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Abstract

This paper explores relationships between many-valued logic and
fuzzy topology from the viewpoint of duality theory. We first show
a fuzzy topological duality for the algebras of  Lukasiewicz n-valued
logic with truth constants, which generalizes Stone duality for Boolean
algebras to the n-valued case via fuzzy topology. Then, based on
this duality, we show a fuzzy topological duality for the algebras of
modal  Lukasiewicz n-valued logic with truth constants, which general-
izes Jónsson-Tarski duality for modal algebras to the n-valued case via
fuzzy topology. We emphasize that fuzzy topological spaces naturally
arise as spectrums of algebras of many-valued logics.

Keywords: fuzzy topology; Stone duality; Jónsson-Tarski duality; alge-
braic logic; many-valued logic; modal logic; Kripke semantics; compactness

1 Introduction

This paper aims to explore relationships between many-valued logic and
fuzzy topology from the viewpoint of duality theory. In particular, we con-
sider fuzzy topological dualities for the algebras of  Lukasiewicz n-valued
logic  Lc

n with truth constants and for the algebras of modal  Lukasiewicz
n-valued logic M Lc

n with truth constants.

∗The published version of this paper is in: Studia Logica 94 (2010) 245-269.
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Roughly speaking, a many-valued logic is a logical system in which
there are more than two truth values (for a general introduction, see [13,
15, 21]). In many-valued logic, a proposition may have a truth value dif-
ferent from 0 (false) and 1 (true).  Lukasiewicz many-valued logic is one
of the most prominent many-valued logics. Many-valued logics have of-
ten been studied from the algebraic point of view (see, e.g., [2, 6, 15]).
MV-algebra introduced in [4] provides algebraic semantics for  Lukasiewicz
infinite-valued logic. MVn-algebra introduced in [14] provides algebraic se-
mantics for  Lukasiewicz n-valued logic introduced in [20] ([14] also gives an
axiomatization of  Lukasiewicz n-valued logic).  Lc

n-algebra in this paper is
considered as MVn-algebra enriched by constants.

Kripke semantics for modal logic is naturally extended to the many-
valued case by allowing for more than two truth values at each possible
world and so we can define modal many-valued logics by such many-valued
Kripke semantics, including modal  Lukasiewicz many-valued logics. Modal
many-valued logics have already been studied by several authors (see [9, 10,
22, 29]).

As a major branch of fuzzy mathematics, fuzzy topology is based on the
concept of fuzzy set introduced in [30, 11], which is defined by considering
many-valued membership function. For example, a [0, 1]-valued fuzzy set µ
on a set X is defined as a function from X to [0, 1]. Then, for x ∈ X and
r ∈ [0, 1], µ(x) = r intuitively means that the proposition “x ∈ µ” has a
truth value r. A fuzzy topology on a set is defined as a collection of fuzzy
sets on the set which satisfies some conditions (for details, see Section 3).
Historically, Chang [5] introduced the concept of [0, 1]-valued fuzzy topology
and thereafter Goguen [12] introduced that of lattice-valued fuzzy topology.
There have been many studies on fuzzy topology (see, e.g., [19, 25, 27]).

Stone duality for Boolean algebras (see [17, 28]) is one of the most impor-
tant results in algebraic logic and states that there is a categorical duality
between Boolean algebras (i.e., the algebras of classical propositional logic)
and Boolean spaces (i.e., zero-dimensional compact Hausdorff spaces). Since
both many-valued logic and fuzzy topology can be considered as based on
the idea that there are more than two truth values, it is natural to ex-
pect that there is a duality between the algebras of many-valued logic and
“fuzzy Boolean spaces.” Stone duality for Boolean algebras was extended
to Jónsson-Tarski duality (see [1, 3, 16, 26]) between modal algebras and
relational spaces (or descriptive general frames), which is another classical
theorem in duality theory. Thus, it is also natural to expect that there
is a duality between the algebras of modal many-valued logic and “fuzzy
relational spaces.”
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In this paper, we realize the above expectations in the cases of  Lc
n and

M Lc
n. We first develop a categorical duality between the algebras of  Lc

n

and n-fuzzy Boolean spaces (see Definition 4.5), which is a generalization of
Stone duality for Boolean algebras to the n-valued case via fuzzy topology.
This duality is developed based on the following insights:

• The spectrum of an algebra of  Lc
n can be naturally equipped with a

certain n-fuzzy topology (see Definition 4.9).

• The notion of clopen subset of Boolean space in Stone duality for
Boolean algebras corresponds to that of continuous function from n-
fuzzy Boolean space to n (= {0, 1/(n− 1), 2/(n− 1), ..., 1}) equipped
with the n-fuzzy discrete topology in the duality for the algebras of
 Lc
n. This means that the zero-dimensionality of n-fuzzy topological

spaces is defined in terms of continuous function into n (see Definition
4.4).

Moreover, based on the duality for the algebras of  Lc
n, we develop a cate-

gorical duality between the algebras of M Lc
n and n-fuzzy relational spaces

(see Definition 6.3), which is a generalization of Jónsson-Tarski duality for
modal algebras to the n-valued case via fuzzy topology. Note that an n-
fuzzy relational space is also defined in terms of continuous functions into n
(see the items 1 and 2 in the object part of Definition 6.3).

There have been some studies on dualities for algebras of many-valued
logics (see, e.g., [2, 7, 18, 23, 24, 8, 29]). However, they are based on the
ordinary topology and therefore do not reveal relationships between many-
valued logic and fuzzy topology. By the results in this paper, we can notice
that fuzzy topological spaces naturally arise as spectrums of algebras of
some many-valued logics and that there are categorical dualities connecting
fuzzy topology and those many-valued logics which generalize Stone and
Jónsson-Tarski dualities via fuzzy topology.

This paper is organized as follows. In Section 2, we define  Lc
n and  Lc

n-
algebras, and show basic properties of them. In Section 3, we review basic
concepts related to fuzzy topology. In Section 4, we define n-fuzzy Boolean
spaces and show a fuzzy topological duality for  Lc

n-algebras, which is a main
theorem in this paper. In Section 5, we define M Lc

n and M Lc
n-algebras, and

show basic properties of them, including a compactness theorem for M Lc
n. In

Section 6, we define n-fuzzy relational spaces and show a fuzzy topological
duality for M Lc

n-algebras, which is the other main theorem.

3



2  Lcn-algebras and basic properties

Throughout this paper, n denotes a natural number more than 1.

Definition 2.1. n denotes {0, 1/(n− 1), 2/(n− 1), ..., 1}. We equip n with
all constants r ∈ n and the operations (∧,∨, ∗, ℘,→, (-)⊥) defined as follows:

x ∧ y = min(x, y);

x ∨ y = max(x, y);

x ∗ y = max(0, x+ y − 1);

x ℘ y = min(1, x+ y);

x→ y = min(1, 1 − (x− y));

x⊥ = 1 − x.

We define  Lukasiewicz n-valued logic with truth constants, which is de-
noted by  Lc

n. The connectives of  Lc
n are

(∧,∨, ∗, ℘,→, (-)⊥, 0, 1/(n− 1), 2/(n− 1), ..., 1),

where (∧,∨, ∗, ℘,→) are binary connectives, (-)⊥ is a unary connective, and
(0, 1/(n−1), 2/(n−1), ..., 1) are constants. The formulas of  Lc

n are recursively
defined in the usual way. Let PV denote the set of propositional variables
and Form denote the set of formulas of  Lc

n.
x↔ y is the abbreviation of (x→ y)∧ (y → x). For m ∈ ω with m ̸= 0,

∗mx is the abbreviation of x∗ ... ∗x (m-times). For instance, ∗3x = x∗x∗x.

Definition 2.2. A function v : Form → n is an n-valuation iff it satisfies:

• v(φ@ψ) = v(φ)@v(ψ) for @ = ∧,∨, ∗, ℘,→;

• v(φ⊥) = (v(φ))⊥;

• v(r) = r for r ∈ n.

Define  Lc
n = {φ ∈ Form ; v(φ) = 1 for any n-valuation v }.

 Lc
n-algebras and homomorphisms are defined as follows.

Definition 2.3. (A,∧,∨, ∗, ℘,→, (-)⊥, 0, 1/(n−1), 2/(n−1), ..., 1) is an  Lc
n-

algebra iff it satisfies the following set of equations: {φ = ψ ; φ↔ ψ ∈  Lc
n}.

