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Abstract

This paper explores relationships between many-valued logic and
fuzzy topology from the viewpoint of duality theory. We first show
a fuzzy topological duality for the algebras of Lukasiewicz mn-valued
logic with truth constants, which generalizes Stone duality for Boolean
algebras to the n-valued case via fuzzy topology. Then, based on
this duality, we show a fuzzy topological duality for the algebras of
modal Lukasiewicz n-valued logic with truth constants, which general-
izes Jénsson-Tarski duality for modal algebras to the n-valued case via
fuzzy topology. We emphasize that fuzzy topological spaces naturally
arise as spectrums of algebras of many-valued logics.

Keywords: fuzzy topology; Stone duality; Jonsson-Tarski duality; alge-
braic logic; many-valued logic; modal logic; Kripke semantics; compactness

1 Introduction

This paper aims to explore relationships between many-valued logic and
fuzzy topology from the viewpoint of duality theory. In particular, we con-
sider fuzzy topological dualities for the algebras of Lukasiewicz n-valued
logic Lf, with truth constants and for the algebras of modal Lukasiewicz
n-valued logic ML{ with truth constants.

*The published version of this paper is in: Studia Logica 94 (2010) 245-269.



Roughly speaking, a many-valued logic is a logical system in which
there are more than two truth values (for a general introduction, see [13,
15, 21]). In many-valued logic, a proposition may have a truth value dif-
ferent from 0 (false) and 1 (true). Lukasiewicz many-valued logic is one
of the most prominent many-valued logics. Many-valued logics have of-
ten been studied from the algebraic point of view (see, e.g., [2, 6, 15]).
MV-algebra introduced in [4] provides algebraic semantics for Lukasiewicz
infinite-valued logic. MV,,-algebra introduced in [14] provides algebraic se-
mantics for Lukasiewicz n-valued logic introduced in [20] ([14] also gives an
axiomatization of Lukasiewicz n-valued logic). Lf-algebra in this paper is
considered as MV ,,-algebra enriched by constants.

Kripke semantics for modal logic is naturally extended to the many-
valued case by allowing for more than two truth values at each possible
world and so we can define modal many-valued logics by such many-valued
Kripke semantics, including modal Lukasiewicz many-valued logics. Modal
many-valued logics have already been studied by several authors (see [9, 10,
22, 29]).

As a major branch of fuzzy mathematics, fuzzy topology is based on the
concept of fuzzy set introduced in [30, 11], which is defined by considering
many-valued membership function. For example, a [0, 1]-valued fuzzy set p
on a set X is defined as a function from X to [0,1]. Then, for z € X and
r € [0,1], u(x) = r intuitively means that the proposition “x € p” has a
truth value r. A fuzzy topology on a set is defined as a collection of fuzzy
sets on the set which satisfies some conditions (for details, see Section 3).
Historically, Chang [5] introduced the concept of [0, 1]-valued fuzzy topology
and thereafter Goguen [12] introduced that of lattice-valued fuzzy topology.
There have been many studies on fuzzy topology (see, e.g., [19, 25, 27]).

Stone duality for Boolean algebras (see [17, 28]) is one of the most impor-
tant results in algebraic logic and states that there is a categorical duality
between Boolean algebras (i.e., the algebras of classical propositional logic)
and Boolean spaces (i.e., zero-dimensional compact Hausdorff spaces). Since
both many-valued logic and fuzzy topology can be considered as based on
the idea that there are more than two truth values, it is natural to ex-
pect that there is a duality between the algebras of many-valued logic and
“fuzzy Boolean spaces.” Stone duality for Boolean algebras was extended
to Joénsson-Tarski duality (see [1, 3, 16, 26]) between modal algebras and
relational spaces (or descriptive general frames), which is another classical
theorem in duality theory. Thus, it is also natural to expect that there
is a duality between the algebras of modal many-valued logic and “fuzzy
relational spaces.”



In this paper, we realize the above expectations in the cases of L{, and
MLS. We first develop a categorical duality between the algebras of L,
and n-fuzzy Boolean spaces (see Definition 4.5), which is a generalization of
Stone duality for Boolean algebras to the n-valued case via fuzzy topology.
This duality is developed based on the following insights:

e The spectrum of an algebra of L{, can be naturally equipped with a
certain n-fuzzy topology (see Definition 4.9).

e The notion of clopen subset of Boolean space in Stone duality for
Boolean algebras corresponds to that of continuous function from n-
fuzzy Boolean space to n (= {0,1/(n —1),2/(n —1),...,1}) equipped
with the n-fuzzy discrete topology in the duality for the algebras of
Ly. This means that the zero-dimensionality of n-fuzzy topological
spaces is defined in terms of continuous function into n (see Definition
4.4).

Moreover, based on the duality for the algebras of Lf, we develop a cate-

gorical duality between the algebras of ML] and n-fuzzy relational spaces
(see Definition 6.3), which is a generalization of Jénsson-Tarski duality for
modal algebras to the n-valued case via fuzzy topology. Note that an n-
fuzzy relational space is also defined in terms of continuous functions into n
(see the items 1 and 2 in the object part of Definition 6.3).

There have been some studies on dualities for algebras of many-valued
logics (see, e.g., [2, 7, 18, 23, 24, 8, 29]). However, they are based on the
ordinary topology and therefore do not reveal relationships between many-
valued logic and fuzzy topology. By the results in this paper, we can notice
that fuzzy topological spaces naturally arise as spectrums of algebras of
some many-valued logics and that there are categorical dualities connecting
fuzzy topology and those many-valued logics which generalize Stone and
Jénsson-Tarski dualities via fuzzy topology.

This paper is organized as follows. In Section 2, we define Lj, and L -
algebras, and show basic properties of them. In Section 3, we review basic
concepts related to fuzzy topology. In Section 4, we define n-fuzzy Boolean
spaces and show a fuzzy topological duality for L{-algebras, which is a main
theorem in this paper. In Section 5, we define ML{, and ML -algebras, and
show basic properties of them, including a compactness theorem for ML{, . In
Section 6, we define n-fuzzy relational spaces and show a fuzzy topological
duality for ML -algebras, which is the other main theorem.



2 L;-algebras and basic properties

Throughout this paper, n denotes a natural number more than 1.

Definition 2.1. n denotes {0,1/(n—1),2/(n —1),...,1}. We equip n with
all constants r € n and the operations (A, V, *, g, —, (-)*) defined as follows:

r Ay = min(z,y);
xVy = max(z,y);
xxy = max(0,z+y—1);
rpy = min(Lz+y)
r—y = min(l,1— (z—vy));
et = 1-u.

We define Lukasiewicz n-valued logic with truth constants, which is de-
noted by L;,. The connectives of L;, are

(A V%, 0,—, (5)1,0,1/(n—1),2/(n —1),...,1),

where (A, V, %, p, —) are binary connectives, (-)* is a unary connective, and
(0,1/(n—1),2/(n—1),...,1) are constants. The formulas of L are recursively
defined in the usual way. Let PV denote the set of propositional variables
and Form denote the set of formulas of L.

x <> y is the abbreviation of (x — y) A (y — x). For m € w with m # 0,
*Mz is the abbreviation of x * ... ¥ 2 (m-times). For instance, *32 = x * x * .

