μ} in such a way that any pair of such elements has an infimum in the amalgamation, we will need to add new elements to $A_{\nu} \cup A_{\mu}$. Then, the next definitions will permit us to find suitable room for adding new elements to the domains of the conditions.

Let

$$
\sigma_{1}=\left\{i \in \sigma \backslash K: \operatorname{cf}\left(\delta_{i}\right)=\kappa\right\}
$$

and

$$
\sigma_{2}=\left\{i \in \sigma \backslash K: \operatorname{cf}\left(\delta_{i}\right)=\kappa^{+}\right\} .
$$

Assume that $i \in \sigma \backslash K$. Put $I_{i}=J\left(\delta_{i}\right)$. Let

$$
\xi_{i}=\min \left\{\nu \in \operatorname{cf} \delta_{i}: \epsilon_{\nu}^{I_{i}}>\sup \left(\delta_{i} \cap Z\right)\right\}
$$

Then, if $i \in \sigma_{1}$ we put

$$
\underline{\gamma}\left(\delta_{i}\right)=\epsilon_{\xi_{i}}^{I_{i}} \text { and } \gamma\left(\delta_{i}\right)=\delta_{i},
$$

and if $i \in \sigma_{2}$ we put

$$
\underline{\gamma}\left(\delta_{i}\right)=\epsilon_{\xi_{i}}^{I_{i}} \text { and } \gamma\left(\delta_{i}\right)=\epsilon_{\xi_{i}+\kappa}^{I_{i}} .
$$

Claim 2.8. For each $i \in F \cup D \cup M$ there is $\nu_{i}<\kappa^{+}$such that for all $\nu_{i} \leq \nu<\kappa^{+}$we have:

$$
\begin{equation*}
\text { if } i \in F \cup D \text { then } \pi\left(x_{\nu, i}\right) \in J\left(\delta_{i}\right) \backslash \gamma\left(\delta_{i}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } i \in M \text { then } \pi_{-}\left(x_{\nu, i}\right) \in J\left(\delta_{i}\right) \backslash \gamma\left(\delta_{i}\right) \tag{25}
\end{equation*}
$$

Proof. For $i \in F \cup D \cup M$ we have

$$
\delta_{i}= \begin{cases}\sup \left\{\pi\left(x_{\nu, i}\right): \nu<\kappa^{+}\right\} & \text {if } i \in F \cup D \tag{26}\\ \sup \left\{\pi_{-}\left(x_{\nu, i}\right): \nu<\kappa^{+}\right\} & \text {if } i \in M\end{cases}
$$

and $\gamma\left(\delta_{i}\right)<\sup \left(\mathrm{J}\left(\delta_{i}\right)\right)=\delta_{i}$.
Claim 2.9. For each $i \in L$ with $c f\left(\delta_{i}\right)=\kappa^{+}$there is $\nu_{i}<\kappa^{+}$such that for all $\nu_{i} \leq \nu<\kappa^{+}, o^{*}\left(x_{\nu, i}\right) \supset \bar{o}\left(\delta_{i}\right) \cap \gamma\left(\delta_{i}\right)$.
Definition 2.10. r_{ν} is good iff
(i) $\forall i \in F \cup D \pi\left(x_{\nu, i}\right) \in \mathrm{J}\left(\delta_{i}\right) \backslash \gamma\left(\delta_{i}\right)$.
(ii) $\forall i \in M \pi_{-}\left(x_{\nu, i}\right) \in J\left(\delta_{i}\right) \backslash \gamma\left(\delta_{i}\right)$.
(iii) $\forall i \in L$ if $\operatorname{cf} \delta_{i}=\kappa^{+}$then $\mathrm{o}^{*}\left(x_{\nu, i}\right) \supset \bar{o}\left(\delta_{i}\right) \cap \gamma\left(\delta_{i}\right)$.

Using Claims 2.8 and 2.9 we can assume:
(H) r_{ν} is good for $\nu<\kappa^{+}$.

By using (H), we will prove that r_{ν} and r_{μ} are compatible for $\{\nu, \mu\} \in$ $\left[\kappa^{+}\right]^{2}$. First, we need to prove some fundamental facts.

By using (P3), (E) and (C)(c) we obtain:
Claim 2.11. If $x_{\nu, i} \preceq_{\nu} x_{\nu, j}$ then either $\pi_{B}\left(x_{\nu, i}\right)=S$ or $\pi_{B}\left(x_{\nu, i}\right)=$ $\pi_{B}\left(x_{\nu, j}\right)$ and $\{i, j\} \in[K \cup F]^{2} \cup[L]^{2} \cup[M]^{2}$.

Indeed, (P3) and (E) imply that Claim 2.11 holds for large enough ν, and then (C)(c) yields that it holds for each ν.

Claim 2.12. If $x_{\nu, i} \preceq_{\nu} x_{\nu, j}$ then $\delta_{i} \leq \delta_{j}$.
Proof. If $x_{\nu, i} \preceq_{\nu} x_{\nu, j}$ then $x_{\mu, i} \preceq_{\mu} x_{\mu, j}$ for each $\mu<\kappa^{+}$, and so we have:
(a) $\pi\left(x_{\mu, i}\right) \leq \pi\left(x_{\mu, j}\right)$,
(b) $\pi_{-}\left(x_{\mu, i}\right) \leq \pi_{-}\left(x_{\mu, j}\right)$,
(c) if $\pi_{B}\left(x_{\mu, i}\right) \neq \pi_{B}\left(x_{\mu, j}\right)$ then $\pi\left(x_{\mu, i}\right) \leq \pi_{-}\left(x_{\mu, j}\right)$.

Hence if $\pi_{B}\left(x_{\nu, i}\right) \neq \pi_{B}\left(x_{\nu, j}\right)$ then

$$
\begin{equation*}
\delta_{i}=\sup \left\{\pi\left(x_{\mu, i}\right): \mu<\kappa^{+}\right\} \leq \sup \left\{\pi_{-}\left(x_{\mu, j}\right): \mu<\kappa^{+}\right\} \leq \delta_{j} \tag{27}
\end{equation*}
$$

If $\pi_{B}\left(x_{\nu, i}\right)=\pi_{B}\left(x_{\nu, j}\right)$ then either $\{i, j\} \in[K \cup F]^{2} \cup[K \cup D]^{2}$ and so

$$
\begin{equation*}
\delta_{i}=\sup \left\{\pi\left(x_{\mu, i}\right): \mu<\kappa^{+}\right\} \leq \sup \left\{\pi\left(x_{\mu, j}\right): \mu<\kappa^{+}\right\}=\delta_{j} \tag{28}
\end{equation*}
$$

or $\{i, j\} \in[L]^{2} \cup[M]^{2}$ and so

$$
\begin{equation*}
\delta_{i}=\sup \left\{\pi_{-}\left(x_{\mu, i}\right): \mu<\kappa^{+}\right\} \leq \sup \left\{\pi_{-}\left(x_{\mu, j}\right): \mu<\kappa^{+}\right\}=\delta_{j} . \tag{29}
\end{equation*}
$$

Claim 2.13. Assume $i, j \in \sigma$. If $x_{\nu, i} \preceq_{\nu} x_{\nu, j}$ then either $\delta_{i}=\delta_{j}$ or there is $a \in A$ with $x_{\nu, i} \preceq_{\nu} a \preceq_{\nu} x_{\nu, j}$.

