Skip to main content
Log in

Environmental Sustainability: implications and limitations to Green Chemistry

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

This study discusses the relationship between Green Chemistry and Environmental Sustainability as expressed in textbooks and articles on Green Chemistry authored by their promoters. It was found that although the Brundtland concept of Sustainable Development/Sustainability has been mentioned often by green chemists, a full analysis of that relationship was almost never attempted. In particular, green chemists have paid scarce attention to the importance of The Second Law of thermodynamics on Environmental Sustainability and the consequences of the limitations it imposes on Green Chemistry, which are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahluwalia, V.R.: Green Chemistry—Environmentally Benign Reactions. CRC Taylor & Francis Group, Boca Raton (2008)

    Google Scholar 

  • Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, Oxford (1998)

    Google Scholar 

  • Anastas, P.T., Williamson, T.C. (eds.): Green Chemistry—Frontiers in Benign Chemistry Syntheses. Oxford UP, Oxford (1998)

    Google Scholar 

  • Anastas, P.T., Williamson, T.C., Hjeresen, D., Breen, J.J.: Promoting Green Chemistry initiatives. Env. Sc. Technol. 33, 116A–119A (1999)

    Article  Google Scholar 

  • Anastas, P.T., Bartlett, L.B., Kirchhoff, M.M., Williamson, T.C.: The role of catalysis in the design, development, and implementation of Green Chemistry. Cat. Today 55, 11–22 (2000)

    Article  Google Scholar 

  • Anastas, P.T., Kirchhoff, M.M., Williamson, T.C.: Catalysis as a foundational pillar of Green Chemistry. Appl. Catal. A 221, 3–13 (2001)

    Article  Google Scholar 

  • Anastas, P.T., Kirchhoff, M.M.: Origins, current status, and future challenges of Green Chemistry. Acc. Chem. Res. 35, 686–694 (2002)

    Article  Google Scholar 

  • Anastas, P.: Meeting the challenges to sustainability thorough Green Chemistry. Green Chem. 5, G29–G34 (2003)

    Article  Google Scholar 

  • Anastas, P., Beach, E.S.: Green Chemistry: the emergence of a transformative framework. Green Chem. Lett. Rev. 1, 9–24 (2007)

    Article  Google Scholar 

  • Arons, J., van der Kooi, H.J.: Towards a metabolic society: a thermodynamic view. Green Chem. 3, G53–G55 (2001)

    Google Scholar 

  • Basiago, A.D.: Methods of defining “Sustainability”. Sustain. Dev. 3, 109–119 (1995)

    Article  Google Scholar 

  • Beach, E.S., Cui, Z., Anastas, P.: Green Chemistry: a design framework for sustainability. Energy Environ. Sci. 2, 1038–1049 (2009)

    Article  Google Scholar 

  • BSD (Board on Sustainable Development, US National Academy of Sciences): Our Common Journey. National Academy Press, Washington (1999)

  • Centi, G., Perathoner, S.: Catalysis and sustainable (green) chemistry. Catal. Today 77, 287–297 (2003)

    Article  Google Scholar 

  • Clark, J.H.: Green Chemistry: challenges and opportunities. Green Chem. 1, 1–8 (1999)

    Article  Google Scholar 

  • Clark, J.H.: Green Chemistry: today (and tomorrow). Green Chem. 8, 17–21 (2006)

    Article  Google Scholar 

  • Collins, T.J.: Green Chemistry. MacMillan Encyclopedia of Chemistry, vol. 2, pp. 691–697. Macmillan Publishing, New York (1997)

    Google Scholar 

  • Daly, H.E.: Steady-State Economics, 2nd edn. Island Press, Washington (1991)

    Google Scholar 

  • Daly, H.E.: The economic thought of frederick soddy. Hist. Political Econ. 12, 469–488 (1980)

    Article  Google Scholar 

  • Dichiarante, V., Ravelli, D., Albini, A.: Green Chemistry: state of the art through an analysis of the literature. Green Chem. Lett. Rev. 3, 105–113 (2010)

    Article  Google Scholar 

  • Ehrenfeld, D.: Sustainability: living with the imperfections. Conserv. Biol. 19, 33–35 (2005)

    Article  Google Scholar 

  • Georgescu-Roegen, N.: The Entropy Law and the Economic Process. Harvard University Press, Cambridge, Mass (1971)

