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Abstract

Inspired by locale theory, we propose “pointfree convex geometry.” We introduce the notion
of convexity algebra as pointfree convexity space. There are two notions of point for convexity
algebra: one is chain-prime meet-complete filter and the other is maximal meet-complete filter.
In this paper we show the following: (1) the former notion of point induces a dual equivalence
between the category of “spatial” convexity algebras and the category of “sober” convexity
spaces as well as a dual adjunction between the category of convexity algebras and the category
of convexity spaces; (2) the latter notion of point induces a dual equivalence between the category
of “m-spatial” convexity algebras and the category of “m-sober” convexity spaces. We finally
argue that the former notion of point is more useful than the latter one from a category theoretic
point of view and that the former notion of point actually represents polytope (or generic
point) and the latter notion of point properly represents point. We also remark about the close
relationships between pointfree convex geometry and domain theory.

Keywords: pointfree geometry; categorical duality; dual adjunction; domain theory; convex ge-
ometry; polytope

Mathematics Subject Classification: 06D50, 52A01, 06D22, 06B35, 03F55

1 Introduction

Can you see any “point” in the space? The answer will be no. The notions of topological space and
convexity space (explained below) presuppose that of point, which seems to be epistemologically
ideal (see [20, 33, 34]). From the viewpoints of duality theory and algebraic geometry (see [22, 18]),
we notice that a point amounts to a prime ideal (or a model in logical terms), which is an infinite
entity, and we need some indeterministic principle such as (a weaker form of) the axiom of choice
in order to show the existence of it and therefore the notion of point is very ideal. On the other
hand, we can actually see “regions” of the space in some sense and, from the viewpoints of duality
theory and algebraic geometry, a (basic) region can be identified with an algebraic formula, which
is a finite entity. Hence, the notion of region seems to be epistemologically more certain than that
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of point (where it is supposed that one notion is epistemologically more certain than another if the
former precedes the latter in the human knowledge).

This leads us to the notion of region-based pointfree space. There are several ways to realize
this notion in a mathematical form. In mathematics we often encounter the following phenomenon:
a space is recovered from the function algebra on it (a space has the same information as the
function algebra on it). Such spaces include manifolds, compact Hausdorff spaces, and affine
schemes (see [18, 22]). Moreover, geometric notions can often be translated into algebraic ones via
correspondence between space and algebra (for example, in algebraic geometry, the dimension of
an algebraic variety corresponds to the Krull dimension of the coordinate ring of it). These facts
give us the idea “Algebra itself is space.” This idea has already been pursued in several areas of
mathematics such as non-commutative geometry (see [5]) and we also follow it in this paper.

Locale theory can be considered as an algebraic theory of topological structures which does
not presuppose the notion of point and is primarily based on that of region, since locale theory
studies the lattice structure of open sets in an algebraic way, i.e., a “space” in locale theory is a
join-complete lattice with finite meets that distribute over arbitrary joins, which is called a frame
(for locale theory, see [22, 24, 25, 27, 28, 31, 32]). Usually, localic versions of theorems in the
ordinary topology do not need non-constructive principles such as the law of excluded middle or
the axiom of choice and so locale theory can also be seen as constructive topology (see [1, 7, 9, 10]).
There are two fundamental results of locale theory (see [22, 1, 6]): (i) a dual adjunction between
the category of frames and the category of topological spaces; (ii) a dual equivalence between the
category of spatial frames and the category of sober topological spaces, which is sometimes called
Isbell duality (see [4]).

Along with topology, convex geometry has been studied extensively from different perspectives
(see [8, 16, 30]). Among many results of convex geometry, Helly-type theorems (see [14]) are
important, especially for combinatorial convex geometry. They characterize the dimension of an
Euclidean space and so seem to be significant from a philosophical as well as a mathematical point
of view. Helly-type theorems can be extended to the case of convexity spaces (see [8]), which
are defined as a set S equipped with a subset C ⊂ 2S , a convexity, satisfying some conditions (see
Definition 2.1). These results contribute to our understanding of the notion of dimension, clarifying
the convexity theoretical meaning of it. There have been many more studies on convexity spaces
than mentioned above (see [8, 23, 30]). Note that the notion of topological space in topology
corresponds to that of convexity space in convex geometry.

Inspired by locale theory, we propose “pointfree convex geometry”, toward which this paper
takes a first step (for related categorical work, see [21]). Pointfree convex geometry is an algebraic
theory of convex structures which does not presuppose the notion of point and is primarily based
on that of region. Pointfree convex geometry studies the lattice structure of convex sets in an
algebraic way, i.e., a “space” in pointfree convex geometry is a meet-complete poset with joins of
chains that distribute over arbitrary meets, which we call a convexity algebra. The notion of point
does not appear explicitly, but, if we want, we can consider points of pointfree spaces and recover
“all” points under certain assumptions.

We emphasize that there are two ways to recover points. One way is to consider a chain-prime
meet-complete filter (cp-mc filter, for short) as a point. The other way is to consider a maximal
meet-complete filter (m-mc filter, for short) as a point. These two views on the notion of point
induce two kinds of categorical dualities between some convexity algebras and some convexity
spaces. The following are the main results in this paper:
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• a dual adjunction between the category of convexity algebras and homomorphisms and the
category of convexity spaces and convexity preserving maps (Theorem 3.9);

• a dual equivalence between the category of spatial convexity algebras and homomorphisms
and the category of sober convexity spaces and convexity preserving maps (Theorem 4.18);

• a dual equivalence between the category of m-spatial convexity algebras and m-homomorphisms
and the category of m-sober convexity spaces and convexity preserving maps (Theorem 5.18),
where note that convexity preserving maps between m-sober convexity spaces correspond to
m-homomorphisms, not homomorphisms.

These results are considered as fundamental for pointfree convex geometry as (i) and (ii) above are
for locale theory. These results clarify the categorical relationships between pointfree spaces and
pointset spaces, or epistemological and ontological aspects of the notion of space (they might be
considered to be almost equivalent from a mathematical point of view). For more discussion on
these results, we refer the reader to Section 6.

Our investigation in this paper proceeds as follows. In Section 2, we first review the concept of
convexity space and then introduce the concept of convexity algebra as a pointfree analogue of a
convexity space and related concepts of filter. In Section 3, we obtain a dual adjunction between
the category of convexity algebras and the category of convexity spaces, which is based on the view
that a point is a cp-mc filter. In Section 4, by introducing the concepts of spatiality and sobriety,
we obtain a duality between the category of spatial convexity algebras and the category of sober
convexity spaces, which is based on the view that a point is a cp-mc filter. An algebraic characteri-
zation of spatiality is also provided. We remark that Euclidean spaces are sober topological spaces
and are not sober convexity spaces (the same thing holds also for the other spaces in Example 2.2),
whence the sobriety of convexity seems to be considerably different from the sobriety of topology.
We also show that a convexity algebra is filter-closed iff there is no infinite descending chain in
it and that an analogue of the prime filter theorem for distributive lattices holds for filter-closed
convexity algebras. In Section 5, by introducing the concepts of m-homomorphism, m-spatiality
and m-sobriety, we obtain a duality between the category of m-spatial convexity algebras and
m-homomorphisms and the category of m-sober convexity spaces and convexity preserving maps,
which is based on the view that a point is an m-mc filter. We also give an algebraic characteriza-
tion of m-spatiality. We remark that many ordinary convexity spaces such as Euclidean spaces are
m-sober even if they are not sober. In Section 6, we discuss the questions “Which notion of point
is better? Which notion of point is the proper one?” and also the relationships between pointfree
geometry and Hilbert’s instrumentalism or Husserl’s phenomenology. In this section we also remark
that pointfree convex geometry is closely related to domain theory (in some sense it coincides with
the theory of continuous lattices).

