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Abstract

Our limited a priori-reasoning skills open a gap between our finding a proposition
conceivable and its metaphysical possibility. A prominent strategy for closing this gap
is the postulation of ideal conceivers, who suffer from no such limitations. In this
paper I argue that, under many, maybe all, plausible unpackings of the notion of ideal
conceiver, it is false that ideal negative conceivability entails possiblity.

1 Introduction

The foundational problem of modal epistemology is that of explaining, or ex-
plaining away, our apparent epistemic access to modal facts – i.e., facts about
what is necessary, or possible. A very popular proposal has it that such access is
mediated by the faculty of conceiving. This faculty can be understood as being
a special kind of imagining, such that:

p is conceivable for me if I can imagine a world that I take to
verify p. (Yablo 1993, p. 29)

That is, if I can imagine a situation of which I believe that p with truth (Yablo
1993, p. 26).

Our finding some propositions conceivable, the proposal goes, is in some way
linked to their being metaphysically possible. Just in which way, though, is a
matter of dispute, and we have known at least since Kripke that the relation
between the conceivable and the possible cannot be one of entailment. One
reason for this1 is that we are not cognitively ideal creatures: our inferential
capabilities, our attention and memory have a limited span. Exercising these
cognitive faculties when conceiving, thus, may sometimes mislead us into judg-
ing that something is possible when it is not or vice versa. As-yet-unproven
mathematical or logical statements, such as

p
(
218

)
+ 1 may be expressed as the sum of two primes.

1 The only reason I will be concerned with in this paper, but there are other, probably more
important ones – cf. Chalmers (2002).
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– where p
(
218

)
is the 218th prime – are a case in point: someone imagining a

world that she takes (justifiedly) to verify such a statement is compatible with
the statement being false. But, according to the most common opinion, if it is
false it is necessarily false.

One prominent neo-rationalist strategy to tackle this problem (cf., inter alia,
Chalmers (2002) and Menzies (1998)) involves introducing an ancillary notion
of ideal conceivability, conceivability not subject to our contingent cognitive
shortcomings, as a means to bridge, even if partly, the gap between the con-
ceivable and the possible. I will call defenders of this theoretical move ideal
conceivabilists. So, e.g., Menzies:

Under what circumstances do our corrective practices discount
acts of conceiving as not being veridical indicators of possibility?
The answer is simple: when they suffer from one kind of cognitive
limitation or other. . . .

Let us call a subject who does not suffer any of the limitations
recognised in our practice as discounting acts of conceiving an ideal
conceiver. (Menzies 1998, p. 268f)

Such an ideal conceiver, it is hoped, will close the gap between conceivability
and possibility opened by our imperfect a priori-reasoning skills. More con-
cretely, a popular thesis regarding the connection between ideal conceivability
and possibility is the following:

Chalmers: Ideal primary negative conceivability entails primary possibility.
(Chalmers 2002, p. 172)

In what follows I will leave the “primary” restriction aside: it is designed to
deal with a posteriori necessities, and this type of truths will play no role in
my discussion2. The idea, then, is that negative ideal conceivability entails
(metaphysical) possibility, where negative conceivability is such that

[A statement] S is negatively conceivable when S is not ruled out
a priori, or when there is no (apparent) contradiction in S. (Chalmers
2002, p. 149)

Negative conceivability is to be contrasted with positive conceivability: for the
latter, a positive act of “modally imagining” (Chalmers 2002, p. 151) the propo-
sition expressed by the target statement is required by the conceiver. For the
former, it is enough that the conceiver finds no contradiction (hence the negative
tag) in the proposition in question.

2 This should not be taken to mean that the primary/secondary distinction (closely related
to the distinction between epistemic and metaphysical possibility, although I will not be
discussing it any further) is unimportant or innocuous. On the contrary, it does crucial work
in Chalmers’s philosophy of mind, where it is used, for example, to derive anti-materialist
conclusions with respect to the mind-body problem – cf. Chalmers (2009).