Proof. Put $x_{i}=x_{\nu, i}, x_{j}=x_{\nu, j}$. Assume that $i, j \notin K$ and $\delta_{i} \neq \delta_{j}$. By Claim [2.12, we have $\delta_{i}<\delta_{j}$. Since $i \in L \cup M$ implies $\delta_{i}=\delta_{j}$, we have that $i \in F \cup D$, and so $\pi\left(x_{i}\right)<\delta_{i}, \operatorname{cf}\left(\delta_{i}\right)=\kappa^{+}$and $J\left(\delta_{i}\right)^{+}=\delta_{i}$. We distinguish the following cases:
Case 1. $i \in D$ and $j \in D \cup L \cup M$.
Since $\delta_{i}<\delta_{j}$, we have that $J\left(\delta_{i}\right)$ isolates x_{i} from x_{j}. Also, note that if $j \in L \cup M$, then $J\left(\delta_{i}\right)^{+}=\delta_{i}<\pi_{-}\left(x_{j}\right)$. By (P6)(a), we infer that there is an $x=x_{\nu, k} \in A_{\nu}$ such that $\pi(x)=\delta_{i}$ and $x_{i} \prec_{\nu} x \prec_{\nu} x_{j}$. Now, by Claim [2.3(a)-(b), we deduce that $k \in K \cup D$. But as $\delta_{i} \in Z$, by (G), we have that $x \in A$, and so we are done.

Case 2. $i \in D$ and $j \in F$.
We have that $\pi_{B}\left(x_{i}\right) \neq \pi_{B}\left(x_{j}\right)$. By using (P3), we infer that $\delta_{i} \leq$ $\pi_{-}\left(x_{j}\right)$, and so $J\left(\delta_{i}\right)$ isolates x_{i} from x_{j}. If $\delta_{i}<\pi_{-}\left(x_{j}\right)$, we proceed as in Case 1. So, assume that $\delta_{i}=\pi_{-}\left(x_{j}\right)$. By (P6)(a), we deduce that there is an $x=x_{\nu, k} \in A_{\nu}$ such that $\pi(x)=\delta_{i}$ and $x_{i} \prec_{\nu} x \prec_{\nu} x_{j}$. By Claim 2.3(c), we infer that $k \in K \cup F$. Then as $\delta_{i} \in Z$, we have that $x \in A$ by (G).

Case 3. $i, j \in F$.
We have that $\pi_{B}\left(x_{i}\right)=\pi_{B}\left(x_{j}\right) \neq S$ and $J\left(\delta_{i}\right)$ isolates x_{i} from x_{j}. Since $\pi_{-}\left(x_{i}\right) \in Z$ and we are assuming that $i \notin K$, we infer that $\pi\left(x_{i}\right) \neq \pi_{-}\left(x_{i}\right)$. Now, applying (P6)(b), we deduce that there is an $x=x_{\nu, k} \in A_{\nu}$ such that $\pi(x)=\delta_{i}$ and $x_{i} \prec_{\nu} x \prec_{\nu} x_{j}$. Now we deduce from Claim 2.3(a) that $k \in K \cup F$. Then as $\delta_{i} \in Z$, we have that $x \in A$ by (G).

Claim 2.14. If $x \in A$ and $y \in A_{\nu}$, and x and y are compatible but incomparable in r_{ν}, then $\mathrm{i}_{\nu}\{x, y\} \in A$.

Proof. Indeed, $\pi\left(\mathrm{i}_{\nu}\{x, y\}\right) \in \mathrm{o}^{*}(x)$ by (P5) and $\left|\mathrm{o}^{*}(x)\right| \leq \kappa$.
Claim 2.15. Assume that $x_{\nu, i}$ and $x_{\nu, j}$ are compatible but incomparable in r_{ν}. Let $x_{\nu, k}=\mathrm{i}_{\nu}\left\{x_{\nu, i}, x_{\nu, j}\right\}$. Then either $x_{\nu, k} \in A$ or $\delta_{i}=\delta_{j}=\delta_{k}$.

Proof. Assume $x_{\nu, k} \notin A$. Then $k \notin K$. If $\delta_{k} \neq \delta_{i}$, we infer that there is $b \in A$ with $x_{\nu, k} \preceq_{\nu} b \preceq_{\nu} x_{\nu, i}$ by Claim 2.13. So $x_{\nu, k}=\mathrm{i}_{\nu}\left\{b, x_{\nu, j}\right\}$ and thus $x_{\nu, k} \in A$ by Claim [2.14, contradiction.

Thus $\delta_{i}=\delta_{k}$, and similarly $\delta_{j}=\delta_{k}$.
After this preparation fix $\{\nu, \mu\} \in\left[\kappa^{+}\right]^{2}$. We do not assume that $\nu<\mu$! Let $p=r_{\nu}$ and $q=r_{\mu}$. Our purpose is to show that p and q
are compatible. Write $p=\left\langle A_{p}, \preceq_{p}, \mathrm{i}_{p}\right\rangle$ and $q=\left\langle A_{q}, \preceq_{q}, \mathrm{i}_{q}\right\rangle, x_{i}^{p}=x_{\nu, i}$ and $x_{i}^{q}=x_{\mu, i}, \delta_{x_{i}^{p}}=\delta_{x_{i}^{q}}=\delta_{i}$.

If $s=x_{i}^{p}$ write $s \in K$ iff $i \in K$. Define $s \in L, s \in F, s \in M, s \in D$ similarly.

In order to amalgamate conditions p and q, we will use a refinement of the notion of amalgamation given in [5, Definition 2.4].

Let $A^{\prime}=\left\{x_{i}^{p}: i \in F \cup D \cup M \cup L\right\}$.
Let rk: $\left\langle A^{\prime}, \preceq_{p} \upharpoonright A^{\prime}\right\rangle \longrightarrow \theta$ be an order-preserving injective function for some ordinal $\theta<\kappa$.

For $x \in A^{\prime}$, by induction on $\operatorname{rk}(x)<\theta$ choose $\beta_{x} \in \delta$ as follows:
Assume that $\operatorname{rk}(x)=\tau$ and β_{z} is defined $\operatorname{provided~} \operatorname{rk}(z)<\tau$.
Let

$$
\begin{equation*}
\beta_{x}=\min \left(\left(\overline{\mathrm{o}}\left(\delta_{x}\right) \cap\left[\underline{\gamma}\left(\delta_{x}\right), \gamma\left(\delta_{x}\right)\right)\right) \backslash \sup \left\{\beta_{z}: z \prec_{p} x\right\}\right) . \tag{30}
\end{equation*}
$$

Since $z \preceq_{p} x$ implies $\delta_{z} \leq \delta_{x}$ by Claim 2.12, we have $\beta_{z}<\gamma\left(\delta_{x}\right)$ for $z \prec_{p} x$. Since $\operatorname{cf}\left(\gamma\left(\delta_{x}\right)\right)=\kappa$ and $\left|A^{\prime}\right|<\kappa$ we have $\sup \left\{\beta_{z}: z \prec_{p} x\right\}<$ $\gamma\left(\delta_{x}\right)$, so β_{x} is always defined.

For $x \in A^{\prime}$ let

$$
y_{x}= \begin{cases}\left\langle\beta_{x}, \operatorname{rk}(x)\right\rangle & \text { if } x \in L \cup D \cup M, \tag{31}\\ \left\langle\zeta, \eta, \beta_{x}, \operatorname{rk}(x)\right\rangle & \text { if } x \in F, \pi_{B}(x)=\langle\zeta, \eta\rangle .\end{cases}
$$

Put

$$
\begin{equation*}
Y=\left\{y_{x}: x \in A^{\prime}\right\} \tag{32}
\end{equation*}
$$

For $x \in A^{\prime}$ put

$$
\begin{equation*}
g\left(y_{x}\right)=x \text { and } \bar{g}\left(y_{x}\right)=x^{\prime} \tag{33}
\end{equation*}
$$

where x^{\prime} is the "twin" of x in A_{q} (i.e. $h_{\nu, \mu}(x)=x^{\prime}$).
We will include the elements of Y in the domain of the amalgamation r of p and q. In this way, we will be able to define the infimum in r of elements s, t where $s \in A_{p} \backslash A_{q}$ and $t \in A_{q} \backslash A_{p}$.

