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ABSTRACT. The aim of this paper is to clarify the role of category theory in the foundations 
of mathematics. There is a good deal of confusion surrounding this issue. A standard 
philosophical strategy in the face of a situation of this kind is to draw various distinctions and 
in this way show that the confusion rests on divergent conceptions of what the foundations of 
mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 
5 sections. We first show that already in the set theoretical framework, there are different 
dimensions to the expression 'foundations of'. We then explore these dimensions more 
thoroughly. After a very short discussion of the links between these dimensions, we move 
to some of the arguments presented for and against category theory in the foundational 
landscape, we end up on a more speculative note by examining the relationships between 
category theory and set theory. 

The advent of  category theory as a foundational framework forces us to 
face some difficult questions. Here is a very short sample. Should cate- 
gory theory be compared to group theory or set theory? What are the links 
between category theory and logic? Should a foundation of  mathematics be 
normative? Should it provide guidelines for the development  of  mathemat-  
ics? Is this role played by set theory? Are set theory and category in conflict 
with one another, or, in other words, is category theory an alternative to 
set theory? i 

Furthermore, when we bring in topos theory into the picture, the tension 
becomes acute. 2 Some toposes can be considered to constitute an appropri- 

ate foundation for either all o f  'ordinary '  mathematics or for some portion 
of  it, e.g. differential geometry. 3 However,  since category theory cannot 
be carried out completely within topos theory without some adjustments 
which are not purely topos theoretical, one could argue that it cannot consti- 
tute a proper  foundation for all o f  mathematics.  4 But then again, one could 
claim that toposes and categories are just  structured sets and therefore that 
we are still talking about sets after all. 

In the present paper, I will try to show that (1) in fact there are many 
different senses to the expression ' foundations of '  and (2) that some of  
the arguments given either in favor o f  or against category theory are based 
on different conceptions of  what should be included in, or what should be 
meant  by, the foundations of  mathematics.  It is hoped that this will allow 
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us to see precisely where the different parties disagree and, from there, 
orient the debate appropriately. 

1. SET THEORY AND THE FOUNDATIONS OF MATHEMATICS 

Let us first quickly review the traditional claim that set theory is a founda- 
tion for mathematics. Already in that claim we will see that there are, in 
fact, many claims involved. 

As is well-known, set theory provides a conceptual unification of math- 
ematics. There is no need to go over the technical details of this unification. 
The question is whether it is philosophically significant. 

One answer is that this unification is an ontological reduction: we now 
know what mathematics is really about, namely sets. Better still, it is 
claimed that an intuitive picture of that universe and of its principles can 
be given, i.e. a genetic view of the universe of sets can be provided: the 
so-called cumulative hierarchy. 5 

This ontological reduction might very well satisfy the philosopher, for 
its byproducts might bring considerable philosophical payoffs: for instance, 
the traditional fog surrounding entities might have been lifted: 

Whatever can be said in the old-fashioned way in terms of 'abstract forms' and 'universals '  
can be reformulated much more precisely and simply in terms of sets, structures and formal 
languages. In this way we are spared the difficulty of saying just what sort of things those 
abstract forms and universals are. There is no need to conjure up some hypothetical 'entity' ,  
someje  ne sais quoi which is the abstract form of a given structure, the thing which it and 
all its isomorphs somehow share. Set theory simply banishes the problem of universals 
from the foundations of mathematics as irrelevant (Mayberry 1977, pp. 23-24). 

However, the fruits of the unification cannot be cashed in until we have a 
clear, systematic and reasonably complete picture of this new universe. 

Enter the logician who constructs a formal set theory and thus provides 
a logical foundation for mathematics. Here, the task is different: the above 
unification has to be reconstructed systematically. The logician has to find a 
proper deductive system, as well as proper primitive concepts and axioms 
and make sure that she has captured the above universe adequately: all 
or almost all of mathematics should be derivable in her formal theory. 
Hopefully the axioms will possess desired epistemological properties and, 
in fact, these epistemological properties might be the underlying motivation 
of the logician's work. For instance, they will be considered to be self- 
evident, or shown to be analytic or purely logical or indubitably true. They 
will also be heuristically valuable: simple and few in number. 

Now, consider the 'working mathematician'. As far as she is concerned, 
the benefits of this conceptual unification does not have much to do with an 
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ontological reduction nor a logical presentation. It means essentially two 
things. Firstly, the various constructions needed throughout mathematics 
are built up from a uniform tool kit: unions, intersections, products, quotient 
objects, indexing in general, forming the set of functions from a set to a (not 
necessarily distinct) set. Secondly, it allows for distinctions of size, which 
are sometimes crucial. She doesn't care whether the above are described 
in a first or a second or a r~-order language, or whether the language allows 
one to distinguish between sets and classes or what-not or again whether 
the axioms are self-evident or simple. What she finds interesting is that set 
theory 'guides' her in her research, that it suggests ways of defining and 
constructing the appropriate objects for certain proofs in a natural manner 
and that it allows her to move easily from a 'small' context to a larger 
one. It wouldn't be inaccurate to talk about methodological or pragmatic 
foundations in that case. 

Thus the claim that set theory is the appropriate foundation for mathe- 
matics seems to be justifiable in five radically different ways: 

(1) mathematics is truly the science of the realm of sets; 
(2) set theory is part of logic, the latter being the universal science upon 

which every other science is based; Set theory is just, in a sense, 
applied logic to mathematical concepts; 

(3) set theory captures the fundamental, i.e. the most general, cognitive 
operations upon which the whole of mathematical knowledge is based; 

(4) the axioms of set theory possess an epistemological property, e.g. 
self-evidence, truth, indubitability, which gives them a priviledged 
status; 

(5) a set theory is indispensable for doing mathematics, if only to provide 
a uniform and good control on questions of size, but mostly for 
definitions, constructions and techniques of proofs. Thus a set theory 
is heuristically and methodologically inescapable. 

So, we see that the expression 'foundation(s) of' has different dimen- 
sions. Firstly, we have what is usually, and incorrectly, called the ontologi- 
cal foundations of a field: the objects this field is supposedly talking about. 
Secondly, we have the logical foundations of a field: in principle, this gives 
us the 'logic', i.e. the theory of deduction, used in that field together with 
the (relative) basic concepts involved, the latter given by the axioms of the 
theory. Thirdly, we have a semantical foundation; by linking appropriately 
the formal system with the 'ontology', we in principle know how and to 
what our language refers and how and what it means. Fourthly, we have 
the methodological or pragmatic foundations, which show what are the 
principles, methods and concepts used to construct and analyze the differ- 
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ent objects of a domain. Finally, and this one is also very important, we 
have an epistemological foundation of a field. For instance, we might have 
shown that a portion of mathematics is analytic and, therefore, that this 
portion possesses all the properties of analytic knowledge, whatever these 
properties might be. Let us explore these distinctions more thoroughly. 

2. A BRIEF ANALAYSIS OF THE EXPRESSION 'FOUNDATIONS OF' 

'Being a foundation of' is clearly a binary relation, which we will write as 
Found(S,  T). One of the main claims of this paper is that the distinctions 
we have just made involve in fact different relations. Our basic assumption 
is that these relations, despite their differences, are all binary relations 
between systems of certain types .6 

So, let S and T be two systems. What kind of foundational relation can 
exist between S and T? I claim that there are at least six possible different 
relations between them, depending on the type of systems S and T are. 
The relations are, in an arbitrary order, the following. 

