Fuzzy Topology and Łukasiewicz Logics from the Viewpoint of Duality Theory*

Yoshihiro Maruyama
Department of Humanistic Informatics
Graduate School of Letters
Kyoto University, Japan
maruyama@i.h.kyoto-u.ac.jp
http://researchmap.jp/ymaruyama/

Abstract

This paper explores relationships between many-valued logic and fuzzy topology from the viewpoint of duality theory. We first show a fuzzy topological duality for the algebras of Lukasiewicz n-valued logic with truth constants, which generalizes Stone duality for Boolean algebras to the n-valued case via fuzzy topology. Then, based on this duality, we show a fuzzy topological duality for the algebras of modal Lukasiewicz n-valued logic with truth constants, which generalizes Jónsson-Tarski duality for modal algebras to the n-valued case via fuzzy topology. We emphasize that fuzzy topological spaces naturally arise as spectrums of algebras of many-valued logics.

Keywords: fuzzy topology; Stone duality; Jónsson-Tarski duality; algebraic logic; many-valued logic; modal logic; Kripke semantics; compactness

1 Introduction

This paper aims to explore relationships between many-valued logic and fuzzy topology from the viewpoint of duality theory. In particular, we consider fuzzy topological dualities for the algebras of Lukasiewicz n-valued logic \mathbf{L}_n^c with truth constants and for the algebras of modal Lukasiewicz n-valued logic \mathbf{ML}_n^c with truth constants.

^{*}The published version of this paper is in: Studia Logica 94 (2010) 245-269.

Roughly speaking, a many-valued logic is a logical system in which there are more than two truth values (for a general introduction, see [13, 15, 21]). In many-valued logic, a proposition may have a truth value different from 0 (false) and 1 (true). Lukasiewicz many-valued logic is one of the most prominent many-valued logics. Many-valued logics have often been studied from the algebraic point of view (see, e.g., [2, 6, 15]). MV-algebra introduced in [4] provides algebraic semantics for Lukasiewicz infinite-valued logic. MV_n -algebra introduced in [14] provides algebraic semantics for Lukasiewicz n-valued logic introduced in [20] ([14] also gives an axiomatization of Lukasiewicz n-valued logic). L_n^c -algebra in this paper is considered as MV_n -algebra enriched by constants.

Kripke semantics for modal logic is naturally extended to the many-valued case by allowing for more than two truth values at each possible world and so we can define modal many-valued logics by such many-valued Kripke semantics, including modal Łukasiewicz many-valued logics. Modal many-valued logics have already been studied by several authors (see [9, 10, 22, 29]).

As a major branch of fuzzy mathematics, fuzzy topology is based on the concept of fuzzy set introduced in [30, 11], which is defined by considering many-valued membership function. For example, a [0, 1]-valued fuzzy set μ on a set X is defined as a function from X to [0, 1]. Then, for $x \in X$ and $r \in [0, 1]$, $\mu(x) = r$ intuitively means that the proposition " $x \in \mu$ " has a truth value r. A fuzzy topology on a set is defined as a collection of fuzzy sets on the set which satisfies some conditions (for details, see Section 3). Historically, Chang [5] introduced the concept of [0, 1]-valued fuzzy topology and thereafter Goguen [12] introduced that of lattice-valued fuzzy topology. There have been many studies on fuzzy topology (see, e.g., [19, 25, 27]).

Stone duality for Boolean algebras (see [17, 28]) is one of the most important results in algebraic logic and states that there is a categorical duality between Boolean algebras (i.e., the algebras of classical propositional logic) and Boolean spaces (i.e., zero-dimensional compact Hausdorff spaces). Since both many-valued logic and fuzzy topology can be considered as based on the idea that there are more than two truth values, it is natural to expect that there is a duality between the algebras of many-valued logic and "fuzzy Boolean spaces." Stone duality for Boolean algebras was extended to Jónsson-Tarski duality (see [1, 3, 16, 26]) between modal algebras and relational spaces (or descriptive general frames), which is another classical theorem in duality theory. Thus, it is also natural to expect that there is a duality between the algebras of modal many-valued logic and "fuzzy relational spaces."

In this paper, we realize the above expectations in the cases of L_n^c and ML_n^c . We first develop a categorical duality between the algebras of L_n^c and **n**-fuzzy Boolean spaces (see Definition 4.5), which is a generalization of Stone duality for Boolean algebras to the **n**-valued case via fuzzy topology. This duality is developed based on the following insights:

- The spectrum of an algebra of L_n^c can be naturally equipped with a certain **n**-fuzzy topology (see Definition 4.9).
- The notion of clopen subset of Boolean space in Stone duality for Boolean algebras corresponds to that of continuous function from **n**-fuzzy Boolean space to $\mathbf{n} = \{0, 1/(n-1), 2/(n-1), ..., 1\}$ equipped with the **n**-fuzzy discrete topology in the duality for the algebras of \mathbf{L}_n^c . This means that the zero-dimensionality of **n**-fuzzy topological spaces is defined in terms of continuous function into \mathbf{n} (see Definition 4.4).

Moreover, based on the duality for the algebras of L_n^c , we develop a categorical duality between the algebras of ML_n^c and **n**-fuzzy relational spaces (see Definition 6.3), which is a generalization of Jónsson-Tarski duality for modal algebras to the **n**-valued case via fuzzy topology. Note that an **n**-fuzzy relational space is also defined in terms of continuous functions into **n** (see the items 1 and 2 in the object part of Definition 6.3).

There have been some studies on dualities for algebras of many-valued logics (see, e.g., [2, 7, 18, 23, 24, 8, 29]). However, they are based on the ordinary topology and therefore do not reveal relationships between many-valued logic and fuzzy topology. By the results in this paper, we can notice that fuzzy topological spaces naturally arise as spectrums of algebras of some many-valued logics and that there are categorical dualities connecting fuzzy topology and those many-valued logics which generalize Stone and Jónsson-Tarski dualities via fuzzy topology.

This paper is organized as follows. In Section 2, we define L_n^c and L_n^c -algebras, and show basic properties of them. In Section 3, we review basic concepts related to fuzzy topology. In Section 4, we define **n**-fuzzy Boolean spaces and show a fuzzy topological duality for L_n^c -algebras, which is a main theorem in this paper. In Section 5, we define ML_n^c and ML_n^c -algebras, and show basic properties of them, including a compactness theorem for ML_n^c . In Section 6, we define **n**-fuzzy relational spaces and show a fuzzy topological duality for ML_n^c -algebras, which is the other main theorem.

2 \mathcal{L}_{n}^{c} -algebras and basic properties

Throughout this paper, n denotes a natural number more than 1.

Definition 2.1. n denotes $\{0, 1/(n-1), 2/(n-1), ..., 1\}$. We equip **n** with all constants $r \in \mathbf{n}$ and the operations $(\land, \lor, *, \wp, \to, (-)^{\perp})$ defined as follows:

$$x \wedge y = \min(x, y);$$

 $x \vee y = \max(x, y);$
 $x * y = \max(0, x + y - 1);$
 $x \wp y = \min(1, x + y);$
 $x \rightarrow y = \min(1, 1 - (x - y));$
 $x^{\perp} = 1 - x.$

We define Łukasiewicz n-valued logic with truth constants, which is denoted by \mathbf{L}_n^c . The connectives of \mathbf{L}_n^c are

$$(\land, \lor, *, \wp, \rightarrow, (-)^{\perp}, 0, 1/(n-1), 2/(n-1), ..., 1),$$

where $(\land, \lor, *, \wp, \rightarrow)$ are binary connectives, $(\cdot)^{\perp}$ is a unary connective, and (0, 1/(n-1), 2/(n-1), ..., 1) are constants. The formulas of \mathbf{L}_n^c are recursively defined in the usual way. Let \mathbf{PV} denote the set of propositional variables and **Form** denote the set of formulas of \mathbf{L}_n^c .

 $x \leftrightarrow y$ is the abbreviation of $(x \to y) \land (y \to x)$. For $m \in \omega$ with $m \neq 0$, $*^m x$ is the abbreviation of $x * \dots * x$ (m-times). For instance, $*^3 x = x * x * x$.

Definition 2.2. A function $v : \mathbf{Form} \to \mathbf{n}$ is an **n**-valuation iff it satisfies:

- $v(\varphi@\psi) = v(\varphi)@v(\psi)$ for $@=\wedge, \vee, *, \wp, \rightarrow;$
- $v(\varphi^{\perp}) = (v(\varphi))^{\perp}$:
- v(r) = r for $r \in \mathbf{n}$.

Define $L_n^c = \{ \varphi \in \mathbf{Form} \; ; \; v(\varphi) = 1 \text{ for any } \mathbf{n}\text{-valuation } v \}.$

 \mathcal{L}_{n}^{c} -algebras and homomorphisms are defined as follows.

Definition 2.3. $(A, \land, \lor, *, \wp, \rightarrow, (-)^{\perp}, 0, 1/(n-1), 2/(n-1), ..., 1)$ is an \mathcal{L}_n^c algebra iff it satisfies the following set of equations: $\{\varphi = \psi : \varphi \leftrightarrow \psi \in \mathcal{L}_n^c\}$.

A homomorphism of L_n^c -algebras is defined as a function which preserves the operations $(\land, \lor, *, \wp, \rightarrow, (-)^{\perp}, 0, 1/(n-1), 2/(n-1), ..., 1)$.

Throughout this paper, we do not distinguish between formulas of \mathcal{L}_n^c and terms of \mathcal{L}_n^c -algebras.

Definition 2.4. $\varphi \in \mathbf{Form}$ is idempotent iff $\varphi * \varphi \leftrightarrow \varphi \in \mathcal{L}_n^c$.

For an L_n^c -algebra A, $a \in A$ is idempotent iff a * a = a.

 $\mathcal{B}(A)$ denotes the set of all idempotent elements of an \mathcal{L}_n^c -algebra A.

Let A be an \mathcal{L}_n^c -algebra. Then, we have the following facts: (i) For $a \in A$, $*^{n-1}a$ is always idempotent. (ii) If $a \in A$ is idempotent, then either v(a) = 1 or v(a) = 0 holds for any homomorphism $v: A \to \mathbf{n}$. (iii) If $a, b \in A$ are idempotent, then $a*b = (*^{n-1}a)*(*^{n-1}b) = (*^{n-1}a) \wedge (*^{n-1}b) = a \wedge b$ and $a\wp b = (*^{n-1}a)\wp(*^{n-1}b) = (*^{n-1}a)\vee(*^{n-1}b) = a\vee b$.

It is easy to verify the following:

Proposition 2.5. For an L_n^c -algebra A, $\mathcal{B}(A)$ forms a Boolean algebra. In particular, $a \vee a^{\perp} = 1$ for any idempotent element a of A.

In the following, we define a formula $T_r(x)$ for $r \in \mathbf{n}$, which intuitively means that the truth value of x is exactly r.

Lemma 2.6. Let A be an \mathcal{L}_n^c -algebra and $r \in \mathbf{n}$. There is an idempotent formula $\mathcal{T}_r(x)$ with one variable x such that, for any homomorphism $v: A \to \mathbf{n}$ and any $a \in A$, the following hold:

- $v(T_r(a)) = 1$ iff v(a) = r;
- $v(T_r(a)) = 0$ iff $v(a) \neq r$.