A homomorphism of  Lc
n-algebras is defined as a function which preserves

the operations (∧,∨, ∗, ℘,→, (-)⊥, 0, 1/(n− 1), 2/(n− 1), ..., 1).
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Throughout this paper, we do not distinguish between formulas of  Lc
n

and terms of  Lc
n-algebras.

Definition 2.4. φ ∈ Form is idempotent iff φ ∗ φ↔ φ ∈  Lc
n.

For an  Lc
n-algebra A, a ∈ A is idempotent iff a ∗ a = a.

B(A) denotes the set of all idempotent elements of an  Lc
n-algebra A.

Let A be an  Lc
n-algebra. Then, we have the following facts: (i) For a ∈ A,

∗n−1a is always idempotent. (ii) If a ∈ A is idempotent, then either v(a) = 1
or v(a) = 0 holds for any homomorphism v : A → n. (iii) If a, b ∈ A are
idempotent, then a ∗ b = (∗n−1a) ∗ (∗n−1b) = (∗n−1a) ∧ (∗n−1b) = a ∧ b and
a℘b = (∗n−1a)℘(∗n−1b) = (∗n−1a) ∨ (∗n−1b) = a ∨ b.

It is easy to verify the following:

Proposition 2.5. For an  Lc
n-algebra A, B(A) forms a Boolean algebra. In

particular, a ∨ a⊥ = 1 for any idempotent element a of A.

In the following, we define a formula Tr(x) for r ∈ n, which intuitively
means that the truth value of x is exactly r.

Lemma 2.6. Let A be an  Lc
n-algebra and r ∈ n. There is an idempotent

formula Tr(x) with one variable x such that, for any homomorphism v :
A→ n and any a ∈ A, the following hold:

• v(Tr(a)) = 1 iff v(a) = r;

• v(Tr(a)) = 0 iff v(a) ̸= r.

Proof. If r = 0, then we can set Tr(x) = ∗n−1(x⊥). If r = 1, then we can
set Tr(x) = ∗n−1x.

Let r = k/(n − 1) for k ∈ {1, ..., n − 2}. If k is a divisor of n − 1, then
we can set

Tr(x) = ∗n−1(x↔ (℘
n−1
k

−1x)⊥).

For a rational number q, let [q] denote the greatest integer n such that
n ≤ q. If k is not a divisor of n− 1, then

v(x) = k/(n− 1) iff v(℘[n−1
k

]x) =
k

n− 1

[
n− 1

k

]
(< 1)

iff v((℘[n−1
k

]x)⊥) = 1 − k

n− 1

[
n− 1

k

]
.

Since

1 − k

n− 1

[
n− 1

k

]
<

k

n− 1
,

this lemma follows by induction on k.
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The above lemma is more easily proved by using truth constants r ∈ n.
However, it must be stressed that the above proof works even if we consider
 Lukasiewicz n-valued logic without truth constants.

Note that any homomorphism preserves the operation Tr(-).

Lemma 2.7. Let A be an  Lc
n-algebra and ai ∈ A for a finite set I and i ∈ I.

Then, (i) T1(
∨

i∈I ai) =
∨

i∈I T1(ai); (ii) T1(
∧

i∈I ai) =
∧

i∈I T1(ai).

Proof. Since n is totally ordered, we have (i). (ii) is immediate.

By (ii) in the above lemma, T1(-) is order preserving.

Lemma 2.8. Let A be an  Lc
n-algebra and r ∈ n. There is an idempotent

formula Ur(x) with one variable x such that, for any homomorphism v :
A → n and any a ∈ A, the following two conditions hold: (i) v(Ur(a)) = 1
iff v(a) ≥ r; (ii) v(Ur(a)) = 0 iff v(a) � r.

Proof. It suffices to let Ur(x) =
∨
{Ts(x) ; r ≤ s} by Lemma 2.6.

Note that any homomorphism preserves the operation Ur(-).

Lemma 2.9. Let A be an  Lc
n-algebra and r ∈ n. There is a formula Sr(x)

with one variable x such that, for any homomorphism v : A → n and any
a ∈ A, the following two conditions hold: (i) v(Sr(a)) = r iff v(a) = 1; (ii)
v(Sr(a)) = 0 iff v(a) ̸= 1.

Proof. Let Sr(x) = (T1(x) → r) ∧ ((T1(x))⊥ → 0).

Note that any homomorphism preserves the operation Sr(-).

Lemma 2.10. Let A be an  Lc
n-algebra. Let v and u be homomorphisms

from A to n. Then, (i) v = u iff (ii) v−1({1}) = u−1({1}).

Proof. Clearly, (i) implies (ii). We show the converse. Assume that v−1({1}) =
u−1({1}). Suppose for contradiction that v(a) ̸= u(a) for some a ∈ A.
Let r = v(a). Then v(Tr(a)) = 1 and u(Tr(a)) = 0, which contradicts
v−1({1}) = u−1({1}).

For an  Lc
n-algebra A and a, b ∈ A, we mean a ∨ b = b by a ≤ b.

Lemma 2.11. Let A be an  Lc
n-algebra. For any a, b ∈ A, the following

holds: ∧
r∈n

(Tr(a) ↔ Tr(b)) ≤ a↔ b.
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Proof. This is proved by straightforward computation.

For a partially ordered set (M,≤), X ⊂ M is called an upper set iff if
x ∈ X and x ≤ y for y ∈M then y ∈ X.

Definition 2.12. Let A be an  Lc
n-algebra. A non-empty subset F of A is

called an n-filter of A iff F is an upper set and is closed under ∗. An n-filter
F of A is called proper iff F ̸= A.

An n-filter of A is closed under ∧, since a ∗ b ≤ a ∧ b for any a, b ∈ A.

Definition 2.13. Let A be an  Lc
n-algebra. A proper n-filter P of A is prime

iff, for any a, b ∈ A, a ∨ b ∈ P implies either a ∈ P or b ∈ P .

Proposition 2.14. Let A be an  Lc
n-algebra and F an n-filter of A. For

b ∈ A, assume b /∈ F . Then, there is a prime n-filter P of A such that
F ⊂ P and b /∈ P .

Proof. Let Z be the set of all those n-filters G of A such that F ⊂ G and
b /∈ G. Then F ∈ Z. Clearly, every chain of Z has an upper bound in
Z. Thus, by Zorn’s lemma, we have a maximal element P in Z. Note that
F ⊂ P and b /∈ P .

To complete the proof, it suffices to show that P is a prime n-filter of A.
Assume x ∨ y ∈ P . Additionally, suppose for contradiction that x /∈ P and
y /∈ P . Then, since P is maximal, there exists φx ∈ A such that φx ≤ b and
φx = (∗n−1x) ∗ px for some px ∈ P . Similary, there exists φy ∈ A such that
φy ≤ b and φy = (∗n−1y) ∗ py for some py ∈ P . Now, we have the following:

b ≥ ((∗n−1x) ∗ px) ∨ ((∗n−1y) ∗ py)

≥ (∗n−1(x ∗ px)) ∨ (∗n−1(y ∗ py))

= ∗n−1((x ∗ px) ∨ (y ∗ py))

≥ ∗n−1((x ∨ (y ∗ py)) ∗ (px ∨ (y ∗ py)))

≥ ∗n−1((x ∨ y) ∗ py ∗ px),

where note that ∗n−1(x∨y) = (∗n−1x)∨(∗n−1y) and x∨(y∗z) ≥ (x∨y)∗(x∨z)
for any x, y, z ∈ A. Since px, py, x ∨ y ∈ P , we have b ∈ P , which is a
contradiction. Hence P is a prime n-filter of A.

We do not use (-)⊥ or → in the above proof and therefore the above
proof works even for algebras of “intuitionistic  Lukasiewicz n-valued logic.”

Definition 2.15. Let A be an  Lc
n-algebra. A subset X of A has finite

intersection property (f.i.p.) with respect to ∗ iff, for any n ∈ ω with n ̸= 0,
if a1, ..., an ∈ X then a1 ∗ ... ∗ an ̸= 0.
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Corollary 2.16. Let A be an  Lc
n-algebra and X a subset of A. If X has

f.i.p. with respect to ∗, then there is a prime n-filter P of A with X ⊂ P .

Proof. By the assumption, we have a proper n-filter F of A generated by
X. By letting b = 0 in Proposition 2.14, we have a prime n-filter P of A
with X ⊂ P .

Proposition 2.17. Let A be an  Lc
n-algebra. For a prime n-filter P of A,

define vP : A → n by vP (a) = r ⇔ Tr(a) ∈ P. Then, vP is a bijection from
the set of all prime n-filters of A to the set of all homomorphisms from A
to n with v−1

P ({1}) = P .