Definition 2.2. A function v : Form — n is an n-valuation iff it satisfies:
o v(pQY) =v(p)Qu(y) for @ = A, V, %, p, —;
o v(p™) = (v(9)*
e v(r)=rforr €n.
Define L = {¢ € Form ; v(¢) =1 for any n-valuation v }.
L{-algebras and homomorphisms are defined as follows.

Definition 2.3. (4, A, V,*, o, —, (-)*+,0,1/(n—1),2/(n—1),...,1) is an L¢-
algebra iff it satisfies the following set of equations: {¢ =1 ; ¢ <> ¢ € L{}.

A homomorphism of L -algebras is defined as a function which preserves
the operations (A, V, *, p, =, (-)1,0,1/(n —1),2/(n — 1), ..., 1).



Throughout this paper, we do not distinguish between formulas of L,
and terms of L{ -algebras.

Definition 2.4. ¢ € Form is idempotent iff p * ¢ <+ ¢ € L.
For an Lj-algebra A, a € A is idempotent iff a x a = a.
B(A) denotes the set of all idempotent elements of an L -algebra A.

Let A be an L -algebra. Then, we have the following facts: (i) For a € A,
"~1g is always idempotent. (ii) If a € A is idempotent, then either v(a) = 1
or v(a) = 0 holds for any homomorphism v : A — n. (iii) If a,b € A are
idempotent, then a * b = (*""1a) * (*"71b) = (+"1a) A (" 'b) = a A b and
apb = (x"ta)p(x""1b) = (x"ta) v (*""1b) = a V b.

It is easy to verify the following:

*

Proposition 2.5. For an LS -algebra A, B(A) forms a Boolean algebra. In
particular, a V a’- =1 for any idempotent element a of A.

In the following, we define a formula T, (z) for r € n, which intuitively
means that the truth value of x is exactly r.

Lemma 2.6. Let A be an Lj -algebra and r € n. There is an idempotent
formula T, (z) with one variable x such that, for any homomorphism v :
A —n and any a € A, the following hold:

e v(T,(a)) =1 iffv(a) =r;
e v(T,(a)) =0 iff v(a) #r.

Proof. If r = 0, then we can set T,(z) = +"~!(z1). If » = 1, then we can
set T,(z) = "z
Let r =k/(n—1) for k € {1,....,n —2}. If k is a divisor of n — 1, then
we can set
T,(x) =+ Lz & (p"F la)h).

For a rational number g, let [g] denote the greatest integer n such that
n < q. If k is not a divisor of n — 1, then

n— k n—1
=k/(n—1) iff ") = 1
o) =kfn 1) it ol Pl = E | <)
n— k n—1
iff ety =1 .
i (e ")) =1 |
Since
1 k n—1 < k
n—1| k n—1
this lemma follows by induction on k. O



The above lemma is more easily proved by using truth constants r € n.
However, it must be stressed that the above proof works even if we consider
Lukasiewicz n-valued logic without truth constants.

Note that any homomorphism preserves the operation T,(-).

Lemma 2.7. Let A be an L, -algebra and a; € A for a finite set I andi € I.
Then, (i) T1(Ver ai) = Vier T1(ai); (i) Ti(Aieg @i) = Nieg T1(ai)-

Proof. Since n is totally ordered, we have (i). (ii) is immediate. O
By (ii) in the above lemma, T (-) is order preserving.

Lemma 2.8. Let A be an Lj -algebra and r € n. There is an idempotent
formula U, (x) with one variable x such that, for any homomorphism v :
A — n and any a € A, the following two conditions hold: (i) v(Uy(a)) =1

iff v(a) > r; (ii) v(Uy(a)) = 0 iff v(a) # r.
Proof. 1t suffices to let U,(x) = \/{Ts(x); r < s} by Lemma 2.6. O
Note that any homomorphism preserves the operation U, (-).

Lemma 2.9. Let A be an LS -algebra and r € n. There is a formula Sy(x)
with one variable x such that, for any homomorphism v : A — n and any

a € A, the following two conditions hold: (i) v(Sy(a)) = r iff v(a) = 1; (ii)
v(Sr(a)) =0 iff v(a) # 1.

Proof. Let S.(z) = (T1(z) = r) A ((T1(z))* — 0). O
Note that any homomorphism preserves the operation S,(-).

Lemma 2.10. Let A be an L -algebra. Let v and u be homomorphisms

from A ton. Then, (i) v=wu iff (ii) v 1({1}) = u=1({1}).

Proof. Clearly, (i) implies (ii). We show the converse. Assume that v=!({1}) =
u~1({1}). Suppose for contradiction that v(a) # u(a) for some a € A.
Let r = v(a). Then v(T,(a)) = 1 and u(T,(a)) = 0, which contradicts
vH({1}) = uTH({1)). O

For an Lf-algebra A and a,b € A, we mean aVb=">0by a <b.

Lemma 2.11. Let A be an L -algebra. For any a,b € A, the following
holds:
N\ (Tr(a) < Tp(b) < a <> b,

ren



Proof. This is proved by straightforward computation. O

For a partially ordered set (M, <), X C M is called an upper set iff if
re X and z <y for y € M then y € X.

Definition 2.12. Let A be an L{-algebra. A non-empty subset F' of A is
called an n-filter of A iff F' is an upper set and is closed under *. An n-filter
F of A is called proper iff F' #£ A.

An n-filter of A is closed under A, since a *b < a A b for any a,b € A.

Definition 2.13. Let A be an L{-algebra. A proper n-filter P of A is prime
iff, for any a,b € A, a V b € P implies either a € P or b € P.

Proposition 2.14. Let A be an LS -algebra and F an n-filter of A. For
b€ A, assume b ¢ F. Then, there is a prime n-filter P of A such that
FCcPandbg¢ P.

Proof. Let Z be the set of all those n-filters G of A such that F' C G and
b ¢ G. Then F € Z. Clearly, every chain of Z has an upper bound in
Z. Thus, by Zorn’s lemma, we have a maximal element P in Z. Note that
FCPandb¢ P.

To complete the proof, it suffices to show that P is a prime n-filter of A.
Assume z V y € P. Additionally, suppose for contradiction that = ¢ P and
y ¢ P. Then, since P is maximal, there exists ¢, € A such that ¢, < b and

¢z = (*"1x) x p, for some p, € P. Similary, there exists ¢, € A such that
oy < band p, = (x""Ly) x p, for some p, € P. Now, we have the following:
b > ((+" ') pa) V (+" )+ py)
> (" Haxpe)) V(5 y * py))
= " N(zxpa) V (y*py))
> (@ V (yxpy)) x (0 V (Y *py)))
>+ (xVy) *py * pa),

where note that ¥~ 1(zVvy) = (*""lz)v(*""ly) and 2V (y*2) > (xVy)*(zV2)
for any z,y,2 € A. Since p;,py,x Vy € P, we have b € P, which is a
contradiction. Hence P is a prime n-filter of A. O

We do not use (-)* or — in the above proof and therefore the above
proof works even for algebras of “intuitionistic Lukasiewicz n-valued logic.”

Definition 2.15. Let A be an Lj-algebra. A subset X of A has finite
intersection property (f.i.p.) with respect to « iff, for any n € w with n # 0,
if a1, ...,an € X then aq * ... x a, # 0.



Corollary 2.16. Let A be an Lf -algebra and X a subset of A. If X has
f.i.p. with respect to *, then there is a prime n-filter P of A with X C P.