There are probably many things to say about the cogency of this distinction, when it
is applied to the philosophically interesting cases, but I will steer clear of this important
complication by restricting the discussion to logico-mathematical statements, whose primary
and secondary modal profiles are supposed to match.
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As regards the “ideal” modifier, Chalmers relates it to the idea of undefeata-
bility by better reasoning:

S is ideally conceivable when there is a possible subject for whom S
is prima facie conceivable, with justification that is undefeatable by
better reasoning. (Chalmers 2002, p. 148)

Finally, in ascertaining what counts as better reasoning in a particular context,
Chalmers suggests that we should respect what I will call the independence
requirement :

[i]t is important that ’better reasoning’ about conceivability not be
defined, even in part, as reasoning that better tracks possibility.
Such a criterion would trivalize the link between ideal conceivability
and possibility. (Chalmers 2002, p. 149)

In the case of logico-mathematical statements, which, I am assuming, are nec-
essary (and possible) iff true, and impossible iff contradictory iff false, the inde-
pendence requirement asks that we do not tie better reasoning to truth-tracking.

Thus, ideal conceivers are to be thought of as follows:

Ideal Conceiver: A subject is an ideal conceiver of a statement S iff she finds
S conceivable with justification that is undefeatable by better reasoning.

We should bear in mind, though, that in this sense being an ideal conceiver does
not entail being a perfect conceiver or reasoner; it only implies that, as far as
the target proposition is concerned, any better conceiver/reasoner will give the
same conceivability verdict as the ideal conceiver3.

Putting all of this together we can render Chalmers as the more perspicuous
Ideal:

Ideal: If an ideal conceiver finds no a priori contradiction in p, then p is meta-
physically possible.

Chalmers asserts that such a thesis is “very likely true”. The main contention of
this paper is that, under a number of plausible and attractive ways of spelling
out the notion of undefeatability by better reasoning, Ideal is false4.

Before that, though, I will quickly review another, inconclusive worry about
the ideal-conceivability move which will be useful as an introduction to my own,
hopefully more conclusive, objection.

2 An Inconclusive Objection

One may worry that we do not have as clear a grasp of the idea of idealising
away from limitations in memory, attention, time and the like as we would like
to think. Thus, Kripke:

3 And, again, the notion of better reasoning at play should not depend in any way on
truth-tracking reliability. As we go along, I will signal the places at which this caveat is
relevant.

4 I should also say that, although there may be other reasonably clear ways to spell out
this notion, I don’t know of any equally attractive ones.
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If my brain had been stuffed with sufficient extra matter to grasp
large enough numbers . . . and if my life (in a healthy state) were
prolonged enough, then given an addition problem involving two
large numbers, m and n, I would respond with their sum. But . . .
[h]ow in the world can I tell what would happen if my brain were
stuffed with extra brain matter, or if my life were prolonged by some
magic elixir? (Kripke 1982, p. 27)

Leaving aside worries about how to fix which rule is the addition rule – which
were, of course, the worries that Kripke was raising in the book I have just
cited, but which need not detain us now – there is a problem here for the ideal
conceivabilist. Suppose that a putatively ideal conceiver is invited to give a
verdict of conceivability about instances of the following statement schema:

Addition(m,n,o): The sum of m and n is o.

If Ideal is true, our ideal conceiver5 has to deem negatively conceivable – i.e.,
has to fail to find a priori contradiction in – only such statements that are
possible (because true). In order to calculate this, if m, n and o are sufficiently
big, she will need lots of extra brain matter, if only to make room for a sufficient
amount of working memory. But now, Kripke’s worry kicks in: “how in the world
can we tell what would happen if her brain. . . ?”

I believe that the ideal conceivabilist has a compelling response to the worry:
we do not need to deal with brains and their matter because, as far as the con-
ceivability of instances of Addition(m,n,o) is concerned, an ideal conceiver may
be thought of as an ideal adding device, and we have a perfectly general, per-
fectly formal characterisation of ideal adding devices: universal Turing machines
running an addition program.

Turing machines are notional machines (i.e., independent of any implemen-
tation details), which can be fully characterised in a way that leaves no room
for the kind of worries that Kripke raised regarding brain matter. They are to
be conceived of as having a tape with adjacent cells and a head (that can move,
one cell at a time, along the tape) able to read the symbol written at one of
these cells and, if so instructed, erase it and write a new one. A program for the
machine is a set of quadruples: in each quadruple we find, first, a specification
of the state the machine is in; second, the symbol the head is reading; third, the
action that the head has to take – erase and write one of a number of symbols
in its current position, or do nothing; then stay put or move left/right –; finally,
the new state the machine is going to move to. A computation starts with the
machine in the Initial state, and some information – its input – written on its
tape, and progresses until the machine reaches the Final state (if it ever does),
at which point the machine halts and the calculation is over – the information

