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Abstract

In this paper we show for each of the modal axioms d, t, b, 4, and 5 an equivalent
set of inference rules in a nested sequent system, such that, when added to the basic
system for the modal logic K, the resulting system admits cut elimination. Then we
show the same result also for intuitionistic modal logic. We achieve this by combining
structural and logical rules.
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1 Introduction

It very often happens that a new logic is introduced in terms of axioms in a
Hilbert system. It is then a tedious task for proof theorists to find a cut-free
deductive system in a sequent-like calculus. This is usually done by “trial and
error” since there is no general method. It should be a goal of structural proof
theory to automate this process, and to find general criteria for determining
when a set of Hilbert axioms can be transformed into an equivalent set of
inference rules such that cut elimination is preserved.

Recently, this goal has been achieved for substructural logics: In [4] it
has been unveiled which classes of axioms can be transformed into equivalent
structural rules in the sequent calculus, respectively hypersequent calculus,
such that the resulting system admits cut elimination. In [5] a similar result
has been obtained in the display calculus.

It is a natural question to ask whether this can also be done for modal
logics. The work in [9] shows how certain classes of axioms in modal-tense
logics can be transformed into logical rules in the display calculus and in nested
sequents. Unfortunately, the established correspondence between axioms and
logical rules works well only in the presence of the tense modalities. For modal
logics without tense modalities, nested sequents have been used to give cut-free
deductive systems for all logics in the classical modal S5-cube [2], as well as
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d : 2A⊃3A

t : (A⊃3A) ∧ (2A⊃A)

b : (A⊃ 23A) ∧ (32A⊃A)

4 : (33A⊃3A) ∧ (2A⊃ 22A)

5 : (3A⊃ 23A) ∧ (32A⊃ 2A)

Fig. 1. Modal axioms d, t, b, 4, and 5

for all logics in the intuitionistic modal S5-cube [18]. This concerns the modal
axioms d, t, b, 4, and 5, shown in Figure 1. In classical logic only one of
the two conjuncts in each axiom shown in that Figure is needed because the
other follows from De Morgan duality. However, in the intuitionistic setting
both conjuncts are needed. With these five axioms one can, a priori, obtain 32
logics but some coincide, such that there are only 15, which can be arranged
in a cube as shown in Figure 2. This cube has the same shape in the classical
as well as in the intuitionistic setting.

However, the two papers [2] and [18] have one drawback: Although they
provide cut-free systems for all logics in the cube, they do not provide cut-free
systems for all possible combinations of axioms. For example, the logic S5 can
be obtained by adding b and 4, or by adding t and 5, to the modal logic K,
but a complete cut-free system could only be obtained by adding rules for b,
4, and 5, or for t, 4, and 5 (in both the classical and the intuitionistic case).

This might be sufficient for someone interested in a cut-free system for a
particular logic, but it is not sufficient for our goal—we do not want different
rules for axioms t and 5, depending on whether we have only one or both of
them in the system.

The works in [9,2,18] all use logical rules for the 3-modality. An alternative
route is taken in [3] where the authors use structural rules, which is closer in
spirit to the work in substructural logics [4], mentioned above. However, the
work in [3] does not cover all possible axiom combinations either (although it
claims to do so).

In the present paper we achieve full modularity, for classical and intuition-
istic modal logic, by using the logical rules of [2] and [18] together with the
structural rules of [3]. Interestingly, the structural rules are the same in the
classical and the intuitionistic setting.

This paper is organized as follows. In the next section we recall the nested
sequent system for classical modal logic presented in [2]. Then, in Section 3, we
show the structural rules of [3] and discuss the mistake in that paper. In Sec-
tion 4, we then show our modularity result for classical modal logics. Section 5
recalls how nested sequents can be used for intuitionistic modal logics, as done
in [18]. Finally, in Section 6, we show our modularity result for intuitionistic
modal logics.

2 Nested Sequents for Classical Modal Logics

For simplicity, we consider here only formulas in negation normal form, gener-
ated by the grammar:

A,B, . . . ::= p | p̄ | A ∧B | A ∨B | 2A | 3A
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◦S4 ◦S5

◦T ◦TB

◦D4 ◦
D45

◦
D5

◦D ◦ DB

◦K4 ◦
K45

◦
KB5

◦
K5

◦
K

◦
KB

Fig. 2. The modal S5-cube

where p stands for a propositional variable and p̄ its dual. Then the negation
Ā of a formula A is defined in the usual way using the De Morgan duality, and
implication A⊃B is an abbreviation for Ā ∨B.

Recall that a Hilbert system for the modal logic K can be obtained by taking
some complete set of axioms for classical propositional logic extended with the
k-axiom:

k : 2(A⊃B)⊃ (2A⊃2B) (1)

and the rules of modus ponens and necessitation, shown below:

A A⊃B
mp −−−−−−−−−−−−

B

A
nec −−−−

2A
(2)

For X ⊆ {d, t, b, 4, 5} we write K + X to denote the logic obtained from K by
adding the axioms in X.