2 Convexity Spaces and Convexity Algebras

In this section we review basics of convexity spaces and introduce the notion of convexity algebra
with related basic concepts and propositions.
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2.1 Convexity Spaces

We first review the notion of convexity space. For more detailed exposition, see the books [8, 30].
Convexity spaces are sometimes called aligned spaces as in [8].

Let 2X denote the powerset of X.

Definition 2.1 ([8, 30]). For a set S and a subset C of 2S, (S, C) is a convexity space iff (S, C)
satisfies the following conditions:

1. C is closed under arbitrary intersections;

2. if {Xi ∈ C ; i ∈ I} is totally ordered, then
∪
{Xi ; i ∈ I} ∈ C.

We call C the convexity of S and an element of C a convex set in S. The complement of a convex
set in S is called a concave set in S.

Note that ∅, S ∈ C by letting the index sets be empty in the above conditions.
A convexity space (S, C) is often denoted by its underlying set S.
Let us denote by 2 the two-element distributive lattice {0, 1} equipped with the Sierpiński

convexity {∅, {1}, {0, 1}}.

Example 2.2. Consider a vector space V over the real number field R. We can equip V with a
natural convexity determined by the condition that X ⊂ V is convex iff for any x, y ∈ X and any
t ∈ [0, 1], tx + (1 − t)y ∈ X. In particular, the n-dimensional Euclidean space Rn for an integer
n ≥ 1 is naturally equipped with a convexity in this way.

Consider the n-sphere Sn for an integer n ≥ 1. We can equip Sn with a natural convexity
determined by the condition that X ⊂ Sn is convex iff the following hold: (i) for any x, y ∈ X, the
antipodal point of x is not y; (ii) for any x, y ∈ X, the shortest path (i.e., geodesic) between x and
y on Sn is a subset of X.

We can also equip the n-dimensional real projective space with a convexity (see [8, Example
6.2.7] or [29]).

By the condition 1 in Definition 2.1, we can define the convex hull of a subset of a convexity
space as follows.

Definition 2.3 ([8, 30]). Let (S, C) be a convexity space. For A ⊂ S, define

ch(A) =
∩

{C ∈ C ; A ⊂ C}.

Then, ch(A) is called the convex hull of A.

As usual we define a morphism of convexity spaces as follows.

Definition 2.4 ([30, 23]). Let (S, C), (S′,D) be convexity spaces. A map f : S → S′ is a convexity
preserving map iff, for any D ∈ D, we have f−1(D) ∈ C.

This definition of morphism of convexity spaces seems to be most popular, though other defini-
tions may be possible. Even if a stronger definition of morphism of convexity spaces is employed,
our duality results still work by restricting the morphisms parts of the related categories.

Note that the inverse map of a bijective convexity preserving map is not necessarily convexity
preserving.

By the following proposition, we can consider the set of convex sets in a convexity space as the
hom-set from the convexity space to 2.
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Proposition 2.5. Let (S, C) be a convexity space. Then, there is a natural bijection between the
set C of all convex sets in S and the set of all convexity preserving maps from S to 2.

Proof. For a convex set C in S, define fC : S → 2 by

fC(x) =

{
1 if x ∈ C

0 otherwise.

Then it is clear that fC is a convexity preserving map and that if C ̸= D for convex sets C and D
in S then we have fC ̸= fD. Thus, the map C 7→ fC is injective. To show the surjectivity, let g be
a convexity preserving map from S to 2. Define C = g−1({1}). Then it is clear that C is a convex
set in S and that fC = g. This completes the proof.

The notion of polytope is defined as follows.

Definition 2.6 ([30]). Let S be a convexity space. A non-empty subset P of S is called a polytope
in S iff P is the convex hull of a finite subset of S.

By [30, Theorem 1.6], we have the following proposition, which characterize a polytope in a
convexity space as a subset satisfying a certain condition similar to compactness in topology.

Proposition 2.7. For a convexity space (S, C), the following are equivalent.

1. P ∈ C is a polytope in S;

2. if P =
∪

i∈I Ci for a totally ordered set {Ci ∈ C ; i ∈ I}, then there is i ∈ I such that P = Ci.

By [30, Proposition 1.7.1], we have the following proposition.

Proposition 2.8. Let S be a convexity space. Any convex set in S is the union of a directed set
of polytopes in S.

Thus, the set of all polytopes in a convexity space forms the canonical base of the convexity
space. There is no such canonical base of a topological space in general. This is a striking difference
between topology and convex geometry.

The notion of polytope shall play a crucial role in our investigation. For instance, the polytopes
in a convexity space can be used for “sobrification” of the convexity space as we shall see later.

2.2 Convexity Algebras

Now we define the notion of convexity algebra, which is considered as pointfree convexity space
and is analogous to the notion of frame, which is pointfree topological space, in locale theory (for
basic concepts of lattice theory, see [12]).

Definition 2.9. A poset L is a convexity algebra iff it satisfies the following properties:

1. L has arbitrary meets;

2. if {xi ∈ L ; i ∈ I} is totally ordered in L, then {xi ; i ∈ I} has a join in L;
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3. for any doubly indexed family {xi,j ∈ L ; i ∈ I and j ∈ Ji}, if {xi,j ; j ∈ Ji} is totally ordered
for every i ∈ I and if {

∧
i∈I xi,f(i) ; f ∈ F} is totally ordered, then∧

i∈I

∨
j∈Ji

xi,j =
∨
f∈F

∧
i∈I

xi,f(i)

where F =
∏

i∈I Ji (= {f : I →
∪

i∈I Ji ; ∀i ∈ I f(i) ∈ Ji}).

Note that a convexity algebra has the least element 0 and the greatest element 1 by letting the
index sets be empty in the conditions 1 and 2 above.

We call the condition 3 in the above definition the chain-completely distributive law.

Definition 2.10. Let L1 and L2 be convexity algebras. A function f : L1 → L2 is a homomorphism
from L1 to L2 iff it satisfies the following properties:

1. f(
∧

i∈I ai) =
∧

i∈I f(ai) for any {ai ; i ∈ I} ⊂ L1;

2. if {ai ∈ L1 ; i ∈ I} is totally ordered, then f(
∨

i∈I ai) =
∨

i∈I f(ai).

Note that for a homomorphism f of convexity algebras, we have f(0) = 0 and f(1) = 1 by
letting the index sets be empty in the above conditions.

We can easily verify the following proposition.

Proposition 2.11. Let (S, C) be a convexity space. Then, C forms a convexity algebra (when
equipped with set-theoretical operations).

Next we define the concepts of meet-complete filter and chain-prime meet-complete filter (cp-mc
filter for short), which correspond to filter and completely prime filter respectively in locale theory.

Definition 2.12. Let L be a convexity algebra. A subset F of L is called a meet-complete filter of
L iff the following hold:

1. if a ∈ F and a ≤ x then x ∈ F ;

2. if {ai ; i ∈ I} ⊂ F , then
∧

i∈I ai ∈ F .

Note that a meet-complete filter F is non-empty, since we have 1 ∈ F by the condition 2 applied
to the empty family.

A meet-complete filter may also be called Moore filter, since the related notion of Moore family
is well known.

Definition 2.13. Let L be a convexity algebra. A subset P of L is called a chain-prime meet-
complete filter (cp-mc filter for short) of L iff the following hold:

1. P is a meet-complete filter of L;

2. if {ai ∈ L ; i ∈ I} is totally ordered and
∨

i∈I ai ∈ P , then there is i ∈ I with ai ∈ P .

Note that any cp-mc filter P of L is not L, since we have 0 /∈ P by the condition 2 applied to
the empty family.

For a convexity space (S, C) and x ∈ S, {C ∈ C ; x ∈ C} is a cp-mc filter of the convexity
algebra C.