Proof. If r = 0, then we can set $T_r(x) = *^{n-1}(x^{\perp})$. If r = 1, then we can set $T_r(x) = *^{n-1}x$.

Let r = k/(n-1) for $k \in \{1, ..., n-2\}$. If k is a divisor of n-1, then we can set

$$T_r(x) = *^{n-1}(x \leftrightarrow (\wp^{\frac{n-1}{k}-1}x)^{\perp}).$$

For a rational number q, let [q] denote the greatest integer n such that $n \leq q$. If k is not a divisor of n-1, then

$$v(x) = k/(n-1) \quad \text{iff} \quad v(\wp^{\left[\frac{n-1}{k}\right]}x) = \frac{k}{n-1} \left[\frac{n-1}{k}\right] (<1)$$
$$\text{iff} \quad v((\wp^{\left[\frac{n-1}{k}\right]}x)^{\perp}) = 1 - \frac{k}{n-1} \left[\frac{n-1}{k}\right].$$

Since

$$1 - \frac{k}{n-1} \left\lceil \frac{n-1}{k} \right\rceil < \frac{k}{n-1},$$

this lemma follows by induction on k.

The above lemma is more easily proved by using truth constants $r \in \mathbf{n}$. However, it must be stressed that the above proof works even if we consider Lukasiewicz n-valued logic without truth constants.

Note that any homomorphism preserves the operation $T_r(-)$.

Lemma 2.7. Let A be an L_n^c -algebra and $a_i \in A$ for a finite set I and $i \in I$. Then, (i) $T_1(\bigvee_{i \in I} a_i) = \bigvee_{i \in I} T_1(a_i)$; (ii) $T_1(\bigwedge_{i \in I} a_i) = \bigwedge_{i \in I} T_1(a_i)$.

Proof. Since **n** is totally ordered, we have (i). (ii) is immediate. \Box

By (ii) in the above lemma, $T_1(-)$ is order preserving.

Lemma 2.8. Let A be an L_n^c -algebra and $r \in \mathbf{n}$. There is an idempotent formula $U_r(x)$ with one variable x such that, for any homomorphism $v: A \to \mathbf{n}$ and any $a \in A$, the following two conditions hold: (i) $v(U_r(a)) = 1$ iff $v(a) \geq r$; (ii) $v(U_r(a)) = 0$ iff $v(a) \not\geq r$.

Proof. It suffices to let $U_r(x) = \bigvee \{T_s(x) ; r \leq s\}$ by Lemma 2.6.

Note that any homomorphism preserves the operation $U_r(-)$.

Lemma 2.9. Let A be an L_n^c -algebra and $r \in \mathbf{n}$. There is a formula $S_r(x)$ with one variable x such that, for any homomorphism $v: A \to \mathbf{n}$ and any $a \in A$, the following two conditions hold: (i) $v(S_r(a)) = r$ iff v(a) = 1; (ii) $v(S_r(a)) = 0$ iff $v(a) \neq 1$.

Proof. Let
$$S_r(x) = (T_1(x) \to r) \wedge ((T_1(x))^{\perp} \to 0).$$

Note that any homomorphism preserves the operation $S_r(-)$.

Lemma 2.10. Let A be an L_n^c -algebra. Let v and u be homomorphisms from A to \mathbf{n} . Then, (i) v = u iff (ii) $v^{-1}(\{1\}) = u^{-1}(\{1\})$.

Proof. Clearly, (i) implies (ii). We show the converse. Assume that $v^{-1}(\{1\}) = u^{-1}(\{1\})$. Suppose for contradiction that $v(a) \neq u(a)$ for some $a \in A$. Let r = v(a). Then $v(T_r(a)) = 1$ and $u(T_r(a)) = 0$, which contradicts $v^{-1}(\{1\}) = u^{-1}(\{1\})$.

For an \mathcal{L}_n^c -algebra A and $a, b \in A$, we mean $a \vee b = b$ by $a \leq b$.

Lemma 2.11. Let A be an \mathbb{L}_n^c -algebra. For any $a, b \in A$, the following holds:

$$\bigwedge_{r \in \mathbf{n}} (\mathrm{T}_r(a) \leftrightarrow \mathrm{T}_r(b)) \le a \leftrightarrow b.$$

For a partially ordered set (M, \leq) , $X \subset M$ is called an upper set iff if $x \in X$ and $x \leq y$ for $y \in M$ then $y \in X$.

Definition 2.12. Let A be an \mathcal{L}_n^c -algebra. A non-empty subset F of A is called an **n**-filter of A iff F is an upper set and is closed under *. An **n**-filter F of A is called proper iff $F \neq A$.

An **n**-filter of A is closed under \land , since $a * b \le a \land b$ for any $a, b \in A$.

Definition 2.13. Let A be an L_n^c -algebra. A proper **n**-filter P of A is prime iff, for any $a, b \in A$, $a \lor b \in P$ implies either $a \in P$ or $b \in P$.

Proposition 2.14. Let A be an \mathbb{L}_n^c -algebra and F an \mathbf{n} -filter of A. For $b \in A$, assume $b \notin F$. Then, there is a prime \mathbf{n} -filter P of A such that $F \subset P$ and $b \notin P$.

Proof. Let Z be the set of all those **n**-filters G of A such that $F \subset G$ and $b \notin G$. Then $F \in Z$. Clearly, every chain of Z has an upper bound in Z. Thus, by Zorn's lemma, we have a maximal element P in Z. Note that $F \subset P$ and $b \notin P$.

To complete the proof, it suffices to show that P is a prime **n**-filter of A. Assume $x \vee y \in P$. Additionally, suppose for contradiction that $x \notin P$ and $y \notin P$. Then, since P is maximal, there exists $\varphi_x \in A$ such that $\varphi_x \leq b$ and $\varphi_x = (*^{n-1}x) * p_x$ for some $p_x \in P$. Similarly, there exists $\varphi_y \in A$ such that $\varphi_y \leq b$ and $\varphi_y = (*^{n-1}y) * p_y$ for some $p_y \in P$. Now, we have the following:

$$b \geq ((*^{n-1}x)*p_x) \vee ((*^{n-1}y)*p_y)$$

$$\geq (*^{n-1}(x*p_x)) \vee (*^{n-1}(y*p_y))$$

$$= *^{n-1}((x*p_x) \vee (y*p_y))$$

$$\geq *^{n-1}((x \vee (y*p_y))*(p_x \vee (y*p_y)))$$

$$\geq *^{n-1}((x \vee y)*p_y*p_x),$$

where note that $*^{n-1}(x \vee y) = (*^{n-1}x) \vee (*^{n-1}y)$ and $x \vee (y*z) \geq (x \vee y) * (x \vee z)$ for any $x, y, z \in A$. Since $p_x, p_y, x \vee y \in P$, we have $b \in P$, which is a contradiction. Hence P is a prime **n**-filter of A.

We do not use $(-)^{\perp}$ or \rightarrow in the above proof and therefore the above proof works even for algebras of "intuitionistic Łukasiewicz *n*-valued logic."

Definition 2.15. Let A be an \mathcal{L}_n^c -algebra. A subset X of A has finite intersection property (f.i.p.) with respect to * iff, for any $n \in \omega$ with $n \neq 0$, if $a_1, ..., a_n \in X$ then $a_1 * ... * a_n \neq 0$.

Corollary 2.16. Let A be an \mathcal{L}_n^c -algebra and X a subset of A. If X has f.i.p. with respect to *, then there is a prime \mathbf{n} -filter P of A with $X \subset P$.

Proof. By the assumption, we have a proper **n**-filter F of A generated by X. By letting b=0 in Proposition 2.14, we have a prime **n**-filter P of A with $X \subset P$.

Proposition 2.17. Let A be an L_n^c -algebra. For a prime \mathbf{n} -filter P of A, define $v_P: A \to \mathbf{n}$ by $v_P(a) = r \Leftrightarrow \mathrm{T}_r(a) \in P$. Then, v_P is a bijection from the set of all prime \mathbf{n} -filters of A to the set of all homomorphisms from A to \mathbf{n} with $v_P^{-1}(\{1\}) = P$.

Proof. Note that v_P is well-defined as a function. We prove that v_P is a homomorphism. We first show $v_P(a*b) = v_P(a) * v_P(b)$ for $a, b \in A$. Let $r = v_P(a)$ and $s = v_P(b)$. Then $T_r(a) \in P$ and $T_s(b) \in P$. It is easy to see that $T_r(a) \wedge T_s(b) \leq T_{r*s}(a*b)$, which intuitively means that if the truth value of a is r and if the truth value of b is s then the truth value of s is s. Since $T_r(a) \in P$ and $T_s(b) \in P$, we have $T_{r*s}(a*b) \in P$, whence we have $v_P(a*b) = r*s = v_P(a)*v_P(b)$.

Next we show that $v_P(a^{\perp}) = v_P(a)^{\perp}$. Let $r = v_P(a)$. It is easy to see that $T_r(a) \leq T_{r^{\perp}}(a^{\perp})$. By $T_r(a) \in P$, we have $T_{r^{\perp}}(a^{\perp}) \in P$, whence $v_P(a^{\perp}) = r^{\perp} = v_P(a)^{\perp}$. As is well-known, (\land, \lor, \wp, \to) can be defined by using only $(*, (\cdot)^{\perp})$ (see [6]) and so v_P preserves the operations (\land, \lor, \wp, \to) . Clearly, v_P preserves any constant $r \in \mathbf{n}$. Thus, v_P is a homomorphism. The remaining part of the proof is straightforward.

3 n-valued fuzzy topology

Let us review basic concepts from fuzzy set theory and fuzzy topology.

3.1 n-valued fuzzy set theory

An **n**-fuzzy set on a set S is defined as a function from S to **n**. For **n**-fuzzy sets μ , λ on S, define an **n**-fuzzy set $\mu @ \lambda$ on S by $(\mu @ \lambda)(x) = \mu(x) @ \lambda(y)$ for $@ = \wedge, \vee, *, \wp, \rightarrow$, and define an **n**-fuzzy set μ^{\perp} on S by $(\mu^{\perp})(x) = (\mu(x))^{\perp}$. Let X, Y be sets and f a function from X to Y. For an **n**-fuzzy set μ on X, define the direct image $f(\mu): Y \rightarrow \mathbf{n}$ of μ under f by

$$f(\mu)(y) = \bigvee \{\mu(x) \; ; \; x \in f^{-1}(\{y\})\} \text{ for } y \in Y.$$

For $f: X \to Y$ and an **n**-fuzzy set λ on Y, define the inverse image $f^{-1}(\lambda): X \to \mathbf{n}$ of λ under f by $f^{-1}(\lambda) = \lambda \circ f$. Note that f^{-1} commutes with \bigvee , i.e., $f^{-1}(\bigvee_{i \in I} \mu_i) = \bigvee_{i \in I} f^{-1}(\mu_i)$ for **n**-fuzzy sets μ_i on Y.