(i) LogFound(S, T): 5' is a (relative) logical foundation for T. 

(ii) CogFound(S,  T): 5' is a (relative) cognitive foundation for T. 

(iii) EpiFound(5', T): S is an (relative) epistemological foundation 
for T. 

(iv) SemFound(S, T): S is a (relative) semantical foundation for 
T. 

(v) OntFound(S,  T): 5, is an (relative) ontological foundation for 
T. 

(vi) MetFound(5,, T): 5' is a (relative) methodological or pragmatic 
foundation for T.7 

One obvious task here is to investigate the formal properties of these 
systemic relations. Even though it is an important and difficult task, we will 
skip it since our goal is to unearth the philosophical groundwork underlying 
the foundational discussion. We will therefore try to clarify these relations 
one by one in the hope that our remarks will show, on the one hand, why and 
in what way some of these relations have to be distinguished, sometimes 
even separated, and, on the other hand, how these distinctions are relevant 
to foundational issues. Needless to say, our presentation will not do justice 
to the complexity of the situation. A satisfactory analysis will have to be 
done elsewhere. We hope that what follows will suffice for the remaining 
parts of our paper and will open new avenues in the conceptual analysis of 
the issue. Let us now look at these different relations in turn. 
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(i) S is a (relative) logical foundation for T. This seems at first to be 
straightforward. Let T be a system of mathematical objects, e.g. abelian 
groups, Hilbert spaces, topological spaces, sets, or a geometry. Following 
the standard conception of the logical foundations of a field, S would then 
have to be a formal, possibly axiomatized, theory for T. This means that we 
have to specify a 'language', that is, a syntactical system with a signature, 
an underlying logic, e.g. first-order logic, and, whenever possible, give alist 
of axioms for T. S is a systematic reconstruction o f T  which is supposed to 
show explicitly what is the deductive system involved, what are the axioms 
needed, in other words the primitive concepts, properties and principles of 
construction of a field, and, as a corollary, what are the definable objects 
of  T within S. Thus, definability, provability and satisfaction are the three 
essential elements involved. 

Let us try to be more precise. Let f~ denote a universe of mathematical 
objects, still undefined, and L a universe of logics, also undefined. Both 
are assumed to be systems. Informally, we should have that 

L o g F o u n d  C L × ~Q. 

Viewed this way, LogFound(S, T) is a relation between logics and mathe- 
matical systems. More precisely, S should at least be an entailment system 
and a satisfaction relation between S and T should be specified. 8 Thus, 
LogFound requires that we can at least determine, in the most abstract 
manner, what is an entailment system and what is a satisfaction relation. 
However, there are two major conceptual pitfalls on this road. 

Firstly, for any given T there are usually many different systems S 
available, either all sharing the same underlying logic, e.g., the different 
axiomatizations of group theory, or written in different logical systems, 
e.g., first-order versus second-order arithmetic. In the former case, we 
would certainly want to say that the different presentations of the system 
of groups are in fact 'the same'. After all, the only difference resides 
in the choice of the primitive operations. The collection of all definable 
operations is exactly the same in both cases. Thus, there is an invariant core, 
an invariant theory of groups. 9 The same remarks apply for the different 
presentations of proof calculi for first-order logic for instance. They are 
different presentations of the same logic. We are here more interested 
in the latter than in the specific presentations. In the second case, the 
choice of the primitive operations which are taken to be logical yields 
radically different structures. We would like to have whatever is necessary 
to compare or relate in a systematic fashion the different logics that can be 
used or underline a given system T. 

Secondly, we can only require that T be a mathematical system. Thus, 
we might not be able to characterize the collection of all mathematical sys- 
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terns as a whole but we can determine in each case whether a given system, 
or a family of such, is mathematical or not. This is rather vague and we are 
bound to run into questions of size and the standard problems concerning 
the universe of  all mathematical systems. 1° We do want to preserve a cer- 
tain degree of flexibility, for we want T to denote the cumulative hierarchy 
or the category of  all (small) categories or even some other non-standard 
structure. For that reason, the standard set-theoretical notion of  satisfaction 
is inadequate, for T need not be a standard set-theoretical model. 

Thus, we believe that any further clarification of the relation LogFound 
should be based on the following basic desiderata: 

• we should separate sharply between purely structural matters and more 
conventional matters. For instance, specific signatures and list of axioms 
for a mathematical domain should not be part of the logical foundation per 
se. We want to keep apart for the moment purely logical elements from 
other foundational relations. Thus, particular presentations of mathematical 
domains should belong primarily to the cognitive and epistemological 
levels; 

• the logical structure of a mathematical system is fixed once one has 
chosen what counts as a logical operation. The choice is not determined 
by purely logical considerations; cognitive, epistemological, heuristic and 
pragmatic considerations play a role in this choice; 11 

• however, one should be able to compare and contrast the different 
logics which follow from these choices. 

Steps in this direction have been taken by Meseguer's. 12 According to 
Meseguer, a logic is a 5-tuple L = (Sign, sen, Mod, ~-, ~ )  such that: 

(i) (Sign, sen, ~-) is an entailment system; 

(ii) (Sign, sen, Mod, I=) is a conceptual system; 13 

(iii) these two systems are linked by the following soundness con- 
dition: for any E E Sign, F C Sen(E)  and 4 E sen(E),  

where Sign is the category of signatures, sen is a functor from Sign to Set, 
assigning to each signature a set of sentences, ~ is an entailment relation, 
Mod is a contravariant functor from Sign to the category of all (small) 
categories Cat and, finally, ~- is a satisfaction relation. 

Even though this definition allows the comparison of logics with one 
another, since we are now in a position to define a category of logics, and 
in particular logical foundations with one another, it does not satisfy all 
our desiderata above. Firstly, it relies heavily on the notion of signature, 
which is purely linguistic and to a large extent conventional. Secondly, 
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recent work in categorical logic suggests that the appropriate categorical 
approach to logic is at the very least 2-categorical. 14 If this is correct then 
a general characterization of logics is seriously compromised, since it is 
then hard to see why one would stop at 2 or n or what have you° 15 

A different approach satisfying all our desiderata is offered by cat- 
egorical logic and the basic notion of a sketch: given a category C of 
mathematical structures, is 4;' equivalent to the category of models of a 
sketch S? The latter notion allows us to stay away from linguistic and 
conventional considerations, since sketches are geometric structures, more 
precisely graphs) 6 A sketch is the natural syntax of a category of models 
and correspond to the traditional notion of a 'language'. In fact, it is pos- 
sible to show that sketchability and axiomatizability within an infinitary 
logic Lc~,~ are equivalent. 

The moral here is that we still don't have a satisfactory abstract analysis 
of the relation of being a logical foundation of. However, we believe that 
we have a much better idea of what constraints such a relation should 
satisfy. 

(ii) S is a (relative) cognitive foundation for J_'. This, in turn, can 
mean either of three different things. It has a strong and a weak cognitive 
interpretation and it has a transcendental interpretation. Let us briefly 
examine them. 