The notion of chain-algebraicity is defined as follows.
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Definition 2.14. Let L be a convexity algebra.
For a ∈ L, a is said to be a chain-compact element in L iff if a ≤

∨
i∈I ai for a totally ordered

subset {ai ; i ∈ I} of L then there exists i ∈ I such that a ≤ ai.
L is called chain-algebraic iff for any a ∈ L there is a directed set {ai ; i ∈ I} of chain-compact

elements in L such that a =
∨
{ai ; i ∈ I}.

Note that any chain-compact element is not the least element, which is shown by letting I = ∅
in its definition.

By Proposition 2.7, we have the following.

Proposition 2.15. Let (S, C) be a convexity space. Then, P ∈ C is a polytope in S iff P is a
chain-compact element in the convexity algebra C.

Proposition 2.16. Let L be a convexity algebra. Then, there is a natural bijection between the set
of all cp-mc filters of L and the set of all chain-compact elements in L.

Proof. For a cp-mc filter P of L,
∧

P is a chain-compact element in L and, for cp-mc filters P,Q
of L with P ̸= Q, we have

∧
P ̸=

∧
Q. Thus, the map P 7→

∧
P is injective. In order to show the

surjectivity, let a be a chain-compact element in L. Then, {x ∈ L ; a ≤ x} is a cp-mc filter and
also we have

∧
{x ∈ L ; a ≤ x} = a. This completes the proof.

Actually, any meet-complete filter F is principal (i.e., it is generated by an element, namely∧
F ), though

∧
F is not necessarily chain-compact.

Proposition 2.17. Let L be a convexity algebra. Then, there is a natural bijection between the set
of all cp-mc filters of L and the set of all homomorphisms from L to 2.

Proof. For a cp-mc filter P , define vP : L → 2 by

vP (x) =

{
1 if x ∈ P

0 otherwise.

Then it is straightforward to verify that vP is a homomorphism and that if P ̸= Q for cp-mc filters
P , Q then we have vP ̸= vQ. Therefore, the map P 7→ vP is injective. To show the surjectivity, let
u be a homomorphism from L to 2. Define P = u−1({1}). Then it is straightforward to verify that
P is a cp-mc filter and that vP = u. This completes the proof.

By Proposition 2.17 and Proposition 2.16, we do not distinguish between cp-mc filters of L,
chain-compact elements in L, and homomorphisms from L to 2 for a convexity algebra L.

3 Dual Adjunction between CA and CS

In this section, we show a dual adjunction between categories CA and CS, which are defined as
follows.

Definition 3.1. CA denotes the category of convexity algebras and homomorphisms.
CS denotes the category of convexity spaces and convexity preserving maps.

We then introduce functors Spec and Conv.
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Definition 3.2. We define a contravariant functor Spec from CA to CS as follows:

1. For an object L in CA, Spec(L) is defined as the set of all homomorphisms from L to 2
equipped with the convexity generated by {⟨a⟩ ; a ∈ L} where

⟨a⟩ = {v ; v(a) = 1 and v : L → 2 is a homomorphism }.

2. For an arrow f : L1 → L2 in CA, Spec(f) : Spec(L2) → Spec(L1) is defined by

Spec(f)(v) = v ◦ f

for v ∈ Spec(L2).

By Proposition 2.17, we can consider Spec(L) as the set of all cp-mc filters of L equipped with
the convexity generated by the {P ∈ Spec(L) ; a ∈ P}’s for a ∈ L.

The well-definedness of the functor Spec is proven by the following lemma.

Lemma 3.3. Let f : L1 → L2 be an arrow in CA. Then, Spec(f) : Spec(L2) → Spec(L1) is a
convexity preserving map.

Proof. It suffices to show that, for any a ∈ L1, (Spec(f))
−1(⟨a⟩) is a convex set in Spec(L2). Now

we have

(Spec(f))−1(⟨a⟩) = {v ∈ Spec(L2) ; Spec(f)(v) ∈ ⟨a⟩}
= {v ∈ Spec(L2) ; v(f(a)) = 1}
= ⟨f(a)⟩.

This completes the proof.

The following lemma tells us that ⟨-⟩ preserves the operations of convexity algebras.

Lemma 3.4. Let L be a convexity algebra. For {ai ; i ∈ I} ⊂ L, ⟨
∧

i∈I ai⟩ =
∩

i∈I⟨ai⟩. For a
totally ordered subset {ai ; i ∈ I} of L, ⟨

∨
i∈I ai⟩ =

∪
i∈I⟨ai⟩.

Proof. This follows immediately from the fact that a homomorphism of convexity algebras preserves
arbitrary meets and joins of totally ordered sets.

The following lemma plays an important role in our duality theory for pointfree convex geometry.

Lemma 3.5. For a convexity algebra L, the convexity of Spec(L) coincides with {⟨a⟩ ; a ∈ L}.

Proof. By the definition of the convexity of Spec(L), it suffices to prove that {⟨a⟩ ; a ∈ L} satisfies
the two conditions in Definition 2.1.

First, for any subset {⟨ai⟩ ; i ∈ I} of {⟨a⟩ ; a ∈ L}, it follows from Lemma 3.4 that∩
i∈I

⟨ai⟩ = ⟨
∧
i∈I

ai⟩ ∈ {⟨a⟩ ; a ∈ L},

whence {⟨a⟩ ; a ∈ L} is closed under arbitrary intersections.

8



Second, assume that a subset {⟨ai⟩ ; i ∈ I} of {⟨a⟩ ; a ∈ L} is totally ordered with respect to
inclusion. We show that

∪
i∈I⟨ai⟩ ∈ {⟨a⟩ ; a ∈ L}. For each i ∈ I, define

bi =
∧

{aj ; ⟨ai⟩ ⊂ ⟨aj⟩ and j ∈ I}.

Note that ⟨bi⟩ = ⟨ai⟩. If ⟨ak⟩ ⊂ ⟨al⟩ for k, l ∈ I then we have bk ≤ bl. Thus, since {⟨ai⟩ ; i ∈ I} is
totally ordered with respect to inclusion, {bi ; i ∈ I} is totally ordered with respect to the partial
order of L. Therefore, by Lemma 3.4, we have∪

i∈I
⟨ai⟩ =

∪
i∈I

⟨bi⟩ = ⟨
∨
i∈I

bi⟩ ∈ {⟨a⟩ ; a ∈ L}.

Hence, {⟨a⟩ ; a ∈ L} is closed under unions of totally ordered subsets. This completes the proof.

Definition 3.6. We define a contravariant functor Conv from CS to CA as follows:

1. For an object S in CS, Conv(S) is defined as the set of all convexity preserving maps from
S to 2 equipped with the pointwise operations. For instance, given fi ∈ Conv(S) for i ∈ I,∧

i∈I fi ∈ Conv(S) is defined by

(
∧
i∈I

fi)(x) =
∧
i∈I

fi(x).

2. For an arrow f : S → S′ in CS, Conv(f) : Conv(S′) → Conv(S) is defined by

Conv(f)(g) = g ◦ f

for g ∈ Conv(S′).

For a convexity space S, we can consider Conv(S) as the set of all convex sets equipped with
set-theoretical operations by Proposition 2.5. Note that in this case, the arrow part of the functor
Conv can be defined by

Conv(f)(C) = f−1(C)

for C ∈ Conv(S′). The two definitions of Conv are essentially equivalent and we do not have to
distinguish between them.

The well-definedness of the functor Conv is proven as follows: first, Conv(S) forms a convexity
algebra by Proposition 2.11 and Proposition 2.5; second, Conv(f) is a homomorphism, since all the
operations of Conv(S) are defined pointwise.

For a category C, let 1C denote the identity functor from C to C.