5 In fact, for all Ideal claims, different ideal conceivers might be necessary in order to
conceive in the undefeatable-reasoning way different substitutions of a statement schema. In
the Addition(m,n,o) case, though, a single ideal conceiver can handle them all, as we are
about to see.
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written at a certain designated area of the tape is the calculation’s output6.
In the case at hand, we may instruct the ideal conceiver (a Turing machine)

to do as follows: take the three input quantities, m, n and o, as written on the
tape, calculate the sum of the first two and then compare the result to the third.
If they are not the same quantity, it has to erase all the tape and write a 1 at
the left of the head. 1 should be taken to mean ’I find an a priori contradiction
in this statement’. It can be proven that the ideal conceiver will only write 1
when o is not the sum of m plus n.

Although, in general, it might be difficult to provide a satisfactory character-
isation of what counts as failing to find a priori contradiction in a statement, the
logico-mathematical case is easy in that such a statement is true iff necessary
iff possible and false iff contradictory iff impossible; so that checking for truth
and falsity is enough to check for contradictoriness7. In this context, therefore,
failing to find a substitution of Addition(m,n,o) contradictory amounts to not
writing a 1 at the left of the head – maybe because a 0 is written instead by the
time we reach the Final state, maybe because nothing at all is written8. All in
all, the ideal conceiver provably behaves as Ideal claims it should.

In describing the workings of such an ideal conceiver I haven’t had to mention
brains at all. But if someone insists on having an answer in terms of brain
matter, the following can be said: not just any stuffing with extra brain matter
will do; only such stuffing as implements the computational equivalent of a
Turing machine that performs addition with as long a tape as is needed to deal
with the m, n and o in question. And not just any life-extending magic elixir
will do; only such elixir that leaves the Turing machine untouched and provides
enough time to complete the program.

One compelling answer to this Kripkean worry about ideal conceivers, then,
is that recursion theory (the theory, among other things, of Turing machines)
provides an informative way in which such an ideal conceiver may be thought
of. This answer, though, points to another, more serious problem.

3 Ideal Prediction of Haltings

Consider now the following statement schema:

Halt(P,i): A Turing machine running program P, given input i, eventually halts.

As far as the conceivability of instances of Halt(P,i) is concerned, an ideal
conceiver is an ideal predictor of haltings. The problem now is that there is

6 This very brief summary can be supplemented by any of a number of textbooks, such as
Davis et al. (1994, chapter 6).

7 It might be that pressing for a specification of the peculiar propositional attitude of finding
a priori contradiction in p is already a way to put the ideal conceivabilist into trouble. Con-
centrating in an area of discourse in which checking for truth and falsity is enough, therefore,
has the bonus feature of making things as easy as possible for her.

8 Nothing is written, perhaps, because the Final state is never reached. This will not
happen in the simple case of Addition(m,n,o), but will happen for semi-decidable problems
such as the ones that figure prominently in the sequel.
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no Turing machine that, given any program P and input i, resolves whether
that program working on that input will halt or not – cf. Turing (1936). This
result may be extended to any computational equivalent of Turing machines.
This means that no Turing machine, running any program, will be able to find
an a priori contradiction in many substitutions of the Halt(P,i) schema which,
in fact, are about programs P that do not halt given input i9. That is, any
possible Turing machine will find ideally negatively conceivable – i.e., will fail to
write a 1 at the designated square of the tape, maybe because it never reaches
its Final state – many propositions which are impossible (because false). Ideal,
under the construal of ideal conceivers as Turing machines, is false.

In summary: ideal conceivers should fail to find a priori contradiction only
in those logico-mathematical propositions that are true. This is what is needed
for Ideal to hold; but a (group of) ideal conceiver(s) that is able to deal with
arbitrary instances of Halt(P,i) – and each of them is, determinately, either
true or false – cannot do so by computing. Recursion theory, I suggested above,
provides a way in which we may think of ideal conceivers, but this way breaks
down when it gets to not decidable (semi-decidable, in this case) problems10.

On the other hand, the theory of Turing machines goes beyond standard
Turing machines such as the ones I have been discussing: for example, oracle

9 Many and not all substitutions, because Turing machines are able to calculate the halting
problem for a restricted class of programs and inputs. For example, an adding device, given
any two numbers, will calculate their sum and halt, always. So, when ADD is the addition
program it implements, the restricted halting problem is trivial:
Halt(ADD,i): A Turing machine running program ADD, given input i, eventually halts.
The answer is ’yes’ for every pair i of numbers.