Proof. Note that vP is well-defined as a function. We prove that vP is a
homomorphism. We first show vP (a ∗ b) = vP (a) ∗ vP (b) for a, b ∈ A. Let
r = vP (a) and s = vP (b). Then Tr(a) ∈ P and Ts(b) ∈ P . It is easy to see
that Tr(a) ∧ Ts(b) ≤ Tr∗s(a ∗ b), which intuitively means that if the truth
value of a is r and if the truth value of b is s then the truth value of a ∗ b is
r ∗ s. Since Tr(a) ∈ P and Ts(b) ∈ P , we have Tr∗s(a ∗ b) ∈ P , whence we
have vP (a ∗ b) = r ∗ s = vP (a) ∗ vP (b).

Next we show that vP (a⊥) = vP (a)⊥. Let r = vP (a). It is easy to
see that Tr(a) ≤ Tr⊥(a⊥). By Tr(a) ∈ P , we have Tr⊥(a⊥) ∈ P , whence
vP (a⊥) = r⊥ = vP (a)⊥. As is well-known, (∧,∨, ℘,→) can be defined by
using only (∗, (-)⊥) (see [6]) and so vP preserves the operations (∧,∨, ℘,→).
Clearly, vP preserves any constant r ∈ n. Thus, vP is a homomorphism.
The remaining part of the proof is straightforward.

3 n-valued fuzzy topology

Let us review basic concepts from fuzzy set theory and fuzzy topology.

3.1 n-valued fuzzy set theory

An n-fuzzy set on a set S is defined as a function from S to n. For n-fuzzy
sets µ, λ on S, define an n-fuzzy set µ@λ on S by (µ@λ)(x) = µ(x)@λ(y) for
@ = ∧,∨, ∗, ℘,→, and define an n-fuzzy set µ⊥ on S by (µ⊥)(x) = (µ(x))⊥.

Let X,Y be sets and f a function from X to Y . For an n-fuzzy set µ on
X, define the direct image f(µ) : Y → n of µ under f by

f(µ)(y) =
∨

{µ(x) ; x ∈ f−1({y})} for y ∈ Y.
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For f : X → Y and an n-fuzzy set λ on Y , define the inverse image
f−1(λ) : X → n of λ under f by f−1(λ) = λ ◦ f . Note that f−1 commutes
with

∨
, i.e., f−1(

∨
i∈I µi) =

∨
i∈I f

−1(µi) for n-fuzzy sets µi on Y .
For a relation R on a set S and an n-fuzzy set µ on S, define an n-

fuzzy set R−1[µ] on S, which is called the inverse image of µ under R,
by R−1[µ](x) =

∨
{µ(y) ; xRy} for x ∈ S. Note that R−1[

∨
i∈I µi] =∨

i∈I(R−1[µi]).

3.2 n-valued fuzzy topology

For sets X and Y , Y X denotes the set of all functions from X to Y . We
do not distinguish between r ∈ n and the constant function whose value is
always r.

Definition 3.1 ([30, 12, 27]). For a set S and a subset O of nS , (S,O) is
an n-fuzzy space iff the following hold:

• r ∈ O for any r ∈ n;

• if µ1, µ2 ∈ O then µ1 ∧ µ2 ∈ O;

• if µi ∈ O for i ∈ I then
∨

i∈I µi ∈ O,

Then, we call O the n-fuzzy topology of (S,O), and an element of O an
open n-fuzzy set on (S,O). An n-fuzzy set λ on S is a closed n-fuzzy set on
(S,O) iff λ = µ⊥ for some open n-fuzzy set µ on (S,O). A clopen n-fuzzy
set on (S,O) means a closed and open n-fuzzy set on (S,O).

An n-fuzzy space (S,O) is often denoted by its underlying set S.

Definition 3.2. For a set S, nS is called the discrete n-fuzzy topology on
S. (S,nS) is called a discrete n-fuzzy space.

Definition 3.3. Let S1 and S2 be n-fuzzy spaces. Then, f : S1 → S2 is
continuous iff, for any open n-fuzzy set µ on S2, f

−1(µ) (i.e., µ ◦ f) is an
open n-fuzzy set on S1.

A composition of continuous functions between n-fuzzy spaces is also
continuous (as a function between n-fuzzy spaces).

Definition 3.4. Let (S,O) be an n-fuzzy space. Then, an open basis B of
(S,O) is a subset of O such that the following holds: (i) B is closed under
∧; (ii) for any µ ∈ O, there are µi ∈ B for i ∈ I with µ =

∨
i∈I µi.
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Definition 3.5. An n-fuzzy space S is Kolmogorov iff, for any x, y ∈ S
with x ̸= y, there is an open n-fuzzy set µ on S with µ(x) ̸= µ(y).

Definition 3.6. An n-fuzzy space S is Hausdorff iff, for any x, y ∈ S with
x ̸= y, there are r ∈ n and open n-fuzzy sets µ, λ on S such that µ(x) ≥ r,
λ(y) ≥ r and µ ∧ λ < r.

Definition 3.7 ([12]). Let S be an n-fuzzy space. An n-fuzzy set λ on S
is compact iff, if λ ≤

∨
i∈I µi for open n-fuzzy sets µi on S, then there is a

finite subset J of I such that λ ≤
∨

i∈J µi.
Let 1 denote the constant function on S whose value is always 1. Then,

S is compact iff, if 1 =
∨

i∈I µi for open n-fuzzy sets µi on S, then there is
a finite subset J of I such that 1 =

∨
i∈J µi.

We can construct an operation (-)∗ which turns an n-fuzzy space into a
topological space (in the classical sense) as follows.

Definition 3.8. Let (S,O) be an n-fuzzy space. Define

O∗ = {µ−1({1}) ; µ ∈ O}.

Then, S∗ denotes a topological space (S,O∗) (see the below proposition).

Lemma 3.9. Let (S,O) be an n-fuzzy space. Then, S∗ forms a topological
space.

Proof. Since 0 ∈ O and ∅ = 0−1({1}), we have ∅ ∈ O∗. Similarly, S ∈ O∗.
Assume Xi ∈ O for i ∈ I. Then, Xi = µi

−1({1}) for some µi ∈ O. Since n is
totally ordered,

∪
i∈I Xi = (

∨
i∈I µi)

−1({1}). Thus, by
∨

i∈I µi ∈ O, we have∪
i∈I Xi ∈ O∗. It is easy to verify that X,Y ∈ O implies X ∩ Y ∈ O∗.

4 A fuzzy topological duality for  Lcn-algebras

In this section, we show a fuzzy topological duality for  Lc
n-algebras, which

is a generalization of Stone duality for Boolean algebras via fuzzy topology,
where note that  Lc

2-algebras coincide with Boolean algebras.

Definition 4.1.  Lc
n-Alg denotes the category whose objects are  Lc

n-algebras
and whose arrows are homomorphisms of  Lc

n-algebras.

Our aim in this section is to show that the category  Lc
n-Alg is dually

equivalent to the category FBSn, which is defined in the following subsection.

10



4.1 Category FBSn

We equip n with the discrete n-fuzzy topology.

Definition 4.2. Let S be an n-fuzzy space. Then, Cont(S) is defined as
the set of all continuous functions from S to n. We endow Cont(S) with the
operations (∧,∨, ∗, ℘,→, (-)⊥, 0, 1/(n−1), 2/(n−1), ..., 1) defined pointwise:
For f, g ∈ Cont(S), define (f@g)(x) = f(x)@g(x), where @ = ∧,∨, ∗, ℘,→.
For f ∈ Cont(S), define f⊥(x) = (f(x))⊥. Finally, r ∈ n is defined as the
constant function on S whose value is always r.

We show that the operations of Cont(S) are well-defined:

Lemma 4.3. Let S be an n-fuzzy space. Then, Cont(S) is closed under the
operations (∧,∨, ∗, ℘,→, (-)⊥, 0, 1/(n− 1), ..., (n− 2)/(n− 1), 1)

Proof. For any r ∈ n, a constant function r : S → n is continuous, since
any s ∈ n is an open n-fuzzy set on S by Definition 3.1. Then it suffices
to show that, if f, g ∈ Cont(S), then f⊥ and f@g are continuous for @ =
∧,∨, ∗, ℘,→. Throughout this proof, let f, g ∈ Cont(S) and µ an open n-
fuzzy set on n, i.e., a function from n to n. For r ∈ n, define µr : n → n
by

µr(x) =

{
µ(r) if x = r

0 otherwise.