Definition 3.7. We define a natural transformation Φ : 1CA → Conv ◦ Spec as follows. For a
convexity algebra L, define ΦL : L → Conv ◦ Spec(L) by

ΦL(a)(v) = v(a)

for a ∈ L and v ∈ Spec(L).
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Then, ΦL is well-defined, since ΦL(a) is a convexity preserving map by the following fact

ΦL(a)
−1({1}) = {v ∈ Spec(L) ; v(a) = 1} = ⟨a⟩.

It is straightforward to verify that ΦL is a homomorphism. It is proven by direct computation that
Φ is a natural transformation.

Definition 3.8. We define a natural transformation Ψ : 1CS → Spec ◦ Conv as follows. For a
convexity space S, define ΨS : S → Spec ◦ Conv(S) by

ΨS(x)(f) = f(x)

for x ∈ S and f ∈ Conv(S).

Then, ΨS is well-defined, since ΨS(x) is a homomorphism by the pointwiseness of the operations
of Conv(S). Moreover, ΨS is a convexity preserving map by the following fact

Ψ−1
S (⟨f⟩) = {x ∈ S ; ΨS(x) ∈ ⟨f⟩} = f−1({1})

for f ∈ Conv(S). It is proven by direct computation that Ψ is a natural transformation.
Now we show that Spec and Conv give a dual adjunction between CA and CS.

Theorem 3.9. Spec is left adjoint to Convop.

Proof. Let L be a convexity algebra and S a convexity space. Assume that f is a homomorphism
from L to Conv(S). It suffices to show that there is a unique arrow g : S → Spec(L) in CS such
that Conv(g) ◦ ΦL = f . Now define a map g : S → Spec(L) by

g(x)(a) = ΨS(x)(f(a))

for x ∈ S and a ∈ L. Then, since f and ΨS(x) are homomorphisms, we have g(x) ∈ Spec(L).
Moreover, g is a convexity preserving map by f(a) ∈ Conv(S) and the following fact

g−1(⟨a⟩) = {x ∈ S ; g(x) ∈ ⟨a⟩}
= {x ∈ S ; g(x)(a) = 1}
= {x ∈ S ; f(a)(x) = 1}
= f(a)−1({1}).

For a ∈ L and x ∈ S, we have

(Conv(g) ◦ ΦL)(a)(x) = ΦL(a) ◦ g(x)
= g(x)(a)

= f(a)(x).

Hence, we have Conv(g) ◦ ΦL = f .
To show the uniqueness, suppose that h is a convexity preserving map from S to Spec(L) and

that Conv(h) ◦ ΦL = f . Then, it follows that Conv(h) ◦ ΦL = f = Conv(g) ◦ ΦL. Here, for a ∈ L
and x ∈ S, we have

(Conv(h) ◦ ΦL)(a)(x) = ΦL(a) ◦ h(x) = h(x)(a).

Similarly we have
(Conv(g) ◦ ΦL)(a)(x) = g(x)(a).

Thus, we conclude that h = g.
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Recall that a left adjoint functor preserves colimits and a right adjoint functor preserves limits
(see [3]). Thus, some categorical constructions in one category can be transferred into the other
category via the above adjunction.

4 Duality between SpCA and SobCS

In this section, we introduce the notions of spatial convexity algebra and sober convexity space.
Then, by restricting the dual adjunction between CA and CS, we shall show a duality between the
category SpCA of spatial convexity algebras and the category SobCS of sober convexity spaces.

4.1 Spatiality

We define the notion of spatiality as the existence of “enough” cp-mc filters:

Definition 4.1. For a convexity algebra L, L is spatial iff, for any a, b ∈ L with a � b, there is a
cp-mc filter P of L such that a ∈ P and b /∈ P .

We can characterize the spatiality of a convexity algebra L as the injectivity of ΦL.

Lemma 4.2. Let L be a convexity algebra. The following are equivalent:

1. L is spatial;

2. ΦL is injective, i.e., for any a, b ∈ L with a ̸= b there is v ∈ Spec(L) with v(a) ̸= v(b);

3. if ⟨a⟩ ⊂ ⟨b⟩ for a, b ∈ L, then a ≤ b.

Proof. By Proposition 2.17, it is straightforward to show that 1 implies 2 and that 3 implies 1. We
show that 2 implies 3. Assume 2. To show the contrapositive of 3, assume a � b. Then, since ΦL

is an injective homomorphism, we have ΦL(a) � ΦL(b). Therefore, there is v ∈ Spec(L) such that

v(a) = ΦL(a)(v) > ΦL(b)(v) = v(b).

Hence we have v ∈ ⟨a⟩ and v /∈ ⟨b⟩. This completes the proof.

The following proposition provides many natural examples of spatial convexity algebras.

Proposition 4.3. Let S be a convexity space. Then, Conv(S) is a spatial convexity algebra.

Proof. Let f, g ∈ Conv(S) with f ̸= g. Then, we have f(x) ̸= g(x) for some x ∈ S. Let v = ΨS(x).
Then, we have

ΦConv(S)(f)(v) = v(f) = f(x).

We also have
ΦConv(S)(g)(v) = v(g) = g(x).

Thus, ΦConv(S) is injective and so Conv(S) is spatial by Lemma 4.2.

In fact, ΦL is always surjective as follows.

Lemma 4.4. Let L be a convexity algebra. Then, ΦL is surjective.
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Proof. Based on Proposition 2.5, we can consider Conv ◦ Spec(L) as the set of all convex sets in
Spec(L). Thus, since ΦL(a)

−1({1}) = ⟨a⟩, we can consider ΦL(a) = ⟨a⟩. Then, it follows from
Lemma 3.5 that

{⟨a⟩ ; a ∈ L} = Conv ◦ Spec(L).

Hence, ΦL is surjective by ΦL(a) = ⟨a⟩.

By Lemma 4.2, Proposition 4.3 and Lemma 4.4, we obtain the following proposition (recall that
ΦL is a homomorphism for any convexity algebra L).

Proposition 4.5. For a convexity algebra L, L is spatial iff ΦL : L → Conv ◦ Spec(L) is an
isomorphism.

This proposition implies that any spatial convexity algebra can be represented as the convexity
algebra of convex sets in a convexity space.

We can provide an algebraic characterization of spatiality as follows.

Proposition 4.6. Let L be a convexity algebra. Then, L is spatial iff L is chain-algebraic.

Proof. Assume that L is spatial. By Proposition 4.5, L is isomorphic to the convexity algebra of
all convex sets in a convexity space, which is shown to be chain-algebraic by combining Proposition
2.15 and Proposition 2.8.

Assume that L is chain-algebraic. Let a, b ∈ L with a � b. Let A be the set of chain-compact
elements that are less than or equal to a and B the set of chain-compact elements that are less
than or equal to b. Since L is chain-algebraic, we have a =

∨
A and b =

∨
B. Therefore, it follows

from a � b that there is c ∈ A such that c /∈ B. Define P = {x ∈ L ; c ≤ x}. Then, since c is a
chain-compact element, P is a cp-mc filter by Proposition 2.16 and also we have both a ∈ P and
b /∈ P . Thus, L is spatial.

Definition 4.7. Let L be a convexity algebra and MCF(L) the set of all meet-complete filters of
L. Then, L is filter-closed iff for any non-empty totally ordered subset {Xi ; i ∈ I} of MCF(L),∪

i∈I Xi is a meet-complete filter.

For instance, every successor ordinal is a filter-closed convexity algebra and also the finite
product of successor ordinals is a filter-closed convexity algebra. More generally, we have the
following characterization of filter-closed convexity algebra.

Proposition 4.8. For a convexity algebra L, L is filter-closed iff there is no infinite descending
chain in L.