    Book  Google Scholar 

  • Goldsmith, E., Allen, R., Allaby, M., John Davoll, J., Lawrence, S. (eds): A blueprint for survival. Penguin Books Ltd, Harmondsworth (1972)

  • Goodland, R.: The concept of Environmental Sustainability. Annu. Rev. Ecol. Syst. 26, 1–24 (1995)

    Article  Google Scholar 

  • Graedel, T.E.: Green Chemistry and sustainable development. In: Clark, J.H., Macquarrie, D. (eds.) Handbook of Green Chemistry and Technology, Chapt. 4, pp. 56–61. Wiley, Chichester (2002)

  • Graedel, T.E.: Green Chemistry as systems science. Pure Appl. Chem. 73, 1243–1246 (2001)

    Article  Google Scholar 

  • Hjeresen, D.L., Anastas, P., Ware, S., Kirchhof, M.: Green Chemistry progress & challenges. Env. Sci. Technol. 35, 114A–119A (2001)

    Article  Google Scholar 

  • Hull, Z.: Sustainable Development: premises, understanding and prospects. Sustain. Dev. 16, 73–80 (2008)

    Article  Google Scholar 

  • Huesemann, M.H.: The limits of technological solutions to sustainable development. Clean Techn. Environ. Policy 5, 8–20 (2003)

    Google Scholar 

  • Huesemann, M.H.: The failure of eco-efficiency to guarantee sustainability: future challenges for industrial ecology. Environ. Prog. 23, 264–270 (2004)

    Article  Google Scholar 

  • Jacoby, M.: Securing the supply or rare earths. Chem. Eng. News 88(35), 9–12 (2010)

    Article  Google Scholar 

  • Jischa, M.F.: Sustainable Development and technology assessment. Chem. Eng. Technol. 21, 628–636 (1998)

    Article  Google Scholar 

  • Kates, R.W., Parris, T.M., Leiserowitz, A.A.: What is sustainable development? Goals, indicators, values and practice. Environment 47(3), 8–21 (2005)

    Article  Google Scholar 

  • Khan, M.A.: Sustainable Development: the key concepts, issues and implications. Sustain. Dev. 3, 63–69 (1995)

    Article  Google Scholar 

  • Kidwai, M., Mohan, R.: Green Chemistry: an innovative technology. Found. Chem. 7, 269–287 (2005)

    Article  Google Scholar 

  • Kirchhoff, M.M.: Promoting sustainability through Green Chemistry. Resour. Conserv. Recycl. 44, 237–243 (2005)

    Article  Google Scholar 

  • Lancaster, M.: Green Chemistry—An Introductory Text. Royal Society of Chemistry, Cambridge (2002)

    Google Scholar 

  • Lancaster, M.: Green Chemistry—An Introductory Text, 2nd edn. Royal Society of Chemistry, Cambridge (2010)

    Google Scholar 

  • Lélé, S.M.: Sustainable Development: a critical review. World Dev. 19, 607–621 (1991)

    Article  Google Scholar 

  • Linthrost, J.A.: An overview: origins and development of Green Chemistry. Found. Chem. 12, 55–68 (2010)

    Article  Google Scholar 

  • Logar, N.: Chemistry, Green Chemistry, and the instrumental valuation of sustainability. Minerva 49, 113–136 (2011)

    Article  Google Scholar 

  • Machado, A.A.S.C.: Da génese ao ensino da Química Verde. Quim. Nova 34, 535–543 (2011)

    Article  Google Scholar 

  • Machado, A.A.S.C.: Green Chemistry Education: Towards a Systems Thinking Approach, Plenary Presented at the 4th International IUPAC Conference on Green Chemistry. Foz do Iguaçu, Brasil (2012)

    Google Scholar 

  • Manley, J.B., Anastas, P., Cue Jr, B.W.: Frontiers in Green Chemistry: meeting the grand challengers for sustainability in R&D and manufacturing. J. Clean. Prod. 16, 743–750 (2008)

    Article  Google Scholar 

  • Matlack, A.S.: Introduction to Green Chemistry. Marcel Dekker, New York (2001)