Proof. By the assumption, we have a proper n-filter F' of A generated by
X. By letting b = 0 in Proposition 2.14, we have a prime n-filter P of A
with X C P. O

Proposition 2.17. Let A be an LS -algebra. For a prime n-filter P of A,
define vp : A — n by vp(a) =7 < T,(a) € P. Then, vp is a bijection from
the set of all prime n-filters of A to the set of all homomorphisms from A
to n with vp'({1}) = P.

Proof. Note that vp is well-defined as a function. We prove that vp is a
homomorphism. We first show vp(a *b) = vp(a) *x vp(b) for a,b € A. Let
r =wvp(a) and s = vp(b). Then T,(a) € P and T4(b) € P. It is easy to see
that Ty (a) A Ts(b) < Trus(a *b), which intuitively means that if the truth
value of a is r and if the truth value of b is s then the truth value of a * b is
r*s. Since T,(a) € P and T(b) € P, we have T,.s(a *b) € P, whence we
have vp(a*b) =1 * s =vp(a) xvp(b).

Next we show that vp(at) = vp(a)t. Let r = vp(a). It is easy to
see that Ty.(a) < T,.(at). By T,(a) € P, we have T,.(a') € P, whence
vp(at) = r+ = vp(a)t. As is well-known, (A,V,p,—) can be defined by
using only (x, (-)*) (see [6]) and so vp preserves the operations (A, V, g, —).
Clearly, vp preserves any constant r € n. Thus, vp is a homomorphism.
The remaining part of the proof is straightforward. O

3 n-valued fuzzy topology

Let us review basic concepts from fuzzy set theory and fuzzy topology.

3.1 n-valued fuzzy set theory

An n-fuzzy set on a set S is defined as a function from S to n. For n-fuzzy
sets u, A on S, define an n-fuzzy set p@Q\ on S by (@QM\)(x) = p(x)@QA(y) for
@ = A,V, %, 0, —, and define an n-fuzzy set u* on S by (ut)(z) = (u(z))*.

Let X,Y be sets and f a function from X to Y. For an n-fuzzy set ;1 on

X, define the direct image f(u) : Y — n of g under f by

Fy) = \{u@); v e f{y}h)} fory € Y.



For f : X — Y and an n-fuzzy set A on Y, define the inverse image
f7YA\) : X — nof XA under f by f~'(\) = Ao f. Note that f~! commutes

with \/, i.e., f7HV;er i) = Ve S~ (i) for n-fuzzy sets p; on Y.

For a relation R on a set S and an n-fuzzy set p on S, define an n-
fuzzy set R™'[u] on S, which is called the inverse image of y under R,
by R~'ul(z) = V{uly); xRy} for z € S. Note that R™'[\/,c, ] =

Vier (R [mi])-

3.2 n-valued fuzzy topology

For sets X and Y, YX denotes the set of all functions from X to Y. We
do not distinguish between r € n and the constant function whose value is
always r.

Definition 3.1 ([30, 12, 27]). For a set S and a subset O of n®, (S, 0) is
an n-fuzzy space iff the following hold:

e r € O for any r € n;
o if 1, o € O then puy A po € O;
o if y; € O fori eI then \/,.;p; € O,

Then, we call O the n-fuzzy topology of (S,0), and an element of O an
open n-fuzzy set on (S, 0). An n-fuzzy set A on S is a closed n-fuzzy set on
(S,0) iff X = pt for some open n-fuzzy set p on (S,0). A clopen n-fuzzy
set on (S,0) means a closed and open n-fuzzy set on (5, 0).

An n-fuzzy space (S, Q) is often denoted by its underlying set S.

Definition 3.2. For a set S, n® is called the discrete n-fuzzy topology on
S. (S,n%) is called a discrete n-fuzzy space.

Definition 3.3. Let S; and Sy be n-fuzzy spaces. Then, f : S; — Sy is
continuous iff, for any open n-fuzzy set p on So, f~1(u) (i.e., po f) is an
open n-fuzzy set on 5.

A composition of continuous functions between n-fuzzy spaces is also
continuous (as a function between n-fuzzy spaces).

Definition 3.4. Let (S, O) be an n-fuzzy space. Then, an open basis B of
(S,0) is a subset of O such that the following holds: (i) B is closed under
A; (ii) for any p € O, there are p; € B for i € I with p=\/,c; ;.



Definition 3.5. An n-fuzzy space S is Kolmogorov iff, for any z,y € S
with = # y, there is an open n-fuzzy set p on S with u(z) # u(y).

Definition 3.6. An n-fuzzy space S is Hausdorff iff, for any x,y € S with
x # y, there are r € n and open n-fuzzy sets u, A on S such that u(x) > r,
AMy) >rand pAX <.

Definition 3.7 ([12]). Let S be an n-fuzzy space. An n-fuzzy set A on S
is compact iff, if X < \/;; p; for open n-fuzzy sets p; on S, then there is a
finite subset J of I such that A <\/;c; u;.

Let 1 denote the constant function on S whose value is always 1. Then,
S is compact iff, if 1 = \/,.; p; for open n-fuzzy sets p; on S, then there is
a finite subset J of I such that 1 =\/,_; ;.

We can construct an operation (-)* which turns an n-fuzzy space into a
topological space (in the classical sense) as follows.

Definition 3.8. Let (5, O) be an n-fuzzy space. Define

0" = (i ({1}); pe O},
Then, S* denotes a topological space (S, O*) (see the below proposition).

Lemma 3.9. Let (S,0) be an n-fuzzy space. Then, S* forms a topological
space.

Proof. Since 0 € O and § = 0~!({1}), we have § € O*. Similarly, S € O*.
Assume X; € O fori € I. Then, X; = p;*({1}) for some p; € O. Since n is
totally ordered, U;c; Xi = (V;er 1) "1 ({1}). Thus, by \/,c; i € O, we have
Uicr Xi € O*. Tt is easy to verify that X,Y € O implies X NY € O*. [

4 A fuzzy topological duality for L -algebras

In this section, we show a fuzzy topological duality for L; -algebras, which
is a generalization of Stone duality for Boolean algebras via fuzzy topology,
where note that L§-algebras coincide with Boolean algebras.

Definition 4.1. L{-Alg denotes the category whose objects are L -algebras
and whose arrows are homomorphisms of L{,-algebras.

Our aim in this section is to show that the category L -Alg is dually
equivalent to the category FBS,,, which is defined in the following subsection.
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4.1 Category FBS,
We equip n with the discrete n-fuzzy topology.

Definition 4.2. Let S be an n-fuzzy space. Then, Cont(S) is defined as
the set of all continuous functions from S to n. We endow Cont(.S) with the
operations (A, V, *, o, —, (-),0,1/(n—1),2/(n—1),...,1) defined pointwise:
For f,g € Cont(S), define (fQg)(z) = f(x)Qg(x), where @ = A, V, %, p, —.
For f € Cont(S), define f+(z) = (f(x))'. Finally, r € n is defined as the
constant function on S whose value is always 7.