Proof. We first show that filter-closedness implies the non-existence of an infinite descending chain.
In order to prove the contrapositive, assume that there is an infinite descending chain {ai ∈ L ; i ∈
I}. Then, we have

∧
i∈I ai < ak for any k ∈ I, since if not, then there is k ∈ I such that ak ≤ ai

for any i ∈ I, i.e., {ai ∈ L ; i ∈ I} is not an infinite descending chain. Define

Ai = {x ∈ L ; ai ≤ x},

which is a meet-complete filter. Clearly, {Ai ; i ∈ I} is totally ordered. Moreover,
∪

i∈I Ai is not a
meet-complete filter, since we have both ai ∈

∪
i∈I Ai for any i ∈ I and

∧
i∈I ai /∈

∪
i∈I Ai by the

fact that
∧

i∈I ai < ak for any k ∈ I. Therefore, L is not filter-closed.
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To show the converse, assume that there is no infinite descending chain in L. Let {Xi ; i ∈ I} be
a non-empty totally ordered subset of MCF(L). Since any meet-complete filter X is generated by∧

X, {
∧

Xi ; i ∈ I} is totally ordered in L. However, it follows from assumption that {
∧

Xi ; i ∈ I}
is not an infinite descending chain. Thus, {Xi ; i ∈ I} is not an infinite ascending chain. Then
there is j ∈ I such that

Xj =
∪
i∈I

Xi.

Hence,
∪

i∈I Xi is a meet-complete filter. Thus, L is filter-closed.

An analogue of the prime filter theorem for distributive lattices holds for filter-closed convexity
algebras.

Proposition 4.9. Let L be a filter-closed convexity algebra. Then, L is spatial.

Proof. Let a, b ∈ L with a � b. Let H be the set of meet-complete filters F of L such that a ∈ F
and b /∈ F . Since {x ∈ L ; a ≤ x} ∈ H, H is not empty. Since L is filter-closed, every totally
ordered subset {Fi ; i ∈ I} of H has an upper bound

∪
i∈I Fi in H. Thus, by Zorn’s lemma, we

have a maximal element P in H. Clearly, a ∈ P and b /∈ P .
In order to complete the proof, we show that P is a cp-mc filter of L. Let {ai ; i ∈ I} be a totally

ordered subset of L and
∨

i∈I ai ∈ P . Suppose for contradiction that ai /∈ P for any i ∈ I. Then, it
follows from the maximality of M that for every i ∈ I there exists pi ∈ P such that ai ∧ pi ≤ b. Let

p =
∧
i∈I

pi.

Since P is a meet-complete filter, we have p ∈ P . Clearly, ai ∧ p ≤ b. Hence, we have∨
i∈I

(ai ∧ p) ≤ b.

It follows from the chain-completely distributive law (i.e., the item 3 in Definition 2.9) that∨
i∈I

(ai ∧ p) = (
∨
i∈I

ai) ∧ p.

Since
∨

i∈I ai ∈ P and p ∈ P , we have (
∨

i∈I ai)∧p ∈ P and so
∨

i∈I(ai∧p) ∈ P . By
∨

i∈I(ai∧p) ≤ b,
we have b ∈ P , which is a contradiction. Thus, P is a cp-mc filter. Hence, L is spatial.

4.2 Sobriety

In order to define sober convexity space, we first define chain-irreducible convex set, whose role in
our duality theory is analogous to that of irreducible closed set in Isbell duality.

Definition 4.10. Let (S, C) be a convexity space. A convex set C in C is said to be chain-irreducible
iff if C =

∪
i∈I Ci for a totally ordered subset {Ci ; i ∈ I} of C then there exists i ∈ I such that

C = Ci.

Note that a convex set in a convexity space (S, C) is chain-irreducible iff it is a chain-compact
element in the convexity algebra C. By Proposition 2.7, we have the following lemma.

13



Lemma 4.11. Let S be a convexity space. Then, a convex subset of S is chain-irreducible iff it is
a polytope in the convexity space.

Now we introduce the notion of sober convexity space.

Definition 4.12. A convexity space S is said to be sober iff, for every chain-irreducible convex set
C in S, there is a unique point x ∈ S such that C = ch({x}).

By Lemma 4.11, we obtain the following alternative definition of sobriety, which clarifies the
convexity theoretical meaning of sobriety.

Proposition 4.13. A convexity space is sober iff every polytope in it is the convex hull of a unique
point.

We remark that not all natural examples of convexity spaces are sober. For example, by the
above proposition, Rn with the usual convexity (see Example 2.2) is not a sober convexity space,
though it is a sober topological space.

Example 4.14. Consider 2ω, i.e., the set of all functions from the set ω of all non-negative integers
to 2 (= {0, 1}). Let C0 = 2ω. For k ∈ ω with k ≥ 1 and n1, ..., nk ∈ ω, let

Ck(n1, ..., nk) = {f ∈ 2ω ; f(n1) = f(n2) = ... = f(nk) = 1}.

Equip 2ω with the convexity generated by

{Ck(n1, ..., nk) ; k ∈ ω and n1, ..., nk ∈ ω}.

Then, 2ω forms a sober convexity space.

The next proposition provides many natural examples of sober convexity spaces.

Proposition 4.15. Let L be a convexity algebra. Then, Spec(L) is a sober convexity space.

Proof. Assume that C is a chain-irreducible convex set in Spec(L). Define

a =
∧

{x ∈ L ; C = ⟨x⟩},

where {x ∈ L ; C = ⟨x⟩} is not empty, since any convex set in Spec(L) is of the form ⟨x⟩ for x ∈ L
by Lemma 3.5. Then, we have C = ⟨a⟩ by Lemma 3.4. We claim that a is a chain-compact element
in L. Suppose that a ≤

∨
i∈I ai for a totally ordered subset {ai ; i ∈ I} of L. Then, by Lemma 3.4,

we have
C = ⟨a⟩ = ⟨

∨
i∈I

ai⟩ ∩ ⟨a⟩ =
∪
i∈I

⟨ai ∧ a⟩.

Since C is chain-irreducible and since {⟨ai ∧ a⟩ ; i ∈ I} is totally ordered, there exists i ∈ I such
that

C = ⟨a⟩ = ⟨a ∧ ai⟩.

Thus, it follows from the definition of a that a ≤ a ∧ ai, whence we have a ≤ ai. Therefore, a is a
chain-compact element in L. Let Pa = {x ∈ L ; a ≤ x}. Then, Pa is a cp-mc filter. In the following,
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we do not distinguish between cp-mc filters and homomorphisms into 2, based on Proposition 2.17.
Then we have

C = ⟨a⟩ =
∩

{⟨x⟩ ; x ∈ Pa} =
∩

{⟨x⟩ ; Pa ∈ ⟨x⟩} = ch({Pa}).

To show the uniqueness, assume that, for P,Q ∈ Spec(L), ch({P}) = C = ch({Q}). Suppose for
contradiction that P ̸= Q. Then, we may assume that there is b ∈ L such that b ∈ P and b /∈ Q.
Therefore, we have ch({P}) ⊂ ⟨b⟩ and ¬(ch({Q}) ⊂ ⟨b⟩), which is a contradiction.

By letting L be the convexity algebra of convex sets in a convexity space, Spec(L) can be
considered as the space of polytopes in the convexity space. Spaces of polytopes in convexity
spaces seem to be natural examples of sober convexity spaces.

Proposition 4.16. Let S be a sober convexity space and C its convexity. Then, ΨS : S → Spec ◦
Conv(S) is an isomorphism in CS.

Proof. We first show that ΨS is injective. Assume that ΨS(x) = ΨS(y) for x, y ∈ S. Then we have
ΨS(x)

−1({1}) = ΨS(y)
−1({1}), i.e.,

{f ∈ Conv(S) ; f(x) = 1} = {f ∈ Conv(S) ; f(y) = 1}.