We need to prove some basic facts.
Claim 2.16. If $x \in A^{\prime}$ then

$$
\bar{o}\left(\delta_{x}\right) \cap\left[\underline{\gamma}\left(\delta_{x}\right), \gamma\left(\delta_{x}\right)\right) \subset o^{*}(x) \cap o^{*}\left(x^{\prime}\right) .
$$

Proof. Let $\alpha \in \bar{o}\left(\delta_{x}\right) \cap\left[\underline{\gamma}\left(\delta_{x}\right), \gamma\left(\delta_{x}\right)\right)$. It is enough to show that $\alpha \in$ $o^{*}(x)$. Note that if $x \in D$, then $\alpha \in o(\pi(x))=o^{*}(x)$. If $x \in M$, we have that $\alpha \in o\left(\pi_{-}(x)\right) \subset o_{B}\left(\pi_{B}(x)\right) \subset o^{*}(x)$. Also, if $x \in L$ then as p is good we have that $\alpha \in o_{B}\left(\pi_{B}(x)\right) \subset o^{*}(x)$. Now, assume that $x \in F$. Since $\pi_{-}(x) \in Z$, we have that $\pi_{-}(x)<\underline{\gamma}\left(\delta_{x}\right)$, hence $\alpha \in o(\pi(x)) \backslash \pi_{-}(x)$, and so $\alpha \in o^{*}(x)$.

Note that we obtain as an immediate consequence of Claim 2.16 that $\beta_{x} \in o^{*}(x) \cap o^{*}\left(x^{\prime}\right)$ for every $x \in A^{\prime}$.

Claim 2.17. If $x \in A^{\prime}$ then

$$
\begin{equation*}
\mathrm{o}^{*}\left(y_{x}\right) \supset\left(\mathrm{o}^{*}(x) \cap \pi\left(y_{x}\right)\right) \cup\left\{\beta_{z}: \delta_{z}=\delta_{x} \wedge z \prec_{p} x\right\} . \tag{34}
\end{equation*}
$$

Proof. Note that if $I \in \mathbb{I}$ and $\alpha, \beta \in E(I)$ with $\alpha<\beta$, we have that $\alpha \in o(\beta)$. By using this fact, it is easy to verify that $\left\{\beta_{z}: \delta_{z}=\delta_{x}\right.$ and $\left.z \prec_{p} x\right\} \subset o^{*}\left(y_{x}\right)$.

Now we prove that $o^{*}\left(y_{x}\right) \supset o^{*}(x) \cap \pi\left(y_{x}\right)$. Suppose that $\zeta \in o^{*}(x) \cap$ $\pi\left(y_{x}\right)$. We distinguish the following three cases:

Case 1. $x \in D$.
Then $x, y_{x} \in B_{S}$, and so we have $o^{*}(x)=o(\pi(x))$ and $o^{*}\left(y_{x}\right)=$ $o\left(\pi\left(y_{x}\right)\right)=o\left(\beta_{x}\right)$. Let $k=j\left(\delta_{x}\right)$, i.e. $J\left(\delta_{x}\right) \in \mathcal{I}_{k}$. Since $\zeta \in o(\pi(x)) \cap$ $\pi\left(y_{x}\right)$, we infer that $\zeta \in E(I(\pi(x), m)) \cap \pi\left(y_{x}\right)$ for some $m \leq k$. Note that for $m \leq k$ we have $I(\pi(x), m)=I\left(\pi\left(y_{x}\right), m\right)$. So, $\zeta \in o\left(\pi\left(y_{x}\right)\right)=$ $o^{*}\left(y_{x}\right)$.
Case 2. $x \in L \cup M$.
Since $\zeta \in o^{*}(x) \cap \pi\left(y_{x}\right)$, we infer that $\zeta \in o_{B}\left(\pi_{B}(x)\right)$. Then as $y_{x} \in B_{S}$, we can show that $\zeta \in o\left(\pi\left(y_{x}\right)\right)=o^{*}\left(y_{x}\right)$ by using an argument similar to the one given in Case 1.

Case 3. $x \in F$.
We have $\pi_{B}(x)=\pi_{B}\left(y_{x}\right) \neq S$. Put $(\xi, \eta)=\pi_{B}(x)=\pi_{B}\left(y_{x}\right)$. So, $o^{*}(x)=o_{B}((\xi, \eta)) \cup\left(o(\pi(x)) \backslash \pi_{-}(x)\right)$,
$o^{*}\left(y_{x}\right)=o_{B}((\xi, \eta)) \cup\left(o\left(\pi\left(y_{x}\right)\right) \backslash \pi_{-}(x)\right)$.
So we may assume that $\zeta \in o(\pi(x)) \backslash \pi_{-}(x)$, and then we can proceed as in Case 1.

Claim 2.18. There are no $y \in Y$ and $a \in A$ such that $a \preceq_{p} g(y), \bar{g}(y)$ and $\pi(y) \leq \pi(a)$.

Proof. Assume that $y \in Y$. Put $x=g(y)$ and $I=J\left(\delta_{x}\right)$. Note that if $x \in F \cup D \cup M$, then since $\sup (I \cap Z)<\gamma\left(\delta_{x}\right)$ we infer that there is no $a \in A$ such that $a \preceq_{p} x$ and $\pi(a) \geq \pi(y)$.

Now, suppose that $x \in L$. Note that there is no $a \in A$ such that $a \prec_{p} x$ and $\pi_{B}(a)=\pi_{B}(x)$. Also, as $\sup \left(\delta_{x} \cap Z\right)<\underline{\gamma}\left(\delta_{x}\right)$, we infer that there is no $a \in A \cap B_{S}$ such that $a \preceq_{p} x$ and $\pi(a) \geq \pi(y)$.
Claim 2.19. If $x \in F \cup D \cup M$, then there is no interval that isolates y_{x} from x.

Proof. By Claim 2.7(a), we have $\operatorname{cf}\left(\delta_{x}\right)=\kappa^{+}$and $\pi(x)<\delta_{x}$. By Proposition-2.1, we have $j\left(\delta_{x}\right)=n\left(\delta_{x}\right)$ and $\delta_{x}=J\left(\delta_{x}\right)^{+}$. Then, assume
on the contrary that there is an interval $\Lambda \in \mathbb{I}$ that isolates y_{x} from x. Let $m<\omega$ such that $\Lambda=I\left(\pi\left(y_{x}\right), m\right)$. As Λ isolates y_{x} from x and $x, y_{x} \in J\left(\delta_{x}\right)$, we deduce that $m>j\left(\delta_{x}\right)$. But from $m>j\left(\delta_{x}\right)$ and $\pi\left(y_{x}\right) \in E\left(J\left(\delta_{x}\right)\right)$ we infer that $\pi\left(y_{x}\right)=\Lambda^{-}$. Hence, Λ does not isolate y_{x} from x.

However, if $x \in L$ it may happen that there is a $\Lambda \in \mathbb{I}$ that isolates y_{x} from x.

Now, we are ready to start to define the common extension $r=$ $\left(A_{r}, \prec_{r}, i_{r}\right)$ of p and q. First, we define the universe A_{r}. Put $L^{+}=$ $\left\{x \in L: \pi(x) \neq \pi_{-}(x)\right\}$. Then, if $x \in L^{+}$and x^{\prime} is the twin element of x, we consider new elements $u_{x}, u_{x^{\prime}} \in X \backslash\left(A_{p} \cup A_{q} \cup Y\right)$ such that $\pi_{B}\left(u_{x}\right)=\pi_{B}(x), \pi\left(u_{x}\right)=\pi_{-}(x), \pi_{B}\left(u_{x^{\prime}}\right)=\pi_{B}\left(x^{\prime}\right)$ and $\pi\left(u_{x^{\prime}}\right)=\pi_{-}\left(x^{\prime}\right)$. We suppose that $u_{x}, u_{z}, u_{x^{\prime}}, u_{z^{\prime}}$ are different if x, z are different elements of L^{+}. We put $U=\left\{u_{x}: x \in L^{+}\right\}$and $U^{\prime}=\left\{u_{x^{\prime}}: x \in L^{+}\right\}$. Then, we define

$$
A_{r}=A_{p} \cup A_{q} \cup Y \cup U \cup U^{\prime}
$$

Clearly, A_{r} satisfies (P1). Now, our purpose is to define \preceq_{r}. First, for $x, y \in\left[A_{p} \cup A_{q}\right]^{2}$ let
(35) $x \preceq_{p, q} y$ iff $\exists z \in A_{p} \cup A_{q}\left[x \preceq_{p} z \vee x \preceq_{q} z\right] \wedge\left[z \preceq_{p} y \vee z \preceq_{q} y\right]$.