We show that the operations of Cont(S) are well-defined:

Lemma 4.3. Let S be an n-fuzzy space. Then, Cont(S) is closed under the
operations (A, V,*, o, —, (-)5,0,1/(n —1),...,(n —2)/(n — 1),1)

Proof. For any r € n, a constant function r : § — n is continuous, since
any s € n is an open n-fuzzy set on S by Definition 3.1. Then it suffices
to show that, if f,g € Cont(S), then f* and f@g are continuous for @ =
A, V, %, o, —. Throughout this proof, let f,g € Cont(S) and p an open n-
fuzzy set on n, i.e., a function from n to n. For r» € n, define y, : n > n

by
p(r) ifx=r
r\T) =
pr(2) {0 otherwise.

Then, we have = \/, ., 17
We show that (f+)~!(u) is an open n-fuzzy set on S. Now, we have

7w = DV ) = V(D ).

ren ren

Thus it suffices to show that (f*)~!(u,) is an open n-fuzzy set on S for any
r € n. Define A, : n — n by

() = {u(r) ife=1-r

0 otherwise.

Then it is straightforward to verify that (f4)~'(su,)
continuous and since A, is an open n-fuzzy set on
n-fuzzy set on S.

Next, we show that (f * g)~'(x) is an open n-fuzzy set on S. By the
same argument as in the case of f*, it suffices to show that (f * ¢)~*(u,) is

(Ar). Since f is
(A\r) is an open

= f!
n, f~!

11



an open n-fuzzy set on S for any r € n. For p € n, define 6,., : n — n by

Orp(2) = {g‘(” r=p

otherwise.

For r # 0, define k,;, : n — n by

(2) p(r) ifz=r—p+1
Krp(T) =
P 0 otherwise.

For r = 0, define k,;, : n — n by

(2) p(r) ifz<r—p+1
Krp(T) =
P 0 otherwise.

Then it is straightforward to verify that
(f = 9)_1(NT) = \/ (f_l(gr,p) A 9_1(“r,p))-

peENn

Since f, g € Cont(S), the right-hand side is an open n-fuzzy set on S.
As is well-known, (A, V, p, —) can be defined by using only (*, (-)*) (see
[6]) and so (f@g)~!(u) is an open n-fuzzy set for @ = A, V, o, —. O

Definition 4.4. For an n-fuzzy space S, S is zero-dimensional iff Cont(S)
forms an open basis of S.

Definition 4.5. For an n-fuzzy space S, S is an n-fuzzy Boolean space iff
S is zero-dimensional, compact and Kolmogorov.

Definition 4.6. FBS,, is defined as the category of n-fuzzy Boolean spaces
and continuous functions.

Proposition 4.7. Let S be an n-fuzzy space. Then, (i) S is an n-fuzzy
Boolean space iff (ii) S is zero-dimensional, compact and Hausdorff.

Proof. Cleary, (ii) implies (i). We show the converse. Assume that S is an
n-fuzzy Boolean space. It suffices to show that S is Hausdorff. Let x,y € S
with x # y. Since S is Kolmogorov and since S is zero-dimensional, there
is € Cont(S) with pu(z) # p(y). Let s = p(z). Then, Ty o u(x) = 1 and
(Ts 0 p)t(y) = 1. Since T, : n — n is continuous, T, o p € Cont(S) and
(Tsop)t € Cont(S) by Lemma 4.3. Since S is zero-dimensional, T oy and
(Tsou)* are open n-fuzzy sets on S. We also have (Tsou) A (Tsopu)t =0.
Thus, S is Hausdorff. O

12



Next we show that (-)* turns an n-fuzzy Boolean space into a Boolean
space, i.e., a zero-dimensional compact Hausdorff space.

Proposition 4.8. Let S be an n-fuzzy Boolean space. Then, S* forms a
Boolean space.

Proof. By Lemma 3.9, S* is a topological space.

First, we show that S* is zero-dimensional in the classical sense. Let
B* = {u=t({1}); p € Cont(S)}, where, since S is zero-dimensional and so
p € Cont(9) is an open n-fuzzy set on S, u~({1}) is an open subset of S*.
We claim that B* forms an open basis of S*. It is easily verified that B* is
closed under N. Assume that O is an open subset of S*, i.e., O = p~1({1})
for some open n-fuzzy set ¢ on S. Since S is zero-dimensional, there are u; €
Cont(S) with = \/,.; pi- Since n is totally ordered, O = (J;c; ;' ({1}). It
follows from p; € Cont(S) that ; '({1}) € B* for any i € I. This completes
the proof of the claim. If u € Cont(S), then

(e {1 = (Trow ™) H({1}).
Since T7 : n — n is continuous, T o p € Cont(S), whence, by Lemma 4.3,
(T1op)*t € Cont(S). Thus the right-hand side is open in S* and so p~*({1})
is clopen in S* for p € Cont(S). Hence, S* is zero-dimensional.

Second, we show that S* is compact in the classical sense. Assume that
S* = U, Oi for some open subsets O; of S*. Since B* forms an open basis
of S*, we may assume that S* = (J;c; ;1 ({1}) for some p; € Cont(S).
Then, 1 = \/,c;pi where 1 denotes the constant function on S (= S¥)
whose value is always 1. Since S is zero-dimensional, u; is an open n-fuzzy
set on S. Thus, since S is compact, there is a finite subset J of I such that
1=V, mj, whence S* =], y;l({l}). Hence S* is compact.

Finally, we show that S* is Hausdorff in the classical sense. Since S* is
zero-dimensional, it suffices to show that S* is Kolmogorov in the classical
sense. Assume x,y € S* with x # y. Since S is Kolmogorov, there is an
open n-fuzzy set p on S with pu(x) # u(y). Since S is zero-dimensional,
t = Ve mi for some p; € Cont(S). There is i € I with p;(x) # pi(y). Let
r = pi(z). Then, we have T, o p;(x) = 1 and T, o p;(y) = 0, whence we
have # € (T, o ) ' ({1}) and y ¢ (T, o ;)1 ({1}). Since T, : n — n is
continuous, it follows from u; € Cont(S) that T, o u; € Cont(S), whence
T, o ; is an open n-fuzzy set on S and so (T, op;)~1({1}) is an open subset
of S*. Hence S* is Kolmogorov. O

4.2 Functors Spec and Cont

We define the spectrum Spec(A) of an L -algebra A as follows.
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Definition 4.9. For an L -algebra A, Spec(A) is defined as the set of all
homomorphisms (of L¢-algebras) from A to n equipped with the n-fuzzy
topology generated by {(a) ; a € A}, where (a) : Spec(A) — n is defined by

The operations (A, V, %, p, —, (-)*) on {{a); a € A} are defined pointwise as
in Definition 4.2.

{(a) ; a € A} forms an open basis of Spec(A), since (a) A (b) = (a A D).

Definition 4.10. We define a contravariant functor Spec : L{-Alg — FBS,,.
For an object A in L{-Alg, define Spec(A) as in Definition 4.9.
For an arrow f : A; — A in L{-Alg, define Spec(f) : Spec(42) —
Spec(A1) by Spec(f)(v) =wvo f for v € Spec(As).

The well-definedness of the functor Spec is proved by Proposition 4.15
and Proposition 4.16 below.
Since n is a totally ordered complete lattice, we have:

Lemma 4.11. Let u; be an n-fuzzy set on a set S for a set I and i € I.
Then, (1) TroVeppi = Ve (Tyopi); (it) Too Nieppi = Nigg (T 0 ).

Lemma 4.12. Let A be an LS -algebra. Then, Spec(A) is compact.