For a relation R on a set S and an **n**-fuzzy set μ on S, define an **n**-fuzzy set $R^{-1}[\mu]$ on S, which is called the inverse image of μ under R, by $R^{-1}[\mu](x) = \bigvee \{\mu(y) \; ; \; xRy\}$ for $x \in S$. Note that $R^{-1}[\bigvee_{i \in I} \mu_i] = \bigvee_{i \in I} (R^{-1}[\mu_i])$.

3.2 n-valued fuzzy topology

For sets X and Y, Y^X denotes the set of all functions from X to Y. We do not distinguish between $r \in \mathbf{n}$ and the constant function whose value is always r.

Definition 3.1 ([30, 12, 27]). For a set S and a subset \mathcal{O} of \mathbf{n}^S , (S, \mathcal{O}) is an **n**-fuzzy space iff the following hold:

- $r \in \mathcal{O}$ for any $r \in \mathbf{n}$;
- if $\mu_1, \mu_2 \in \mathcal{O}$ then $\mu_1 \wedge \mu_2 \in \mathcal{O}$;
- if $\mu_i \in \mathcal{O}$ for $i \in I$ then $\bigvee_{i \in I} \mu_i \in \mathcal{O}$,

Then, we call \mathcal{O} the **n**-fuzzy topology of (S, \mathcal{O}) , and an element of \mathcal{O} an open **n**-fuzzy set on (S, \mathcal{O}) . An **n**-fuzzy set λ on S is a closed **n**-fuzzy set on (S, \mathcal{O}) iff $\lambda = \mu^{\perp}$ for some open **n**-fuzzy set μ on (S, \mathcal{O}) . A clopen **n**-fuzzy set on (S, \mathcal{O}) means a closed and open **n**-fuzzy set on (S, \mathcal{O}) .

An **n**-fuzzy space (S, \mathcal{O}) is often denoted by its underlying set S.

Definition 3.2. For a set S, \mathbf{n}^S is called the discrete \mathbf{n} -fuzzy topology on S. (S, \mathbf{n}^S) is called a discrete \mathbf{n} -fuzzy space.

Definition 3.3. Let S_1 and S_2 be **n**-fuzzy spaces. Then, $f: S_1 \to S_2$ is continuous iff, for any open **n**-fuzzy set μ on S_2 , $f^{-1}(\mu)$ (i.e., $\mu \circ f$) is an open **n**-fuzzy set on S_1 .

A composition of continuous functions between \mathbf{n} -fuzzy spaces is also continuous (as a function between \mathbf{n} -fuzzy spaces).

Definition 3.4. Let (S, \mathcal{O}) be an **n**-fuzzy space. Then, an open basis \mathcal{B} of (S, \mathcal{O}) is a subset of \mathcal{O} such that the following holds: (i) \mathcal{B} is closed under \wedge ; (ii) for any $\mu \in \mathcal{O}$, there are $\mu_i \in \mathcal{B}$ for $i \in I$ with $\mu = \bigvee_{i \in I} \mu_i$.

Definition 3.5. An **n**-fuzzy space S is Kolmogorov iff, for any $x, y \in S$ with $x \neq y$, there is an open **n**-fuzzy set μ on S with $\mu(x) \neq \mu(y)$.

Definition 3.6. An **n**-fuzzy space S is Hausdorff iff, for any $x, y \in S$ with $x \neq y$, there are $r \in \mathbf{n}$ and open **n**-fuzzy sets μ, λ on S such that $\mu(x) \geq r$, $\lambda(y) \geq r$ and $\mu \wedge \lambda < r$.

Definition 3.7 ([12]). Let S be an **n**-fuzzy space. An **n**-fuzzy set λ on S is compact iff, if $\lambda \leq \bigvee_{i \in I} \mu_i$ for open **n**-fuzzy sets μ_i on S, then there is a finite subset J of I such that $\lambda \leq \bigvee_{i \in J} \mu_i$.

Let 1 denote the constant function on S whose value is always 1. Then, S is compact iff, if $1 = \bigvee_{i \in I} \mu_i$ for open **n**-fuzzy sets μ_i on S, then there is a finite subset J of I such that $1 = \bigvee_{i \in J} \mu_i$.

We can construct an operation $(-)^*$ which turns an **n**-fuzzy space into a topological space (in the classical sense) as follows.

Definition 3.8. Let (S, \mathcal{O}) be an **n**-fuzzy space. Define

$$\mathcal{O}^* = \{ \mu^{-1}(\{1\}) ; \mu \in \mathcal{O} \}.$$

Then, S^* denotes a topological space (S, \mathcal{O}^*) (see the below proposition).

Lemma 3.9. Let (S, \mathcal{O}) be an **n**-fuzzy space. Then, S^* forms a topological space.

Proof. Since $0 \in \mathcal{O}$ and $\emptyset = 0^{-1}(\{1\})$, we have $\emptyset \in \mathcal{O}^*$. Similarly, $S \in \mathcal{O}^*$. Assume $X_i \in \mathcal{O}$ for $i \in I$. Then, $X_i = \mu_i^{-1}(\{1\})$ for some $\mu_i \in \mathcal{O}$. Since \mathbf{n} is totally ordered, $\bigcup_{i \in I} X_i = (\bigvee_{i \in I} \mu_i)^{-1}(\{1\})$. Thus, by $\bigvee_{i \in I} \mu_i \in \mathcal{O}$, we have $\bigcup_{i \in I} X_i \in \mathcal{O}^*$. It is easy to verify that $X, Y \in \mathcal{O}$ implies $X \cap Y \in \mathcal{O}^*$. \square

4 A fuzzy topological duality for L_n^c -algebras

In this section, we show a fuzzy topological duality for L_n^c -algebras, which is a generalization of Stone duality for Boolean algebras via fuzzy topology, where note that L_n^c -algebras coincide with Boolean algebras.

Definition 4.1. L_n^c -Alg denotes the category whose objects are L_n^c -algebras and whose arrows are homomorphisms of L_n^c -algebras.

Our aim in this section is to show that the category L_n^c -Alg is dually equivalent to the category FBS_n , which is defined in the following subsection.

4.1 Category FBS_n

We equip \mathbf{n} with the discrete \mathbf{n} -fuzzy topology.

Definition 4.2. Let S be an **n**-fuzzy space. Then, $\operatorname{Cont}(S)$ is defined as the set of all continuous functions from S to **n**. We endow $\operatorname{Cont}(S)$ with the operations $(\wedge, \vee, *, \wp, \to, (-)^{\perp}, 0, 1/(n-1), 2/(n-1), ..., 1)$ defined pointwise: For $f, g \in \operatorname{Cont}(S)$, define (f@g)(x) = f(x)@g(x), where $@=\wedge, \vee, *, \wp, \to$. For $f \in \operatorname{Cont}(S)$, define $f^{\perp}(x) = (f(x))^{\perp}$. Finally, $r \in \mathbf{n}$ is defined as the constant function on S whose value is always r.

We show that the operations of Cont(S) are well-defined:

Lemma 4.3. Let S be an **n**-fuzzy space. Then, Cont(S) is closed under the operations $(\land, \lor, *, \wp, \rightarrow, (-)^{\perp}, 0, 1/(n-1), ..., (n-2)/(n-1), 1)$

Proof. For any $r \in \mathbf{n}$, a constant function $r: S \to \mathbf{n}$ is continuous, since any $s \in \mathbf{n}$ is an open \mathbf{n} -fuzzy set on S by Definition 3.1. Then it suffices to show that, if $f, g \in \operatorname{Cont}(S)$, then f^{\perp} and f@g are continuous for $@= \land, \lor, *, \wp, \to$. Throughout this proof, let $f, g \in \operatorname{Cont}(S)$ and μ an open \mathbf{n} -fuzzy set on \mathbf{n} , i.e., a function from \mathbf{n} to \mathbf{n} . For $r \in \mathbf{n}$, define $\mu_r: \mathbf{n} \to \mathbf{n}$ by

$$\mu_r(x) = \begin{cases} \mu(r) & \text{if } x = r \\ 0 & \text{otherwise.} \end{cases}$$

Then, we have $\mu = \bigvee_{r \in \mathbf{n}} \mu_r$.

We show that $(f^{\perp})^{-1}(\mu)$ is an open **n**-fuzzy set on S. Now, we have

$$(f^{\perp})^{-1}(\mu) = (f^{\perp})^{-1}(\bigvee_{r \in \mathbf{n}} \mu_r) = \bigvee_{r \in \mathbf{n}} ((f^{\perp})^{-1}(\mu_r)).$$

Thus it suffices to show that $(f^{\perp})^{-1}(\mu_r)$ is an open **n**-fuzzy set on S for any $r \in \mathbf{n}$. Define $\lambda_r : \mathbf{n} \to \mathbf{n}$ by

$$\lambda_r(x) = \begin{cases} \mu(r) & \text{if } x = 1 - r \\ 0 & \text{otherwise.} \end{cases}$$

Then it is straightforward to verify that $(f^{\perp})^{-1}(\mu_r) = f^{-1}(\lambda_r)$. Since f is continuous and since λ_r is an open **n**-fuzzy set on **n**, $f^{-1}(\lambda_r)$ is an open **n**-fuzzy set on S.

Next, we show that $(f * g)^{-1}(\mu)$ is an open **n**-fuzzy set on S. By the same argument as in the case of f^{\perp} , it suffices to show that $(f * g)^{-1}(\mu_r)$ is

an open **n**-fuzzy set on S for any $r \in \mathbf{n}$. For $p \in \mathbf{n}$, define $\theta_{r,p} : \mathbf{n} \to \mathbf{n}$ by

$$\theta_{r,p}(x) = \begin{cases} \mu(r) & \text{if } x = p \\ 0 & \text{otherwise.} \end{cases}$$

For $r \neq 0$, define $\kappa_{r,p} : \mathbf{n} \to \mathbf{n}$ by

$$\kappa_{r,p}(x) = \begin{cases} \mu(r) & \text{if } x = r - p + 1 \\ 0 & \text{otherwise.} \end{cases}$$

For r = 0, define $\kappa_{r,p} : \mathbf{n} \to \mathbf{n}$ by

$$\kappa_{r,p}(x) = \begin{cases} \mu(r) & \text{if } x \le r - p + 1 \\ 0 & \text{otherwise.} \end{cases}$$

Then it is straightforward to verify that

$$(f * g)^{-1}(\mu_r) = \bigvee_{p \in \mathbf{n}} (f^{-1}(\theta_{r,p}) \wedge g^{-1}(\kappa_{r,p})).$$

Since $f, g \in \text{Cont}(S)$, the right-hand side is an open **n**-fuzzy set on S.

As is well-known, $(\land, \lor, \wp, \rightarrow)$ can be defined by using only $(*, (-)^{\perp})$ (see [6]) and so $(f@g)^{-1}(\mu)$ is an open **n**-fuzzy set for $@=\land, \lor, \wp, \rightarrow$.

Definition 4.4. For an **n**-fuzzy space S, S is zero-dimensional iff Cont(S) forms an open basis of S.