Then, we have µ =
∨

r∈n µr.
We show that (f⊥)−1(µ) is an open n-fuzzy set on S. Now, we have

(f⊥)−1(µ) = (f⊥)−1(
∨
r∈n

µr) =
∨
r∈n

((f⊥)−1(µr)).

Thus it suffices to show that (f⊥)−1(µr) is an open n-fuzzy set on S for any
r ∈ n. Define λr : n → n by

λr(x) =

{
µ(r) if x = 1 − r

0 otherwise.

Then it is straightforward to verify that (f⊥)−1(µr) = f−1(λr). Since f is
continuous and since λr is an open n-fuzzy set on n, f−1(λr) is an open
n-fuzzy set on S.

Next, we show that (f ∗ g)−1(µ) is an open n-fuzzy set on S. By the
same argument as in the case of f⊥, it suffices to show that (f ∗ g)−1(µr) is
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an open n-fuzzy set on S for any r ∈ n. For p ∈ n, define θr,p : n → n by

θr,p(x) =

{
µ(r) if x = p

0 otherwise.

For r ̸= 0, define κr,p : n → n by

κr,p(x) =

{
µ(r) if x = r − p+ 1

0 otherwise.

For r = 0, define κr,p : n → n by

κr,p(x) =

{
µ(r) if x ≤ r − p+ 1

0 otherwise.

Then it is straightforward to verify that

(f ∗ g)−1(µr) =
∨
p∈n

(f−1(θr,p) ∧ g−1(κr,p)).

Since f, g ∈ Cont(S), the right-hand side is an open n-fuzzy set on S.
As is well-known, (∧,∨, ℘,→) can be defined by using only (∗, (-)⊥) (see

[6]) and so (f@g)−1(µ) is an open n-fuzzy set for @ = ∧,∨, ℘,→.

Definition 4.4. For an n-fuzzy space S, S is zero-dimensional iff Cont(S)
forms an open basis of S.

Definition 4.5. For an n-fuzzy space S, S is an n-fuzzy Boolean space iff
S is zero-dimensional, compact and Kolmogorov.

Definition 4.6. FBSn is defined as the category of n-fuzzy Boolean spaces
and continuous functions.

Proposition 4.7. Let S be an n-fuzzy space. Then, (i) S is an n-fuzzy
Boolean space iff (ii) S is zero-dimensional, compact and Hausdorff.

Proof. Cleary, (ii) implies (i). We show the converse. Assume that S is an
n-fuzzy Boolean space. It suffices to show that S is Hausdorff. Let x, y ∈ S
with x ̸= y. Since S is Kolmogorov and since S is zero-dimensional, there
is µ ∈ Cont(S) with µ(x) ̸= µ(y). Let s = µ(x). Then, Ts ◦ µ(x) = 1 and
(Ts ◦ µ)⊥(y) = 1. Since Ts : n → n is continuous, Ts ◦ µ ∈ Cont(S) and
(Ts ◦µ)⊥ ∈ Cont(S) by Lemma 4.3. Since S is zero-dimensional, Ts ◦µ and
(Ts ◦µ)⊥ are open n-fuzzy sets on S. We also have (Ts ◦µ)∧ (Ts ◦µ)⊥ = 0.
Thus, S is Hausdorff.

12



Next we show that (-)∗ turns an n-fuzzy Boolean space into a Boolean
space, i.e., a zero-dimensional compact Hausdorff space.

Proposition 4.8. Let S be an n-fuzzy Boolean space. Then, S∗ forms a
Boolean space.

Proof. By Lemma 3.9, S∗ is a topological space.
First, we show that S∗ is zero-dimensional in the classical sense. Let

B∗ = {µ−1({1}) ; µ ∈ Cont(S)}, where, since S is zero-dimensional and so
µ ∈ Cont(S) is an open n-fuzzy set on S, µ−1({1}) is an open subset of S∗.
We claim that B∗ forms an open basis of S∗. It is easily verified that B∗ is
closed under ∩. Assume that O is an open subset of S∗, i.e., O = µ−1({1})
for some open n-fuzzy set µ on S. Since S is zero-dimensional, there are µi ∈
Cont(S) with µ =

∨
i∈I µi. Since n is totally ordered, O =

∪
i∈I µ

−1
i ({1}). It

follows from µi ∈ Cont(S) that µ−1
i ({1}) ∈ B∗ for any i ∈ I. This completes

the proof of the claim. If µ ∈ Cont(S), then

(µ−1({1}))c = ((T1 ◦ µ)⊥)−1({1}).

Since T1 : n → n is continuous, T1 ◦ µ ∈ Cont(S), whence, by Lemma 4.3,
(T1◦µ)⊥ ∈ Cont(S). Thus the right-hand side is open in S∗ and so µ−1({1})
is clopen in S∗ for µ ∈ Cont(S). Hence, S∗ is zero-dimensional.

Second, we show that S∗ is compact in the classical sense. Assume that
S∗ =

∪
i∈I Oi for some open subsets Oi of S∗. Since B∗ forms an open basis

of S∗, we may assume that S∗ =
∪

i∈I µ
−1
i ({1}) for some µi ∈ Cont(S).

Then, 1 =
∨

i∈I µi where 1 denotes the constant function on S (= S∗)
whose value is always 1. Since S is zero-dimensional, µi is an open n-fuzzy
set on S. Thus, since S is compact, there is a finite subset J of I such that
1 =

∨
j∈J µj , whence S∗ =

∪
j∈J µ

−1
j ({1}). Hence S∗ is compact.

Finally, we show that S∗ is Hausdorff in the classical sense. Since S∗ is
zero-dimensional, it suffices to show that S∗ is Kolmogorov in the classical
sense. Assume x, y ∈ S∗ with x ̸= y. Since S is Kolmogorov, there is an
open n-fuzzy set µ on S with µ(x) ̸= µ(y). Since S is zero-dimensional,
µ =

∨
i∈I µi for some µi ∈ Cont(S). There is i ∈ I with µi(x) ̸= µi(y). Let

r = µi(x). Then, we have Tr ◦ µi(x) = 1 and Tr ◦ µi(y) = 0, whence we
have x ∈ (Tr ◦ µi)−1({1}) and y /∈ (Tr ◦ µi)−1({1}). Since Tr : n → n is
continuous, it follows from µi ∈ Cont(S) that Tr ◦ µi ∈ Cont(S), whence
Tr ◦µi is an open n-fuzzy set on S and so (Tr ◦µi)−1({1}) is an open subset
of S∗. Hence S∗ is Kolmogorov.

4.2 Functors Spec and Cont

We define the spectrum Spec(A) of an  Lc
n-algebra A as follows.
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Definition 4.9. For an  Lc
n-algebra A, Spec(A) is defined as the set of all

homomorphisms (of  Lc
n-algebras) from A to n equipped with the n-fuzzy

topology generated by {⟨a⟩ ; a ∈ A}, where ⟨a⟩ : Spec(A) → n is defined by

⟨a⟩(v) = v(a).

The operations (∧,∨, ∗, ℘,→, (-)⊥) on {⟨a⟩ ; a ∈ A} are defined pointwise as
in Definition 4.2.

{⟨a⟩ ; a ∈ A} forms an open basis of Spec(A), since ⟨a⟩ ∧ ⟨b⟩ = ⟨a ∧ b⟩.

Definition 4.10. We define a contravariant functor Spec :  Lc
n-Alg → FBSn.

For an object A in  Lc
n-Alg, define Spec(A) as in Definition 4.9.

For an arrow f : A1 → A2 in  Lc
n-Alg, define Spec(f) : Spec(A2) →

Spec(A1) by Spec(f)(v) = v ◦ f for v ∈ Spec(A2).

The well-definedness of the functor Spec is proved by Proposition 4.15
and Proposition 4.16 below.

Since n is a totally ordered complete lattice, we have:

Lemma 4.11. Let µi be an n-fuzzy set on a set S for a set I and i ∈ I.
Then, (i) T1 ◦

∨
i∈I µi =

∨
i∈I(T1 ◦ µi); (ii) T1 ◦

∧
i∈I µi =

∧
i∈I(T1 ◦ µi).

Lemma 4.12. Let A be an  Lc
n-algebra. Then, Spec(A) is compact.