Proof. Assume that 1 = VjeJ pj for open n-fuzzy sets j1; on Spec(A), where
1 denotes the constant function defined on Spec(A) whose value is always
1. Then, since {(a) ; a € A} is an open basis of Spec(A), we may assume
that 1 = \/,c;(a;) for some a; € A. It follows from Lemma 4.11 that
1=Tyol=Ti0V,{(a:) =V,er T10(a;) = V;e;(T1(a;)). Thus, we have

0=(\/(Tala)* = A{(T1(a:)b).

el el

Then, there is no homomorphism v : A — n such that v((Tyi(a;))*) =
1 for any ¢ € I. Therefore, by Proposition 2.17, there is no prime n-
filter of A which contains {(T1(a;))*; i € I}. Thus, by Corollary 2.16,
{(Ty(a;))*; i € I'} does not have f.i.p. with respect to * and so there is a fi-
nite subset {i1,...ipy, } of I such that (T1(a;,))* *...%(T1(as, )" = 0, whence
T1(ai,)p...0T1(ai,,) = 1. Since T1(a;,) is idempotent for any k € {1, ..., m},
we have T4 (a;;)V...VT1(a;,, ) = 1 and, by Lemma 2.7, T1(a;, V...Va;,, ) = 1.
By Ti(x) < z, we have a;, V...V a;, = 1, whence (a;, V...V a;, ) = 1. This
completes the proof. ]
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Lemma 4.13. Let A be an L¢ -algebra. Then, Spec(A) is Kolmogorov.

Proof. Let vi,v9 € Spec(A) with v; # ve. Then there is a € A such that
vi(a) # va(a), whence we have (a)(vi) # (a)(v2). O

Lemma 4.14. Let A be an LS -algebra. Then, Spec(A) is zero-dimensional.

Proof. Since {(a); a € A} forms an open basis of Spec(A), it suffices to
show that
Cont o Spec(A) = {(a) ; a € A}.

We first show that Cont o Spec(A4) D {(a); a € A}, i.e., (a) is continuous for
any a € A. Let a € A and p an n-fuzzy set on n. Then, by Lemma 2.9,

(@)~ () = pola) = \/ (Suw) o Tr) o (a) = (\/ (S (Tr(a)))).

ren ren

Hence (a) is continuous.

Next we show Cont o Spec(A) C {(a); a € A}. Let f € Cont o Spec(A)
and r € n. Define an n-fuzzy set A\, on n by \.(z) = 1 for z = r and
Ar(z) = 0 for & # r. Since f is continuous, f~1(\,) = V,¢,(a;) for some
a; € A. Now the following holds:

L= OV ) = (V@) v )™
el

Here, we have (f_l()‘r))J_ = ()‘rof)l = /\rLof = f_l(/\v"L)' Since f_l()\rL)
is an open n-fuzzy set, (f~'()\.))* is an open n-fuzzy set on Spec(A).
Since Spec(A) is compact by Lemma 4.12, there is a finite subset J of I
such that 1 = (V,c;(a;)) V (f~Y)*. Thus, f71(\,) < Vjes(a;). Since
Vieslaj) < Vierlai) = f71(A), we have f~H(\,) =V, (a;). Since J is
finite, f~1(\,) = Vjeslaj) = (Vjesa5). Let ap = V,c;a;. Note that if
v € f71({r}) then v(a,) = 1 and that if v ¢ f~1({r}) then v(a,) = 0. We
claim that f = (\/. ., (r Aa;)). If v € f~1({s}) for s € n, then

(\ rna))(w) =o(\/ (rAap)) =\ (r Av(a,)) = s = f(v).
This completes the proof. ]

By the above lemmas, we obtain the following proposition.

Proposition 4.15. Let A be an object in LS-Alg. Then, Spec(A) is an
object in the category FBS,,.
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Proposition 4.16. Let A; and Ay be objects in Li-Alg and f : Ay — As
an arrow in LS -Alg. Then, Spec(f) is an arrow in FBS,.

Proof. Since the inverse image (Spec(f))~! commutes with \/, it suffices

to show that (Spec(f))~!({a)) is an open n-fuzzy set on Spec(As) for any
a € Aj. For v € Spec(Asz), we have

(Spec(f)™ ({a))(v) = (a) o Spec(f)(v) = (a)(vo f) = vo f(a) = (f(a))(v).
Hence (Spec(f))~({a)) = (f(a)), which is an open n-fuzzy set. O

Definition 4.17. We define a contravariant functor Cont : FBS,, — L; -Alg.
For an object S in FBS,,, Cont(S) is defined as in Definition 4.2.
For an arrow f : S — T in FBS,, Cont(f) : Cont(T') — Cont(S) is
defined by Cont(f)(g) = go f for g € Cont(T).

Since the operations of Cont(S) are defined pointwise, Cont(S) is an
L{-algebra and the following holds, whence Cont is well-defined.

Proposition 4.18. Let S1 and Sy be objects in FBS,,, and f : S1 — Sy an
arrow in ¥BS,,. Then, Cont(f) is an arrow in L{-Alg.

Definition 4.19. Let A be an L{-algebra. Then, Specy(B(A)) is defined as
the set of all homomorphisms of Boolean algebras from B(A) to 2 equipped
with the (ordinary) topology generated by {(a)2; a € B(A)}, where (a)2 =

{v € Specy(B(A)) ; v(a) = 1}.

Proposition 4.20. Let A be an Lf -algebra. Define a function t; from
Spec(A)* to Specy(B(A)) by t1(v) = T1owv. Then, t1 is a homeomorphism.

Proof. By Lemma 2.10, ¢; is injective. We show that ¢; is surjective. Let
v € Specy(B(A)). Define u € Spec(A) by u(a) = r < T,(a) € v 1({1}) for
a € A, where note T,(a) € B(A). Then, in a similar way to Proposition
2.17, it is verified that u is a homomorphism (i.e., u € Spec(A)). Moreover,
we have t;(u) = v on B(A). Thus t; is bijective. It is straightforward
to verify the remaining part of the proof. Note that, for (a), = {v €
Spec(A) ; v(a) = 1}, {{a)n; a € A} forms an open basis of Spec(A)* and
that t1({(a)n) = (T1(a))2 for a € A. O

4.3 A fuzzy topological duality for L/ -algebras

Theorem 4.21. Let A be an L -algebra. Then, there is an isomorphism
between A and Cont o Spec(A) in the category LS -Alg.
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Proof. Define (-) : A — Cont o Spec(A) as in Definition 4.9. In the proof of
Lemma 4.14, it has already been proven that (-) is well-defined and surjec-
tive. Since the operations of Cont o Spec(A) are defined pointwise, (-) is a
homomorphism.

Thus it suffices to show that (-) is injective. Assume that (a) = (b) for
a,b € A, which means that, for any v € Spec(A), we have v(a) = v(b). Thus,
for any v € Spec(A) and any r € n, we have v(T,(a)) = v(T,(b)). Thus, it
follows from Proposition 2.17 that, for any prime n-filter P of A and any
remn, T,(a) € Piff T,(b) € P.