The following claim is straightforward.
Claim 2.20. $\preceq_{p, q}$ is the partial order on $A_{p} \cup A_{q}$ generated by $\preceq_{p} \cup \preceq_{q}$.
Next, we define the relation \preceq^{*} on $A_{p} \cup A_{q} \cup Y$ as follows. Let us recall that $A=A_{p} \cap A_{q}$. Informally, \preceq^{*} will be the ordering on $A_{p} \cup A_{q} \cup Y$ generated by

$$
\begin{aligned}
& \preceq_{p, q} \cup\{\langle y, g(y)\rangle,\langle y, \bar{g}(y)\rangle: y \in Y\} \cup \\
& \left\{\left\langle y, y^{\prime}\right\rangle: y, y^{\prime} \in Y, g(y) \preceq_{p} g\left(y^{\prime}\right)\right\} \cup \\
& \quad\left\{\langle a, y\rangle: a \in A, y \in Y, a \preceq_{p} g(y)\right\} .
\end{aligned}
$$

The formal definition is a bit different, but its formulation simplifies the separation of different cases later. So we introduce five relations on $A_{p} \cup A_{q} \cup Y$ as follows:

$$
\begin{aligned}
& \prec^{R 1_{p}}=\left\{\langle y, a\rangle: y \in Y, a \in A_{p}, g(y) \preceq_{p} a\right\}, \\
& \prec^{R 1_{q}}=\left\{\langle y, a\rangle: y \in Y, a \in A_{q}, \bar{g}(y) \preceq_{q} a\right\}, \\
& \preceq^{R 2}=\left\{\left\langle y, y^{\prime}\right\rangle: y, y^{\prime} \in Y, g(y) \preceq_{p} g\left(y^{\prime}\right)\right\}, \\
& \prec^{R 3_{p}}=\left\{\langle x, y\rangle: x \in A_{p}, y \in Y, \exists a \in A x \preceq_{p} a \preceq_{p} g(y)\right\}, \\
& \prec^{R 3_{q}}=\left\{\langle x, y\rangle: x \in A_{q}, y \in Y, \exists a \in A x \preceq_{q} a \preceq_{q} \bar{g}(y)\right\} .
\end{aligned}
$$

Then, we put

$$
\begin{equation*}
\preceq^{*}=\preceq_{p, q} \cup \prec^{R 1_{p}} \cup \prec^{R 1_{q}} \cup \preceq^{R 2} \cup \prec^{R 3_{p}} \cup \prec^{R 3_{q}} . \tag{36}
\end{equation*}
$$

The partial order \preceq_{r} will be an extension of \preceq^{*}. So, we need to prove the following lemma:

Lemma 2.21. \preceq^{*} is a partial order on $A_{p} \cup A_{q} \cup Y$.
Proof. Let $s \preceq_{r} t \preceq_{r} u$. We should show that $s \preceq_{r} u$.
We can assume that $t \notin A_{q} \backslash A_{p}$.
Case I. $s \in A_{p} \cup A_{q}, t \in A_{p}$ and $s \preceq_{p, q} t$.
Without loss of generality, we may assume that $u \in Y$ and $t \prec{ }^{R 3 p} u$, i.e. there is $a \in A$ such that $t \preceq_{p} a \preceq_{p} g(u)$.

Case I.1. $s \in A_{p}$.
Then $s \preceq_{p} a \preceq_{p} g(u)$ and so $s \prec^{R 3 p} u$.
Case I.2. $s \in A_{q} \backslash A_{p}$.
Then there is $b \in A$ such that $s \preceq_{q} b \preceq_{p} t \preceq_{p} a \preceq_{p} g(u)$. Then $s \preceq_{q} a \preceq_{q} \bar{g}(u)$ so $s \prec^{R 3 q} u$.

Case II. $s \in Y, t \in A_{p}$ and $s \prec^{R 1 p} t$.
Case II.1. $u \in A_{p} \cup A_{q}$ and $s \prec^{R 1 p} t \preceq_{p, q} u$.
Case II.1.i. $u \in A_{p}$.
Then $g(s) \preceq_{p} t \preceq_{p} u$ hence $s \prec^{R 1 p} u$.
Case II.1.ii. $u \in A_{q} \backslash A_{p}$.
Then there is $a \in A$ such that $g(s) \preceq_{p} t \preceq_{p} a \preceq_{q} u$. Hence $\bar{g}(s) \preceq_{q}$ $a \preceq_{q} u$ and so $\bar{g}(s) \preceq_{q} u$. Thus $s \prec^{R 1 q} u$.
Case II.2. $u \in Y$ and $s \prec^{R 1 p} t \prec^{R 3 p} u$.
Then there is $a \in A$ such that $g(s) \preceq_{p} t \preceq_{p} a \preceq_{p} g(u)$ and so $s \preceq^{R 2} u$.
Case III. $s, t \in Y$ and $s \preceq^{R 2} t$.
Case III.1. $u \in A_{p}$ and $s \preceq^{R 2} t \prec^{R 1 p} u$.
Then $g(s) \preceq_{p} g(t) \preceq_{p} u$ so $s \prec^{R 1 p} u$.
Case III.2. $u \in A_{q}$ and $s \preceq^{R 2} t \prec^{R 1 q} u$.
Then $g(s) \preceq_{p} g(t)$ and $\bar{g}(t) \preceq_{q} u$. Thus $\bar{g}(s) \preceq_{q} \bar{g}(t) \preceq_{q} u$ so $s \prec^{R 1 q} u$.

Case III.3. $u \in Y$ and $s \preceq^{R 2} t \preceq^{R 2} u$.
Then $g(s) \preceq_{p} g(t) \preceq_{p} g(u)$ so $s \preceq^{R 2} u$.
Case IV. $s \in A_{p}, t \in Y$ and $s \prec^{R 3 p} t$.
Case IV.1. $u \in A_{p}$ and $s \prec^{R 3 p} t \prec{ }^{R 1 p} u$.
Then there is $a \in A$ such that $s \preceq_{p} a \preceq_{p} g(t) \preceq_{p} u$ so $s \preceq_{p} u$.
Case IV.2. $u \in A_{q}$ and $s \prec^{R 3 p} t \prec \prec^{R 1 q} u$.
Then there is $a \in A$ such that $s \preceq_{p} a \preceq_{p} g(t)$ and $\bar{g}(t) \preceq_{q} u$. So $a \preceq_{q} \bar{g}(t)$ and hence $s \preceq_{p} a \preceq_{q} u$. Thus $s \preceq_{p, q} u$.

Case IV.3. $u \in Y$ and $s \prec^{R 3 p} t \preceq^{R 2} u$.
Then there is $a \in A$ such that $s \preceq_{p} a \preceq_{p} g(t) \preceq_{p} g(u)$ and so $s \prec^{R 3 p} u$.

Case V. $s \in A_{q}, t \in Y$ and $s \prec{ }^{R 3 q} t$.
Only case (3) is different from (IV):
Case V.3. $u \in Y$ and $s \prec^{R 3 q} t \preceq^{R 2} u$.
Then there is $a \in A$ such that $s \preceq_{q} a \preceq_{q} \bar{g}(t)$ and $g(t) \preceq_{p} g(u)$. Then $\bar{g}(t) \preceq_{q} \bar{g}(u)$, so $s \preceq_{q} a \preceq_{q} \bar{g}(u)$, thus $s \prec^{R 3 q} u$.