By Proposition 2.5, we have {C ∈ C ; x ∈ C} = {C ∈ C ; y ∈ C}. By taking the intersections, it
follows from the definition of convex hull that

ch({x}) =
∩

{C ∈ C ; x ∈ C} =
∩

{C ∈ C ; y ∈ C} = ch({y}).

Since S is sober and since ch({x}) is a chain-irreducible convex set, we have x = y. Thus, ΨS is
injective.

We next show that ΨS is surjective. Let v ∈ Spec◦Conv(S). By Proposition 2.17, v−1({1}) is a
cp-mc filter of Conv(S). By Proposition 2.16,

∧
v−1({1}) is a chain-compact element in Conv(S).

Since Conv(S) is isomorphic to the convexity algebra C via the map f 7→ f−1({1}), it follows that∩
{f−1({1}) ; f ∈ v−1({1})}

is a chain-compact element in C and is thus a chain-irreducible convex set in S. Since S is sober,
there is x ∈ S such that ∩

{f−1({1}) ; f ∈ v−1({1})} = ch({x}).

We claim that ΨS(x) = v. Let g ∈ Conv(S). We first assume that v(g) = 1. Then we have
g ∈ v−1({1}). By the choice of x, we have x ∈ ch({x}) ⊂ g−1({1}). Thus it follows that ΨS(x)(g) =
1 = v(g). We next assume that v(g) = 0. Suppose for contradiction that ΨS(x)(g) = 1, i.e.,
g(x) = 1. Since g−1({1}) is a convex set in S and x ∈ g−1({1}), we have∩

{f−1({1}) ; f ∈ v−1({1})} = ch({x}) ⊂ g−1({1}).

Thus we have
∧

v−1({1}) ≤ g in Conv(S). Since v−1({1}) is a cp-mc filter and
∧

v−1({1}) ∈
v−1({1}), we have g ∈ v−1({1}), which contradicts v(g) = 0. Therefore we have ΨS(x)(g) = 0 =
v(g). Thus we obtain ΨS(x) = v. Hence, ΨS is surjective.
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It has already been shown that ΨS is a convexity preserving map. To complete the proof, we
show that Ψ−1

S is a convexity preserving map. Let C be a convex set in S. Define fC : S → 2 as in
the proof of Proposition 2.5. We claim that ΨS(C) = ⟨fC⟩. Suppose v ∈ ΨS(C). Then, v = ΨS(x)
for some x ∈ C, whence we have

v(fC) = ΨS(x)(fC) = fC(x) = 1.

Hence, we have v ∈ ⟨fC⟩. Conversely, suppose v ∈ ⟨fC⟩. Since ΨS is surjective, there exists x ∈ S
such that ΨS(x) = v. By v ∈ ⟨fC⟩, we have ΨS(x)(fC) = fC(x) = 1, i.e., x ∈ C. Hence, we have
v ∈ ΨS(C).

In this way, we can recover the points of a sober convexity space from the convexity algebra of
convex sets in it. The above proposition implies that any sober convexity space can be represented
as Spec(L) for a convexity algebra L.

By Proposition 4.15 and Proposition 4.16, we have the following characterization of sobriety.

Proposition 4.17. For a convexity space S, S is sober iff ΨS is an isomorphism in CS.

4.3 Duality between SpCA and SobCS

SpCA denotes the category of spatial convexity algebras and homomorphisms. SobCS denotes the
category of sober convexity spaces and convexity preserving maps. Finally we obtain the following
duality between spatial convexity algebras and sober convexity spaces.

Theorem 4.18. SpCA and SobCS are dually equivalent via the functors Spec and Conv.

Proof. By Proposition 4.15, (the restriction of) Spec is well-defined. By Proposition 4.3, (the
restriction of) Conv is well-defined. By Proposition 4.5, Φ : 1SpCA → Conv ◦ Spec is a natural
isomorphism. By Proposition 4.16, Ψ : 1SobCS → Spec ◦ Conv is a natural isomorphism.

This is a convexity-theoretical analogue of Isbell duality between spatial frames and sober topo-
logical spaces. However, there is a big difference between the above duality and Isbell duality,
especially between the notion of sobriety for convexity spaces and the notion of sobriety for topo-
logical spaces. That is, most of ordinary topological spaces such as Rn are sober and so fall into
Isbell duality, while most of ordinary convexity spaces such as Rn are not sober and so do not fall
into the above duality. In the next section, we consider another duality into which most of ordinary
convexity spaces do fall.

5 Duality between mSpCA and mSobCS

In this section, by introducing the notions of m-spatiality, m-homomorphism and m-sobriety, we
shall show a duality between the category of m-spatial convexity algebras and m-homomorphisms
and the category of m-sober convexity spaces and convexity preserving maps.
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5.1 m-spatiality and m-sobriety

For a convexity algebra L, we mean by an m-mc filter of L a maximal meet-complete filter of L
where maximality means that with respect to inclusion.

Consider a convexity space (S, C) such that {x} is convex for any x ∈ S. Then, for x ∈ S,
{C ∈ C ; x ∈ C} is an m-mc filter of the convexity algebra C.

Lemma 5.1. Let M be an m-mc filter of a convexity algebra L. Then, M is a cp-mc filter of L.

Proof. Assume that
∨

i∈I ai ∈ M for a totally ordered subset {ai ; i ∈ I} of L. Suppose for
contradiction that for any i ∈ I, ai /∈ M . Since M is an m-mc filter, we have: For any i ∈ I there is
bi ∈ M such that ai∧bi = 0. Then we have

∧
i∈I bi ∈ M by bi ∈ M . We also have ai∧(

∧
i∈I bi) = 0,

whence it follows that ∨
i∈I

(ai ∧ (
∧
i∈I

bi)) = 0.

Since {ai ; i ∈ I} is totally ordered, it follows from the chain-completely distributive law (i.e., the
item 3 in Definition 2.9) that

(
∨
i∈I

ai) ∧ (
∧
i∈I

bi)) = 0.

Since
∧

i∈I bi ∈ M and
∨

i∈I ai ∈ M , we have 0 ∈ M , which is a contradiction. Thus there is i ∈ I
such that ai ∈ M . Hence, M is a cp-mc filter of L.

Then, m-spatiality is defined as follows.

Definition 5.2. A convexity algebra L is called m-spatial iff for any a, b ∈ L with a � b there is
an m-mc filter M of L such that a ∈ M and b /∈ M .

By Lemma 5.1, we obtain the following proposition.

Proposition 5.3. Let L be a convexity algebra. If L is m-spatial then L is spatial.

We remark that although m-spatiality implies spatiality, m-sobriety defined below does not
imply sobriety.

We next introduce the notion of m-homomorphism. A similar notion is used also in the context
of duality theory for distributive semilattices (see [15, 17]).

Definition 5.4. An m-homomorphism f : L1 → L2 between convexity algebras L1 and L2 is defined
as a homomorphism of convexity algebras such that for any m-mc filter M of L2, f

−1(M) is an
m-mc filter of L1.

It shall be shown that the dual notion of convexity preserving map between m-sober (defined
below) convexity spaces is m-homomorphism and is not homomorphism.

Let us review the concept of atomistic poset (see [12]). Recall that an atom in a poset P with
a least element 0 is an element of P that is minimal in P \ {0}.

Definition 5.5. A poset with a least element 0 is called atomistic iff any element of the poset is
the join of a set of atoms of the poset.