Definition 4.5. For an **n**-fuzzy space S, S is an **n**-fuzzy Boolean space iff S is zero-dimensional, compact and Kolmogorov.

Definition 4.6. FBS_n is defined as the category of **n**-fuzzy Boolean spaces and continuous functions.

Proposition 4.7. Let S be an **n**-fuzzy space. Then, (i) S is an **n**-fuzzy Boolean space iff (ii) S is zero-dimensional, compact and Hausdorff.

Proof. Cleary, (ii) implies (i). We show the converse. Assume that S is an \mathbf{n} -fuzzy Boolean space. It suffices to show that S is Hausdorff. Let $x, y \in S$ with $x \neq y$. Since S is Kolmogorov and since S is zero-dimensional, there is $\mu \in \operatorname{Cont}(S)$ with $\mu(x) \neq \mu(y)$. Let $s = \mu(x)$. Then, $T_s \circ \mu(x) = 1$ and $(T_s \circ \mu)^{\perp}(y) = 1$. Since $T_s : \mathbf{n} \to \mathbf{n}$ is continuous, $T_s \circ \mu \in \operatorname{Cont}(S)$ and $(T_s \circ \mu)^{\perp} \in \operatorname{Cont}(S)$ by Lemma 4.3. Since S is zero-dimensional, $T_s \circ \mu$ and $(T_s \circ \mu)^{\perp}$ are open \mathbf{n} -fuzzy sets on S. We also have $(T_s \circ \mu) \wedge (T_s \circ \mu)^{\perp} = 0$. Thus, S is Hausdorff.

Next we show that (-)* turns an **n**-fuzzy Boolean space into a Boolean space, i.e., a zero-dimensional compact Hausdorff space.

Proposition 4.8. Let S be an **n**-fuzzy Boolean space. Then, S^* forms a Boolean space.

Proof. By Lemma 3.9, S^* is a topological space.

First, we show that S^* is zero-dimensional in the classical sense. Let $\mathcal{B}^* = \{\mu^{-1}(\{1\}) : \mu \in \operatorname{Cont}(S)\}$, where, since S is zero-dimensional and so $\mu \in \operatorname{Cont}(S)$ is an open **n**-fuzzy set on S, $\mu^{-1}(\{1\})$ is an open subset of S^* . We claim that \mathcal{B}^* forms an open basis of S^* . It is easily verified that \mathcal{B}^* is closed under \cap . Assume that O is an open subset of S^* , i.e., $O = \mu^{-1}(\{1\})$ for some open **n**-fuzzy set μ on S. Since S is zero-dimensional, there are $\mu_i \in \operatorname{Cont}(S)$ with $\mu = \bigvee_{i \in I} \mu_i$. Since **n** is totally ordered, $O = \bigcup_{i \in I} \mu_i^{-1}(\{1\})$. It follows from $\mu_i \in \operatorname{Cont}(S)$ that $\mu_i^{-1}(\{1\}) \in \mathcal{B}^*$ for any $i \in I$. This completes the proof of the claim. If $\mu \in \operatorname{Cont}(S)$, then

$$(\mu^{-1}(\{1\}))^c = ((T_1 \circ \mu)^{\perp})^{-1}(\{1\}).$$

Since $T_1 : \mathbf{n} \to \mathbf{n}$ is continuous, $T_1 \circ \mu \in \operatorname{Cont}(S)$, whence, by Lemma 4.3, $(T_1 \circ \mu)^{\perp} \in \operatorname{Cont}(S)$. Thus the right-hand side is open in S^* and so $\mu^{-1}(\{1\})$ is clopen in S^* for $\mu \in \operatorname{Cont}(S)$. Hence, S^* is zero-dimensional.

Second, we show that S^* is compact in the classical sense. Assume that $S^* = \bigcup_{i \in I} O_i$ for some open subsets O_i of S^* . Since \mathcal{B}^* forms an open basis of S^* , we may assume that $S^* = \bigcup_{i \in I} \mu_i^{-1}(\{1\})$ for some $\mu_i \in \operatorname{Cont}(S)$. Then, $1 = \bigvee_{i \in I} \mu_i$ where 1 denotes the constant function on $S = S^*$ whose value is always 1. Since S is zero-dimensional, μ_i is an open $\operatorname{n-fuzzy}$ set on S. Thus, since S is compact, there is a finite subset S of S such that S is compact. Finally, we show that S^* is Hausdorff in the classical sense. Since S^* is

Finally, we show that S^* is Hausdorff in the classical sense. Since S^* is zero-dimensional, it suffices to show that S^* is Kolmogorov in the classical sense. Assume $x, y \in S^*$ with $x \neq y$. Since S is Kolmogorov, there is an open \mathbf{n} -fuzzy set μ on S with $\mu(x) \neq \mu(y)$. Since S is zero-dimensional, $\mu = \bigvee_{i \in I} \mu_i$ for some $\mu_i \in \text{Cont}(S)$. There is $i \in I$ with $\mu_i(x) \neq \mu_i(y)$. Let $r = \mu_i(x)$. Then, we have $T_r \circ \mu_i(x) = 1$ and $T_r \circ \mu_i(y) = 0$, whence we have $x \in (T_r \circ \mu_i)^{-1}(\{1\})$ and $y \notin (T_r \circ \mu_i)^{-1}(\{1\})$. Since $T_r : \mathbf{n} \to \mathbf{n}$ is continuous, it follows from $\mu_i \in \text{Cont}(S)$ that $T_r \circ \mu_i \in \text{Cont}(S)$, whence $T_r \circ \mu_i$ is an open \mathbf{n} -fuzzy set on S and so $(T_r \circ \mu_i)^{-1}(\{1\})$ is an open subset of S^* . Hence S^* is Kolmogorov.

4.2 Functors Spec and Cont

We define the spectrum $\operatorname{Spec}(A)$ of an L_n^c -algebra A as follows.

Definition 4.9. For an L_n^c -algebra A, $\operatorname{Spec}(A)$ is defined as the set of all homomorphisms (of L_n^c -algebras) from A to \mathbf{n} equipped with the \mathbf{n} -fuzzy topology generated by $\{\langle a \rangle : a \in A\}$, where $\langle a \rangle : \operatorname{Spec}(A) \to \mathbf{n}$ is defined by

$$\langle a \rangle(v) = v(a).$$

The operations $(\land, \lor, *, \wp, \rightarrow, (-)^{\perp})$ on $\{\langle a \rangle ; a \in A\}$ are defined pointwise as in Definition 4.2.

 $\{\langle a \rangle ; a \in A\}$ forms an open basis of Spec(A), since $\langle a \rangle \wedge \langle b \rangle = \langle a \wedge b \rangle$.

Definition 4.10. We define a contravariant functor Spec : L_n^c -Alg \to FBS_n. For an object A in L_n^c -Alg, define Spec(A) as in Definition 4.9.

For an arrow $f: A_1 \to A_2$ in L_n^c -Alg, define $\operatorname{Spec}(f): \operatorname{Spec}(A_2) \to \operatorname{Spec}(A_1)$ by $\operatorname{Spec}(f)(v) = v \circ f$ for $v \in \operatorname{Spec}(A_2)$.

The well-definedness of the functor Spec is proved by Proposition 4.15 and Proposition 4.16 below.

Since n is a totally ordered complete lattice, we have:

Lemma 4.11. Let μ_i be an **n**-fuzzy set on a set S for a set I and $i \in I$. Then, (i) $T_1 \circ \bigvee_{i \in I} \mu_i = \bigvee_{i \in I} (T_1 \circ \mu_i)$; (ii) $T_1 \circ \bigwedge_{i \in I} \mu_i = \bigwedge_{i \in I} (T_1 \circ \mu_i)$.

Lemma 4.12. Let A be an L_n^c -algebra. Then, Spec(A) is compact.

Proof. Assume that $1 = \bigvee_{j \in J} \mu_j$ for open **n**-fuzzy sets μ_j on $\operatorname{Spec}(A)$, where 1 denotes the constant function defined on $\operatorname{Spec}(A)$ whose value is always 1. Then, since $\{\langle a \rangle \; ; \; a \in A\}$ is an open basis of $\operatorname{Spec}(A)$, we may assume that $1 = \bigvee_{i \in I} \langle a_i \rangle$ for some $a_i \in A$. It follows from Lemma 4.11 that $1 = \operatorname{T}_1 \circ 1 = \operatorname{T}_1 \circ \bigvee_{i \in I} \langle a_i \rangle = \bigvee_{i \in I} \operatorname{T}_1 \circ \langle a_i \rangle = \bigvee_{i \in I} \langle \operatorname{T}_1(a_i) \rangle$. Thus, we have

$$0 = (\bigvee_{i \in I} \langle \mathrm{T}_1(a_i) \rangle)^{\perp} = \bigwedge_{i \in I} \langle (\mathrm{T}_1(a_i))^{\perp} \rangle.$$

Then, there is no homomorphism $v:A\to \mathbf{n}$ such that $v((\mathrm{T}_1(a_i))^\perp)=1$ for any $i\in I$. Therefore, by Proposition 2.17, there is no prime \mathbf{n} -filter of A which contains $\{(\mathrm{T}_1(a_i))^\perp:i\in I\}$. Thus, by Corollary 2.16, $\{(\mathrm{T}_1(a_i))^\perp:i\in I\}$ does not have f.i.p. with respect to * and so there is a finite subset $\{i_1,...i_m\}$ of I such that $(\mathrm{T}_1(a_{i_1}))^\perp*...*(\mathrm{T}_1(a_{i_m}))^\perp=0$, whence $\mathrm{T}_1(a_{i_1})\wp...\wp\mathrm{T}_1(a_{i_m})=1$. Since $\mathrm{T}_1(a_{i_k})$ is idempotent for any $k\in\{1,...,m\}$, we have $\mathrm{T}_1(a_{i_1})\vee...\vee\mathrm{T}_1(a_{i_m})=1$ and, by Lemma 2.7, $\mathrm{T}_1(a_{i_1}\vee...\vee a_{i_m})=1$. By $\mathrm{T}_1(x)\leq x$, we have $a_{i_1}\vee...\vee a_{i_m}=1$, whence $\langle a_{i_1}\vee...\vee a_{i_m}\rangle=1$. This completes the proof.

Lemma 4.13. Let A be an \mathbb{E}_n^c -algebra. Then, $\operatorname{Spec}(A)$ is Kolmogorov.

Proof. Let $v_1, v_2 \in \operatorname{Spec}(A)$ with $v_1 \neq v_2$. Then there is $a \in A$ such that $v_1(a) \neq v_2(a)$, whence we have $\langle a \rangle(v_1) \neq \langle a \rangle(v_2)$.

Lemma 4.14. Let A be an L_n^c -algebra. Then, Spec(A) is zero-dimensional.