Informally, \preceq_{r} will be the ordering on $A_{p} \cup A_{q} \cup Y \cup U \cup U^{\prime}$ generated by

$$
\preceq^{*} \cup\left\{\left\langle y_{s}, u_{s}\right\rangle: s \in A_{p} \cup A_{q}\right\} \cup\left\{\left\langle u_{s}, s\right\rangle: s \in A_{p} \cup A_{q}\right\} .
$$

Now, in order to define \preceq_{r} we need to make the following definitions:

$$
\begin{aligned}
& \prec^{R 4_{p}}=\left\{\left\langle s, u_{x}\right\rangle: s \in A_{p} \cup A_{q} \cup Y, x \in L^{+} \text {and } s \preceq^{*} y_{x}\right\}, \\
& \prec^{R 4_{q}}=\left\{\left\langle\left\langle, u_{x^{\prime}}\right\rangle: s \in A_{p} \cup A_{q} \cup Y, x \in L^{+} \text {and } s \preceq^{*} y_{x}\right\},\right. \\
& \prec^{R 5_{p}}=\left\{\left\langle u_{x}, t\right\rangle: x \in L^{+}, t \in A_{p} \text { and } x \preceq_{p} t\right\}, \\
& \prec^{R 5_{q}}=\left\{\left\langle u_{x^{\prime}}, t\right\rangle: x \in L^{+}, t \in A_{q} \text { and } x^{\prime} \preceq_{q} t\right\}, \\
& =^{U}=\left\{\left\langle u_{x}, u_{x}\right\rangle: x \in L^{+}\right\}, \\
& =U^{\prime} \\
& =\left\{\left\langle u_{x^{\prime}}, u_{x^{\prime}}\right\rangle: x \in L^{+}\right\} .
\end{aligned}
$$

Then, we define:

$$
\begin{equation*}
\preceq_{r}=\preceq^{*} \cup \prec^{R 4_{p}} \cup \prec^{R 4_{q}} \cup \prec^{R 5_{p}} \cup \prec^{R 5_{q}} \cup={ }^{U} \cup==^{U^{\prime}} . \tag{37}
\end{equation*}
$$

Write $x \prec_{r} y$ iff $x \preceq_{r} y$ and $x \neq y$.
Lemma 2.22. \preceq_{r} is a partial order on A_{r}.

Proof. Assume that $s \prec_{r} t \prec_{r} v$. We have to show that $s \prec_{r} v$. Note that if $s, t, v \in A_{p} \cup A_{q} \cup Y$, then $s \prec^{*} t \prec^{*} v$, and so we are done by Lemma 2.21. Also, it is impossible that two elements of $\{s, t, v\}$ are in $U \cup U^{\prime}$. To check this point, assume that $s, v \in U$. Put $s=u_{x}, v=u_{z}$ for $x, z \in L^{+}$. As $u_{x} \prec_{r} t$, we have $u_{x} \prec^{R 5 p} t$ and so $x \preceq_{p} t$. As $t \prec_{r} u_{z}$, we have $t \prec^{R 4 p} u_{z}$ and so $t \prec^{*} y_{z}$. Hence, $x \preceq_{p} t \prec^{*} y_{z} \prec^{*} z$. Since $x \preceq_{p} t$ and $x \in L$, we infer that $t \in L$. Also, from $t \prec^{*} y_{z}$ we deduce that $t \prec^{R 3 p} y_{z}$ and so there is an $a \in A$ such that $t \preceq_{p} a \preceq_{p} z$. But since $t \in L$, it is impossible that there is an $a \in A$ with $t \preceq_{p} a$. Proceeding in an analogous way, we arrive to a contradiction if we assume that $s \in U$ and $v \in U^{\prime}$. So, at most one element of $\{s, t, v\}$ is in $U \cup U^{\prime}$. Then, we consider the following cases:
Case 1. $s \in U$.
We have that $t, v \in A_{p} \cup A_{q} \cup Y$. Put $s=u_{x}$ for some $x \in L^{+}$. Since $u_{x} \prec_{r} t$, we have $u_{x} \prec^{R 5 p} t$ and so $x \preceq_{p} t$. As $t \prec_{r} v$, we have $t \prec^{*} v$. So, $x \preceq_{p} t \prec^{*} v$. But as $x \in L$ and $x \preceq_{p} t$, we infer that $t \in L$. Hence, $t \prec_{p} v$. Thus $x \prec_{p} v$, therefore $u_{x} \prec^{R 5 p} v$, and so $u_{x} \prec_{r} v$.
Case 2. $t \in U$.
We have that $s, v \in A_{p} \cup A_{q} \cup Y$. Put $t=u_{x}$ for $x \in L^{+}$. From $s \prec_{r}$ u_{x}, we infer that $s \prec^{R 4 p} u_{x}$ and so $s \preceq^{*} y_{x}$. From $u_{x} \prec_{r} v$, we deduce that $u_{x} \prec^{R 5 p} v$ and hence $x \preceq_{p} v$. So we have $s \preceq^{*} y_{x} \prec^{*} x \preceq_{p} v$, and therefore $s \prec_{r} v$.
Case 3. $v \in U$.
We have that $s, t \in A_{p} \cup A_{q} \cup Y$. Put $v=u_{x}$ for $x \in L^{+}$. Since $t \prec_{r} u_{x}$, we have that $t \prec^{R 4 p} u_{x}$ and so $t \preceq^{*} y_{x}$. And from $s \prec_{r} t$ we deduce that $s \prec^{*} t$. So $s \prec^{*} y_{x}$, hence $s \prec^{R 4 p} u_{x}$, and thus $s \prec_{r} u_{x}$.

Now note that $s \prec^{R 3_{p}} t$ implies $\pi(s)<\pi(t)$ by Claim 2.18, and so it is clear that $s \prec_{r} t$ implies $\pi(s)<\pi(t)$. Thus, condition (P2) holds. Also, it is easy to verify that \preceq_{r} satisfies (P3).

If $x \in A_{p}$ denote its "twin" in A_{q} by x^{\prime}, and vice versa, if $x \in A_{q}$ denote its "twin" in A_{p} by x^{\prime}.

Extend the definition of g as follows: $g: A_{r} \longrightarrow A_{p}$ is a function,

$$
g(x)= \begin{cases}x & \text { if } x \in A_{p}, \\ x^{\prime} & \text { if } x \in A_{q}, \\ s & \text { if } x=y_{s} \text { for some } s \in A_{p}, \\ t & \text { if } x=u_{t} \text { for some } t \in A_{p}, \\ t^{\prime} & \text { if } x=u_{t} \text { for some } t \in A_{q}\end{cases}
$$

For $\{s, t\} \in\left[A_{r}\right]^{2}$ we will be able to define the infimum of s, t in $\left(A_{r}, \preceq_{r}\right)$ from the infimum of $g(s), g(t)$ in p. Now, we need to prove some facts concerning the behavior of the function g on A_{r}.
Claim 2.23. Let $a \in A$ and $x \in A_{r}$. Then
(1) $x \preceq_{r} a$ iff $g(x) \preceq_{p} a$,
(2) $a \preceq_{r} x$ iff $a \preceq_{p} g(x)$.