According to the strong cognitive interpretation, one cannot know or 
understand T without possessing S. Thus, S provides the answer to the 
question: what are the operations or faculties present in the acquisition 
and/or the understanding of T? In this case, S ranges over mental faculties 
and T over mathematical systems. 

In its strongest form, this is exemplified by Piaget's stages, 17 but most 
of the contemporary discussion concerning mathematical intuition and per- 
ception of abstract objects and their ontological impact obviously belong 
here. 18 Note that we are here talking about the knowing subject. The prop- 
er place of cognitive foundations in the foundations of mathematics is one 
of the basic points of disagreement among philosophers, ~9 In pm~ticular, 
its links to the logical foundations always raise passionate debates. Even 
though this relation has not explicitly entered the debate we are examining 
here, it is obvious that it is in the background of various philosophical 
positions. 

The weak cognitive interpretation can be split into two: the 'peda- 
gogical foundation' of  a field and the 'heuristic foundation' of a field. 
Underlying the pedagogical foundation is the question: how should one 
learn (or teach) T? What is required? For example, before someone starts 
investigating geometry or analysis in R n, she should take a look at R a or 
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R 2. Similarly, before doing complex analysis, one ought to start with real 
analysis. Another example is that to learn some differential geometry, one 
has to know some linear algebra. 

We are here talking about mathematical systems: S ranges over math- 
ematical systems. T is in this case either (i) a generalization of S, as in 
the case of analysis in R n and R2; (ii) an abstraction of 5', as in the case 
of Boolean algebras and algebras of sets; (iii) an extension of S, as in the 
case of the rational numbers and the integers; (iv) a theory built upon the 
objects and relations of S, as in the case of geometry and linear algebra 
or algebraic geometry and commutative ring theory. 20 The claim here is 
that it is easier, even mandatory, for the knowing subject to understand 
S before attacking T. One would like to show that this follows from the 
previous relation: one ought to study analysis in R 2 before R n because 
our cognitive make-up is such that we can actually 'see' things directly in 
R 2. This is clear for (i) and (ii) above, but controversial for (iii) and (iv). 
Thus this second relation depends directly on the previous one. However 
the precise nature of this dependence remains to be elucidated. 21 

The heuristic foundation makes sense only if there is a field of mathe- 
matics which is such that it is conducive to the discovery and understanding 
of new facts. Set theory might be considered to be an appropriate heuristic 
foundation tbr (some parts of) mathematical research. The simplicity of 
the language and concepts are conducive to intuitive guessing. 22 On the 
other hand, the so-called 'categorical dogmas' - for instance "look for 
adjoints", can also lead to better understanding and new discoveries. This 
is where questions related to specific representations and representational 
systems enter the scene. It is at this level that the sketches we have used 
for the relation of logical foundation seems to be less adequate that the 
standard presentation of a theory. Syntax in mathematics is not a trivial 
matter: understanding, discovering and proving new results are sometimes 
made possible by the introduction of an adequate syntax. Clearly, a given 
representational system is more appropriate than another one for us; it 
suggests certain directions, generalizations and abstractions. Again, this 
is w~ere set theory is so appealing: every 'ordinary' mathematical object 
can be encoded in set theory. 23 The question is how these seemingly 'psy- 
chological' factors turn out to be relevant and sometimes crucial in the 
discovery of new facts, even in the applications of mathematicsY Again, 
this relation should be linked and even subsumed to the first relation of 
cognitive foundations. 

As is well-known, the cognitive foundations of a field can be the reverse 
of the logical relation between the two fields. For instance, the logical 
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foundations of a conceptual system might be cognitively less accessible 
than the concepts it purports to found. 25 

We now come to the transcendental interpretations. These are of course 
the a priori faculties or conditions which we should necessarily possess or 
fulfill for a type of knowledge to be possible. These faculties or conditions 
should of course be given by a transcendental method of some sort. 26 It is 
the latter which distinguishes this relation from the first one. 

(iii) 5' can be a (relative) epistemological foundation for T. Epistemo- 
logical foundations are associated with a desired epistemological property, 
e.g. analyticity, certainty, rationality, objectivity, self-evidence or what 
have you. Given one of these properties, e.g. certainty, the epistemological 
foundation is supposed to explain why or how T possesses this property. 
For instance, a logicist might have said that logic provides the epistemo- 
logical foundation of mathematics. 27 

This explanation can exclude psychologicN or cognitive elements, 
which is why we have to separate it, at least in principle, from the cognitive 
foundations. In general, the search for epistemological foundations consti- 
tutes a foundationalist enterprise. This is an additional important difference 
with the cognitive foundations. 

Thus, the general strategy is as follows: 5' should denote a body of 
knowledge which is chosen for its epistemological properties. Then T 
denotes a body of knowledge which is linked to 5, in such a way that the 
desired epistemological properties of S are transmitted to T. The simplest 
way to assure this transmission is usually via a reduction of T to 5,. But 
this is only one way. For instance, if T is a conservative extension of 5,, 
then we also have an appropriate link. Another example is given by inter- 
pretations of one theory into another. Troublesome notions or propositions 
are sometimes justified by means of interpretations in terms of accepted 
notions or propositions. Non-euclidean geometries gained respectability 
when interpretations in terms of Euclidean geometry were given. This 
shows that the epistemological foundations denote a collection of rela- 
tions. It remains to find a way to capture abstractly the common properties 
of these relations. 

(iv) 5, can be a (relative) semantical foundation for T. This seems 
straightforward at first: there are numerous examples in the history of 
mathematics of axiomatic systems which had no models and thus were 
without any semantical foundations for a while. Suffice it to mention 
the development of non-euclidean geometries in the 19th century. Hence, 
5, is here a 'universe' of objects with adequate properties, a model in 
the usual sense of that expression. Thus, at first sight, it seems that the 
relation of semantical foundations is the convene of the relation of logical 
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foundations: SemFound(S,  T) = LogFound(T,  S) °p. This should not be 
surprising, for, since Tarski, a semantics, that is a theory of  reference and 
truth, is based on a satisfaction relation. 

However, as in the case of the relation of logical foundations, as soon as 
we try to be more exact, the situation becomes more delicate. The problems 
are in a sense the duals of those we have expounded in the section on the 
logical foundations. However, they may not be solvable in the same way 
and at the same time. For instance, it is far from clear that we can and 
should ignore questions related to specific presentations and languages in 
the semantic foundations. Since the basic problem here is the question of 
the notion of reference, we might need to be very sensitive to linguistic 
issues, which we believe should be avoided as much as possible in the 
purely logical analysis. Unfortunately, these considerations would take us 
away from our main concern and will simply be ignored here. 

(v) S can be an (relative) ontological foundation for T. What we have 
in mind here is an answer to the question: what are the entities of T 'made 
of '?  What kind of existence do they possess? Notice that T can be any type 
of system whatsoever. When T is a formal system, then one is tempted to 
think that the ontological relation is the projection of the reference relation, 
hence of the semantical relation. However, this is a mistake, for here we 
would be interested on the ontological status of the formal system qua 
formal system and not as a system denoting something else. 