Proof. Assume that 1 =
∨

j∈J µj for open n-fuzzy sets µj on Spec(A), where
1 denotes the constant function defined on Spec(A) whose value is always
1. Then, since {⟨a⟩ ; a ∈ A} is an open basis of Spec(A), we may assume
that 1 =

∨
i∈I⟨ai⟩ for some ai ∈ A. It follows from Lemma 4.11 that

1 = T1 ◦ 1 = T1 ◦
∨

i∈I⟨ai⟩ =
∨

i∈I T1 ◦ ⟨ai⟩ =
∨

i∈I⟨T1(ai)⟩. Thus, we have

0 = (
∨
i∈I

⟨T1(ai)⟩)⊥ =
∧
i∈I

⟨(T1(ai))
⊥⟩.

Then, there is no homomorphism v : A → n such that v((T1(ai))
⊥) =

1 for any i ∈ I. Therefore, by Proposition 2.17, there is no prime n-
filter of A which contains {(T1(ai))

⊥ ; i ∈ I}. Thus, by Corollary 2.16,
{(T1(ai))

⊥ ; i ∈ I} does not have f.i.p. with respect to ∗ and so there is a fi-
nite subset {i1, ...im} of I such that (T1(ai1))⊥ ∗ ...∗ (T1(aim))⊥ = 0, whence
T1(ai1)℘...℘T1(aim) = 1. Since T1(aik) is idempotent for any k ∈ {1, ...,m},
we have T1(ai1)∨...∨T1(aim) = 1 and, by Lemma 2.7, T1(ai1∨ ...∨aim) = 1.
By T1(x) ≤ x, we have ai1 ∨ ... ∨ aim = 1, whence ⟨ai1 ∨ ... ∨ aim⟩ = 1. This
completes the proof.
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Lemma 4.13. Let A be an  Lc
n-algebra. Then, Spec(A) is Kolmogorov.

Proof. Let v1, v2 ∈ Spec(A) with v1 ̸= v2. Then there is a ∈ A such that
v1(a) ̸= v2(a), whence we have ⟨a⟩(v1) ̸= ⟨a⟩(v2).

Lemma 4.14. Let A be an  Lc
n-algebra. Then, Spec(A) is zero-dimensional.

Proof. Since {⟨a⟩ ; a ∈ A} forms an open basis of Spec(A), it suffices to
show that

Cont ◦ Spec(A) = {⟨a⟩ ; a ∈ A}.

We first show that Cont ◦Spec(A) ⊃ {⟨a⟩ ; a ∈ A}, i.e., ⟨a⟩ is continuous for
any a ∈ A. Let a ∈ A and µ an n-fuzzy set on n. Then, by Lemma 2.9,

⟨a⟩−1(µ) = µ ◦ ⟨a⟩ =
∨
r∈n

(Sµ(r) ◦ Tr) ◦ ⟨a⟩ = ⟨
∨
r∈n

(Sµ(r)(Tr(a)))⟩.

Hence ⟨a⟩ is continuous.
Next we show Cont ◦ Spec(A) ⊂ {⟨a⟩ ; a ∈ A}. Let f ∈ Cont ◦ Spec(A)

and r ∈ n. Define an n-fuzzy set λr on n by λr(x) = 1 for x = r and
λr(x) = 0 for x ̸= r. Since f is continuous, f−1(λr) =

∨
i∈I⟨ai⟩ for some

ai ∈ A. Now the following holds:

1 = f−1(λr) ∨ (f−1(λr))
⊥ = (

∨
i∈I

⟨ai⟩) ∨ (f−1(λr))
⊥.

Here, we have (f−1(λr))
⊥ = (λr◦f)⊥ = λr

⊥◦f = f−1(λr
⊥). Since f−1(λr

⊥)
is an open n-fuzzy set, (f−1(λr))

⊥ is an open n-fuzzy set on Spec(A).
Since Spec(A) is compact by Lemma 4.12, there is a finite subset J of I
such that 1 = (

∨
j∈J⟨aj⟩) ∨ (f−1(λr))

⊥. Thus, f−1(λr) ≤
∨

j∈J⟨aj⟩. Since∨
j∈J⟨aj⟩ ≤

∨
i∈I⟨ai⟩ = f−1(λr), we have f−1(λr) =

∨
j∈J⟨aj⟩. Since J is

finite, f−1(λr) =
∨

j∈J⟨aj⟩ = ⟨
∨

j∈J aj⟩. Let ar =
∨

j∈J aj . Note that if

v ∈ f−1({r}) then v(ar) = 1 and that if v /∈ f−1({r}) then v(ar) = 0. We
claim that f = ⟨

∨
r∈n(r ∧ ar)⟩. If v ∈ f−1({s}) for s ∈ n, then

⟨
∨
r∈n

(r ∧ ar)⟩(v) = v(
∨
r∈n

(r ∧ ar)) =
∨
r∈n

(r ∧ v(ar)) = s = f(v).

This completes the proof.

By the above lemmas, we obtain the following proposition.

Proposition 4.15. Let A be an object in  Lc
n-Alg. Then, Spec(A) is an

object in the category FBSn.
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Proposition 4.16. Let A1 and A2 be objects in  Lc
n-Alg and f : A1 → A2

an arrow in  Lc
n-Alg. Then, Spec(f) is an arrow in FBSn.

Proof. Since the inverse image (Spec(f))−1 commutes with
∨

, it suffices
to show that (Spec(f))−1(⟨a⟩) is an open n-fuzzy set on Spec(A2) for any
a ∈ A1. For v ∈ Spec(A2), we have

(Spec(f)−1(⟨a⟩))(v) = ⟨a⟩ ◦ Spec(f)(v) = ⟨a⟩(v ◦ f) = v ◦ f(a) = ⟨f(a)⟩(v).

Hence (Spec(f))−1(⟨a⟩) = ⟨f(a)⟩, which is an open n-fuzzy set.

Definition 4.17. We define a contravariant functor Cont : FBSn →  Lc
n-Alg.

For an object S in FBSn, Cont(S) is defined as in Definition 4.2.
For an arrow f : S → T in FBSn, Cont(f) : Cont(T ) → Cont(S) is

defined by Cont(f)(g) = g ◦ f for g ∈ Cont(T ).

Since the operations of Cont(S) are defined pointwise, Cont(S) is an
 Lc
n-algebra and the following holds, whence Cont is well-defined.

Proposition 4.18. Let S1 and S2 be objects in FBSn, and f : S1 → S2 an
arrow in FBSn. Then, Cont(f) is an arrow in  Lc

n-Alg.

Definition 4.19. Let A be an  Lc
n-algebra. Then, Spec2(B(A)) is defined as

the set of all homomorphisms of Boolean algebras from B(A) to 2 equipped
with the (ordinary) topology generated by {⟨a⟩2 ; a ∈ B(A)}, where ⟨a⟩2 =
{v ∈ Spec2(B(A)) ; v(a) = 1}.

Proposition 4.20. Let A be an  Lc
n-algebra. Define a function t1 from

Spec(A)∗ to Spec2(B(A)) by t1(v) = T1 ◦ v. Then, t1 is a homeomorphism.

Proof. By Lemma 2.10, t1 is injective. We show that t1 is surjective. Let
v ∈ Spec2(B(A)). Define u ∈ Spec(A) by u(a) = r ⇔ Tr(a) ∈ v−1({1}) for
a ∈ A, where note Tr(a) ∈ B(A). Then, in a similar way to Proposition
2.17, it is verified that u is a homomorphism (i.e., u ∈ Spec(A)). Moreover,
we have t1(u) = v on B(A). Thus t1 is bijective. It is straightforward
to verify the remaining part of the proof. Note that, for ⟨a⟩n = {v ∈
Spec(A) ; v(a) = 1}, {⟨a⟩n ; a ∈ A} forms an open basis of Spec(A)∗ and
that t1(⟨a⟩n) = ⟨T1(a)⟩2 for a ∈ A.

4.3 A fuzzy topological duality for  Lc
n-algebras

Theorem 4.21. Let A be an  Lc
n-algebra. Then, there is an isomorphism

between A and Cont ◦ Spec(A) in the category  Lc
n-Alg.
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Proof. Define ⟨-⟩ : A→ Cont ◦ Spec(A) as in Definition 4.9. In the proof of
Lemma 4.14, it has already been proven that ⟨-⟩ is well-defined and surjec-
tive. Since the operations of Cont ◦ Spec(A) are defined pointwise, ⟨-⟩ is a
homomorphism.

Thus it suffices to show that ⟨-⟩ is injective. Assume that ⟨a⟩ = ⟨b⟩ for
a, b ∈ A, which means that, for any v ∈ Spec(A), we have v(a) = v(b). Thus,
for any v ∈ Spec(A) and any r ∈ n, we have v(Tr(a)) = v(Tr(b)). Thus, it
follows from Proposition 2.17 that, for any prime n-filter P of A and any
r ∈ n, Tr(a) ∈ P iff Tr(b) ∈ P .