Proof. Since $\{\langle a \rangle ; a \in A\}$ forms an open basis of $\operatorname{Spec}(A)$, it suffices to show that

$$Cont \circ Spec(A) = \{ \langle a \rangle \; ; \; a \in A \}.$$

We first show that $\operatorname{Cont} \circ \operatorname{Spec}(A) \supset \{\langle a \rangle ; a \in A\}$, i.e., $\langle a \rangle$ is continuous for any $a \in A$. Let $a \in A$ and μ an **n**-fuzzy set on **n**. Then, by Lemma 2.9,

$$\langle a \rangle^{-1}(\mu) = \mu \circ \langle a \rangle = \bigvee_{r \in \mathbf{n}} (S_{\mu(r)} \circ T_r) \circ \langle a \rangle = \langle \bigvee_{r \in \mathbf{n}} (S_{\mu(r)}(T_r(a))) \rangle.$$

Hence $\langle a \rangle$ is continuous.

Next we show Cont \circ Spec $(A) \subset \{\langle a \rangle ; a \in A\}$. Let $f \in \text{Cont} \circ \text{Spec}(A)$ and $r \in \mathbf{n}$. Define an **n**-fuzzy set λ_r on **n** by $\lambda_r(x) = 1$ for x = r and $\lambda_r(x) = 0$ for $x \neq r$. Since f is continuous, $f^{-1}(\lambda_r) = \bigvee_{i \in I} \langle a_i \rangle$ for some $a_i \in A$. Now the following holds:

$$1 = f^{-1}(\lambda_r) \vee (f^{-1}(\lambda_r))^{\perp} = (\bigvee_{i \in I} \langle a_i \rangle) \vee (f^{-1}(\lambda_r))^{\perp}.$$

Here, we have $(f^{-1}(\lambda_r))^{\perp} = (\lambda_r \circ f)^{\perp} = \lambda_r^{\perp} \circ f = f^{-1}(\lambda_r^{\perp})$. Since $f^{-1}(\lambda_r^{\perp})$ is an open **n**-fuzzy set, $(f^{-1}(\lambda_r))^{\perp}$ is an open **n**-fuzzy set on Spec(A). Since Spec(A) is compact by Lemma 4.12, there is a finite subset J of I such that $1 = (\bigvee_{j \in J} \langle a_j \rangle) \vee (f^{-1}(\lambda_r))^{\perp}$. Thus, $f^{-1}(\lambda_r) \leq \bigvee_{j \in J} \langle a_j \rangle$. Since $\bigvee_{j \in J} \langle a_j \rangle \leq \bigvee_{i \in I} \langle a_i \rangle = f^{-1}(\lambda_r)$, we have $f^{-1}(\lambda_r) = \bigvee_{j \in J} \langle a_j \rangle$. Since J is finite, $f^{-1}(\lambda_r) = \bigvee_{j \in J} \langle a_j \rangle = \langle \bigvee_{j \in J} a_j \rangle$. Let $a_r = \bigvee_{j \in J} a_j$. Note that if $v \in f^{-1}(\{r\})$ then $v(a_r) = 1$ and that if $v \notin f^{-1}(\{r\})$ then $v(a_r) = 0$. We claim that $f = \langle \bigvee_{r \in \mathbf{n}} (r \wedge a_r) \rangle$. If $v \in f^{-1}(\{s\})$ for $s \in \mathbf{n}$, then

$$\langle \bigvee_{r \in \mathbf{n}} (r \wedge a_r) \rangle(v) = v(\bigvee_{r \in \mathbf{n}} (r \wedge a_r)) = \bigvee_{r \in \mathbf{n}} (r \wedge v(a_r)) = s = f(v).$$

This completes the proof.

By the above lemmas, we obtain the following proposition.

Proposition 4.15. Let A be an object in L_n^c -Alg. Then, $\operatorname{Spec}(A)$ is an object in the category FBS_n .

Proposition 4.16. Let A_1 and A_2 be objects in \mathbb{L}_n^c -Alg and $f: A_1 \to A_2$ an arrow in \mathbb{L}_n^c -Alg. Then, $\operatorname{Spec}(f)$ is an arrow in FBS_n .

Proof. Since the inverse image $(\operatorname{Spec}(f))^{-1}$ commutes with \bigvee , it suffices to show that $(\operatorname{Spec}(f))^{-1}(\langle a \rangle)$ is an open **n**-fuzzy set on $\operatorname{Spec}(A_2)$ for any $a \in A_1$. For $v \in \operatorname{Spec}(A_2)$, we have

$$(\operatorname{Spec}(f)^{-1}(\langle a \rangle))(v) = \langle a \rangle \circ \operatorname{Spec}(f)(v) = \langle a \rangle(v \circ f) = v \circ f(a) = \langle f(a) \rangle(v).$$

Hence
$$(\operatorname{Spec}(f))^{-1}(\langle a \rangle) = \langle f(a) \rangle$$
, which is an open **n**-fuzzy set.

Definition 4.17. We define a contravariant functor Cont : $FBS_n \to L_n^c$ -Alg. For an object S in FBS_n , Cont(S) is defined as in Definition 4.2.

For an arrow $f: S \to T$ in FBS_n , $Cont(f): Cont(T) \to Cont(S)$ is defined by $Cont(f)(g) = g \circ f$ for $g \in Cont(T)$.

Since the operations of Cont(S) are defined pointwise, Cont(S) is an \mathbb{E}_{n}^{c} -algebra and the following holds, whence Cont is well-defined.

Proposition 4.18. Let S_1 and S_2 be objects in FBS_n , and $f: S_1 \to S_2$ an arrow in FBS_n . Then, Cont(f) is an arrow in L_n^c -Alg.

Definition 4.19. Let A be an L_n^c -algebra. Then, $\operatorname{Spec}_{\mathbf{2}}(\mathcal{B}(A))$ is defined as the set of all homomorphisms of Boolean algebras from $\mathcal{B}(A)$ to $\mathbf{2}$ equipped with the (ordinary) topology generated by $\{\langle a \rangle_{\mathbf{2}} : a \in \mathcal{B}(A)\}$, where $\langle a \rangle_{\mathbf{2}} = \{v \in \operatorname{Spec}_{\mathbf{2}}(\mathcal{B}(A)) : v(a) = 1\}$.

Proposition 4.20. Let A be an L_n^c -algebra. Define a function t_1 from $\operatorname{Spec}(A)^*$ to $\operatorname{Spec}_2(\mathcal{B}(A))$ by $t_1(v) = T_1 \circ v$. Then, t_1 is a homeomorphism.

Proof. By Lemma 2.10, t_1 is injective. We show that t_1 is surjective. Let $v \in \operatorname{Spec}_{\mathbf{2}}(\mathcal{B}(A))$. Define $u \in \operatorname{Spec}(A)$ by $u(a) = r \Leftrightarrow \operatorname{T}_r(a) \in v^{-1}(\{1\})$ for $a \in A$, where note $\operatorname{T}_r(a) \in \mathcal{B}(A)$. Then, in a similar way to Proposition 2.17, it is verified that u is a homomorphism (i.e., $u \in \operatorname{Spec}(A)$). Moreover, we have $t_1(u) = v$ on $\mathcal{B}(A)$. Thus t_1 is bijective. It is straightforward to verify the remaining part of the proof. Note that, for $\langle a \rangle_{\mathbf{n}} = \{v \in \operatorname{Spec}(A) \; ; \; v(a) = 1\}, \; \{\langle a \rangle_{\mathbf{n}} \; ; \; a \in A\} \text{ forms an open basis of } \operatorname{Spec}(A)^* \text{ and } \operatorname{that} t_1(\langle a \rangle_{\mathbf{n}}) = \langle \operatorname{T}_1(a) \rangle_{\mathbf{2}} \text{ for } a \in A$.

4.3 A fuzzy topological duality for L_n^c -algebras

Theorem 4.21. Let A be an \mathbb{L}_n^c -algebra. Then, there is an isomorphism between A and Cont \circ Spec(A) in the category \mathbb{L}_n^c -Alg.

Proof. Define $\langle - \rangle : A \to \operatorname{Cont} \circ \operatorname{Spec}(A)$ as in Definition 4.9. In the proof of Lemma 4.14, it has already been proven that $\langle - \rangle$ is well-defined and surjective. Since the operations of $\operatorname{Cont} \circ \operatorname{Spec}(A)$ are defined pointwise, $\langle - \rangle$ is a homomorphism.

Thus it suffices to show that $\langle - \rangle$ is injective. Assume that $\langle a \rangle = \langle b \rangle$ for $a, b \in A$, which means that, for any $v \in \operatorname{Spec}(A)$, we have v(a) = v(b). Thus, for any $v \in \operatorname{Spec}(A)$ and any $v \in \operatorname{Tr}(A) = v(T_r(b))$. Thus, it follows from Proposition 2.17 that, for any prime **n**-filter P of A and any $v \in \mathbf{n}$, $v \in \mathbf{n}$, $v \in \mathbf{n}$ and $v \in \mathbf{n}$, $v \in \mathbf{n}$ and $v \in \mathbf{n}$, $v \in \mathbf{n}$ and $v \in \mathbf{n}$ an

We claim that $T_r(a) = T_r(b)$ for any $r \in \mathbf{n}$. Suppose for contradiction that $T_r(a) \neq T_r(b)$ for some $r \in \mathbf{n}$. We may assume without loss of generality that $T_r(a) \nleq T_r(b)$. Let $F = \{x \in A : T_r(a) \leq x\}$. Then, since $T_r(a)$ is idempotent, F is an **n**-filter of A. Cleary, $T_r(b) \notin F$. Thus, by Lemma 2.14, there is a prime **n**-filter P of A such that $F \subset P$ and $T_r(b) \notin P$. By $F \subset P$, we have $T_r(a) \in P$, which contradicts $T_r(b) \notin P$, since we have already shown that $T_r(a) \in P$ iff $T_r(b) \in P$. Thus, $T_r(a) = T_r(b)$ for any $r \in \mathbf{n}$, whence $\bigwedge_{r \in \mathbf{n}} (T_r(a) \leftrightarrow T_r(b)) = 1$. Hence, it follows from Lemma 2.11 that a = b, and therefore $\langle - \rangle$ is injective.

Theorem 4.22. Let S be an **n**-fuzzy Boolean space. Then, there is an isomorphism between S and $\operatorname{Spec} \circ \operatorname{Cont}(S)$ in the category FBS_n .

Proof. Define $\Psi: S \to \operatorname{Spec} \circ \operatorname{Cont}(S)$ by $\Psi(x)(f) = f(x)$ for $x \in S$ and $f \in \operatorname{Cont}(S)$. Since the operations of $\operatorname{Cont}(S)$ are defined pointwise, $\Psi(x)$ is a homomorphism and so Ψ is well-defined.

We show that Ψ is continuous. Let $f \in \text{Cont}(S)$. Then $\Psi^{-1}(\langle f \rangle) = f$ by the following:

$$(\Psi^{-1}(\langle f \rangle))(x) = \langle f \rangle \circ \Psi(x) = \Psi(x)(f) = f(x).$$

Since $f \in \text{Cont}(S)$ and S is zero-dimensional, f is an an open **n**-fuzzy set and so $\Psi^{-1}(\langle f \rangle)$ is an open **n**-fuzzy set on S. Since the inverse image Ψ^{-1} commutes with \bigvee , it follows that Ψ is continuous.