Of course, since our discussion is oriented towards the foundations of 
mathematics, we are here more concerned with the ontological status of 
mathematical entities and thus T should be a system of mathematical enti- 
ties. In this case, S can be either a world of transempirical and extramental 
mathematical entities, or a system of concepts, e.g. mental processes, or 
again empirical entities or processes of some sort. Here, perhaps surpris- 
ingly, we claim that the knowing subject is right at the center of the picture. 
In fact, we believe that it is impossible to separate the ontological foun- 
dations from the cognitive foundations. Indeed, we claim that in this case, 
T should be the system of cognitive functions involved in a mathemat- 
ically active subject. Thus, in this case, S tells us what is ontologically 
underlying a mathematical activity regarded as a cognitive process. In a 
way, this ontological relation and the first cognitive relation are two faces 
of the same coin. Even though they can be distinguished, they cannot be 
separated. 2s 

(vi) S is a (relative) methodological foundation for T. In this case, the 
question we are trying to answer is: what are the principles or methods 
which guarantee that an object with a given property is legitimate, that 
it can be or that it is different from the others of the same type? Thus 
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the concepts of S are used as tools either to 'create' or classify or prove 
some facts about the objects of T. Mathematicians now commonly use the 
expression 'foundations' in this sense. Almost every book in commutative 
algebra or commutative ring theory opens up with a claim that "in addition 
to being a beautiful and deep theory in its own right, commutative ring 
theory is important as a foundation for algebraic geometry and complex 
analytic geometry ''29 (Matsumura t986, p. ix). It is also illustrated by the 
use of group theory in topology. 

I want to emphasize the fact that this contitutes a new usage of the 
expression 'foundations of'. For, by bringing in these tools in a given field, 
we are n o t  providing ontological foundations n o r  logical foundations n o r  

any foundation in the previous senses given. Groups now play a crucial role 
in topology and geometry. In fact, the whole of algebraic topology rests 
on the interrelations between topological spaces and groups. But these 
interrelations do not modify the notion of a topological space, nor do they 
provide us with a new logical foundation for topology, nor do they tell 
us how to interpret a theory in topological spaces, etc. It is a genuinely 
new relation between two mathematical systems. S and T are generally 
cognitivety and logically independent of one another. In fact, in most cases 
the objects of S are constructed from the objects of T, as in the case of 
groups in topology. Thus they appear as properties of the original objects 
written or presented in a different language. 

Notice also that a methodological foundation can play an important nor- 
mative rote in a given domain: it gives us the tools to look for new objects 
and properties. It is not clear that any of the other types of foundations can 
play the same role. In fact, the logical foundations are in a sense construct- 
ed from the methodological foundations. The methodological foundations 
appear during the construction of a field, whereas the logical foundations 
constitute a reconstruction of the given field from a specific standpoint. 

3. LINKS BETWEEN THE RELATIONS 

Let us quickly settle an obvious question: what is the relationship between 
the different foundational relations presented above and philosophy of 
mathematics? A philosophy of mathematics amounts to an ordering of the 
above relations. Thus, within a philosophy of mathematics, some of these 
relations lose their foundational status, since they are presumably shown 
to follow from one or a few others, and some are ignored altogether. In 
particular, the debate surrounding the foundational status of category theory 
rests on the fact that the parties involved order these relations differently, 
as we will try to show in the next section. 
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4. CATEGORY THEORY IN THE FOUNDXIIONAL LANDSCAPE: IN AND OUT 

The different positions and the 'debate' concerning the place and status of 
category theory in the foundations of mathematics is not entirely unlike 
the Russell-Poincar6 debate concerning the place and status of logic in 
the foundations of mathematics. As I will try to show, those who believe 
that category theory should occupy the center of the foundational stage 
and force set theory to resign as chairman of the board are picking out 
certain senses of the expression 'being a foundation of'  and consider the 
others as being irrelevant, whereas those who are against category theory 
as chairman believe these others senses are essential and help to show 
that category theory cannot fulfill the requirements for the position. Thus, 
basically, each camp is working with a different list of the senses or roles 
that should be covered by foundations. 

4.1. IN 

Let me first present the argument for the view that category theory is 
the appopriate foundation for mathematics. Let me start with some exam- 
ples. 

In the mathematical development of recent decades one sees clearly the rise of the conviction 
that the relevant properties of mathematical objects are those which can be stated in terms 
of their abstract structure rather than in terms of the elements with the objects were thought 
to be made of. The question thus naturally answers whether one can give a foundation for 
mathematics which explesses wholeheartedly this conviction concerning what mathematics 
is about . . . .  Here by '~bundation" we mean a single system of  first-order axioms in which all 
usual mathematical objects' can be defined and all their usual properties provec[ 3° (Lawvere 
1966, p. 1) [emphasis mine], 

Lawvere is here endorsing the traditional view of the logical foundations 
of mathematics: an axiomatic presentation of the category of categories in 
a first-order language. Notice the steps involved here: first, the recognition 
that category theory unifies mathematics in a certain manner; second, 
the conviction that this conceptual unification can be translated into an 
ontological reduction and, third, the attempt to achieve this reduction by 
building an adequate logical foundation. 

But in 1969, Lawvere presents a different picture: 

Foundations will mean here the study of what is universal in mathematics. Thus Foundations 
in this sense cannot be identified with any "starting-point" or"justification" for mathematics, 
though partial results in this direction may be among its fruits. But among the other fruits 
of Foundations so defined would presumably be guide-lines for passing from one branch 
of mathematics to another and for gauging to some extent which directions of research are 
likely to be relevant (Lawvere 1969, p. 281) [emphasis mine]. 
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This sense of the expression °foundations' is certainly not incompatible 
with the previous one. However, it pushes aside one traditional founda- 
tional relation, namely, that it should provide a justification of some sort 
for mathematics. In this foundational picture, one type of epistemological 
foundation is absent. With it disappears the logical relation also, the so- 
called "starting-point". We are clearly moving, in our terminology, to an 
autonomous methodological foundation together with a heuristic spin-off. 
The claim here is that category theory allows you to see and understand 
what makes certain constructions and results possible, in the same way that 
physics, say, makes you understand why buildings can stand up and others 
cannot. Indeed, the universals Lawvere has in mind here are the universal 
arrows of category theory. 31 

However, also in 69, Lawvere, together with Tierney, isolated the notion 
of an elementary topos which allowed him and others to develop a modified 
versions of his 66 views. One of these versions is expounded by Lambek 
and Scott (1986), where we read: 

We believe that type theory is the proper foundation for mathematics (Lambek and Scott 
1986, p. viii). 

But every type theory gives rise to a topos and, in particular, pure type 
theory generates what is called the free-topos, what the authors believe to 
be the universe of mathematics. 32 Interestingly enough, we find also the 
following: 

We are tempted to follow Lawvere and adopt the view that the growth of mathematics 
should be guided by various categorical slogans or the more widely held view that category 
theory underlines the general principles common to different areas of mathematics (Lambek 
and Scott 1986, p. 126). 

We have here a complete separation of the logical and the methodological 
dimensions. 

Many authors, however, claim that the truly foundational relation is the 
methodological foundation. Thus, Hatcher declares: 

It appears more and more clearly that what is truly foundational is not some arbitrary 
[sic!] starting point (some list of axioms for a comprehensive system or other), but certain 
key, unifying notions common to many different aspects of mathematical practice . . . .  The 
notions of  universality and naturality in category theory are clearly just as important [as 
the comprehension schemeJ . . .  (Hatcher 1982, p. 312). 