We claim that Tr(a) = Tr(b) for any r ∈ n. Suppose for contradiction
that Tr(a) ̸= Tr(b) for some r ∈ n. We may assume without loss of gener-
ality that Tr(a) � Tr(b). Let F = {x ∈ A ; Tr(a) ≤ x}. Then, since Tr(a)
is idempotent, F is an n-filter of A. Cleary, Tr(b) /∈ F . Thus, by Lemma
2.14, there is a prime n-filter P of A such that F ⊂ P and Tr(b) /∈ P . By
F ⊂ P , we have Tr(a) ∈ P , which contradicts Tr(b) /∈ P , since we have
already shown that Tr(a) ∈ P iff Tr(b) ∈ P . Thus, Tr(a) = Tr(b) for any
r ∈ n, whence

∧
r∈n(Tr(a) ↔ Tr(b)) = 1. Hence, it follows from Lemma

2.11 that a = b, and therefore ⟨-⟩ is injective.

Theorem 4.22. Let S be an n-fuzzy Boolean space. Then, there is an
isomorphism between S and Spec ◦ Cont(S) in the category FBSn.

Proof. Define Ψ : S → Spec ◦ Cont(S) by Ψ(x)(f) = f(x) for x ∈ S and
f ∈ Cont(S). Since the operations of Cont(S) are defined pointwise, Ψ(x)
is a homomorphism and so Ψ is well-defined.

We show that Ψ is continuous. Let f ∈ Cont(S). Then Ψ−1(⟨f⟩) = f
by the following:

(Ψ−1(⟨f⟩))(x) = ⟨f⟩ ◦ Ψ(x) = Ψ(x)(f) = f(x).

Since f ∈ Cont(S) and S is zero-dimensional, f is an an open n-fuzzy set
and so Ψ−1(⟨f⟩) is an open n-fuzzy set on S. Since the inverse image Ψ−1

commutes with
∨

, it follows that Ψ is continuous.
Next we show that Ψ is injective. Let x, y ∈ S with x ̸= y. Since S is

Kolmogorov and zero-dimensional, there is f ∈ Cont(S) with f(x) ̸= f(y).
Thus, Ψ(x)(f) = f(x) ̸= f(y) = Ψ(y)(f), whence Ψ is injective.

Next we show that Ψ is surjective. Let v ∈ Spec ◦ Cont(S). Consider
{f−1({1}) ; v(f) = 1}. Define µ : n → n by µ(1) = 0 and µ(x) = 1 for
x ̸= 1. Since f−1(µ) (= µ ◦ f) is an open n-fuzzy set on S for f ∈ Cont(S),
(µ ◦ f)−1({1}) is an open subset of S∗. Since (µ ◦ f)−1({1}) = (f−1({1}))c,
f−1({1}) is a closed subset of S∗ for f ∈ Cont(S).
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We claim that {f−1({1}) ; v(f) = 1} has the finite intersection property.
Since f−1({1})∩ g−1({1}) = (f ∧ g)−1({1}) for f, g ∈ Cont(S), it suffices to
show that if v(f) = 1 then f−1({1}) is not empty. Suppose for contradiction
that v(f) = 1 and f−1({1}) = ∅. Since f−1({1}) = ∅, we have T1(f) = 0.
Thus v(T1(f)) = 0 and so v(f) ̸= 1, which contradicts v(f) = 1.

By Proposition 4.8, S∗ is compact. Thus, there is z ∈ S such that
z ∈

∩
{f−1({1}) ; v(f) = 1}. We claim that Ψ(z) = v. By the definition

of z, if v(f) = 1 then Ψ(z)(f) = 1. We show the converse. Suppose for
constradiction that Ψ(z)(f) = 1 and v(f) ̸= 1. Then v(T1(f)) = T1(v(f)) =
0 and so v((T1(f))⊥) = 1. By the definition of z, (T1(f))⊥(z) = 1 and so
(T1(f))(z) = 0. Thus f(z) ̸= 1, which contradicts Ψ(z)(f) = 1. Hence,
for any f ∈ Cont(S), v(f) = 1 iff Ψ(z)(f) = 1. By Lemma 2.10, we have
Ψ(z) = v. Hence, Ψ is surjective.

Finally we show that Ψ−1 is an arrow in the category FBSn. It suffices
to show that, for any open n-fuzzy set λ on S, Ψ(λ) is an open n-fuzzy set
on Spec ◦Cont(S). Since S is zero-dimensional, there are fi ∈ Cont(S) with
λ =

∨
i∈I fi. For v ∈ Spec ◦ Cont(S), the following holds:

Ψ(λ)(v) =
∨

{λ(x); x ∈ Ψ−1({v})} = λ(z) = v(λ) = v(
∨
i∈I

fi) = (
∨
i∈I

⟨fi⟩)(v),

where z is defined as the unique element x such that Ψ(x) = v (for the
definition of the direct image of an n-fuzzy set, see Subsection 3.1). Hence
Ψ(λ) =

∨
i∈I⟨fi⟩ and so Ψ(λ) is an open n-fuzzy set on Spec ◦ Cont(S).

By Theorem 4.21 and Theorem 4.22, we obtain a fuzzy topological du-
ality for  Lc

n-algebras, which is a generalization of Stone duality for Boolean
algebras to the n-valued case via fuzzy topology.

Theorem 4.23. The category  Lc
n-Alg is dually equivalent to the category

FBSn via the functors Spec and Cont.

Proof. Let Id1 denote the identity functor on  Lc
n-Alg and Id2 denote the

identity functor on FBSn. Then, we define two natural transformations
ϵ : Id1 → Cont ◦ Spec and η : Id2 → Spec ◦ Cont. For an  Lc

n-algebra
A, define ϵA : A → Cont ◦ Spec(A) by ϵA = ⟨-⟩ (see Theorem 4.21). For
an n-fuzzy Boolean space S, define ηS : S → Spec ◦ Cont(S) by ηS = Ψ
(see Theorem 4.22). It is straightforward to see that η and ϵ are natural
transformations. By Theorem 4.21 and Theorem 4.22, η and ϵ are natural
isomorphisms.
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5 M Lcn-algebras and basic properties

We define modal  Lukasiewicz n-valued logic with truth constants M Lc
n by

n-valued Kripke semantics. The connectives of M Lc
n are a unary connective

� and the connectives of  Lc
n. Form� denotes the set of formulas of M Lc

n.

Definition 5.1. Let (W,R) be a Kripke frame (i.e., R is a relation on a
set W ). Then, e is a Kripke n-valuation on (W,R) iff e is a function from
W × Form� to n which satisfies: For each w ∈W and φ,ψ ∈ Form�,

• e(w,�φ) =
∧
{e(w′, φ) ; wRw′};

• e(w,φ@ψ) = e(w,φ)@e(w,ψ) for @ = ∧,∨, ∗, ℘,→;

• e(w,φ⊥) = (e(w,φ))⊥;

• e(w, r) = r for r ∈ n.

Then, (W,R, e) is called an n-valued Kripke model. Define M Lc
n as the set

of all those formulas φ ∈ Form� such that e(w,φ) = 1 for any n-valued
Kripke model (W,R, e) and any w ∈W .

By straightforward computation, we have the following lemma. Recall
the definition of Ur (Definition 2.8).

Lemma 5.2. Let φ,ψ ∈ Form� and r ∈ n. (i) Ur(�φ) ↔ �Ur(φ) ∈ M Lc
n.

(ii) �(φ ∧ ψ) ↔ �φ ∧ �ψ ∈ M Lc
n and �1 ↔ 1 ∈ M Lc

n. (iii) �(φ ∗ φ) ↔
(�φ) ∗ (�φ) ∈ M Lc

n and �(φ ℘ φ) ↔ (�φ)℘(�φ) ∈ M Lc
n.

Definition 5.3. For X ⊂ Form�, X is satisfiable iff there are an n-valued
Kripke model (W,R, e) and w ∈W such that e(w,φ) = 1 for any φ ∈ X.

M Lc
n-algebras and homomorphisms are defined as follows.

Definition 5.4. Let A be an  Lc
n-algebra. Then, (A,�) is an M Lc

n-algebra
iff it satisfies the following set of equations: {φ = ψ ; φ↔ ψ ∈ M Lc

n}.
A homomorphism of M Lc

n-algebras is defined as a homomorphism of
 Lc
n-algebras which additionally preserves the operation �.