Note that in general, being atomistic is not equivalent to being atomic.
We can provide an algebraic characterization of m-spatiality as follows.
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Proposition 5.6. For a convexity algebra L, the following are equivalent:

1. L is m-spatial;

2. L is atomistic.

Proof. We first show that 1 implies 2. Let a ∈ L. If a = 0 then a is the join of ∅. Assume a > 0.
Let a′ be the join of those atoms x ∈ L such that x ≤ a. It suffices to show that a = a′. Since if
there is no atom x ∈ L with x ≤ a then we have a′ = 0, it follows from the choice of a′ that a ≥ a′.
Suppose for contradiction that a > a′. Since L is m-spatial, there is an m-mc filter M of L such
that a ∈ M and a′ /∈ M . Since M is an m-mc filter of L,

∧
M is an atom of L. By a ∈ M , we also

have
∧

M ≤ a. Then it follows from the definition of a′ that∧
M ≤ a′.

Since M is a meet-complete filter, we have
∧

M ∈ M and so a′ ∈ M , which contradicts a′ /∈ M .
Hence a = a′.

We next show that 2 implies 1. Let a, b ∈ L with a � b. Since L is atomistic, there is a set A of
atoms of L such that

∨
A = a. Similarly, there is a set B of atoms of L such that

∨
B = b. Then

we may assume that B is the set of those atoms x ∈ L such that x ≤ b. By a � b, there is c ∈ A
such that c /∈ B. Define

M = {x ∈ L ; c ≤ x}.

Then, we have both a ∈ M and b /∈ M , since B is the set of those atoms x ∈ L such that x ≤ b.
Now it remains to show that M is an m-mc filter of L, which follows from the fact that c is an
atom of L.

We next introduce the notion of m-sobriety.

Definition 5.7. A convexity space S is called m-sober iff {x} is convex for any x ∈ S.

Many ordinary convexity spaces are m-sober, including those in Example 2.2.
An m-sober convexity space is not necessarily sober. For example, the n-dimensional Euclidean

space Rn with the usual convexity (see Example 2.2) is not sober and is m-sober. The same thing
holds also for other convexity spaces such as those in Example 2.2. Thus we may consider that the
notion of m-sobriety is more natural than that of sobriety.

5.2 Duality between mSpCA and mSobCS

In this subsection we show a dual equivalence between categories mSpCA and mSobCS, which
are defined as follows.

Definition 5.8. mSobCS denotes the category of m-sober convexity spaces and convexity preserv-
ing maps. mSpCA denotes the category of m-spatial convexity algebras and m-homomorphisms.

We introduce a functor mSpec based on the view that a point is an m-mc filter.

Definition 5.9. We define a contravariant functor mSpec from mSpCA to mSobCS as follows:
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1. For an object L in mSpCA, mSpec(L) is defined as the set of all m-mc filters of L equipped
with the convexity generated by {⟨a⟩m ; a ∈ L} where

⟨a⟩m = {M ∈ mSpec(L) ; a ∈ M}.

2. For an arrow f : L1 → L2 in mSpCA, mSpec(f) : mSpec(L2) → mSpec(L1) is defined by

mSpec(f)(M) = f−1(M)

for M ∈ mSpec(L2).

The well-definedness of the functor mSpec is shown by the following proposition.

Proposition 5.10. For a convexity algebra L, mSpec(L) is m-sober.

Proof. Let M ∈ mSpec(L). We claim that ⟨
∧

M⟩m = {M}. Since
∧

M ∈ M , we have

{M} ⊂ ⟨
∧

M⟩m.

Assume that
∧

M ∈ N for N ∈ mSpec(L). It follows from M,N ∈ mSpec(L) that M ⊂ N and so
M = N by maximality. Thus we have

⟨
∧

M⟩m ⊂ {M}.

Therefore we have ⟨
∧

M⟩m = {M}. Hence, {M} is convex.

Remark 5.11. Throughout this section, based on Proposition 2.5, we consider Conv as a functor
from mSobCS to mSpCA defined as follows. For an object S in mSobCS, Conv(S) is defined
as the convexity algebra of all convex subsets of S. For an arrow f : S1 → S2 in mSobCS,
Conv(f) : Conv(S2) → Conv(S1) is defined by Conv(f)(C) = f−1(C) for C ∈ Conv(S2).

Then the well-definedness of the functor Conv : mSobCS → mSpCA is shown by the following
two propositions.

Proposition 5.12. Let S be an object in mSobCS. Then, Conv(S) is an m-spatial convexity
algebra.

Proof. Let C1, C2 ∈ Conv(S) such that C1 is not a subset of C2. Then, there is x ∈ C1 with x /∈ C2.
Define

M = {C ∈ Conv(S) ; x ∈ C}.

Then we have both C1 ∈ M and C2 /∈ M . Now it suffices to show that M is an m-mc filter of
Conv(S). It is straightforward to verify that M is a meet-complete filter. Since S is m-sober, {x}
is convex and so {x} ∈ M . If C /∈ M for C ∈ Conv(S) then C ∩{x} = ∅. Thus, M is maximal.

Since an arrow in mSpCA is an m-homomorphism, not a homomorphism, it is important to
verify that the arrow part of Conv is well-defined.

Proposition 5.13. Let f : S1 → S2 be an arrow in mSobCS. Then, Conv(f) : Conv(S2) →
Conv(S1) is an m-homomorphism.
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Proof. Clearly, Conv(f) is a homomorphism. LetM be an m-mc filter of Conv(S1). Since
∩

M ∈ M
and M ̸= Conv(S1), we have

∩
M ̸= ∅ and so there is m ∈

∩
M . Then, M ⊂ {C ∈ Conv(S1) ; m ∈

C}. Since {C ∈ Conv(S1) ; m ∈ C} is a proper meet-complete filter, it follows from the maximality
of M that

M = {C ∈ Conv(S1) ; m ∈ C}.

Thus it follows that

Conv(f)−1(M) = {C ∈ Conv(S2) ; f
−1(C) ∈ M}

= {C ∈ Conv(S2) ; m ∈ f−1(C)}
= {C ∈ Conv(S2) ; f(m) ∈ C}.

Since S2 is m-sober, {f(m)} is convex and so {C ∈ Conv(S2) ; f(m) ∈ C} is an m-mc filter of
Conv(S2). This completes the proof.

We next define two natural transformations.
Let Id1 denote the identity functor on mSpCA and Id2 the identity functor on mSobCS.

Definition 5.14. We define a natural transformation α : Id1 → Conv ◦mSpec as follows. For an
m-spatial convexity algebra L, define αL : L → Conv ◦mSpec(L) by

αL(a) = {M ∈ mSpec(L) ; a ∈ M} = ⟨a⟩m.

It is straightforward to verify that α is actually a natural transformation.

Proposition 5.15. For an m-spatial convexity algebra L, αL : L → Conv ◦ mSpec(L) is an
isomorphism in mSpCA.

Proof. Since an isomorphism in CA is always an isomorphism in mSpCA, it suffices to show that
αL is an isomorphism in CA. We first show that αL is a homomorphism. By Lemma 5.1, an m-mc
filter is a cp-mc filter. Thus we have

⟨
∨
i∈I

ai⟩m =
∪
i∈I

⟨ai⟩m

for a totally ordered subset {ai ; i ∈ I} of L. We also have

⟨
∧
i∈I

ai⟩m =
∩
i∈I

⟨ai⟩m

for a subset {ai ; i ∈ I} of L. Thus, αL is a homomorphism. It is straightforward to see that αL

is injective by the m-spatiality of L. By arguing as in the proof of Lemma 3.5, it is shown that
{⟨a⟩m ; a ∈ L} coincides with the convexity of mSpec(L). Thus, αL is surjective. This completes
the proof.

Definition 5.16. We define a natural transformation β : Id2 → mSpec ◦ Conv as follows. For an
m-sober convexity space S, define βS : S → mSpec ◦ Conv(S) by

βS(x) = {C ∈ Conv(S) ; x ∈ C}.
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It is straightforward to verify that β is actually a natural transformation.