Next we show that Ψ is injective. Let $x, y \in S$ with $x \neq y$. Since S is Kolmogorov and zero-dimensional, there is $f \in \text{Cont}(S)$ with $f(x) \neq f(y)$. Thus, $\Psi(x)(f) = f(x) \neq f(y) = \Psi(y)(f)$, whence Ψ is injective.

Next we show that Ψ is surjective. Let $v \in \operatorname{Spec} \circ \operatorname{Cont}(S)$. Consider $\{f^{-1}(\{1\}) : v(f) = 1\}$. Define $\mu : \mathbf{n} \to \mathbf{n}$ by $\mu(1) = 0$ and $\mu(x) = 1$ for $x \neq 1$. Since $f^{-1}(\mu) \ (= \mu \circ f)$ is an open \mathbf{n} -fuzzy set on S for $f \in \operatorname{Cont}(S)$, $(\mu \circ f)^{-1}(\{1\})$ is an open subset of S^* . Since $(\mu \circ f)^{-1}(\{1\}) = (f^{-1}(\{1\}))^c$, $f^{-1}(\{1\})$ is a closed subset of S^* for $f \in \operatorname{Cont}(S)$.

We claim that $\{f^{-1}(\{1\}); v(f) = 1\}$ has the finite intersection property. Since $f^{-1}(\{1\}) \cap g^{-1}(\{1\}) = (f \wedge g)^{-1}(\{1\})$ for $f, g \in \text{Cont}(S)$, it suffices to show that if v(f) = 1 then $f^{-1}(\{1\})$ is not empty. Suppose for contradiction that v(f) = 1 and $f^{-1}(\{1\}) = \emptyset$. Since $f^{-1}(\{1\}) = \emptyset$, we have $T_1(f) = 0$. Thus $v(T_1(f)) = 0$ and so $v(f) \neq 1$, which contradicts v(f) = 1.

By Proposition 4.8, S^* is compact. Thus, there is $z \in S$ such that $z \in \bigcap \{f^{-1}(\{1\}) : v(f) = 1\}$. We claim that $\Psi(z) = v$. By the definition of z, if v(f) = 1 then $\Psi(z)(f) = 1$. We show the converse. Suppose for constradiction that $\Psi(z)(f) = 1$ and $v(f) \neq 1$. Then $v(T_1(f)) = T_1(v(f)) = 0$ and so $v((T_1(f))^{\perp}) = 1$. By the definition of z, $(T_1(f))^{\perp}(z) = 1$ and so $(T_1(f))(z) = 0$. Thus $f(z) \neq 1$, which contradicts $\Psi(z)(f) = 1$. Hence, for any $f \in \text{Cont}(S)$, v(f) = 1 iff $\Psi(z)(f) = 1$. By Lemma 2.10, we have $\Psi(z) = v$. Hence, Ψ is surjective.

Finally we show that Ψ^{-1} is an arrow in the category FBS_n. It suffices to show that, for any open **n**-fuzzy set λ on S, $\Psi(\lambda)$ is an open **n**-fuzzy set on Spec \circ Cont(S). Since S is zero-dimensional, there are $f_i \in \text{Cont}(S)$ with $\lambda = \bigvee_{i \in I} f_i$. For $v \in \text{Spec} \circ \text{Cont}(S)$, the following holds:

$$\Psi(\lambda)(v) = \bigvee \{\lambda(x); x \in \Psi^{-1}(\{v\})\} = \lambda(z) = v(\lambda) = v(\bigvee_{i \in I} f_i) = (\bigvee_{i \in I} \langle f_i \rangle)(v),$$

where z is defined as the unique element x such that $\Psi(x) = v$ (for the definition of the direct image of an **n**-fuzzy set, see Subsection 3.1). Hence $\Psi(\lambda) = \bigvee_{i \in I} \langle f_i \rangle$ and so $\Psi(\lambda)$ is an open **n**-fuzzy set on Spec \circ Cont(S). \square

By Theorem 4.21 and Theorem 4.22, we obtain a fuzzy topological duality for \mathbf{L}_n^c -algebras, which is a generalization of Stone duality for Boolean algebras to the n-valued case via fuzzy topology.

Theorem 4.23. The category \mathcal{L}_n^c -Alg is dually equivalent to the category FBS_n via the functors Spec and Cont.

Proof. Let Id_1 denote the identity functor on L_n^c -Alg and Id_2 denote the identity functor on FBS_n . Then, we define two natural transformations $\epsilon:\mathrm{Id}_1\to\mathrm{Cont}\circ\mathrm{Spec}$ and $\eta:\mathrm{Id}_2\to\mathrm{Spec}\circ\mathrm{Cont}$. For an L_n^c -algebra A, define $\epsilon_A:A\to\mathrm{Cont}\circ\mathrm{Spec}(A)$ by $\epsilon_A=\langle -\rangle$ (see Theorem 4.21). For an \mathbf{n} -fuzzy Boolean space S, define $\eta_S:S\to\mathrm{Spec}\circ\mathrm{Cont}(S)$ by $\eta_S=\Psi$ (see Theorem 4.22). It is straightforward to see that η and ϵ are natural transformations. By Theorem 4.21 and Theorem 4.22, η and ϵ are natural isomorphisms.

5 ML_n^c -algebras and basic properties

We define modal Łukasiewicz n-valued logic with truth constants ML_n^c by \mathbf{n} -valued Kripke semantics. The connectives of ML_n^c are a unary connective \square and the connectives of L_n^c . Form \square denotes the set of formulas of ML_n^c .

Definition 5.1. Let (W, R) be a Kripke frame (i.e., R is a relation on a set W). Then, e is a Kripke **n**-valuation on (W, R) iff e is a function from $W \times \mathbf{Form}_{\square}$ to **n** which satisfies: For each $w \in W$ and $\varphi, \psi \in \mathbf{Form}_{\square}$,

- $e(w, \Box \varphi) = \bigwedge \{e(w', \varphi) ; wRw'\};$
- $e(w, \varphi@\psi) = e(w, \varphi)@e(w, \psi)$ for $@=\wedge, \vee, *, \wp, \rightarrow;$
- $e(w, \varphi^{\perp}) = (e(w, \varphi))^{\perp};$
- e(w,r) = r for $r \in \mathbf{n}$.

Then, (W, R, e) is called an **n**-valued Kripke model. Define ML_n^c as the set of all those formulas $\varphi \in \mathbf{Form}_{\square}$ such that $e(w, \varphi) = 1$ for any **n**-valued Kripke model (W, R, e) and any $w \in W$.

By straightforward computation, we have the following lemma. Recall the definition of U_r (Definition 2.8).

Lemma 5.2. Let $\varphi, \psi \in \mathbf{Form}_{\square}$ and $r \in \mathbf{n}$. (i) $U_r(\square \varphi) \leftrightarrow \square U_r(\varphi) \in \mathrm{ML}_n^c$. (ii) $\square(\varphi \land \psi) \leftrightarrow \square \varphi \land \square \psi \in \mathrm{ML}_n^c$ and $\square 1 \leftrightarrow 1 \in \mathrm{ML}_n^c$. (iii) $\square(\varphi * \varphi) \leftrightarrow (\square \varphi) * (\square \varphi) \in \mathrm{ML}_n^c$ and $\square(\varphi \otimes \varphi) \leftrightarrow (\square \varphi) \otimes (\square \varphi) \in \mathrm{ML}_n^c$.

Definition 5.3. For $X \subset \mathbf{Form}_{\square}$, X is satisfiable iff there are an **n**-valued Kripke model (W, R, e) and $w \in W$ such that $e(w, \varphi) = 1$ for any $\varphi \in X$.

 ML_{n}^{c} -algebras and homomorphisms are defined as follows.

Definition 5.4. Let A be an L_n^c -algebra. Then, (A, \square) is an ML_n^c -algebra iff it satisfies the following set of equations: $\{\varphi = \psi : \varphi \leftrightarrow \psi \in ML_n^c\}$.

A homomorphism of ML_n^c -algebras is defined as a homomorphism of L_n^c -algebras which additionally preserves the operation \square .

Throughout this paper, we do not distinguish between formulas of ML_n^c and terms of ML_n^c -algebras.

Definition 5.5. Let A be an ML_n^c -algebra. Define a relation R_\square on $\mathrm{Spec}(A)$ by

$$vR_{\square}u \Leftrightarrow \forall r \in \mathbf{n} \ \forall x \in A \ (v(\square x) \ge r \ \text{implies} \ u(x) \ge r).$$

Define $e : \operatorname{Spec}(A) \times A \to \mathbf{n}$ by e(v, x) = v(x) for $v \in \operatorname{Spec}(A)$ and $x \in A$. Then, $(\operatorname{Spec}(A), R_{\square}, e)$ is called the **n**-valued canonical model of A. **Proposition 5.6.** Let A be an ML_n^c -algebra. Then, the \mathbf{n} -valued canonical model ($\mathrm{Spec}(A), R_{\square}, e$) of A is an \mathbf{n} -valued Kripke model. In particular, $e(v, \square x) = v(\square x) = \bigwedge \{u(x) \; ; \; vR_{\square}u\}$ for $x \in A$ and $v \in \mathrm{Spec}(A)$.

Proof. It suffices to show that e is a Kripke **n**-valuation. Since v is a homomorphism of \mathcal{L}_n^c -algebras, it remains to show $e(v, \Box x) = \bigwedge \{u(x) \; ; \; vR_{\Box}u\}$. To prove this, it is enough to show that, for any $r \in \mathbf{n}$, (i) $v(\Box x) \geq r$ iff (ii) $vR_{\Box}u$ implies $u(x) \geq r$. By the definition of R_{\Box} , (i) implies (ii). We show the converse. To prove the contrapositive, assume $v(\Box x) \not\geq r$, i.e., $\mathcal{U}_r(\Box x) \notin v^{-1}(\{1\})$. Let

$$F_0 = \{ U_s(x) ; s \in \mathbf{n} \text{ and } U_s(\Box x) \in v^{-1}(\{1\}) \}.$$

Let F be the **n**-filter of A generated by F_0 . We claim that $U_r(x) \notin F$. Suppose for contradiction that $U_r(x) \in F$. Then, there is $\varphi \in A$ such that $\varphi \leq U_r(x)$ and φ is constructed from * and elements of F_0 . Since $U_s(x)$ is idempotent, $U_{s_1}(x_1) * U_{s_2}(x_2) = U_{s_1}(x_1) \wedge U_{s_2}(x_2)$ and so we may assume that $\varphi = \bigwedge\{U_s(x) \; ; \; U_s(x) \in F_1\}$ for some finite subset F_1 of F_0 . By Lemma 5.2, $\Box \varphi = \bigwedge\{U_s(\Box x) \; ; \; U_s(x) \in F_1\}$. By the definition of F_0 , $U_s(\Box x) \in v^{-1}(\{1\})$ for any $U_s(x) \in F_1$ and so $\Box \varphi \in v^{-1}(\{1\})$. Since $\varphi \leq U_r(x)$, we have $\Box \varphi \leq \Box U_r(x) = U_r(\Box x)$. Thus, $U_r(\Box x) \in v^{-1}(\{1\})$, which contradicts $U_r(\Box x) \notin v^{-1}(\{1\})$. Hence $U_r(x) \notin F$. By Proposition 2.14, there is a prime **n**-filter P of A such that $U_r(x) \notin P$ and $F \subset P$. By Proposition 2.17, $v_P \in \operatorname{Spec}(A)$. Since $U_r(x) \notin P$, we have $v_P(x) \ngeq r$. Since $F_0 \subset F \subset P$, we have $v_{R\Box}v_P$. Thus, (ii) does not hold.