We claim that T,(a) = T,(b) for any » € n. Suppose for contradiction
that Ty(a) # T,(b) for some r € n. We may assume without loss of gener-
ality that T,(a) £ T,(b). Let F' = {x € A; T,(a) < x}. Then, since T,(a)
is idempotent, F' is an n-filter of A. Cleary, T,(b) ¢ F. Thus, by Lemma
2.14, there is a prime n-filter P of A such that F' C P and T,(b) ¢ P. By
F C P, we have T,(a) € P, which contradicts T,(b) ¢ P, since we have
already shown that T,(a) € P iff T,(b) € P. Thus, T,(a) = T,(b) for any
r € n, whence A\, ., (Tr(a) <+ T,(b)) = 1. Hence, it follows from Lemma
2.11 that a = b, and therefore (-) is injective. O

Theorem 4.22. Let S be an n-fuzzy Boolean space. Then, there is an
isomorphism between S and Spec o Cont(S) in the category FBS,,.

Proof. Define ¥ : S — Spec o Cont(S) by ¥(z)(f) = f(x) for x € S and
f € Cont(S). Since the operations of Cont(S) are defined pointwise, ¥(x)
is a homomorphism and so ¥ is well-defined.

We show that W is continuous. Let f € Cont(S). Then U~L((f)) = f
by the following:

(TN (@) = (f) 0 V() = ¥(2)(f) = f(a).

Since f € Cont(S) and S is zero-dimensional, f is an an open n-fuzzy set
and so U71((f)) is an open n-fuzzy set on S. Since the inverse image ¥~}
commutes with \/, it follows that ¥ is continuous.

Next we show that U is injective. Let x,y € S with x # y. Since S is
Kolmogorov and zero-dimensional, there is f € Cont(S) with f(z) # f(y).
Thus, ¥(z)(f) = f(z) # f(y) = Y(y)(f), whence ¥ is injective.

Next we show that ¥ is surjective. Let v € Spec o Cont(S). Consider
{f~1({1}) ; v(f) = 1}. Define pp : n — n by p(1) = 0 and u(z) = 1 for
x # 1. Since f~1(u) (= po f) is an open n-fuzzy set on S for f € Cont(S),
(po £)~1({1}) is an open subset of S*. Since (no f)~*({1}) = (f~*({1}))¢,
f~Y({1}) is a closed subset of S* for f € Cont(S).
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We claim that {f~1({1}); v(f) = 1} has the finite intersection property.
Since f~1({1})Ng=t({1}) = (f Ag)~1({1}) for f,g € Cont(S), it suffices to
show that if v(f) = 1 then f~1({1}) is not empty. Suppose for contradiction
that v(f) = 1 and f~1({1}) = 0. Since f~1({1}) = 0, we have T;(f) = 0.
Thus v(T1(f)) = 0 and so v(f) # 1, which contradicts v(f) = 1.

By Proposition 4.8, S* is compact. Thus, there is z € S such that
z € N{f{1}); v(f) = 1}. We claim that ¥(z) = v. By the definition
of z, if v(f) = 1 then ¥(2)(f) = 1. We show the converse. Suppose for
constradiction that U(z)(f) = 1 and v(f) # 1. Then v(T1(f)) = T1(v(f)) =
0 and so v((T1(f))*) = 1. By the definition of z, (T1(f))*(z) = 1 and so
(T1(f))(2) = 0. Thus f(z) # 1, which contradicts ¥(z)(f) = 1. Hence,
for any f € Cont(S), v(f) = 1 iff ¥(2)(f) = 1. By Lemma 2.10, we have
U(z) = v. Hence, VU is surjective.

Finally we show that ¥~! is an arrow in the category FBS,,. It suffices
to show that, for any open n-fuzzy set A on S, ¥(\) is an open n-fuzzy set
on Speco Cont(S). Since S is zero-dimensional, there are f; € Cont(S) with
A = V,cy fi- For v € Spec o Cont(S), the following holds:

YN (0) = \/{A@); e € TH({u})} = A2) = v(N) = o(\/ fi) = (\/{fi) (),

i€l iel

where z is defined as the unique element z such that ¥(z) = v (for the
definition of the direct image of an n-fuzzy set, see Subsection 3.1). Hence
U(A) =V, (fi) and so ¥(X) is an open n-fuzzy set on Spec o Cont(S). [

By Theorem 4.21 and Theorem 4.22, we obtain a fuzzy topological du-
ality for L -algebras, which is a generalization of Stone duality for Boolean
algebras to the n-valued case via fuzzy topology.

Theorem 4.23. The category L;-Alg is dually equivalent to the category
FBS,, via the functors Spec and Cont.

Proof. Let 1d; denote the identity functor on Lf-Alg and Ids denote the
identity functor on FBS,. Then, we define two natural transformations
€ : Id; — Cont o Spec and n : Idg — Spec o Cont. For an Lj-algebra
A, define €4 : A — Cont o Spec(A4) by €4 = (-) (see Theorem 4.21). For
an n-fuzzy Boolean space S, define ng : S — Spec o Cont(S) by ng = ¥
(see Theorem 4.22). It is straightforward to see that n and e are natural
transformations. By Theorem 4.21 and Theorem 4.22, n and € are natural
isomorphisms. ]
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5 ML’ -algebras and basic properties

We define modal Lukasiewicz n-valued logic with truth constants ML{ by
n-valued Kripke semantics. The connectives of ML; are a unary connective
O and the connectives of L{. Formp denotes the set of formulas of ML .

Definition 5.1. Let (W, R) be a Kripke frame (i.e., R is a relation on a
set W). Then, e is a Kripke n-valuation on (W, R) iff e is a function from
W x Formp to n which satisfies: For each w € W and ¢, ¥ € Formp,

e e(w,0p) = NMe(w', ¢) ; wRw'};

s

(
(w, ) = (e(w, )™
o c(w

Then, (W, R, e) is called an n-valued Kripke model. Define ML{ as the set
of all those formulas ¢ € Formp such that e(w,p) = 1 for any n-valued
Kripke model (W, R,e) and any w € W.

,7) =1 for r € n.

By straightforward computation, we have the following lemma. Recall
the definition of U, (Definition 2.8).

Lemma 5.2. Let ¢,1 € Formp and r € n. (i) U,(Op) <> OU,(¢) € MLY.
(i) O(p Ap) <> Op ADOy € MLS and 01 <+ 1 € MLS. (4i) O(p * @) <
(Hp) * (Hp) € ML, and O(p p ¢) < (Hp)p(Dp) € MLy

Definition 5.3. For X C Formp, X is satisfiable iff there are an n-valued
Kripke model (W, R, e) and w € W such that e(w, p) =1 for any ¢ € X.

ML -algebras and homomorphisms are defined as follows.

Definition 5.4. Let A be an L{ -algebra. Then, (A,) is an ML{-algebra
iff it satisfies the following set of equations: {¢ =¥ ; ¢ <> 1 € ML{ }.

A homomorphism of ML{-algebras is defined as a homomorphism of
L{ -algebras which additionally preserves the operation [J.

Throughout this paper, we do not distinguish between formulas of ML,
and terms of ML -algebras.

Definition 5.5. Let A be an ML{ -algebra. Define a relation R on Spec(A)
by

vRou < Vr e nVz € A (v(Oz) > r implies u(x) > r).
Define e : Spec(4) x A — n by e(v,z) = v(z) for v € Spec(A4) and x € A.
Then, (Spec(A), Ro, e) is called the n-valued canonical model of A.
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Proposition 5.6. Let A be an ML -algebra. Then, the n-valued canonical
model (Spec(A), Ro,e) of A is an n-valued Kripke model. In particular,
e(v,0x) = v(Oz) = A{u(z) ; vRou} for x € A and v € Spec(A).