Throughout this paper, we do not distinguish between formulas of M Lc
n

and terms of M Lc
n-algebras.

Definition 5.5. Let A be an M Lc
n-algebra. Define a relation R� on Spec(A)

by
vR�u⇔ ∀r ∈ n ∀x ∈ A (v(�x) ≥ r implies u(x) ≥ r).

Define e : Spec(A) × A → n by e(v, x) = v(x) for v ∈ Spec(A) and x ∈ A.
Then, (Spec(A), R�, e) is called the n-valued canonical model of A.
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Proposition 5.6. Let A be an M Lc
n-algebra. Then, the n-valued canonical

model (Spec(A), R�, e) of A is an n-valued Kripke model. In particular,
e(v,�x) = v(�x) =

∧
{u(x) ; vR�u} for x ∈ A and v ∈ Spec(A).

Proof. It suffices to show that e is a Kripke n-valuation. Since v is a homo-
morphism of  Lc

n-algebras, it remains to show e(v,�x) =
∧
{u(x) ; vR�u}.

To prove this, it is enough to show that, for any r ∈ n, (i) v(�x) ≥ r iff
(ii) vR�u implies u(x) ≥ r. By the definition of R�, (i) implies (ii). We
show the converse. To prove the contrapositive, assume v(�x) � r, i.e.,
Ur(�x) /∈ v−1({1}). Let

F0 = {Us(x) ; s ∈ n and Us(�x) ∈ v−1({1})}.

Let F be the n-filter of A generated by F0. We claim that Ur(x) /∈ F .
Suppose for contradiction that Ur(x) ∈ F . Then, there is φ ∈ A such
that φ ≤ Ur(x) and φ is constructed from ∗ and elements of F0. Since
Us(x) is idempotent, Us1(x1) ∗ Us2(x2) = Us1(x1) ∧ Us2(x2) and so we may
assume that φ =

∧
{Us(x) ; Us(x) ∈ F1} for some finite subset F1 of F0.

By Lemma 5.2, �φ =
∧
{Us(�x) ; Us(x) ∈ F1}. By the definition of F0,

Us(�x) ∈ v−1({1}) for any Us(x) ∈ F1 and so �φ ∈ v−1({1}). Since
φ ≤ Ur(x), we have �φ ≤ �Ur(x) = Ur(�x). Thus, Ur(�x) ∈ v−1({1}),
which contradicts Ur(�x) /∈ v−1({1}). Hence Ur(x) /∈ F . By Proposition
2.14, there is a prime n-filter P of A such that Ur(x) /∈ P and F ⊂ P . By
Proposition 2.17, vP ∈ Spec(A). Since Ur(x) /∈ P , we have vP (x) � r. Since
F0 ⊂ F ⊂ P , we have vR�vP . Thus, (ii) does not hold.

The following is a compactness theorem for M Lc
n.

Theorem 5.7. Let X ⊂ Form�. Assume that any finite subset of X is
satisfiable. Then, X is satisfiable.

Proof. Let A be the Lindenbaum algebra of M Lc
n. We may consider X ⊂ A.

We show that X has f.i.p. with respect to ∗. If not, then there are n ∈ ω with
n ̸= 0 and x1, ..., xn ∈ X such that x1 ∗ ... ∗xn = 0, which is a contradiction,
since {x1, ..., xn} is satisfiable by assumption. Thus, by Proposition 2.16,
there is a prime n-filter P of A with X ⊂ P . By Proposition 2.17, vP
is a homomorphism, i.e., vP ∈ Spec(A). Consider the n-valued canonical
model (Spec(A), R�, e) of A. Then, e(vP , x) = vP (x) = 1 for any x ∈ X by
Proposition 2.17. Thus, X is satisfiable.

Proposition 5.8. Let A be an M Lc
n-algebra. Then, B(A) forms a modal

algebra.
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Proof. If x ∈ A is idempotent, then �x is also idempotent, since �x ∗�x =
�(x ∗ x) = �x by Lemma 5.2. Thus, B(A) is closed under �. By Lemma
5.2, B(A) forms a modal algebra.

Definition 5.9. Let A be an M Lc
n-algebra. Define a relation R�2 on

Spec2(B(A)) by vR�2u⇔ ∀x ∈ B(A) (v(�x) = 1 implies u(x) = 1).

Proposition 5.10. Let A be an M Lc
n-algebra. For v, u ∈ Spec(A), vR�u

iff t1(v)R�2t1(u) (for the definition of t1, see Proposition 4.20).

Proof. By �T1(x) = T1(�x), if vR�u then t1(v)R�2t1(u). We show the
converse. Assume t1(v)R�2t1(u). In order to show vR�u, it suffices to
prove that, for any r ∈ n and any x ∈ A, v(�Ur(x)) = 1 implies u(Ur(x)) =
1, which follows from the assumption, since we have Ur(x) ∈ B(A) and
T1(Ur(x)) = Ur(x).

6 A fuzzy topological duality for M Lcn-algebras

In this section, based on the fuzzy topological duality for  Lc
n-algebras, we

show a fuzzy topological duality for M Lc
n-algebras, which is a generalization

of Jónsson-Tarski duality for modal algebras via fuzzy topology, where note
that M Lc

2-algebras coincide with modal algebras.

Definition 6.1. M Lc
n-Alg denotes the category of M Lc

n-algebras and homo-
morphisms of M Lc

n-algebras.

Our aim in this section is to show that the category M Lc
n-Alg is dually

equivalent to the category FRSn, which is defined in Definition 6.3 below.
For a Kripke frame (S,R), we can define a modal operator � on the

“n-valued powerset algebra” nS of S as follows.

Definition 6.2. Let (S,R) be a Kripke frame and f a function from S to
n. Define �Rf : S → n by (�Rf)(x) =

∧
{f(y) ; xRy}.

Recall: For a Kripke frame (S,R) and an n-fuzzy set µ on S, an n-fuzzy
set R−1[µ] on S is defined by R−1[µ](x) =

∨
{µ(y) ; xRy} for x ∈ S.

Definition 6.3. We define the category FRSn as follows.
An object in FRSn is a tuple (S,R) such that S is an object in FBSn

and that a relation R on S satisfies the following conditions:

1. if ∀f ∈ Cont(S)((�Rf)(x) = 1 ⇒ f(y) = 1) then xRy;
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2. if µ ∈ Cont(S), then R−1[µ] ∈ Cont(S).

An arrow f : (S1, R1) → (S2, R2) in FRSn is an arrow f : S1 → S2 in
FBSn which satisfies the following conditions:

1. if xR1y then f(x)R2f(y);

2. if f(x1)R2x2 then there is y1 ∈ S1 such that x1R1y1 and f(y1) = x2.

An object in FRSn is called an n-fuzzy relational space.
The item 1 in the object part of Definition 6.3 is an n-fuzzy version of

the tightness condition of descriptive general frames in classical modal logic
(for the definition of the tightness condition in classical modal logic, see [3]).

Definition 6.4. We define a contravariant functor RSpec : M Lc
n-Alg →

FRSn. For an object A in M Lc
n-Alg, define RSpec(A) = (Spec(A), R�). For

an arrow f : A→ B in M Lc
n-Alg, define RSpec(f) : RSpec(B) → RSpec(A)

by RSpec(f)(v) = v ◦ f for v ∈ Spec(B).

We call RSpec(A) the relational spectrum of A. The well-definedness of
RSpec is shown by Proposition 6.6 and Proposition 6.7 below.

Definition 6.5. Let A be an M Lc
n-algebra. Then, we define RSpec2(B(A))

as (Spec2(B(A)), R�2). Let A1 and A2 be M Lc
n-algebras and f : B(A1) →

B(A2). Then, we define RSpec2(f) : RSpec2(B(A2)) → RSpec2(B(A1)) by
RSpec2(f)(v) = v ◦ f for v ∈ RSpec2(B(A2)).

Proposition 6.6. For an M Lc
n-algebra A, RSpec(A) is an object in FRSn.

Proof. It suffices to show the items 1 and 2 in the object part of Definition
6.3. We first show the item 1 by proving the contrapositive. Assume (v, u) /∈
R�, i.e., there are r ∈ n and x ∈ A such that v(�x) ≥ r and u(x) � r. By
Lemma 2.8, v(Ur(�x)) = 1 and u(Ur(x)) = 0. Then, ⟨Ur(x)⟩(u) = 0. By
Proposition 5.6 and Lemma 5.2,

(�R⟨Ur(x)⟩)(v) =
∧

{⟨Ur(x)⟩(v′) ; vR�v
′} = v(�Ur(x)) = v(Ur�x) = 1.