Proof. (1) $x \preceq_{r} a$ iff $x \preceq_{p, q} a$ or $x \prec^{R 1 p} a$ and (1) holds in both cases.
(2) $a \preceq_{r} x$ iff $a \preceq_{p, q} x$ or $a \prec^{R 3 p} x$ or $a \prec^{R 4 p} x$ or $a \prec^{R 4 q} x$, and (2) holds in every case.
Claim 2.24. If $x \preceq_{r} y$ then $g(x) \preceq_{p} g(y)$ for $x, y \in A_{r}$.
Proof. $x \prec_{r} y$ iff $x \prec_{p, q} y$ or $x \prec^{R 1 p} y$ or $x \prec^{R 1 q} y$ or $x \prec^{R 2} y$ or $x \prec^{R 3 p} y$ or $x \prec^{R 3 q} y$ or $x \prec^{R 4 p} y$ or $x \prec^{R 4 q} y$ or $x \prec^{R 5 p} y$ or $x \prec^{R 5 q} y$, and the implication holds in every case.
Claim 2.25. If $v \preceq_{p} g(s)$ then $y_{v} \preceq_{r} s$ for $v \in A_{p} \backslash A$ and $s \in A_{r}$.
Proof. If $s \in A_{p}\left(s \in A_{q}\right)$ then $g(s)=s\left(g(s)=s^{\prime}\right)$ and so $y_{v} \prec^{R 1 p} s$ $\left(y_{v} \prec^{R 1 q} s\right)$.

If $s=y_{x}$ for some $x \in A_{p}$ then $g(s)=x$ and so $y_{v} \preceq^{R 2} y_{x}$.
If $s=u_{x}$ for some $x \in L^{+}$then $y_{v} \preceq_{r} y_{x}$, and so $y_{v} \prec^{R 4 p} u_{x}$.
Claim 2.26. If $x \preceq_{r} y$ and $\delta_{g(x)}<\delta_{g(y)}$ then there is $a \in A$ such that $x \preceq_{r} a \preceq_{r} y$.
Proof. By Claim 2.24 we have $g(x) \preceq_{p} g(y)$. Hence, by Claim 2.13, there is $a \in A$ such that $g(x) \preceq_{p} a \preceq_{p} g(y)$. Then, by Claim 2.23, we have $x \preceq_{r} a \preceq_{r} y$.
Claim 2.27. If $a \in A$ and $x \in A_{r}, a \preceq_{r} x$, then $\pi(a) \in o^{*}(x)$ iff $\pi(a) \in o^{*}(g(x))$.
Proof. We can assume that $x \notin A_{p} \cup A_{q}$. If $x \in Y$ then Claim 2.17 implies the statement. If $x=u_{z}$ for some $z \in L^{+}$then $g(x)=z$, $\pi(a)<\delta_{z}$ and $\mathrm{o}^{*}(z) \cap \delta_{z}=\mathrm{o}^{*}\left(u_{z}\right) \cap \delta_{z}=o_{B}\left(\pi_{B}(z)\right)$, and so we are done.

Claim 2.28. If $x \in A_{r} \backslash A, v \in A_{p} \backslash A, v \prec_{p} g(x)$ and $\delta_{v}=\delta_{g(x)}$ then $\pi\left(y_{v}\right) \in \mathrm{o}^{*}(x)$.
Proof. We have $\pi\left(y_{v}\right)=\beta_{v} \in \overline{\mathrm{o}}\left(\delta_{v}\right) \cap\left[\underline{\gamma}\left(\delta_{v}\right), \gamma\left(\delta_{v}\right)\right)$. If $x \in\left(A_{p} \cup A_{q}\right) \backslash A$, then $\beta_{v} \in \mathrm{o}^{*}(x)$ by Claim 2.16.

If $x=y_{z}$ for some $z \in A_{p}$, we have $z=g(x)$ and then $\beta_{v} \in \mathrm{o}^{*}\left(y_{z}\right)$ by Claim 2.17.

If $x=u_{z}$ for some $z \in L^{+}$then $\beta_{v} \in \mathrm{o}^{*}(z)$ because p is good. Now as $\beta_{v}<\delta_{z}$ and $\mathrm{o}^{*}(z) \cap \delta_{z}=\mathrm{o}^{*}\left(u_{z}\right) \cap \delta_{z}$, the statement holds.

Claim 2.29. If $s \in A_{r} \backslash(A \cup Y)$ and $v=g(s)$ then $\pi\left(y_{v}\right) \in \mathrm{o}^{*}(s)$.
Proof. We have $\pi\left(y_{v}\right)=\beta_{v} \in \bar{o}\left(\delta_{v}\right) \cap \gamma\left(\delta_{v}\right)$. If $s \in A_{p} \cup A_{q}$ then $\overline{\mathrm{o}}\left(\delta_{v}\right) \cap \gamma\left(\delta_{v}\right) \subset \mathrm{o}^{*}(s)$ because p and q are good. If $s=u_{g(s)}$ then the block orbit of s and the block orbit of $g(s)$ are the same and the block orbit of $g(s)$ contains $\bar{o}\left(\delta_{v}\right) \cap \gamma\left(\delta_{v}\right)$ because p is good.

Claim 2.30. If $w \in A_{p}, s \in A_{r}, w \preceq_{r} s$ and $\delta_{w}=\delta_{g(s)}$ then $s \in A_{p}$.
Proof. If $s \in A_{q} \backslash A_{p}$ then $w \preceq_{p, q} s$ and so there is $a \in A$ such that $w \preceq_{p} a \preceq_{q} s$ which contradicts $\delta_{w}=\delta_{g(s)}$.

If $s=y_{g(s)}$ then $w \prec^{R 3 p} s$, i.e. there is $a \in A$ with $w \preceq_{p} a \preceq_{p} g(s)$ which contradicts $\delta_{w}=\delta_{g(s)}$.

If $s=u_{g(s)}$ then $w \prec^{R 4 p} u_{g(s)}$, i.e. $w \preceq_{r} y_{g(s)}$, but this was excluded in the previous paragraph.

Lemma 2.31. There is a function $\mathrm{i}_{r} \supset \mathrm{i}_{p} \cup \mathrm{i}_{q}$ such that $\left\langle A_{r}, \preceq_{r}, \mathrm{i}_{r}\right\rangle$ satisfies (P4) and (P5).
Proof. If $\{s, t\} \in\left[A_{p}\right]^{2}\left(\{s, t\} \in\left[A_{q}\right]^{2}\right)$ we will have $\mathrm{i}_{r}\{s, t\}=\mathrm{i}_{p}\{s, t\}$ $\left(\mathrm{i}_{r}\{s, t\}=\mathrm{i}_{q}\{s, t\}\right)$, and so (P5) holds because p and q satisfy (P5).

To check (P4) we should prove that $\mathrm{i}_{p}\{s, t\}$ is the greatest common lower bound of s and t in $\left(A_{r}, \preceq_{r}\right)$.

Indeed, let $x \preceq_{r} s, t$. We can assume that $x \notin A_{p}$. Then, we distinguish the following three cases.
Case i. $x \in A_{q} \backslash A_{p}$.
Then there are $a, b \in A$ such that $x \preceq_{q} a \preceq_{p} s$ and $x \preceq_{q} b \preceq_{p} t$. Thus $x \preceq_{q} \mathrm{i}_{q}\{a, b\}=\mathrm{i}_{p}\{a, b\} \preceq_{p} \mathrm{i}_{p}\{s, t\}$ and so $x \preceq_{p, q} \mathrm{i}_{p}\{s, t\}$.
Case ii. $x \in Y$.
Then $x \prec^{R 1 p} s$ and $x \prec^{R 1 p} t$, i.e. $g(x) \preceq_{p} s$ and $g(x) \preceq_{p} t$. So $g(x) \preceq_{p} \mathrm{i}_{p}\{s, t\}$ and hence $x \prec^{R 1 p} \mathrm{i}_{p}\{s, t\}$.

Case iii. $x \in U$.
Put $x=u_{z}$ for some $z \in L^{+}$. Since $x \preceq_{r} s$, t, we have that $u_{z} \prec^{R 5 p}$ s, t, and thus $z \preceq_{p} s, t$. So $z \preceq_{p} i_{p}\{s, t\}$, and hence $x \preceq_{r} i_{p}\{s, t\}$.