Proposition 5.17. For an m-sober convexity space S, βS : S → mSpec ◦ Conv(S) is an isomor-
phism in mSobCS.

Proof. Since S is m-sober, βS(x) is an m-mc filter for x ∈ S and so βS is well-defined. Clearly, βS
is injective. Since S is m-sober, an m-mc filter of Conv(S) is of the form

{C ∈ Conv(S) ; x ∈ C}

for some x ∈ S. Thus, βS is surjective. Since β−1
S (⟨C⟩m) = C for C ∈ Conv(S), βS is convexity

preserving. It is easily verified that
βS(C) = ⟨C⟩m

for C ∈ Conv(S), whence β−1
S is convexity preserving. Hence, βS is an isomorphism in mSobCS.

In this way, we can recover the points of an m-sober convexity space from the convexity algebra
of convex sets in it. This proposition implies that any m-sober convexity space can be represented
as mSpec(L) for a convexity algebra L, where note that most of ordinary convexity spaces are
m-sober.

By Proposition 5.15 and Proposition 5.17, α and β are natural isomorphisms and thus we obtain
the following duality between m-spatial convexity algebras and m-sober convexity spaces.

Theorem 5.18. mSpCA and mSobCS are dually equivalent via the functors mSpec and Conv.

Most of ordinary convexity spaces are m-sober (recall that a singleton is usually convex) and
thus fall into the above duality.

We remark that convexity preserving maps between m-sober convexity spaces correspond to m-
homomorphisms between m-spatial convexity algebras and do not correspond to homomorphisms.

6 Concluding Remarks

In this work we have obtained the following main results with other modest ones: (1) Spec and
Conv give a dual adjunction between CA and CS; (2) SpCA and SobCS are dually equivalent
via Spec and Conv; (3) mSpCA and mSobCS are dually equivalent via mSpec and Conv. Note
that many ordinary convexity spaces are not sober but m-sober, while most of ordinary topological
spaces are sober, which is a striking difference between topology and convex geometry. Now, (1)
and (2) are based on the view that a point is a cp-mc filter, while (3) is based on the view that
a point is an m-mc filter. Then natural questions arise. Which view is better? Which notion of
point is the proper one? Our answers are as follows.

It seems difficult to obtain a dual adjunction between the category of all convexity algebras and
the category of all convexity spaces based on the view that a point is an m-mc filter. Some of the
reasons are as follows: (1) for a convexity space S and x ∈ S, βS(x) (see Definition 5.17) is not
always an m-mc filter of Conv(S); (2) the left adjoint functor of Convop is uniquely determined up
to isomorphism (see [3]) and it is Spec, not mSpec. Thus we may consider that the view that a
point is a cp-mc filter is superior to the view that a point is an m-mc filter from a category theoretic
standpoint.
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However, the proper notion of point seems to be m-mc filter. Consider the n-dimensional
Euclidean space Rn equipped with the usual convexity. Then, Spec ◦ Conv(Rn) does not coincide
with Rn (i.e., Rn is not a sober convexity space, though it is a sober topological space) but coincides
with the set of polytopes in Rn by Proposition 2.15. The same thing holds true not only for Rn but
also for many other ordinary convexity spaces such as vector spaces over R and manifolds including
the n-sphere and the n-dimensional real projective space (for their convexities, see Example 2.2).
Actually, for any convexity space S, the space of polytopes in S coincides with Spec ◦ Conv(S)
by Proposition 2.15 and is thus sober by Proposition 4.15, whence we can notice that the space
of polytopes in a convexity space is the sobrification of the convexity space. Note that conversely
any sober convexity space can be represented as the space of polytopes in a convexity space by
Proposition 4.16.

Therefore, we conclude that a cp-mc filter (or a homomorphism into 2) actually represents a
polytope, not a point, and an m-mc filter properly represents a point in many ordinary cases. In a
nutshell, an m-mc filter is a point and a cp-mc filter is a “generic” point, which makes it possible to
generate a polytope as the convex hull of a unique point, as in algebraic geometry a prime ideal is
considered as a generic point, which makes it possible to generate an irreducible algebraic variety
as the closure of a unique point (see [18]). In this sense, the notion of polytope in convex geometry
corresponds to that of irreducible algebraic variety in algebraic geometry.

We remark that pointfree convex geometry is closely related to domain theory (for domain
theory, see [6]). In this paper, the notions of convexity space and convexity algebra are defined
in terms of chains. However, it is possible to define them in terms of directed sets instead of
chains and most of arguments in this paper work well even if we replace chains with directed sets.
Interestingly, the notion of continuous lattice, which is well known in domain theory, coincides with
the notion of convexity algebra defined in terms of directed sets, which follows from [6, Theorem
I-2.7]. Moreover, under this reformulation of related notions, the duality between spatial convexity
algebras and sober convexity spaces turns out to reveal the convexity-theoretical nature of Hoffman-
Mislove-Stralka duality between algebraic (continuous) lattices and join-semilattices with the least
elements (for this duality, see [6, Theorem IV-1.16] and [19]), though there is a minor difference
between the morphism parts of the two dualities. Here note that algebraic lattices coincide with
spatial convexity algebras. By combining the two dualities, we notice that sober convexity spaces
are equivalent to join-semilattices with the least elements. A consequence of this observation is
that the set of polytopes in any convexity space forms a join-semilattice with the least element and
conversely any join-semilattice with the least element can be represented as the join-semilattice
of polytopes in a convexity space. Another consequence of it is that the set of ideals of any
join-semilattice forms a sober convexity on the join-semilattice and conversely any sober convexity
space can be represented as a join-semilattice equipped with the convexity consisting of ideals of
the join-semilattice. In some sense, pointfree convex geometry formulated in terms of directed sets
is nothing but the theory of continuous lattices.

We next discuss the relationships between pointfree convex geometry and Hilbert’s philosophy.
In the introduction of [11], Coquand states that Hilbert’s program may be reformulated using
pointfree topology. According to the results in this paper and the idea in [11], we notice that
pointfree convex geometry may also be considered to be in harmony with Hilbert’s philosophy,
especially his instrumentalism (see [13]). We remark that this view seems to hold true of locale
theory, but it is not clear whether or not the view on locale theory is the same as Coquand’s
one. This harmony may be explained as follows. Convexity algebras correspond to real objects
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in Hilbert’s sense, which actually exists. On the other hand, the points of convexity algebras
correspond to ideal objects in his sense, which do not actually exist, and are mere instruments
for the study of the real objects. We may work in the category of convexity spaces by using
the functors Spec and mSpec, which corresponds to the introduction of ideal objects in his sense.
However, results obtained by using the ideal objects can (sometimes) be pulled back to the category
of convexity algebras via the functor Conv, which corresponds to the elimination of ideal objects
in his sense.

Finally we discuss relationships between our view on pointfree mathematics and Husserl’s phe-
nomenology (for Husserl’s phenomenology, see [20, 2]; for the relationships between Husserl’s phe-
nomenology and Brouwer’s notion of the continuum, which may be thought of as an origin of
pointfree topology, see [2]). In [26], Husserl’s phenomenology of space is summarized as follows:
“Epistemology of space before ontology of space.” According to our view in the first paragraph of
Section 1, this may be paraphrased as follows: “Region before point” in terms of pointfree geom-
etry, “Theory before model” in logical terms and “Algebra before spectrum” in terms of duality
theory and algebraic geometry. We conclude the paper by emphasizing that region is the epistemo-
logical ingredient of the notion of space and point is the ontological or metaphysical ingredient of
it, whence duality theory clarifies the relationships between epistemological and ontological aspects
of the notion of space.
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