Proof. Tt suffices to show that e is a Kripke n-valuation. Since v is a homo-
morphism of L{-algebras, it remains to show e(v,0z) = A{u(z); vRou}.
To prove this, it is enough to show that, for any r € n, (i) v(Ox) > r iff
(ii) vRou implies u(z) > r. By the definition of Rp, (i) implies (ii). We
show the converse. To prove the contrapositive, assume v(dz) # r, ie.,
U,.(Oz) ¢ v=1({1}). Let

Fo = {Uy(z); s € nand Uy(Ox) € v~ 1 ({1})}.

Let F' be the n-filter of A generated by Fy. We claim that U,(x) ¢ F.
Suppose for contradiction that U,(z) € F. Then, there is ¢ € A such
that ¢ < U,(x) and ¢ is constructed from * and elements of Fj. Since
Us(z) is idempotent, Us, (x1) * Us,(x2) = Us, (21) A Ug, (22) and so we may
assume that ¢ = A{Us(x); Us(z) € F1} for some finite subset F} of Fy.
By Lemma 5.2, Op = A{Us(Oz) ; Us(z) € F1}. By the definition of Fp,
Us(Oz) € v~ 1({1}) for any Us(z) € Fy and so Oy € v=1({1}). Since
¢ < U,(x), we have Oy < OU,(x) = U.(Oz). Thus, U,.(Oz) € v~ 1({1}),
which contradicts U,(Oz) ¢ v=({1}). Hence U,(z) ¢ F. By Proposition
2.14, there is a prime n-filter P of A such that U,(z) ¢ P and F C P. By
Proposition 2.17, vp € Spec(A). Since U, (z) ¢ P, we have vp(z) # r. Since
Fy C F C P, we have vRovp. Thus, (ii) does not hold. O

The following is a compactness theorem for ML .

Theorem 5.7. Let X C Formp. Assume that any finite subset of X is
satisfiable. Then, X is satisfiable.

Proof. Let A be the Lindenbaum algebra of ML . We may consider X C A.
We show that X has f.i.p. with respect to x. If not, then there are n € w with
n # 0 and x1,...,x, € X such that z1 % ...xxz, = 0, which is a contradiction,
since {z1,...,x,} is satisfiable by assumption. Thus, by Proposition 2.16,
there is a prime n-filter P of A with X C P. By Proposition 2.17, vp
is a homomorphism, i.e., vp € Spec(A). Consider the n-valued canonical
model (Spec(A), R, e) of A. Then, e(vp,x) = vp(z) =1 for any z € X by
Proposition 2.17. Thus, X is satisfiable. O

Proposition 5.8. Let A be an ML -algebra. Then, B(A) forms a modal
algebra.
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Proof. If x € A is idempotent, then [z is also idempotent, since (x x Lz =
O(z % ) = Oz by Lemma 5.2. Thus, B(A) is closed under [J. By Lemma
5.2, B(A) forms a modal algebra. O

Definition 5.9. Let A be an ML} -algebra. Define a relation Rn, on
Specy(B(A)) by vRo,u < Vo € B(A) (v(Oz) =1 implies u(z) = 1).

Proposition 5.10. Let A be an MLS -algebra. For v,u € Spec(A), vRou
iff t1(v)Ro,t1(w) (for the definition of t1, see Proposition 4.20).

Proof. By OT1(z) = T1(0Oz), if vRou then ¢;(v)Ro,ti1(u). We show the
converse. Assume t1(v)Ro,t1(u). In order to show vRpu, it suffices to
prove that, for any » € n and any x € A, v(OU,(z)) = 1 implies u(U,(z)) =
1, which follows from the assumption, since we have U,(z) € B(A) and
T1(Up(2z)) = Up(z). O

6 A fuzzy topological duality for ML’ -algebras

In this section, based on the fuzzy topological duality for L -algebras, we
show a fuzzy topological duality for ML -algebras, which is a generalization
of Jonsson-Tarski duality for modal algebras via fuzzy topology, where note
that MLS-algebras coincide with modal algebras.

Definition 6.1. ML7-Alg denotes the category of ML -algebras and homo-
morphisms of ML -algebras.

Our aim in this section is to show that the category ML{-Alg is dually
equivalent to the category FRS,,, which is defined in Definition 6.3 below.

For a Kripke frame (S, R), we can define a modal operator [ on the
“n-valued powerset algebra” n® of S as follows.

Definition 6.2. Let (S, R) be a Kripke frame and f a function from S to
n. Define Opf : S — 0 by (Opf)(x) = Af(y) ; =Ry}

Recall: For a Kripke frame (S, R) and an n-fuzzy set p on S, an n-fuzzy
set R™[u] on S is defined by R~1[u](z) = \/{u(y) ; xRy} for x € S.

Definition 6.3. We define the category FRS,, as follows.
An object in FRS,, is a tuple (S, R) such that S is an object in FBS,,
and that a relation R on S satisfies the following conditions:

1. if Vf € Cont(S)((Orf)(x) =1 = f(y) = 1) then xRy;
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2. if u € Cont(S), then R~1[u] € Cont(S).

An arrow f : (S1,R1) — (S2,R2) in FRS,, is an arrow f : S1 — S2 in
FBS,, which satisfies the following conditions:

1. if zRyy then f(z)Raf(y);
2. if f(x1)Roxo then there is y; € Sy such that z1Ryy; and f(y1) = xo.

An object in FRS,, is called an n-fuzzy relational space.

The item 1 in the object part of Definition 6.3 is an n-fuzzy version of
the tightness condition of descriptive general frames in classical modal logic
(for the definition of the tightness condition in classical modal logic, see [3]).

Definition 6.4. We define a contravariant functor RSpec : ML;-Alg —
FRS,,. For an object A in ML{-Alg, define RSpec(A) = (Spec(A), Ro). For
an arrow f: A — B in ML -Alg, define RSpec(f) : RSpec(B) — RSpec(A)
by RSpec(f)(v) =wvo f for v € Spec(B).

We call RSpec(A) the relational spectrum of A. The well-definedness of
RSpec is shown by Proposition 6.6 and Proposition 6.7 below.

Definition 6.5. Let A be an ML{ -algebra. Then, we define RSpecqy(B(A))
as (Specy(B(A)), Ro,). Let Ay and Ay be ML -algebras and f : B(A41) —
B(Aj3). Then, we define RSpecy(f) : RSpecqy(B(A2)) — RSpecy(B(A1)) by
RSpecy(f)(v) = v o f for v € RSpecy(B(A2)).

Proposition 6.6. For an MLS -algebra A, RSpec(A) is an object in FRS,,.

Proof. 1t suffices to show the items 1 and 2 in the object part of Definition
6.3. We first show the item 1 by proving the contrapositive. Assume (v,u) ¢
Rp, i.e., there are r € n and x € A such that v(Oz) > r and u(z) # r. By
Lemma 2.8, v(U,(Oz)) = 1 and u(U,(x)) = 0. Then, (U,.(z))(u) = 0. By
Proposition 5.6 and Lemma 5.2,

(Or(U, (@)(0) = AL (@) () : vRgv'} = o(@U, () = v(U,Ox) = 1.

As is shown in the proof of Lemma 4.14, (U, (z)) is continuous.