What is fascinating about the key notions of category theory, e.g. natural 
transformations, adjointness, etc., is that they cannot be taken as primitive. 
Indeed, categories were invented by Eilenberg and Mac Lane in order 
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to define the notion of natmal transformation. So we are in a position 
where what seems to be fundamental, e.g. adjointness, is not  primitive 
from a logical point of view. However, it is clear that we are dealing with 
something fundamental. 33 

We can now give a list which sums up the major claims found in the 
field: 

(1) category theory is heuristically fundamental;34 
(2) the theory of the category of all categories is the ontologico-logical 

foundation for mathematics; 
(3) category theory provides a methodological foundation for mathe- 

matics .35 
(4) toposes provide an adequate logical foundation for 'ordinary' mathe- 

matics via their internal language; some have suggested that the free 
topos should be taken as the foundation for mathematics, e.g. Lambek 
and Scott, whereas others that a theory of well- pointed toposes with 
choice should be investigated, e.g. Mac Lane; 

(5) topos theory provides the appropriate framework for the investigation 
of 'local' logical foundations, that is foundations for specific parts 
of mathematics, e.g. differential geometry or algebraic geometry; 
moreover, the axioms for a topos constitute the foundational invariants 
of the logical foundations of mathematics (see Bell (1988) for more 
on this). 

Notice that this list is not consistent nor is it meant to be. Its sole purpose 
is to show that only specific foundational relations are mentioned: ontolog- 
ical, logical, methodological and heuristic. Two relations are remarkably 
absent: the first cognitive relation and any epistemological relation. I will 
now try to show that the arguments presented against category theory rely 
precisely on these relations. 36 

4.2. O U T  

The best case against category theory has been presented by Feferman and 
Bell.37 Feferman (1977) and Bell ( 1981 ) present similar arguments. Let us 
see what their target is. 

In what sense could category theory serve as a foundation for mathematics? There seems to 
be (at least) two possible senses: first, a strong sense, in which all mathematical concepts, 
including, those of the current logico-mathematical framework fbr mathematics, are expli- 
cable in category-theoretic terms. And secondly, a weaker sense in which one only requires 
category theory to serve as a (possibly superior) substitute for axiomatic set theory ha its 
present foundational role (Bell 1981, p. 353). 
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Take the second sense first. Both Feferman and Bell consider the work 
by Cole (1973), Mitchell (1972) and Osius (1974) which provides an 
axiomatization for well-pointed toposes in categorical terms and show that 
the resulting theory is equivalent to 'bounded' Zermelo set theory. Fefer- 
man then argues as follows: toposes are just a special type of categories. 
Thus if we can show that categories in general do not have a foundational 
role, afortiori, we will have shown that toposes do not either. He then 
proceeds to give such an argument, to which we will come in due course. 
Therefore the above work on toposes does not show that toposes constitute 
a substitute to axiomatic set theory. 

Furthermore, Bell objects that the translation is awkward and has 
"a factitious character which renders it unsuitable as a means of for- 
malizing those mathematical notions which are normally expressed set- 
theoretically" (Bell 1981, p. 355). But presumably one would not work 
with the translation but with the topos axioms directly. 

A different but related objection is that the axioms for well-pointed 
toposes are too weak. The absence of an equivalent form of the axiom of 
replacement does not allow to capture the full strength of ZFC. However, 
it is possible to mimic the construction of the cumulative hierarchy in such 
toposes. 38 Furthermore, if certain toposes were provably equiconsistent 
with ZFC, then they would simply be uninteresting, for then the choice 
between the two would be a matter of taste and not a mathematical issue. 
The advantage of the topos theoretic framework is that it allows a sys- 
tematic investigation of the relationships between toposes, i.e. between 
alternative foundations for mathematics, something which cannot be done 
so easily and with the same guiding principles in a set theoretical frame- 
work. 

Let us move to the more general argument given by Feferman: 

The point is simply that when explaining the general notion of structure and of partic- 
ular kinds of structures such as groups, rings, categories, etc. we implicitly presume as 
understoodthe ideas of operation and collection (Fefennan 1977, p. 150). 

In other words, the notion of class and of operation are prior, clearly in a 
cognitive sense, to any structural notions such as those used in category 
theory. The crucial assumption here seems to be that a logical foundation 
for mathematics - which according to this argument should be a theory 
based on the notions of collection and operation - has to be expressed 
in terms of the concepts which are cognitively fundamental. 39 For if the 
argument merely attempts to establish that the theory, whatever it is, has 
to be taught before category theory, then it is simpty irrelevant. Indeed, 
assuming for the sake of the argument that the latter is true, it is still 
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possible for category theory to be more adequate as a logical foundation. 
Thus, the argument has to rely on a strong link between the cognitive 
foundations and the logical foundations and the claim that the notion of 
class and operation are cognitively fundamental. What is the status of this 
last claim? Either it is an empirical claim and therefore ought to be tested 
accordingly or it is some sort of transcendental argument asserting that any 
notion of structure is necessarily based on the notions of collection and 
operation. 4° In the former case, research in the foundations of mathematics 
would then rely on experimental results and in the latter case, one has to 
clarify the type of necessity involved, a thorny issue if there is one. 

However, two additional facts have to be pointed out. Firstly, no one 
has so far claimed that category theory ought to be the logical foundations 
of mathematics because it reflects basic cognitive faculties. In other words, 
the link between the cognitive and the logical is absent from the categorical 
picture. As we have seen, the claim is either ontological or methodological, 
but never cognitive nor epistemological. Hence, the different 'sides' are 
organizing the relations in incompatible ways. There is clearly a profound 
disagreement about the very nature and functions of the foundations of 
mathematics. Secondly, the above argument could be turned on its head 
and become an argument in favor of category theory. This can be seen in 
two ways. On the one hand, it is simply not true that any structural notion 
has to be defined via the notions of collection and operation. The latter 
approach is a dynamical approach to structures, and it is certainly a legit- 
imate one. However, there is a static or geometric approach to structures 
which is based on the notion of collection, which is inevitable, and the 
notion of relation, not operation. Groups, rings and all algebraic structures 
including categories can certainly be looked at from the dynamical point 
of view. But there are other types of structures, geometrical and topolog- 
ical, among which we can include categories, which are better seen as 
static or geometric objects and this point of view is even more perspicu- 
ous, even unavoidable, when one considers higher-dimensional category 
theory. 41 Thus one can explain categories directly in terms of geometry, 
thus avoiding the notion of operation. On the other hand, even within the 
dynamical point of view, one can claim that the basic operations of catego- 
ry theory are precisely the notions of collection and operation, in this case 
of morphism. Hence, it is possible to use Fefennan's argument to defend 
the claim that category theory is precisely the theory which captures these 
notions at the right level of generality. This latter claim would link the 
logical foundations with some sort of general cognitive element. 
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5, SETS AND CATEGORIES AS ENCODINGS 

We have on our hands two conceptual systems which unify mathematics in 
different manners. Moreover, the relationships between these two systems 
have yet to be fully clarified (see Blass (1984) for a review). From a 
conceptual point of view, the following relationships are possible: 