10 Again here, Ideal is compatible with more than one ideal conceiver (Turing machine)
being needed in order to deal with different substitutions of the Halt(P,i) schema. An ideal
conceivabilist may try to exploit this fact by arguing as follows:

All I have claimed is that, for any statement S, there is a conceiver who
has achieved her conclusions by way of undefeatable reasoning, and who finds
contradiction in S only if S is false (and hence impossible). Now, such a pairing
of statement and conceiver can be trivially made to work for substitutions of the
Halt(P,i) schema, in the following way:

1. Consider two Turing machines: the yes machine is such that, for any pair
(P,i) provided as input, it immediately prints a 1 at the left of its head
and halts. The no machine, instead, immediately prints a 0 and halts.

2. Feed all pairs (P,i) that correspond to a program P that halts when sup-
plied with input i to the no machine, and all other pairs to the yes ma-
chine.

It is, indeed, easy to see that this pair of machines can deal with the halting problem faultlessly.
It is equally clear that, if this way of allocating conceivers to statements were intended by
ideal conceivabilists as one which vindicates Ideal, we should not really care much about this
thesis, which would have turned out to be entirely vacuous.

I should quickly point out that real-life ideal conceivabilists are under no illusion about
this; and, in particular, Chalmers advocates for the much more substantial independence
requirement of undefeatable reasoning, which in this case rules out the allocation of conceivers
to statements based on (antecedent) information about the truth or falsity of the statement
in question.

The fact remains that any allocation of conceivers (Turing machines) to statements, such
that it respects the independence requirement, is unable to solve the halting problem.
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Turing machines and hypercomputers are reasonably well understood theoretical
constructs that vastly outperform (standard) Turing machines. Couldn’t ideal
conceivers be fruitfully thought of as those? In fact, as I will now argue, Ideal
is false for these more exotic machines, too.

4 Beyond Turing Machines

4.1 Oracles
Recursion theory has seen it useful to introduce the notion of an oracle: a
black box that can provide answers to non Turing-computable problems, such
as whether any given pair of Turing machine and input will eventually halt. An
oracle Turing machine is a standard Turing machine hooked up to a halting
oracle, such that it can use these oracular capabilities in its own calculations.
Couldn’t we now suggest that ideal conceivers are to be modelled as oracle
Turing machines?

Such machines would, indeed, be able to provide the correct conceivability
verdict about any substitution of the Halt(P,i) schema above; on the other
hand, they are totally unsuited for the role of ideal conceiver. First, they are
inherently mysterious: the oracle is a black box, and there is no inkling of what
may be happening inside that gives it its oracular powers. This is very clear in
Turing’s original formulation:

Let us suppose that we are supplied with some unspecified means
of solving number-theoretic problems; a kind of oracle as it were.
We shall not go any further into the nature of this oracle apart from
saying that it cannot be a machine. (Turing 2001, p. 172f)

Relatedly, and crucially, they do not satisfy Chalmers’s independence require-
ment of undefeatable reasoning: they have been introduced precisely as whatever
things that provide the right verdict when confronted to certain number-theoretic
problems. This is just about the least subtle way in which the independence
requirement can be flouted, and it would make a modal epistemology based on
oracle-reasoning almost perfectly vacuous. None of this means that oracles are
useless theoretical constructs, but it does mean that they are useless in allevi-
ating our worries about the nature and eventual coherence of ideal conceivers.

The bottomline is that oracle Turing machines, not meeting Chalmers’s in-
dependent requirement, don’t count as displaying better reasoning than Turing
machines. For all Ideal is concerned, they bring nothing new to the table.
I turn now to consider other notional machines that do not have this prob-
lem: several kinds of so-called hypercomputers can be described in a way that
exquisitely respects the independence requirement; and each of them is more
powerful than a standard Turing machine. Unfortunately, as we are about to
see, this is not powerful enough.
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4.2 Hypercomputation
Forget black boxes. Today we have a flourishing industry of modifications to
Turing machines that make them quite capable of performing supertasks11. Let
me go quickly through some among these proposals:

Infinite time Turing machines (ITTM – cf. Hamkins and Lewis (2000),
Hamkins (2002)) are allowed to keep going, once they’ve computed ω steps,
on to step ω + 1, ω + 2, . . . , ω + ω, etc.12 Whenever they reach a limit ordinal
stage (ω, ω + ω, etc.) the value in each cell is substituted by a ’limit’ value
(the current value of the cell, if it has stabilised, and 1 if the cell has alternated
from 0 to 1 unboundedly often (Hamkins 2002, p. 527)), and computation is
resumed. ITTMs can decide the halting problem in ω many steps (Hamkins
2002, p. 529).