The following is a compactness theorem for ML_n^c .

Theorem 5.7. Let $X \subset \mathbf{Form}_{\square}$. Assume that any finite subset of X is satisfiable. Then, X is satisfiable.

Proof. Let A be the Lindenbaum algebra of ML_n^c . We may consider $X \subset A$. We show that X has f.i.p. with respect to *. If not, then there are $n \in \omega$ with $n \neq 0$ and $x_1, ..., x_n \in X$ such that $x_1 * ... * x_n = 0$, which is a contradiction, since $\{x_1, ..., x_n\}$ is satisfiable by assumption. Thus, by Proposition 2.16, there is a prime \mathbf{n} -filter P of A with $X \subset P$. By Proposition 2.17, v_P is a homomorphism, i.e., $v_P \in \mathrm{Spec}(A)$. Consider the \mathbf{n} -valued canonical model ($\mathrm{Spec}(A), R_{\square}, e$) of A. Then, $e(v_P, x) = v_P(x) = 1$ for any $x \in X$ by Proposition 2.17. Thus, X is satisfiable.

Proposition 5.8. Let A be an ML_n^c -algebra. Then, $\mathcal{B}(A)$ forms a modal algebra.

Proof. If $x \in A$ is idempotent, then $\Box x$ is also idempotent, since $\Box x * \Box x = \Box(x * x) = \Box x$ by Lemma 5.2. Thus, $\mathcal{B}(A)$ is closed under \Box . By Lemma 5.2, $\mathcal{B}(A)$ forms a modal algebra.

Definition 5.9. Let A be an ML_n^c -algebra. Define a relation R_{\square_2} on $\mathrm{Spec}_2(\mathcal{B}(A))$ by $vR_{\square_2}u \Leftrightarrow \forall x \in \mathcal{B}(A) \ (v(\square x) = 1 \text{ implies } u(x) = 1).$

Proposition 5.10. Let A be an ML_n^c -algebra. For $v, u \in \mathrm{Spec}(A)$, $vR_{\square}u$ iff $t_1(v)R_{\square_2}t_1(u)$ (for the definition of t_1 , see Proposition 4.20).

Proof. By $\Box T_1(x) = T_1(\Box x)$, if $vR_{\Box}u$ then $t_1(v)R_{\Box_2}t_1(u)$. We show the converse. Assume $t_1(v)R_{\Box_2}t_1(u)$. In order to show $vR_{\Box}u$, it suffices to prove that, for any $r \in \mathbf{n}$ and any $x \in A$, $v(\Box U_r(x)) = 1$ implies $u(U_r(x)) = 1$, which follows from the assumption, since we have $U_r(x) \in \mathcal{B}(A)$ and $T_1(U_r(x)) = U_r(x)$.

6 A fuzzy topological duality for ML_n^c -algebras

In this section, based on the fuzzy topological duality for L_n^c -algebras, we show a fuzzy topological duality for ML_n^c -algebras, which is a generalization of Jónsson-Tarski duality for modal algebras via fuzzy topology, where note that ML_2^c -algebras coincide with modal algebras.

Definition 6.1. ML_n^c -Alg denotes the category of ML_n^c -algebras and homomorphisms of ML_n^c -algebras.

Our aim in this section is to show that the category ML_n^c -Alg is dually equivalent to the category FRS_n , which is defined in Definition 6.3 below.

For a Kripke frame (S, R), we can define a modal operator \square on the "**n**-valued powerset algebra" \mathbf{n}^S of S as follows.

Definition 6.2. Let (S,R) be a Kripke frame and f a function from S to \mathbf{n} . Define $\Box_R f: S \to \mathbf{n}$ by $(\Box_R f)(x) = \bigwedge \{f(y) \; ; \; xRy\}$.

Recall: For a Kripke frame (S, R) and an **n**-fuzzy set μ on S, an **n**-fuzzy set $R^{-1}[\mu]$ on S is defined by $R^{-1}[\mu](x) = \bigvee \{\mu(y) \; ; \; xRy\}$ for $x \in S$.

Definition 6.3. We define the category FRS_n as follows.

An object in FRS_n is a tuple (S, R) such that S is an object in FBS_n and that a relation R on S satisfies the following conditions:

1. if
$$\forall f \in \text{Cont}(S)((\Box_R f)(x) = 1 \Rightarrow f(y) = 1)$$
 then xRy ;

2. if $\mu \in \text{Cont}(S)$, then $R^{-1}[\mu] \in \text{Cont}(S)$.

An arrow $f:(S_1,R_1)\to (S_2,R_2)$ in FRS_n is an arrow $f:S_1\to S_2$ in FBS_n which satisfies the following conditions:

- 1. if xR_1y then $f(x)R_2f(y)$;
- 2. if $f(x_1)R_2x_2$ then there is $y_1 \in S_1$ such that $x_1R_1y_1$ and $f(y_1) = x_2$.

An object in FRS_n is called an **n**-fuzzy relational space.

The item 1 in the object part of Definition 6.3 is an **n**-fuzzy version of the tightness condition of descriptive general frames in classical modal logic (for the definition of the tightness condition in classical modal logic, see [3]).

Definition 6.4. We define a contravariant functor RSpec : ML_n^c -Alg \to FRS_n. For an object A in ML_n^c -Alg, define RSpec $(A) = (\operatorname{Spec}(A), R_{\square})$. For an arrow $f: A \to B$ in ML_n^c -Alg, define RSpec $(f): \operatorname{RSpec}(B) \to \operatorname{RSpec}(A)$ by RSpec $(f)(v) = v \circ f$ for $v \in \operatorname{Spec}(B)$.

We call RSpec(A) the relational spectrum of A. The well-definedness of RSpec is shown by Proposition 6.6 and Proposition 6.7 below.

Definition 6.5. Let A be an ML_n^c -algebra. Then, we define $\mathrm{RSpec}_{\mathbf{2}}(\mathcal{B}(A))$ as $(\mathrm{Spec}_{\mathbf{2}}(\mathcal{B}(A)), R_{\square_{\mathbf{2}}})$. Let A_1 and A_2 be ML_n^c -algebras and $f: \mathcal{B}(A_1) \to \mathcal{B}(A_2)$. Then, we define $\mathrm{RSpec}_{\mathbf{2}}(f): \mathrm{RSpec}_{\mathbf{2}}(\mathcal{B}(A_2)) \to \mathrm{RSpec}_{\mathbf{2}}(\mathcal{B}(A_1))$ by $\mathrm{RSpec}_{\mathbf{2}}(f)(v) = v \circ f$ for $v \in \mathrm{RSpec}_{\mathbf{2}}(\mathcal{B}(A_2))$.

Proposition 6.6. For an ML_n^c -algebra A, RSpec(A) is an object in FRS_n .

Proof. It suffices to show the items 1 and 2 in the object part of Definition 6.3. We first show the item 1 by proving the contrapositive. Assume $(v, u) \notin R_{\square}$, i.e., there are $r \in \mathbf{n}$ and $x \in A$ such that $v(\square x) \geq r$ and $u(x) \ngeq r$. By Lemma 2.8, $v(U_r(\square x)) = 1$ and $u(U_r(x)) = 0$. Then, $\langle U_r(x) \rangle (u) = 0$. By Proposition 5.6 and Lemma 5.2,

$$(\Box_R \langle \mathbf{U}_r(x) \rangle)(v) = \bigwedge \{ \langle \mathbf{U}_r(x) \rangle(v') \; ; \; vR_{\Box}v' \} = v(\Box \mathbf{U}_r(x)) = v(\mathbf{U}_r \Box x) = 1.$$

As is shown in the proof of Lemma 4.14, $\langle U_r(x) \rangle$ is continuous.

We show the item 2. Since Cont \circ Spec $(A) = \{\langle x \rangle ; x \in A\}$ as is shown in the proof of Lemma 4.14, it suffices to show that, for any $x \in A$, $R_{\square}^{-1}(\langle x \rangle) \in \text{Cont} \circ \text{Spec}(A)$. Let $\Diamond x$ denote $(\square(x^{\perp}))^{\perp}$. Since $(R_{\square}^{-1}(\langle x \rangle))(v) = \bigvee \{u(x) ; vR_{\square}u\} = v(\Diamond x)$, we have $R_{\square}^{-1}(\langle x \rangle) = \langle \Diamond x \rangle \in \text{Cont} \circ \text{Spec}(A)$. \square

Proposition 6.7. For ML_n^c -algebras A_1 and A_2 , let $f: A_1 \to A_2$ be a homomorphism of ML_n^c -algebras. Then, RSpec(f) is an arrow in FRS_n .

Proof. Define $f_*: \mathcal{B}(A_1) \to \mathcal{B}(A_2)$ by $f_*(x) = f(x)$ for $x \in \mathcal{B}(A_1)$. By Proposition 5.8, f_* is a homomorphism of modal algebras. Consider $\mathrm{RSpec}_{\mathbf{2}}(f_*)$: $\mathrm{RSpec}_{\mathbf{2}}(\mathcal{B}(A_2)) \to \mathrm{RSpec}_{\mathbf{2}}(\mathcal{B}(A_1))$. By Jónsson-Tarski duality for modal algebras (see [16, 1]), $\mathrm{RSpec}_{\mathbf{2}}(f_*)$ is an arrow in FRS_2 .

We first show that $\operatorname{RSpec}(f)$ satisfies the item 2 in the arrow part of Definition 6.3. Assume $\operatorname{RSpec}(f)(v_2)R_{\square}u_1$ for $v_2 \in \operatorname{RSpec}(A_2)$ and $u_1 \in \operatorname{RSpec}(A_1)$. By Proposition 5.10, $t_1(\operatorname{RSpec}(f)(v_2))R_{\square_2}t_1(u_1)$. It follows from $t_1(\operatorname{RSpec}(f)(v_2)) = \operatorname{T}_1 \circ v_2 \circ f = \operatorname{RSpec}_2(f_*)(t_1(v_2))$ that we have $\operatorname{RSpec}_2(f_*)(t_1(v_2))R_{\square_2}t_1(u_1)$. Since $\operatorname{RSpec}_2(f_*)$ is an arrow in FRS₂, there is $u_2 \in \operatorname{RSpec}_2(\mathcal{B}(A_2))$ such that $t_1(v_2)R_{\square_2}u_2$ and $\operatorname{RSpec}_2(f_*)(u_2) = t_1(u_1)$. Define $u_2' \in \operatorname{RSpec}(A_2)$ by $u_2'(x) = r \Leftrightarrow u_2(\operatorname{T}_r(x)) = 1$. It is verified in a similar way to Proposition 2.17 that u_2' is a homomorphism.