(i) categories are structured sets; thus category theory is a special chapter 
of set theory; 

(ii) sets are unstructured categories; thus set theory is a special chapter of 
category theory; 42 

(iii) set theory and category theory are complementary ways of organizing 
the mathematical universe, irreducible to one another; any mathemat- 
ical system can be represented as a set or as a category, depending 
on the context and the needs; this complementarity is the tradition- 
al complementarity between arithmetic and geometry and cannot be 
avoided, since it reflects basic features of our cognitive make up; 43 

(iv) sets or categories (or both) will simply disappear since they are merely 
convenient notational systems, in the same way that the concept of  
ether disappeared from physics. 44 

Clearly, (i) and (ii) are motivated by the belief that the reducing entities 
constitute the fabric of the mathematical universe. Hence, underlying these 
positions we find strong and conflicting ontological convictions. However, 
both claims face technical difficulties. (i) is acceptable if and only if we 
can settle the question of the set theoretical foundations of category the- 
ory. Indeed, developing category theory within set theory is not a trivial 
exercise. The major problem is the incessant need for 'large' categories. 
One has to make either semantical or syntactical adjustments. The seman- 
tical adjustment consists to take refuge in Grothendieck universes, which 
amounts to the acceptance of the existence of innacessible cardinals. The 
syntactical solution is to use reflection principles, which is equivalent to 
the claim that the universe of small sets is an elementary substructure of 
the universe of all sets (see Feferman (1969) for the latter). Even though 
both solutions are technically sound, more work has to be done before we 
can settle for one or the other or abandon them altogether. Similarly, (ii) 
is acceptable if and only if one can show that set theory can be discarded 
without any serious loss in all fields of mathematics, in particular in cat- 
egory theory itself. Again, only more research will allow us to draw the 
proper conclusion. 

(iii) and (iv) are of a different nature altogether. They are based on the 
belief that there are no final and all-encompassing logical (and semantical) 
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foundations for mathematics. In (iii), set theory and category theory are 
taken to be representational systems, both having their virtues and defects. 
They both capture essential aspects of mathematics in different ways. In 
particular, their interaction should yield interesting dividends. (iv) is sheer 
conjecture. 

6. CONCLUSION 

It seems to us that at this stage there is no a priori argument which can 
justify the exclusion of either set theory or category theory from the foun- 
dations of mathematics. Category theory has at the very least an important 
methodological role to play in contemporary mathematics, in the same 
way that set theory played a crucial methodological role during the late 
19th and this century. It is tempting to conclude that this is all one can ask 
from a foundational framework. But this attitude ignores the cognitive and 
epistemological dimensions that are inseparable from foundational work. 
Foundational research is often motivated by purely philosophical consider- 
ations, which can be remote from current mathematical practice. It is these 
motivations that have to be compared and contrasted, They should promote 
investigations going in different directions, not curb alternatives. 

NOTES 

* Various versions of this paper have been read by many people, many of whom have made 
crucial comments. Needless to say, I am entirely responsible for the claims made in this 
paper. I would particularly like to thank, in alphabetical order, Mario Bunge, Marta Bunge, 
Michael Hallett, Andrew Irvine, Saunders Mac Lane, Collin McLarty, Peneloppe Maddy 
and Mihaly Makkai. Part of the work was done while the author was a visiting fellow at 
REHSEIS in Paris and at the Center for Philosophy of Science in Pittsburgh. I would like 
to thank everyone for his or her help and support. I gratefully acknowledge the financial 
support received from the SSHRC of Canada while this work was done. 
1Contradictory claims abound in the literature. Here is a sample of divergent claims on 
various issues. 
(i) The normative character of category theory: 

The subject Category Theory . . . . .  neither is a normative subject, nor ...  (Kuyk 1977, p. 
162). 

We are tempted to follow Lawvere and adopt the view that the growth of mathematics 
should be guided by various categorical slogans... (Lambek and Scott 1986, p. 126). 

(ii) Category theory as a general tool: 

Category theory has long passed the confines of a "theory" and truly is one of the fun- 
damental mathematical tools, unifying many disciplines much the way group theory does 
(Faith 1981, p. ix). 
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In the light of complementarism Category Theory should be rather viewed as an inter- 
disciplinary important language device creating mathematical thinking economy, than as 
a discipline comparable to, say, Group Theory as it rose in the middle of the nineteenth 
century (Kuyk t977, p. 163). 

(iii) The normative character of set theory: 

. . .  set theory regulates the usage of the mathematical tanguage as it bears on the formation 
of new totalities of entities from given totalities. Thus, set theory obtains a normative 
character pertaining to the mathematical language (Kuyk 1977, p. 147) (emphasis added) 

The function of set theory in the foundations of mathematics is a logical one . . ,  because it 
is concerned with the logical foundations, rather than with the organization of mathematics, 
it does not have anything at all to say concerning what definitions ought to be made, or 
which structures, among the a priori possible ones, might prove to be of mathematical 
interest (Mayberry 1977, p. 18). 

(iv) The foundations of mathematics and the abstract nature of mathematics: 

It is obvious from everything t have just said that the proposal made by certain category 
theorists to replace set theory by a foundational theory which more adequately reflects 
the 'abstract' nature of modern mathematics is completely misguided (Mayberry 1977, p. 
25). 

In two senses, set theory is not sufficiently abstract to serve as foundations of mathemat- 
ics. It might be said that we have rea! numbers as a basic datum, and it is less central how 
reasoning about real numbers is formalized. In another direction, mathematics is interested 
in abstract structures such as groups and fields, though involving concepts like that of set, 
are independent of the detailed structures of our set theory (Wang 1974, 1983, p. 554). 
2For a presentation of some of the confusion surrounding topos theory, see McLarty (1990). 
3 See Moerdijk and Reyes (1991). 
4This is in itself a complex issue which would require a whole paper. The fundamental 
problem is the same as when one tries to develop category theory within a set theory: 
how to deal with large categories. Some tinkering has to be done to allow the latter. Var- 
ious strategies are possible: Grothendieck universes, reflection principles, proper classes, 
fibered categories, to mention only the best known. See Mac Lane (1972) or Makkai and 
Par~ (1989) for the former, Feferman (1969) for reflection principles, Chapman and Row- 
bottom (1992) for proper classes in topos theory and B6nabou (1985) for fibered categories. 
I thank both referees for their comments on this point. 
5See Wang (1974) or Shoenfield (t977) for a technical presentation; for a critical exami- 
nation of the genetic approach, see Bootos (1971), Parsons (1983) and Hallett (1984). 
6pick your favorite characterization of a system. I would adopt Bunge's definition. See 
Bunge 1979 for a formal definition. However, since no specific details of that definition 
play any role here, we will simply skip it. 
7We are ignoring whether a temporal dimension should be attached to these relations. The 
question is far from trivial. For instance, Frege and the early Russell would not have accept- 
ed any temporal element in the foundational picture. Recent writers have on the contrary 
insisted on the fact that since mathematics evolves through time, a foundational system will 
have to evolve accordingly. This immediately yields a criterion: a foundational system is 
inappropriate if it cannot accomodate such changes. See B6nabou (t 985) and Bunge (1985) 
for more on the temporal aspect of the foundations of mathematics. 
awe should point out that this is different from what people had in mind up until the 
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beginning of the 20th century. Indeed, it seems rather clear that, until then, a logical foun- 
dation for a field consisted exclusively in an axiomatic reconstruction of the given field. 
The purpose of the logical foundation was to allow formal proofs from a list of axioms of 
fundamental results of the given field. In other words, the satisfaction relation did not play 