As is shown in the proof of Lemma 4.14, ⟨Ur(x)⟩ is continuous.
We show the item 2. Since Cont ◦ Spec(A) = {⟨x⟩ ; x ∈ A} as is

shown in the proof of Lemma 4.14, it suffices to show that, for any x ∈ A,
R−1

� (⟨x⟩) ∈ Cont◦Spec(A). Let ♢x denote (�(x⊥))⊥. Since (R−1
� (⟨x⟩))(v) =∨

{u(x) ; vR�u} = v(♢x), we have R−1
� (⟨x⟩) = ⟨♢x⟩ ∈ Cont ◦ Spec(A).
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Proposition 6.7. For M Lc
n-algebras A1 and A2, let f : A1 → A2 be a

homomorphism of M Lc
n-algebras. Then, RSpec(f) is an arrow in FRSn.

Proof. Define f∗ : B(A1) → B(A2) by f∗(x) = f(x) for x ∈ B(A1). By
Proposition 5.8, f∗ is a homomorphism of modal algebras. Consider RSpec2(f∗) :
RSpec2(B(A2)) → RSpec2(B(A1)). By Jónsson-Tarski duality for modal al-
gebras (see [16, 1]), RSpec2(f∗) is an arrow in FRS2.

We first show that RSpec(f) satisfies the item 2 in the arrow part of
Definition 6.3. Assume RSpec(f)(v2)R�u1 for v2 ∈ RSpec(A2) and u1 ∈
RSpec(A1). By Proposition 5.10, t1(RSpec(f)(v2))R�2t1(u1). It follows
from t1(RSpec(f)(v2)) = T1 ◦ v2 ◦ f = RSpec2(f∗)(t1(v2)) that we have
RSpec2(f∗)(t1(v2))R�2t1(u1). Since RSpec2(f∗) is an arrow in FRS2, there
is u2 ∈ RSpec2(B(A2)) such that t1(v2)R�2u2 and RSpec2(f∗)(u2) = t1(u1).
Define u′2 ∈ RSpec(A2) by u′2(x) = r ⇔ u2(Tr(x)) = 1. It is verified in a
similar way to Proposition 2.17 that u′2 is a homomorphism.

We claim that v2R�u′2 and RSpec(f)(u′2) = u1. Let x ∈ A2 and
r ∈ n. If v2(�x) ≥ r then (t1(v2))(�Ur(x)) = 1 and, since t1(v2)R�2u2,
we have u2(Ur(x)) = 1, whence u′2(x) ≥ r. Thus, v2R�u′2. Next we
show RSpec(f)(u′2) = u1. Let r = (RSpec(f)(u′2))(x) for x ∈ A1. Then,
u2(Tr(f(x))) = 1 and so (RSpec2(f∗)(u2))(Tr(x)) = 1. It follows from
RSpec2(f∗)(u2) = t1(u1) that (t1(u1))(Tr(x)) = 1 and so u1(Tr(x)) = 1,
whence u1(x) = r = (RSpec(f)(u′2))(x). Thus RSpec(f) satisfies the item
2.

It is easier to verify that RSpec(f) satisfies the item 1 in the arrow part
of Definition 6.3.

Definition 6.8. A contravariant functor MCont : FRSn → M Lc
n-Alg is

defined as follows. For an object (S,R) in FRSn, define MCont(S,R) =
(Cont(S),�R). For an arrow f : (S1, R1) → (S2, R2) in FRSn, define
MCont(f) : MCont(S2, R2) → MCont(S1, R1) by MCont(f)(g) = g ◦ f for
g ∈ Cont(S2).

The well-definedness of MCont is shown by the following propositions.

Proposition 6.9. For an object (S,R) in FRSn, MCont(S,R) is an M Lc
n-

algebra.

Proof. We first show that if f ∈ Cont(S) then �Rf ∈ Cont(S). Let f ∈
Cont(S) and µ an open n-fuzzy set on n. Define µr as in the proof of Lemma
4.3 and then it suffices to show that (�Rf)−1(µr) is an open n-fuzzy set on
S for any r ∈ n. By Lemma 2.8,

(�Rf)−1(µr) = R−1[µr ◦ f ] ∧ (R−1[(Ur ◦ f)⊥])⊥.
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Since both µr ◦f and (Ur ◦f)⊥ are elements of Cont(S), the right-hand side
is an element of Cont(S) by the definition of R and so is an open n-fuzzy
set on S, since S is zero-dimensional. Thus �Rf ∈ Cont(S).

Next we show that MCont(S,R) satisfies {φ = ψ ; φ ↔ ψ ∈ M Lc
n}.

Consider Cont(S) as the set of propositional variables. Since Cont(S) is
closed under the operations of Cont(S), an element of Form� may be seen
as an element of Cont(S). Define e : S × Form� → n by e(w, f) = f(w)
for w ∈ S and f ∈ Cont(S). Then, (S,R, e) is an n-valued Kripke model by
the definition of the operations of Cont(S). Since e(w, f) = 1 for any w ∈ S
iff f = 1, it follows from the definition of M Lc

n that MCont(S,R) satisfies
{φ = ψ ; φ↔ ψ ∈ M Lc

n}.

Proposition 6.10. Let f : (S1, R1) → (S2, R2) be an arrow in FRSn. Then,
MCont(f) is a homomorphism of M Lc

n-algebras.

Proof. It remains to show that MCont(f)(�g2) = �(MCont(f)(g2)) for g2 ∈
Cont(S2). For x1 ∈ S1, (MCont(f)(�g2))(x1) =

∧
{g2(y2) ; f(x1)R2y2}.

Let a denote the right-hand side. We also have (�(MCont(f)(g2)))(x1) =∧
{g2(f(y1)) ; x1R1y1}. Let b denote the right-hand side. Since x1R1y1

implies f(x1)R1f(y1), we have a ≤ b. By the item 2 in the arrow part of
Definition 6.3, we have a ≥ b. Hence a = b.

Theorem 6.11. Let A be an object in M Lc
n-Alg. Then, A is isomorphic to

MCont ◦ RSpec(A) in the category M Lc
n-Alg.

Proof. We claim that ⟨-⟩ : A → MCont ◦ RSpec(A) is an isomorphism of
M Lc

n-algebras. By Theorem 4.21, it remains to show that ⟨�x⟩ = �R�⟨x⟩
for x ∈ A. By Proposition 5.6, we have the following for v ∈ Spec(A):
(�R�⟨x⟩)(v) =

∧
{u(x) ; vR�u} = v(�x) = ⟨�x⟩(v).

Theorem 6.12. Let (S,R) be an object in FRSn. Then, (S,R) is isomor-
phic to RSpec ◦ MCont(S,R) in the category FRSn.

Proof. Define Φ : (S,R) → RSpec ◦ MCont(S,R) by Φ(x)(f) = f(x) for
x ∈ S and f ∈ Cont(S). We show: For any x, y ∈ S, xRy iff Φ(x)R�RΦ(y).
Assume xRy. Let r ∈ n and f ∈ Cont(S) with Φ(x)(�Rf) ≥ r. Since
Φ(x)(�Rf) =

∧
{f(z) ; xRz}, we have Φ(y)(f) = f(y) ≥ r. Next we show

the converse. To prove the contrapositive, assume (x, y) /∈ R. By Definition
6.3, there is f ∈ Cont(S) such that (�Rf)(x) = 1 and f(y) ̸= 1. Then,
Φ(x)(�Rf) = 1 and Φ(y)(f) ̸= 1. Thus, we have (Φ(x),Φ(y)) /∈ R�R .

By Theorem 4.22, it remains to prove that Φ and Φ−1 satisfy the item
2 in the arrow part of Definition 6.3, which follows from the above fact that
xRy iff Φ(x)R�RΦ(y), since Φ is bijective.
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By Theorem 6.11 and Theorem 6.12, we obtain a fuzzy topological du-
ality for M Lc

n-algebras, which is a generalization of Jónsson-Tarski duality
for modal algebras to the n-valued case via fuzzy topology.

Theorem 6.13. The category M Lc
n-Alg is dually equivalent to the category

FRSn via the functors RSpec(-) and MCont(-).

Proof. By arguing as in the proof of Theorem 4.23, this theorem follows
immediately from Theorem 6.11 and Theorem 6.12.

Acknowledgements. The author would like to thank an anonymous ref-
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