    Google Scholar 

  • Matlack, A.S.: Introduction to Green Chemistry, 2nd edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  • Matus, K.J.M., Clark, W.C., Anastas, P.T., Zimmerman, J.B.: Barriers to the implementation of Green Chemistry in the United States. Env. Sci. Technol. 46, 10892–10899 (2012)

    Google Scholar 

  • Nemerow, N.L.: Zero Pollution for Industry—Waste Minimization Through Industrial Complexes. Wiley-Interscince, New York (1995)

    Google Scholar 

  • Newton, J.L., Freyfogle, E.T.: Sustainability: a dissent. Conserv. Biol. 19, 23–32 (2005)

    Article  Google Scholar 

  • Nitta, Y., Yoda, S.: Challenging the human crisis: “The trilemma”. Technol. Forecast. Soc. Chang. 49, 175–194 (1995)

    Article  Google Scholar 

  • Norton, B.G.: Evaluating ecosystems states: two competing paradigms. Ecol. Econ. 14, 113–127 (1995)

    Article  Google Scholar 

  • Paehke, R.: Environmental politics, sustainability and social science. Environ. Polit 10(4), 1–22 (2001)

    Article  Google Scholar 

  • Paehke, R.: Sustainability as a bridging concept. Conserv. Biol. 19, 36–38 (2005)

    Article  Google Scholar 

  • Pawlowski, A.: How many dimensions does sustainable development have? Sustain. Dev. 16, 81–90 (2008)

    Article  Google Scholar 

  • Sciubba, E., Zullo, F.: Exergy-based population dynamics. J. Ind. Ecol. 15, 172–184 (2011)

    Article  Google Scholar 

  • Soddy, F.: Cartesian Economics: The Bearing of Physical Science upon State Stewardship, Hendersons, London (1922). Available from: http://habitat.aq.upm.es/boletin/n37/afsod.en.html. Accessed 06 November 2012

  • Soddy, F.: Wealth, Virtual Wealth, and Debt. Allen and Unwin, London (1926)

    Google Scholar 

  • Soddy, F.: The Role of Money: What it Should be, Contrasted with What it has Become. Routledge, London (1934); fac-simile reprint (2003). Available from: http://archive.org/details/roleofmoney032861mbp. Accessed 06 November 2012

  • Srivastava, M.M., Sanghi, R. (eds.): Chemistry for Green Environment. Narosa Publishing House, New Delhi (2005)

    Google Scholar 

  • Thornton, J.: Implementing Green Chemistry: an environmental policy for sustainability. Pure Appl. Chem. 73, 1231–1236 (2001)

    Article  Google Scholar 

  • Thornton, J.: Beyond risk: an ecological paradigm to prevent global chemical pollution. Int. J. Occup. Environ. Health 6, 318–330 (2000)

    Article  Google Scholar 

  • Tiezzi, E.: Tempos Históricos, Tempos Biológicos, a Terra ou a Morte: os Problemas da Nova Ecologia. São Paulo, Nobel (1988)

    Google Scholar 

  • Werner, J.C., Cannon, A.S., Dye, K.K.: Green Chemistry. Environ. Impact Assess. Rev. 24, 775–799 (2004)

    Article  Google Scholar 

  • Winterton, N.: Sense and sustainability: the role of chemistry, green or otherwise. Clean Techn. Environ. Policy 5, 8–20 (2003)

    Article  Google Scholar 

  • Winterton, N.: Chemistry for Sustainable Technologies: A Foundation. RCS Publishing, Cambridge, UK (2011), Chapter 6

  • Woodhouse, E.J., Breyman, S.: Green Chemistry as a social movement. Sci. Techonol. Human Values 30, 199–222 (2005)

    Article  Google Scholar 

  • WCED (World Commission on Environmental and Development): Our Common Future. Oxford University Press, Oxford (1987)

Download references

Acknowledgments

To CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil), as well as CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil) and FCT (Fundação de Ciência e Tecnologia, Portugal), for the award of a collaboration project on “Chemical Education under the Perspective of Green Chemistry and Environmental Sustainability”, project nr 289/11 (Brasil) and 151/11 (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélio A. S. C. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, C.A., Machado, A.A.S.C. Environmental Sustainability: implications and limitations to Green Chemistry. Found Chem 16, 125–147 (2014). https://doi.org/10.1007/s10698-013-9189-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-013-9189-x

Keywords

Navigation