any role. 
9The search and presentation of  such an invariant theory was part of Lawvere's original 
motivation to apply category theory to logical issues. See Kock and Reyes (1977) for a 
presentation and a brief discussion. 
1°Don't ask, it is now too easy . . .  Yes, the universe of all mathematical systems ought to be 
a mathematical system itself and all the rest. But we have no t  assumed that we are working 
in sets and that T should denote an element of a universe of sets. 
11This is especially clear in categorical logic. A given category possesses all kinds of limits, 
colimits and exactness properties. Some of these have to be selected or identified as logical 

operations. 
mSee Meseguer (1987) for details. To be fair, we should point out that Meseguer's main 
contribution in his paper in his clarification of the notion of a proof calculi and its relations 
to the other notions. 
13Meseguer, following Goguen and Burstall (1984, 1986), call such a system an institution. 
14See Makkai and Par6 (1989) for instance. 
~5M. Makkai, personalcommunication. 
a6"Sketches are not designed as notations, but as a mathematical structure embodying the 
formal syntax" (Barr and Wells 1990, p. 172). For more on sketches, see Barr and Wells 
(1985, 1988, 1990) and Makai and Par6 (1989) for the equivalence mentioned. Needless to 
say, more should be said bout sketches and their implications for the logical foundations of 
mathematics. Unfortunately, it would take us too far from the topic at hand and wilt have 
to be dealt with elsewhere. 
17Interestingly enough, Piaget thought that Bourbaki's structures constituted some kind 
of foundation for mathematics and these structures were somehow reflected in a child's 
cognitive development. Of course, Bourbaki's mother structures are foundational only in 
an informal sense, but this is a different issue. See Corry (1992) for more. 

Different from this idea of a succession of fixed stages, we find claims like those of 
Dedekind: "So from the time of birth, continually and in increasing measure we are led 
to relate things to things and thus to use the faculty of the mind on which the creation 
of numbers depends" (Dedekind 1901, p. 34). Or again: "If we scrutinize closely what 
is done in counting an aggregate or number of things, we are led to consider the ability 
of the mind to relate things to things, to let a thing correspond to a thing, or to represent 
a thing by a thing, an ability without which no thinking is possible. Upon this unique 
and therefore absolutely indispensable foundation . . . .  , must, in my judgment, the whole 
science of numbers be established" (Dedekind 1901, p. 32). Dedekind's claim is clear: 
behind the notion of numbers, we find more fundamental operations of the mind, cognitive 
faculties, from which numbers are created. 
18A large part of the contemporary literature in philosophy of mathematics turn on this 
issue. To mention but a few: (Kitcher 1983; Tieszen 1989; Maddy 1990; Field 1989; 
Parsons 1983, 1990; Resnik 198t, t982, 1988). 
19Some, like Frege and Russell, claim that it simply does not belong to the picture at all. But 
even they had to leave room for some sort of perception of abstract objects. "The discussion 
of indefinables - which forms the chief part of philosophical logic - is the endeavor to 
see clearly, and to make others see clearly, the entities concerned, in order that the mind 
may have that kind of acquaintance with them which it has with redness or the taste of a 
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pineapple" (Russell 1903, p. xv). Russell goes on to declare that "I have failed to perceive 
any concept fulfilling the conditions requisite for the notion of a class" (Russell 1903, pp. 
xv-xvi). But this faculty seems to be simply undefinable for Russell and its properties have 
no function in the foundational picture. 

Others, following Poincar6, want to include these faculties in the foundations of math- 
ematics: "M. Russetl me dh'a sans doute qu'i l  ne s'agit pas de psychologie, mais de 
logique et d'6pistemotogie; et moi, je semi conduit ~ r6pondre qu'il  n 'y  a pas de Iogique et 
d'6pistemologie ind6pendantes de la psychologic" (Poincar6 1909, 1986; p. 482). See also 
Goldfarb 1988 for more on this debate. 
2OWe believe that these four relations are in general different and have to be distinguished. 
Of course, every abstraction is a generalization, but the converse is not true, e.g. the gen- 
eralization from R to R z. In fact, in some cases a specialization might be more abstract 
than the starting point, e.g. flatlanders vs. 'ordinary' three-dimensional worlds. (iii) and 
(iv) sometimes collapse: the reals can be thought of as an extension of the rationals or as 
built out of the rationals. 
21 We find a beautiful example of this dependence in De Morgan's writings: "Geometrical 
reasoning and arithmetical process have each its own office; to mix the two in elementary 
instruction, is injurious to the proper acquisition of both" (De Morgan, quoted by Mathias 
1992,p. 10). 
22"AIt branches of mathematics are developed, consciously or unconsciously, in set theory 
or in some part of it. This gives the mathematician a very handy apparatus right from the 
beginning. The most he usually has to do in order to have his basic language ready is to 
describe the set theoretical notation he uses" (Levy 1979, p. 3). This claim is certainly 
hard to falsify . . .  I suppose we could also claim that mathematicians were doing set theory 
"unconsciously" all along. 
23"Does set theory have some essential structural property that guarantees its ability to 
encode other theories? Does set theory serve as a foundation for merely those theories that 
have been constructed in the past, with no expectation that it will serve for future theories? 
Or is there something about human brains that prevents them from producing mathematics 
that cannot be coded in set theory? My guess is that the historical view is closest to the 
truth, but for psychological reasons; mathematics codable into set theory was produced first 
(and we have not progressed beyond it) because it is easier for our minds to grasp" (Blass 
1984, p. 26). 
24 S teiner mentions matrix representations and their uses in the discovery of the eight-fold 
way. See Steiner (1989). 
25This was recognized by Russell, among others: "There is an apparent absurdity in pro- 
ceeding, as one does in the logical theory of arithmetic, though many rather recondite 
propositions of symbolic logic, to the "proof" of such truisms as 2 + 2 = 4: for it is plain 
that the conclusion is more certain than the premises, and the supposed proof therefore 
seems futile" (Russell 1907, p. 272). 
a6Examples abound. Consider first the following passage from Hilbert: "No more than any 
other science can mathematics be founded by logic alone; rather, as a condition for the use 
of logical inferences and the performance of logical operations, something must already 
be given to us on our faculty of representation, certain extralogical concrete objects that 
are intuitively present as immediate experience prior to all thought. If logical inference 
is to be reliable, it must be possible to survey these objects completely in all their parts, 
and the fact that they occur, that they differ from one another, and that they follow each 
other, or are concatenated, is immediately given intuitively, together with the objects, as 
something that neither can be reduced to anything else nor requires reduction. This is the 
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basic philosophical position that I regard as as requisite for mathematics and, in general, 
for all scientific thinking, understanding, and communication. And in mathematics, in par- 
ticular, what we consider is the concrete signs themselves, whose shape, according to the 
conception we have adopted, is immediately clear and recognizable. This is the very least 
that must be presupposed: no scientific thinker can dispense with it, and therefore everyone 
must maintain it, consciously or not" (Hilbert 1927, 1967, p. 465) (my emphasis). 