We show the item 2. Since Cont o Spec(A) = {(z); x € A} as is
shown in the proof of Lemma 4.14, it suffices to show that, for any = € A,
R5'((x)) € ContoSpec(A). Let O denote (O(2))*+. Since (R5'(()))(v) =
V{u(@) ; vRau} = v(0), we have RS ({z)) = (0z) € Cont o Spec(d). O
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Proposition 6.7. For ML -algebras A1 and Ag, let f : Ay — Az be a
homomorphism of MLS -algebras. Then, RSpec(f) is an arrow in FRS,,.

Proof. Define f, : B(A1) — B(A2) by fi(z) = f(z) for z € B(A;). By
Proposition 5.8, f, is a homomorphism of modal algebras. Consider RSpecy( fy) :
RSpecy(B(A2)) — RSpecy(B(A1)). By Joénsson-Tarski duality for modal al-
gebras (see [16, 1]), RSpecy(f+) is an arrow in FRSs.

We first show that RSpec(f) satisfies the item 2 in the arrow part of
Definition 6.3. Assume RSpec(f)(v2)Rgou; for va € RSpec(Az) and uy €
RSpec(A1). By Proposition 5.10, ¢ (RSpec(f)(v2))Ro,t1(u1). It follows
from t1(RSpec(f)(v2)) = T1owg o f = RSpecy(fs)(t1(v2)) that we have
RSpecy(f«)(t1(v2))Royti(ur). Since RSpecy(fy) is an arrow in FRSo, there
is ug € RSpecy(B(A2)) such that ¢ (ve) Ro,us and RSpecy (fi)(u2) = t1(uy).
Define u, € RSpec(Az) by uh(z) = r < ua(Tr(z)) = 1. It is verified in a
similar way to Proposition 2.17 that u/ is a homomorphism.

We claim that veRuy, and RSpec(f)(uh) = wi. Let z € Ay and
r € n. If va(0z) > r then (¢1(v2))(0U,(z)) = 1 and, since t;(v2)Ro,us,

we have ug(U,(x)) = 1, whence ub(z) > r. Thus, voRoub. Next we
show RSpec(f)(ub) = ui. Let r = (RSpec(f)(uy))(x) for z € A;. Then,
u2(Tr(f(x))) = 1 and so (RSpecy(fi)(u2))(Tyr(z)) = 1. It follows from
RSpecy(fi) (ug ) = t1(u1) that (t1(u1))(Tr(x)) = 1 and so w1 (Ty(x)) = 1,
whence ui(x) = r = (RSpec(f)(u}))(z). Thus RSpec(f) satisfies the item
2.

It is easier to verify that RSpec(f) satisfies the item 1 in the arrow part
of Definition 6.3. O

Definition 6.8. A contravariant functor MCont : FRS,, — ML{-Alg is
defined as follows. For an object (S,R) in FRS,, define MCont(S, R) =
(Cont(S),0gr). For an arrow f : (S1,R1) — (S2,R2) in FRS,, define
MCont(f) : MCont(S2, R2) — MCont(S1, R1) by MCont(f)(g) = go f for
g € Cont(S2).

The well-definedness of MCont is shown by the following propositions.

Proposition 6.9. For an object (S, R) in FRS,,, MCont(S, R) is an ML -
algebra.

Proof. We first show that if f € Cont(S) then Ogrf € Cont(S). Let f €
Cont(S) and p an open n-fuzzy set on n. Define y, as in the proof of Lemma
4.3 and then it suffices to show that (Ogf)~!(u,) is an open n-fuzzy set on
S for any r € n. By Lemma 2.8,

(Orf) (1) = R pr o f] A (RTH(Up 0 f)H)E.
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Since both p, o f and (U, o f)* are elements of Cont(S), the right-hand side
is an element of Cont(S) by the definition of R and so is an open n-fuzzy
set on S, since S is zero-dimensional. Thus Ogf € Cont(S5).

Next we show that MCont(S, R) satisfies {¢ = 1 ; ¢ <> ¢» € ML{ }.
Consider Cont(S) as the set of propositional variables. Since Cont(S) is
closed under the operations of Cont(.S), an element of Formpg may be seen
as an element of Cont(S). Define e : S x Formpg — n by e(w, f) = f(w)
for w € S and f € Cont(S). Then, (S, R, e) is an n-valued Kripke model by
the definition of the operations of Cont(S). Since e(w, f) = 1 for any w € S
iff f =1, it follows from the definition of ML{, that MCont (S, R) satisfies

{e=1v; ¢ eML;} O

Proposition 6.10. Let f : (S1, R1) — (S2, R2) be an arrow in FRS,,. Then,
MCont(f) is a homomorphism of ML -algebras.

Proof. It remains to show that MCont(f)(Og2) = O(MCont(f)(g2)) for g2 €
Cont(S2). For z1 € S1, (MCont(f)(Og2))(z1) = A{g2(y2) ; f(21)Raya}.
Let a denote the right-hand side. We also have (O(MCont(f)(g2)))(z1) =
N g2(f(y1)) ; z1R1y1}. Let b denote the right-hand side. Since x1Ri1y1
implies f(z1)R1f(y1), we have a < b. By the item 2 in the arrow part of
Definition 6.3, we have a > b. Hence a = b. O

Theorem 6.11. Let A be an object in ML{ -Alg. Then, A is isomorphic to
MCont o RSpec(A) in the category MLS -Alg.

Proof. We claim that (-) : A — MCont o RSpec(A) is an isomorphism of
ML -algebras. By Theorem 4.21, it remains to show that (Oxz) = Og_ ()
for x € A. By Proposition 5.6, we have the following for v € Spec(A):

(Hrg () (v) = Mu(z) ; vRou} = v(0z) = (Ox)(v). 0

Theorem 6.12. Let (S, R) be an object in FRS,,. Then, (S, R) is isomor-
phic to RSpec o MCont (S, R) in the category FRS,,.

Proof. Define ® : (S, R) — RSpec o MCont(S, R) by ®(x)(f) = f(z) for
x € S and f € Cont(S). We show: For any z,y € S, xRy iff ®(z)Rn,P(y).
Assume zRy. Let r € n and f € Cont(S) with ®(x)(Ogf) > r. Since
O(z)(Orf) = N{f(2); xRz}, we have ®(y)(f) = f(y) > r. Next we show
the converse. To prove the contrapositive, assume (z,y) ¢ R. By Definition
6.3, there is f € Cont(S) such that (Ogrf)(x) = 1 and f(y) # 1. Then,
®(z)(Orf) =1 and ®(y)(f) # 1. Thus, we have (®(z), ®(y)) ¢ Roj.

By Theorem 4.22, it remains to prove that ® and ®~! satisfy the item
2 in the arrow part of Definition 6.3, which follows from the above fact that
xRy iff ®(z)R0o,®(y), since @ is bijective. O
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By Theorem 6.11 and Theorem 6.12, we obtain a fuzzy topological du-
ality for ML{ -algebras, which is a generalization of Jénsson-Tarski duality
for modal algebras to the n-valued case via fuzzy topology.

Theorem 6.13. The category ML -Alg is dually equivalent to the category
FRS,, via the functors RSpec(-) and MCont(-).

Proof. By arguing as in the proof of Theorem 4.23, this theorem follows
immediately from Theorem 6.11 and Theorem 6.12. O
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