We claim that $v_2R_{\square}u'_2$ and $\operatorname{RSpec}(f)(u'_2) = u_1$. Let $x \in A_2$ and $r \in \mathbf{n}$. If $v_2(\square x) \geq r$ then $(t_1(v_2))(\square \operatorname{U}_r(x)) = 1$ and, since $t_1(v_2)R_{\square_2}u_2$, we have $u_2(\operatorname{U}_r(x)) = 1$, whence $u'_2(x) \geq r$. Thus, $v_2R_{\square}u'_2$. Next we show $\operatorname{RSpec}(f)(u'_2) = u_1$. Let $r = (\operatorname{RSpec}(f)(u'_2))(x)$ for $x \in A_1$. Then, $u_2(\operatorname{T}_r(f(x))) = 1$ and so $(\operatorname{RSpec}_2(f_*)(u_2))(\operatorname{T}_r(x)) = 1$. It follows from $\operatorname{RSpec}_2(f_*)(u_2) = t_1(u_1)$ that $(t_1(u_1))(\operatorname{T}_r(x)) = 1$ and so $u_1(\operatorname{T}_r(x)) = 1$, whence $u_1(x) = r = (\operatorname{RSpec}(f)(u'_2))(x)$. Thus $\operatorname{RSpec}(f)$ satisfies the item 2.

It is easier to verify that RSpec(f) satisfies the item 1 in the arrow part of Definition 6.3.

Definition 6.8. A contravariant functor MCont : $FRS_n \to ML_n^c$ -Alg is defined as follows. For an object (S,R) in FRS_n , define $MCont(S,R) = (Cont(S), \square_R)$. For an arrow $f: (S_1,R_1) \to (S_2,R_2)$ in FRS_n , define $MCont(f): MCont(S_2,R_2) \to MCont(S_1,R_1)$ by $MCont(f)(g) = g \circ f$ for $g \in Cont(S_2)$.

The well-definedness of MCont is shown by the following propositions.

Proposition 6.9. For an object (S, R) in FRS_n , MCont(S, R) is an ML_n^c -algebra.

Proof. We first show that if $f \in \text{Cont}(S)$ then $\square_R f \in \text{Cont}(S)$. Let $f \in \text{Cont}(S)$ and μ an open **n**-fuzzy set on **n**. Define μ_r as in the proof of Lemma 4.3 and then it suffices to show that $(\square_R f)^{-1}(\mu_r)$ is an open **n**-fuzzy set on S for any $r \in \mathbf{n}$. By Lemma 2.8,

$$(\Box_R f)^{-1}(\mu_r) = R^{-1}[\mu_r \circ f] \wedge (R^{-1}[(U_r \circ f)^{\perp}])^{\perp}.$$

Since both $\mu_r \circ f$ and $(U_r \circ f)^{\perp}$ are elements of Cont(S), the right-hand side is an element of Cont(S) by the definition of R and so is an open **n**-fuzzy set on S, since S is zero-dimensional. Thus $\Box_R f \in Cont(S)$.

Next we show that $\mathrm{MCont}(S,R)$ satisfies $\{\varphi = \psi : \varphi \leftrightarrow \psi \in \mathrm{ML}_n^c\}$. Consider $\mathrm{Cont}(S)$ as the set of propositional variables. Since $\mathrm{Cont}(S)$ is closed under the operations of $\mathrm{Cont}(S)$, an element of Form_{\square} may be seen as an element of $\mathrm{Cont}(S)$. Define $e: S \times \mathrm{Form}_{\square} \to \mathbf{n}$ by e(w,f) = f(w) for $w \in S$ and $f \in \mathrm{Cont}(S)$. Then, (S,R,e) is an \mathbf{n} -valued Kripke model by the definition of the operations of $\mathrm{Cont}(S)$. Since e(w,f) = 1 for any $w \in S$ iff f = 1, it follows from the definition of ML_n^c that $\mathrm{MCont}(S,R)$ satisfies $\{\varphi = \psi : \varphi \leftrightarrow \psi \in \mathrm{ML}_n^c\}$.

Proposition 6.10. Let $f:(S_1,R_1)\to (S_2,R_2)$ be an arrow in FRS_n. Then, $\mathrm{MCont}(f)$ is a homomorphism of ML_n^c -algebras.

Proof. It remains to show that $\mathrm{MCont}(f)(\Box g_2) = \Box(\mathrm{MCont}(f)(g_2))$ for $g_2 \in \mathrm{Cont}(S_2)$. For $x_1 \in S_1$, $(\mathrm{MCont}(f)(\Box g_2))(x_1) = \bigwedge\{g_2(y_2) \; ; \; f(x_1)R_2y_2\}$. Let a denote the right-hand side. We also have $(\Box(\mathrm{MCont}(f)(g_2)))(x_1) = \bigwedge\{g_2(f(y_1)) \; ; \; x_1R_1y_1\}$. Let b denote the right-hand side. Since $x_1R_1y_1$ implies $f(x_1)R_1f(y_1)$, we have $a \leq b$. By the item 2 in the arrow part of Definition 6.3, we have $a \geq b$. Hence a = b.

Theorem 6.11. Let A be an object in ML_n^c -Alg. Then, A is isomorphic to $MCont \circ RSpec(A)$ in the category ML_n^c -Alg.

Proof. We claim that $\langle - \rangle : A \to \mathrm{MCont} \circ \mathrm{RSpec}(A)$ is an isomorphism of ML_n^c -algebras. By Theorem 4.21, it remains to show that $\langle \Box x \rangle = \Box_{R_{\Box}} \langle x \rangle$ for $x \in A$. By Proposition 5.6, we have the following for $v \in \mathrm{Spec}(A)$: $(\Box_{R_{\Box}} \langle x \rangle)(v) = \bigwedge \{u(x) : vR_{\Box}u\} = v(\Box x) = \langle \Box x \rangle(v)$.

Theorem 6.12. Let (S,R) be an object in FRS_n . Then, (S,R) is isomorphic to $RSpec \circ MCont(S,R)$ in the category FRS_n .

Proof. Define $\Phi: (S,R) \to \operatorname{RSpec} \circ \operatorname{MCont}(S,R)$ by $\Phi(x)(f) = f(x)$ for $x \in S$ and $f \in \operatorname{Cont}(S)$. We show: For any $x,y \in S$, xRy iff $\Phi(x)R_{\square_R}\Phi(y)$. Assume xRy. Let $r \in \mathbf{n}$ and $f \in \operatorname{Cont}(S)$ with $\Phi(x)(\square_R f) \geq r$. Since $\Phi(x)(\square_R f) = \bigwedge \{f(z) \; ; \; xRz\}$, we have $\Phi(y)(f) = f(y) \geq r$. Next we show the converse. To prove the contrapositive, assume $(x,y) \notin R$. By Definition 6.3, there is $f \in \operatorname{Cont}(S)$ such that $(\square_R f)(x) = 1$ and $f(y) \neq 1$. Then, $\Phi(x)(\square_R f) = 1$ and $\Phi(y)(f) \neq 1$. Thus, we have $(\Phi(x), \Phi(y)) \notin R_{\square_R}$.

By Theorem 4.22, it remains to prove that Φ and Φ^{-1} satisfy the item 2 in the arrow part of Definition 6.3, which follows from the above fact that xRy iff $\Phi(x)R_{\Box_R}\Phi(y)$, since Φ is bijective.

By Theorem 6.11 and Theorem 6.12, we obtain a fuzzy topological duality for ML_n^c -algebras, which is a generalization of Jónsson-Tarski duality for modal algebras to the n-valued case via fuzzy topology.

Theorem 6.13. The category ML_n^c -Alg is dually equivalent to the category FRS_n via the functors RSpec(-) and MCont(-).

Proof. By arguing as in the proof of Theorem 4.23, this theorem follows immediately from Theorem 6.11 and Theorem 6.12. \Box

Acknowledgements. The author would like to thank an anonymous referee for helpful comments.

References

- [1] P. Blackburn, M. de Rijke and Y. Venema, Modal logic, CUP, 2001.
- [2] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, *Łukasiewicz-Moisil algebras*, North-Holland Publishing Co., 1991.
- [3] A. Chagrov and M. Zakharyaschev, Modal logic, OUP, 1997.
- [4] C. C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 476-490.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [6] R. L. O. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer Academic Publishers, 1999.
- [7] R. L. O. Cignoli, E. J. Dubuc, and D. Mundici, Extending Stone duality to multisets and locally finite MV-algebras. J. Pure Appl. Algebra, 189 (2004) 37-59.
- [8] A. Di Nola and P. Niederkorn, Natural dualities for varieties of BL-algebras, Arch. Math. Log. 44 (2005) 995-1007.
- [9] M. C. Fitting, Many-valued modal logics, Fund. Inform. 15 (1991) 235-254.
- [10] M. C. Fitting, Many-valued modal logics II, Fund. Inform. 17 (1992) 55-73.
- [11] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145-174.
- [12] J. A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973) 734-742.
- [13] S. Gottwald, A treatise on many-valued logics, Research Studies Press, 2001.
- [14] R. Grigolia, Algebraic analysis of Łukasiewicz-Tarski n-valued logical systems, Selected papers on Łukasiewicz sentential calculi, Wroclaw, pp. 81-91, 1977.

- [15] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, 1998.
- [16] G. Hansoul, A duality for Boolean algebras with operators, *Algebra Universalis* 17 (1983) 34-49.
- [17] P. T. Johnstone; Stone spaces, CUP, 1986.
- [18] L. Leustean, Sheaf representations of BL-algebras, *Soft Computing* 9 (2005) 897-909.
- [19] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientific, 1998.
- [20] J. Łukasiewicz and A. Tarski, Untersuchungen über den Assagenkalkul, Compt. Rend. des Séances Société des Sciences et Lettres de Varsovie Classe III 23 (1930) 3-50.
- [21] G. Malinowski, Many-valued logics, Clarendon Press, 1993.
- [22] Y. Maruyama, Algebraic study of lattice-valued logic and lattice-valued modal logic, Lecture Notes in Computer Science 5378 (2009) 172-186.
- [23] Y. Maruyama, A duality for algebras of lattice-valued modal logic, Lecture Notes in Computer Science 5514 (2009) 281-295
- [24] P. Niederkorn, Natural dualities for varieties of MV-algebras, J. Math. Anal. Appl. 255 (2001) 58-73.
- [25] S. E. Rodabaugh and E. P. Klement (eds.), Topological and algebraic structures in fuzzy sets, Kluwer Academic Publishers, 2003.
- [26] G. Sambin and V. Vaccaro, Topology and duality in modal logic, Ann. Pure Appl. Logic 37 (1988) 249-296.
- [27] A. P. Sostak, Basic structures of fuzzy topology, Journal of Mathematical Sciences 78 (1996) 662-701.
- [28] M. H. Stone, The representation of Boolean algebras, Bull. Amer. Math. Soc. 44 (1938) 807-816
- [29] B. Teheux, A duality for the algebras of a Łukasiewicz n+1-valued modal system, *Studia Logica* 87 (2007) 13-36.
- [30] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.