Consider this now: "What we must begin with, in this domain, is the possibility of 
distinguishing various points form one another. This may be designated, with Veronese, as 
the first axiom of Geometry. How we are to define a point, and how we distinguish it from 
other points, is for the moment hTelevant" (Russell t 897, 1956. p. 119). 

It is not clear whether we have to be able to distinguish various points perceptually or 
rather conceptually, i.e. by being able to name dif£erent things called "points". Be that as 
it may, Russell attempts to found the whole of (projective) geometry by a transcendental 
deduction:" . . .  I wish to point out that projective Geometry is wholly a priori; that it deals 
with an object whose properties are logically deduced from its definition, not empirically 
discovered from data; that its definition, again, is founded on the possibility of experienc- 
ing diversity in relation, or multiplicity in unity; and that our whole science, therefore, is 
logically implied in, and deducible from, the possibility of such experience" (Russell 1897, 
1956, p. 146) (my emphasis.) 
27In fact, this is the whole point of logicism. The property Frege attributed to logic and 
hoped to spill over mathematics - minus geometry - was analyticity. Russell's case is 
more delicate. It seems that his main objective was to get rid of Kant's form of intuition in 
mathematics. In the Principles of  Mathematics, he was forced to adopt some sort of direct 
abstract perception and Moore's awkward ontology, ha fact, during this period, Russell 
seems so eager to avoid any contact with psychologism that the epistemological dimension 
is almost absent in his work. This changes as he tries to link logic with epistemology. (See 
Hylton (1980, 1990) and Irvine (1989) for more on Russell's position.) 
28As we have already mentioned, this link is at the center of contemporary philosophy of 
mathematics. See note 18 for references. 
29 An anonymous referee pointed out to me that Griffiths and Harris 1978 chapter 0 is named 
"Foundations" and goes from several complex variables, analytic and algebraic varieties 

to Kahler manifolds. 
3°If Lawvere had succeeded in presenting the foundation of mathematics in this way, we 
could reasonably argue that a mutant of logicism has been brought back to life under a 
new name. For logicists, or at least Frege and Russell, were trying to provide a foundation 
for mathematics by constructing a single system of (higher-order) axioms "in which all 
mathematical objects can be defined and all their usual properties proved' , just  as set theory 
seems to do right now, but furthermore their early attempts were based on the belief that 
their axioms were about concepts (or terms) in general, not elements and sets, and that the 
objects derived from these concepts were derived in a purely logical manner. This was at 
least Frege's position and that of the early Russell, before he moved to a purely extensional 
point of view under Wittgenstein's and Ramsey's influence. To complete the connection, 
we would simply have to link concepts to abstract structures, something which has already 
been done by categorical logicians. (See Makkai and Reyes (1977). I have taken a closer 
look at some of the connections between togicism and category theory elsewhere. See 
Marquis (1993).) It would be interesting to examine the different axiomatizations of the 
category of all categories from the perspective of logicism. 
31Thus, Lawvere was well aware of some of the foundational dimensions and the fact that 

they can be separated. 
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32See also Couture and Lambek (1991) and Lambek (1992) where it is argued that the free 
topos in fact allows a unification of the various traditional philosophies of mathematics. 
33It can be a~ued  that we are still dealing with logically fundamental aspects of  mathemat- 
ics. See Marquis (1993). 
34In fact, topos theory might have to be included here also: "In saying that the future of  
topos theory lies in the clarification of other areas of mathematics through the application 
of topos-theoretic ideas, I do not wish to imply that, like Grothendieck, I view topos theory 
as a machine for the demolition of unsolved problems in algebraic geometry or anywhere 
else . . . .  I do believe that the spreading of the topos-theoretic outlook into many areas of 
mathematical activity will inevitably lead to the deeper understanding of the real features 
of a problem which is an essential prelude to its correct solution" (Johnstone 1977, p. xvii). 
35Here is yet another way to put it: "Foundations should provide general concepts and 
tools that reveal the sm~ctures and interrelations of various areas of mathematics and its 
applications, and that help in doing and using mathematics" (Goguen 1991, po 67). 
36I will not consider MaybelTy's arguments here, as presented in Mayberry t 977. They 
seem to rely on the claim that behind any piece of formal mathematics lies informal set 
theory, that the latter is simply inescapable. If this is correct, then his arguments seem to 
me to be based on a similar claim than the arguments I will consider later in this paper. But 
I am not sure I understand his claims. They seem to me to be based on unorthodox views of 
the notion of abstract structure and even set theory. To mention only but one example, he 
claims that the notion of isomorphism is a set-theoretical notion. I fail to understand this. 
The notion of isomorphism in set theory amounts to a one-to-one onto mapping and I fail 
to see how this conveys the idea of a structure preserving map, for the idea of structure is 
not even present. Category theory shows that this definition is inadequate in other contexts, 
that is, there are maps which are monic and epic but not iso, e.g. in the category of posers 
or topological spaces. (I owe these last examples to an anonymous referee.) Moreover, 
the proper choice of maps in a given context is far from being dictated by set-theoretical 
considerations. For instance, in the category of topological spaces, one can take homeo- 
morphisms or open maps or closed maps as the class of morphisms and this choice will 
have radical consequences on the categorical profiles of the resulting category. 
37BelI has since published a book on topos theory in which he argues that topos theory 
should be considered to be fundamental in some sense. See Bell (1988). 
38 See Fourman (1980) for details. 

39This is like Poincar6's argument against Russell according to which mathematical induc- 
tion is synthetic, that is, it always will have to be understood independently of any of its 
logical reduction. 

4°Notice that the'collection of natural numbers and its operations seem to be the most 
natural candidate here. 
41 See Barr and Wells (1985) for a sketch - no pun intended - of the geometric point of 
view and B6nabou (1967) and Street (1980) for higher-dJmensionaI category theory, 
42This should certainly be explored from a structuralist point of view. Unfortunately, none 
of the contemporary philosophers of mathematics who are trying to develop a structuralist 
philosophy of mathematics have considered that category theory might be the place to start. 
See, for instance, Resnik (1981, 1982, 1988), Parsons (1990) and Shapiro (1989). 
43"I would speculate, though, that the physiological separation by the brain of the pro- 
cessing of spatial from the processing of the temporal thought supports the thesis that a 
complete unification of mathematics is not possible" (Mathias 1992, p. 11). This is a nice 
example of an argument where one concludes that the logical foundation of mathematics 
has to be such-and-such because of cognitive features, i.e. the relation of logical foundation 



444 JEAN-PIERRE MARQUIS 

depends on the relation of cognitive foundation. 
44 This option might seem outrageous if only becausethere does not seem to be any historical 
precedent. However, a quick look at the history of the foundations of algebraic geometry 
in this century should convince anyone that this is not true: the search for appropriate foun- 
dations in algebraic geometry went through various stages, most of which were simply" left 
behind, e.g. Well's work, when the notion of scheme was finally developed by Grothendieck. 
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