Assume now that $s, t \in A_{r}$ are \preceq_{r}-compatible, but \preceq_{r}-incomparable elements, $\{s, t\} \notin\left[A_{p}\right]^{2} \cup\left[A_{q}\right]^{2}$. Write $v=\mathrm{i}_{p}\{g(s), g(t)\}$. Note that, by Claim [2.24, $g(s)$ and $g(t)$ are compatible in p and hence $v \in A_{p}$. Let

$$
\mathrm{i}_{r}\{s, t\}= \begin{cases}v & \text { if } v \in A \\ y_{v} & \text { otherwise }\end{cases}
$$

Case I. $v \in A$.

Then $g(s)$ and $g(t)$ are incomparable in A_{p}. Indeed, $g(s) \preceq_{p} g(t)$ implies $v=g(s)$ and so $s=g(s) \preceq_{r} t$ by Claim 2.23.

Thus $\pi(v) \in \mathrm{o}^{*}(g(s)) \cap \mathrm{o}^{*}(g(t))$ by applying (P5) in p. Note that $v \preceq_{r} s, t$ by Claim 2.23, So, $\pi(v) \in \mathrm{o}^{*}(s) \cap \mathrm{o}^{*}(t)$ by Claim 2.27. Hence (P5) holds.

We have to check that v is the greatest lower bound of s, t in $\left(A_{r}, \preceq_{r}\right)$. We have $v \preceq_{r} s, t$ by Claim 2.23.

Let $w \in A_{r}, w \preceq_{r} s, t$. Then $g(w) \preceq_{p} g(s), g(t)$ by Claim 2.24. So $g(w) \preceq_{p} v$. Then $w \preceq_{r} v$ by Claim 2.23.

Case II. $v \notin A$.
Then $\delta_{g(s)}=\delta_{g(t)}=\delta_{v}$ by Claim 2.23 and Claim 2.13] if $g(s)$ and $g(t)$ are comparable in A_{p}, and by Claim 2.15 if $g(s)$ and $g(t)$ are incomparable in A_{p}.

If $g(s)$ and $g(t)$ are incomparable in A_{p} then $v \prec_{p} g(s), g(t)$ and $s, t \notin A$ by Claim 2.14. So, $\pi\left(y_{v}\right) \in \mathrm{o}^{*}(s) \cap \mathrm{o}^{*}(t)$ by Claim 2.28.

If $g(s) \prec_{p} g(t)$ then $s \notin Y$ by Claim 2.25 and $s \notin A$ because $v=$ $g(s) \notin A$. Then $\pi\left(y_{v}\right) \in \mathrm{o}^{*}(s)$ by Claim 2.29, Also, since $v=g(s) \prec_{p}$ $g(t)$ we infer from Claim 2.23 that $t \notin A$ and so we have that $\pi\left(y_{v}\right) \in$ $\mathrm{o}^{*}(t)$ by Claim 2.28. Hence (P5) holds.

We have to check that y_{v} is the greatest common lower bound of s, t in $\left(A_{r}, \preceq_{r}\right)$. First observe that $y_{v} \preceq_{r} s, t$ by Claim 2.25.

Let $w \preceq_{r} s, t$.
Assume first that $\delta_{g(w)}<\delta_{v}$. Then there are $a, b \in A$ with $w \preceq_{r}$ $a \preceq_{r} s$ and $w \preceq_{r} b \preceq_{r} t$ by Claim 2.26 and so $g(w) \preceq_{p} \mathrm{i}_{p}\{a, b\} \preceq_{p} v$ by using Claim 2.23. Now since $g\left(y_{v}\right)=v$, we obtain $w \preceq_{r} \mathrm{i}_{p}\{a, b\} \preceq_{r} y_{v}$ again by Claim 2.23.

Assume now that $\delta_{g(w)}=\delta_{v}$. Since $\{s, t\} \notin\left[A_{p}\right]^{2} \cup\left[A_{q}\right]^{2}$, we have that $w \notin U \cup U^{\prime}$. Then, by Claim [2.30, $w=y_{z}$ for some $z \in A_{p}$. Then $z \preceq_{p} g(s)$ and $z \preceq_{p} g(t)$ by Claim [2.24, and so $z \preceq_{p} v$. Thus $y_{z} \preceq_{r} y_{v}$.

Now our aim is to verify condition (P6). First, we need some preparations.

For every $x, y \in A_{r}$ with $x \preceq_{r} y$ let

$$
\pi_{x}(y)= \begin{cases}\pi_{(}(y) & \text { if } \pi_{B}(x)=\pi_{B}(y) \\ \pi_{-}(y) & \text { if } \pi_{B}(x) \neq \pi_{B}(y)\end{cases}
$$

Note that for every $x, y \in A_{r}$ with $x \preceq_{r} y$, an interval $\Lambda \in \mathbb{I}$ isolates x from y iff $\Lambda^{-}<\pi(x)<\Lambda^{+} \leq \pi_{x}(y)$.
Claim 2.32. Let $a \in A$ and $t \in A_{r}, a \preceq_{r} t$. If Λ isolates a from t then Λ isolates a from $g(t)$.

Proof. The statement is obvious if $t \in A_{p}$. Assume that $t \in A_{q} \backslash A_{p}$. Note that since Λ contains an element of A, we have that $\Lambda^{+} \in Z$. Now if $t \in D \cup F \cup M$ we have that $Z \cap \pi(t)=Z \cap \pi(g(t))=Z \cap \gamma\left(\delta_{t}\right)$, and so we are done. If $t \in L$ then as $a \preceq_{r} t$ we infer that $\pi_{B}(a) \neq \pi_{B}(t)$ and $\pi(a)<\delta_{t}=\pi_{-}(t)$, hence we have $\pi(a)<\Lambda^{+} \leq \pi_{a}(t)=\pi_{a}(g(t))=$ $\pi_{-}(t)$, and so the statement holds.

If $t=y_{v}$ for some $v \in A_{p}$, then $a \prec_{p} v=g(t)$ and $\pi_{a}\left(y_{v}\right) \leq \pi_{a}(v)$, and so we are done.

If $t=u_{v}$ for some $v \in L^{+}$, we have $a \prec_{p} v=g(t)$ and $\pi_{a}\left(u_{v}\right)=$ $\pi_{a}(v)=\pi_{-}(v)$.

Claim 2.33. Let $a \in A$ and $x \in A_{r} \backslash\left(A_{p} \cup A_{q}\right), x \preceq_{r} a$. If Λ isolates x from a then $x=y_{g(x)}$ and Λ isolates $g(x)$ from a.
Proof. We have $g(x) \preceq_{p} a$ by Claim 2.23, so as $a \in A$ we infer that $g(x) \notin L \cup M$, and thus $x \notin U \cup U^{\prime}$. Hence $x \in Y$ and $g(x) \in D \cup F$, and so $x=y_{g(x)}$ and $\pi(g(x))<\delta_{g(x)}$.

Let $J\left(\delta_{g(x)}\right)=\mathrm{I}(\pi(g(x)), j)$ and $\Lambda=\mathrm{I}(\pi(x), \ell)$. If $\ell>j$ then $\Lambda^{-}=$ $\pi\left(y_{g(x)}\right)=\pi(x)$, which is impossible. If $\ell \leq j$ then $J\left(\delta_{g(x)}\right) \subset \Lambda$ and so $\Lambda^{-}<\pi(g(x))<\Lambda^{+}$, i.e. Λ isolates $g(x)$ from a.
Lemma 2.34. $\left(A_{r}, \preceq_{r}, i_{r}\right)$ satisfies (P6).
Proof. Assume that $\{s, t\} \in\left[A_{r}\right]^{2}, s \preceq_{r} t$ and Λ isolates s from t. Suppose that $\pi(s) \neq \pi_{-}(s)$ if $s \notin B_{S}$. So, $s \notin U \cup U^{\prime}$. We should find $v \in A_{r}$ such that $s \preceq_{r} v \preceq_{r} t$ and $\pi(v)=\Lambda^{+}$. Note that since $s \preceq_{r} t$, we have $\delta_{g(s)} \leq \delta_{g(t)}$ by Claims 2.24 and 2.12.