ITTMs are – despite of their name – not Turing machines: the state of a
Turing machine at any stage is a function solely of its state at the previous
stage, and the state of ITTMs at a limit stage is, instead, a function of all
of the previous ω stages. Indeed, the same kind of classical diagonalisation
arguments that prove that the Turing-machine halting problem is not decidable
can be straightforwardly extended to prove that, although ITTMs can solve
the Turing-machine halting problem, they cannot solve the supertask halting
problem13.

The upshot of the supertask halting problem for our actual concerns is that
no ITTM ideal-conceivers14 are able to give the right verdict of negative con-
ceivability about arbitrary substitutions of a corresponding Supertask-Halt(P,i)
schema:

Supertask-Halt(P,i): An ITTM machine running program P, given input i, even-
tually halts.

This supertask halting problem is equally non decidable by other notional ma-
chines described in the literature on hypercomputation:

Accelerating Turing machines (ATM – cf. Copeland (2002), Copeland and
Shagrir (forthcoming)) are Turing machines that compute each step in half
the time it takes to compute the previous stage. This means that a whole
computation, possibly with infinite steps, takes place in less than double the
time it takes to compute its first step. ATMs have a designated square in which
a 0 is written at the beginning of the computation, and which is overwritten with
a 1 if the computation the ATM is doing halts. In the way of undertanding ATMs

11 Tasks with an infinite number of steps, cf. Benacerraf (1962).
12 I will concede that computing during transfinitely many steps makes sense.
13 Halting problems, really – see (Hamkins 2002, p. 535), (Hamkins 2004, p. 153) for details.
14 That is, if they have not been cherry-picked in a way that violates the independence

requirement in a manner analogous to the one described in footnote 10. Incidentally, we may
now note that an effective cherry-picking must be done by something that is more powerful
computationally than an oracle Turing machine.
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that makes them able to compute the halting problem for Turing machines, they
are not Turing machines, and cannot compute their own (supertask) halting
problem15.

Infinitely parallel machines (IPM – cf. Ziegler (2005) for details) are arrays of
infinitely many Turing machines that compute independently and whose outputs
are, subsequently, integrated. Chalmers seems to have IPMs in mind when he
writes that

Our inability to know a given Gödel sentence plausibly results from
a contingent cognitive limitation . . . our contingent inability to
evaluate a predicate of all integers simultaneously (Russell’s ’mere
medical impossibility’) (Chalmers 2002, p. 180)

IPMs are, indeed, able to solve the Turing machine halting problem, but they
cannot solve the IPM-halting problem.

In conclusion, all of these hypercomputers fall prey to their own halting
problem. To solve this problem, we would need a supertask-halting oracle. This
oracle can be introduced16; but, crucially for our current interests, only as what-
ever things that solve the supertask halting problem. Not, therefore, in a way
that respects the independence requirement. The upshot is that hypercomput-
ers, even if they provide a remedy to Russell’s ’mere medical impossibility’, still
fall short of Ideal.

4.3 Meta-Oracles
In conclusion, the entailment from negative ideal conceivability to possibility –
under the different understandings of ideality I have been reviewing – is falsified
by the different halting problems each (hyper-)machine is unable to compute.

Before wrapping up, I want to look again into the idea of interpreting the
notion of better reasoning in terms of ever more powerful oracle Turing ma-
chines17. Let me quickly reiterate why this is not the intended sense of better
reasoning, and cannot be. Suppose we propose that

Conceiver Hierarchy: A statement S is ideally negatively conceivable if it
is not ruled out a priori by any oracle Turing machine.

The problem is that each oracle in the hierarchy is introduced as whatever it is
that can give a solution to its intended class of undecidable statements; so that
Conceiver Hierarchy is simply a convoluted way of ruling that a statement

15 There is another way of understanding ATMs which makes them Turing machines – but
unable to solve the Turing machine halting problem. For discussion, see Copeland and Shagrir
(forthcoming).