We can assume that $\{s, t\} \notin\left[A_{p}\right]^{2} \cup\left[A_{q}\right]^{2}$ because p and q satisfy (P6).
Case 1. $\delta_{g(s)}<\delta_{g(t)}$.
By Claim 2.26 there is $a \in A$ with $s \preceq_{r} a \preceq_{r} t$. Moreover, $g(s) \preceq_{p}$ $a \preceq_{p} g(t)$ by Claim 2.23.
Case 1.1. $\pi(a) \in \Lambda$.
Then $\pi_{B}(s)=\pi_{B}(a)$ and so $\pi_{s}(t)=\pi_{a}(t)$. Thus Λ isolates a from t.
If $t \in A_{p}\left(t \in A_{q}\right)$ then applying (P6) in p (in q) for a, t and Λ we obtain $b \in A_{p}\left(b \in A_{q}\right)$ such that $a \preceq_{p} b \preceq_{p} t\left(a \preceq_{q} b \preceq_{q} t\right)$ and $\pi(b)=\Lambda^{+}$. Then $s \preceq_{r} a \preceq_{p, q} b \preceq_{p, q} t$, so we are done.

Assume now that $t \notin A_{p} \cup A_{q}$.
By Claim [2.32, the interval Λ isolates a from $g(t)$. Since $\pi_{-}(a) \neq$ $\pi(a)$ if $a \notin B_{S}$, we can apply (P6) in p to get a $b \in A_{p}$ with $\pi(b)=\Lambda^{+}$ and $a \preceq_{p} b \preceq_{p} g(t)$.

Note that as $\pi(a) \in \Lambda, a \in A$ and $\pi(b)=\Lambda^{+}$, we have that $\pi(b) \in Z$.

If $\pi_{B}(a)=\pi_{B}(b)$, we have $b \notin M \cup L$ because $a \in A$.
If $\pi_{B}(a) \neq \pi_{B}(b)$, then $\pi_{-}(b)=\pi(b)=\Lambda^{+} \leq \pi(t)$. Note that if $t \in U \cup U^{\prime}$, then $\pi(t)=\Lambda^{+}$, and so we are done. Thus, we may assume that $t \in Y$. Then, we have $\pi_{B}(b)=\pi_{B}(t)=\pi_{B}(g(t))$ and $g(t) \in F$. Hence $b \in K \cup F$.

In both cases we have $b \notin M \cup L$, so $\pi(b) \in Z$ implies $b \in A$. Thus $b \preceq_{r} t$ by Claim [2.23, and so b witnesses (P6).
Case 1.2. $\pi(a) \notin \Lambda$.
Since p and q satisfy $(P 6)$ and Λ isolates s from a, we can assume that $s \notin A_{p} \cup A_{q}$.

Hence $s=y_{g(s)}$ and Λ isolates $g(s)$ from a by Claim 2.33. Since $\pi(g(s)) \neq \pi_{-}(g(s))$ if $g(s) \notin B_{S}$, there is $v \in A_{p}$ with $g(s) \preceq_{p} v \preceq_{p} a$ and $\pi(v)=\Lambda^{+}$. Since $y_{g(s)} \preceq_{r} g(s)$ by the definition of \preceq_{r}, we have that v witnesses (P6).
Case 2. $\delta_{g(s)}=\delta_{g(t)}$.
Case 2.1. $s \in A_{p}$.
Since $s \in A_{p}, s \preceq_{r} t$ and $\delta_{s}=\delta_{g(t)}$ we infer from Claim 2.30 that $t \in A_{p}$, which was excluded.

By means of a similar argument, we can show that $s \in A_{q}$ is also impossible.
Case 2.2. $s=y_{v}$ for some $v \in A_{p}$.
We have that $\delta_{v}=\delta_{g(t)}$. Note that since $\Lambda^{-}<\pi(s)<\Lambda^{+}$, we have $\delta_{v} \leq \Lambda^{+}$.

Thus $\pi(t) \geq \Lambda^{+} \geq \delta_{v}=\delta_{g(t)}$. Since we can assume that $\pi(t)>\Lambda^{+}$, we have $\pi(t)>\delta_{g(t)}$. If $t \in A_{p} \cup A_{q}$ and $g(t) \in F \cup D \cup M$, or $t \in Y$, or $t \in U \cup U^{\prime}$ then $\pi(t) \leq \delta_{g(t)}$. Thus we have $t \in A_{p} \cup A_{q}$ and $g(t) \in L$.

Note that as $\pi_{B}(t) \neq S$, if $\pi_{B}\left(y_{v}\right)=\pi_{B}(t)$ we would infer that $v \in F$ and hence $\delta_{t}=\delta_{g(t)}<\delta_{v}$. So $\pi_{B}(s) \neq \pi_{B}(t)$. Now since Λ isolates s from t, we deduce that $\delta_{v}=\delta_{t}=\Lambda^{+}$, and hence $\Lambda=\mathrm{J}\left(\delta_{t}\right)$.

Assume that $t \in A_{q}$ (the case $t \in A_{p}$ is simpler). Then $g(t)=t^{\prime} \in L$. Since $\pi(t)>\delta_{t}=\pi_{-}(t)$ we have $\pi\left(t^{\prime}\right)>\pi_{-}\left(t^{\prime}\right)$ and so $t^{\prime} \in L^{+}$.

Since $y_{v} \preceq_{r} t$ we have $y_{v} \prec^{R 1 q} t$, i.e. $v \preceq_{p} t^{\prime}$ and so $y_{v} \preceq^{R 2} y_{t^{\prime}}$. Thus $y_{v} \prec^{R 4 q} u_{t}$. Hence $y_{v} \preceq_{r} u_{t} \preceq_{r} t$ and $\pi\left(u_{t}\right)=\delta_{t}=\Lambda^{+}$, i.e. u_{t} witnesses that (P6) holds.

This completes the proof of Lemma 2.5, i.e. \mathcal{P} satisfies κ^{+}-c.c.

References

[1] I. Juhász, S. Shelah, L. Soukup, Z. Szentmiklóssy, A tall space with a small bottom. Proc. Amer. Math. Soc. 131 (2003), no. 6, 1907-1916.
[2] I. Juhász, L. Soukup, W. Weiss Cardinal Sequences of length $<\omega_{2}$ under $G C H$ Fund. Math. 189 (2006), No.1, 35-52.
[3] I. Juhász, W. Weiss On thin-tall scattered spaces. Colloq. Math. 40 (1978/79), no. 1, 63-68
[4] I. Juhász, W. Weiss, Cardinal sequences. Ann. Pure Appl. Logic 144 (2006), no. 1-3, 96-106.
[5] J. C. Martínez, A forcing construction of thin-tall Boolean algebras. Fund. Math. 159 (1999), no. 2, 99-113.
[6] J. C. Martínez, L. Soukup Universal locally compact scattered spaces, in preparation.

Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

E-mail address: jcmartinez@ub.edu
Alfréd Rényi Institute of Mathematics
E-mail address: soukup@renyi.hu

[^0]: 2000 Mathematics Subject Classification. 54A25, 06E05, 54G12, 03E35, 03 E 05.
 Key words and phrases. locally compact scattered space, superatomic Boolean algebra, cardinal sequence, universal.

 The first author was supported by the Spanish Ministry of Education DGI grant MTM2005-00203.

 The second author was partially supported by Hungarian National Foundation for Scientific Research grant no 61600 . The research was started when the second author visited the Barcelona University. The second author would like to thank Joan Bagaria and Juan-Carlos Martínez for the arrangement of the visit and their hospitality during the stay in Barcelona.