16 See (Hamkins 2004, p. 153f) for a discussion of oracles in the hypercomputer context.
17 The least powerful oracle Turing machine is the one that can solve the halting problem for

standard Turing machines; the following in the hierarchy is the one that can solve the halting
problem for the least powerful oracle Turing machine, etc.
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is ideally negatively conceivable only if it is possible – a very unsubtle way of
flouting the independence requirement.

Apart from this unacceptable feature of the proposal, Conceiver Hierar-
chy is unsatisfactory in another (lesser) respect. Recall Menzies’s original sense
of ideal conceivability as conceivability not affected by any cognitive limitation.
We have seen that a conceiver that is not cognitively limited in any obvious
respect can still fall short of the goal of linking negative conceivability and pos-
sibility. The idea, which helps making ideal conceivers attractive, that they are
just like us but flawless is not really tenable.

Now, one could try to rebuild the link between oracle-conceiving and (a
flawless version of) us in the following way: introduce a “meta-oracle”, an ag-
gregator that checks each oracle machine in the hierarchy to see whether it has
been able to rule out the target statement. Such an aggregator would channel
the information in the hierarchy for us to use, say, in our own modal appraisals.
But no such channeling would help us meet ideal, for already familiar reasons:
the meta-oracle has its own halting problem.

5 Concluding Remarks

As Hamkins puts it,

Any notion of computation naturally provides a corresponding halt-
ing problem. (Hamkins 2004, p. 153)

There simply is no way around the halting problem.
Chalmers (2002, p. 180) considers briefly the case of mathematical truths as

a potential counterexample to Ideal. His suggestion is that it is plausible that
every mathematical statement is either ideally knowable or untrue. As evidence
for this dichotomy he cites, on the one hand, all truths of arithmetic (which are
true, but also ideally knowable by an ITTM, for example); and, on the other
hand unprovable statements of set theory (maybe unknowable, even ideally, but
also dubiously true).

The (supertask) halting problem falls under neither side of the dichotomy:
it provides a set of statements, all of them determinately true or false, and such
that infinitely many of them are unknowable by a number of radically idealised
cognisers – Turing machines, and the notional hypercomputers of section 4.2.

A line of response to this family of counterexamples to Ideal by the ideal
conceivabilist could be to work out an intelligible way to further idealise these
machines that still respects the independence requirement. For example (the
only relevant example I can think of, although of course there might be others
I have overlooked), the ideal conceivabilist might resort to defending that the
reasoning of ideal conceivers is better than that of Turing machines in that
the former have ideal creativity (creativity, that is, that cannot be bettered) in
coming up with proofs of the halting statement for particular instances of P and
i. Ideal creativity, moreover, that cannot be reduced to or otherwise explained
in algorithmic terms.
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It is, I think, very reasonable to doubt that we have a firm grip on the notion
of ideal, non-algorithmic creativity: note that this is a faculty which should
allow a (team of) ideal conceiver(s) to ascertain the falsity of false statements
in the (not decidable) halting problem so that they can refrain from issuing a
verdict of inconceivability regarding them. Moreover, it has to be specifiable
in terms which are independent from the goal of proving the truth or falsity
of logico-mathematical statements. But it is plausible that whatever notion we
have of ideal creativity depends precisely on its theorem-proving and -disproving
goals: something along the lines of ’ideal creativity is an ability to come up with
(possibly unexpected and elegant) proofs of, or counterexamples to, its target
theses that cannot be bettered’. Relying in ideal creativity so described would
trivialise the claim that ideally creative conceivers can bridge the gap between
the conceivable and the possible.

In this paper I have argued for the following conditional claim: if we ide-
alise by identifying ideal conceivers with Turing (hyper-)machines, then Ideal
is false. I also think that – as is sometimes the case with this kind of conditional
results, when the antecedent of the conditional is sufficiently plausible and at-
tractive – the failure of Turing (hyper-)machines in securing Ideal goes some
way towards moving the burden of proof to the ideal conceivabilist’s shoulders.
It is now more urgent than before that she provides a clear characterisation
of the further respects in which idealisation is needed, and of what counts as
idealised18.

Until then, that is, until the ideal conceivabilist can come up with a char-
acterisation of the extra ingredient in ideal conceivability, there are only two
options for her: accepting that Ideal is false or embracing quietism about the
nature of ideal conceivers. The former is bad news at least for a very influential
line of work in the neo-rationalist project; the latter is unlikely to convince those
sceptic about ideal conceivers19.
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