Let us now turn to the deductive system defined by Brünnler in [2] using
nested sequents. Nested sequents have independently also been conceived by
Kashima [10] and Poggiolesi [14]. Fitting [7] observed that nested sequents
have the same data structure as prefixed tableaux.

A nested sequent (or simply a sequent) is a finite multiset of formulas and
boxed sequents; that is, expressions like [Γ] where Γ is also a sequent. Therefore
a sequent is of the form:

Γ ::= A1, . . . , Am, [Γ1], . . . , [Γn]

The corresponding formula of a sequent Γ, denoted by fm(Γ), is defined as:

fm(Γ) = A1 ∨ . . . ∨Am ∨2fm(Γ1) ∨ . . . ∨2fm(Γn)

Nested sequents can also be conceived as trees. For example, to the sequent
Γ = A1, . . . , Am, [Γ1], . . . , [Γn] corresponds the tree tr(Γ) defined as:

{A1, . . . , Am}

ss vv (( ++
tr(Γ1) tr(Γ2) · · · tr(Γn−1) tr(Γn)
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id −−−−−−−−
Γ{a, ā}

Γ{A,B}
∨ −−−−−−−−−−−−

Γ{A ∨B}
Γ{A} Γ{B}
∧ −−−−−−−−−−−−−−−−

Γ{A ∧B}

Γ{A,A}
c −−−−−−−−−−

Γ{A}
Γ{[A]}

2 −−−−−−−−
Γ{2A}

Γ{[A,∆]}
3 −−−−−−−−−−−−−−

Γ{3A, [∆]}

Fig. 3. System NK

Γ{[A]}
d3 −−−−−−−−−

Γ{3A}
Γ{A}

t3 −−−−−−−−−
Γ{3A}

Γ{[∆], A}
b3 −−−−−−−−−−−−−−

Γ{[∆,3A]}

Γ{[3A,∆]}
43 −−−−−−−−−−−−−−

Γ{3A, [∆]}
Γ{∅}{3A}

53 −−−−−−−−−−−−− depth(Γ{ }{∅}) ≥ 1
Γ{3A}{∅}

Fig. 4. Modal 3-rules for axioms d, t, b, 4, 5

Sometimes we will use for a sequent the vocabulary that would apply to the
corresponding formula or to the corresponding tree without mentioning it.

To be able to apply inference rules deeply inside a sequent, we need the
notion of context.

Definition 2.1 A context is a sequent with one or several holes; we distinguish
unary context if there is exactly one hole, and binary context if there are exactly
two. A hole { } takes the place of a formula in the sequent but does not occur
inside a formula. Finally, we write Γ{∆} when we replace the hole in Γ{ } by ∆.

Definition 2.2 The depth of a unary context is defined inductively as:

depth({ }) = 0
depth(∆,Γ{ }) = depth(Γ{ })

depth([Γ{ }]) = depth(Γ{ }) + 1

Example 2.3 Let Γ{ }{ } = A, [B, { } , [{ }], C]. For any sequents ∆1 and
∆2, we get: Γ{∆1}{∆2} = A, [B,∆1, [∆2], C]. In particular, Γ{∅}{∆2} =
A, [B, [∆2], C] and Γ{∆1}{∅} = A, [B,∆1, [∅], C]. Moreover, we can compute
depth(Γ{ }{∆}) = 1 and depth(Γ{∆}{ }) = 2.

The inference rules shown in Figure 3 form the system NK. Then, Figure 4
shows the 3-rules for the axioms d, t, b, 4, and 5. For X ⊆ {d, t, b, 4, 5} we
write X3 for the corresponding subset of {d3, t3, b3, 43, 53}.

In the course of this paper we also need the weakening- and cut-rule, shown
below:

Γ{∅}
w −−−−−−

Γ{∆}
Γ{Ā} Γ{A}

cut −−−−−−−−−−−−−−−
Γ{∅}

(3)

Lemma 2.4 Let X ⊆ {d, t, b, 4, 5}. Then the w-rule is height-preserving ad-
missible for NK ∪ X3. [2]

Remark 2.5 In Brünnlers original formulation [2] of system NK ∪ X3, con-
traction was not given as explicit rule, but was absorbed in the 3-rule and the
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Γ{[∅]}
d[ ] −−−−−−−

Γ{∅}
Γ{[∆]}

t[ ] −−−−−−−−
Γ{∆}

Γ{[Σ, [∆]]}
b[ ] −−−−−−−−−−−−−

Γ{[Σ],∆}

Γ{[∆], [Σ]}
4[ ] −−−−−−−−−−−−−

Γ{[[∆],Σ]}
Γ{[∆]}{∅}

5[ ] −−−−−−−−−−−−− depth(Γ{ }{[∆]}) ≥ 1
Γ{∅}{[∆]}

Γ{[∆], [Σ]}
m[ ] −−−−−−−−−−−−−

Γ{[∆,Σ]}

Fig. 5. Left: Structural modal rules for axioms d, t, b, 4, 5 – Right: Structural medial

rules in X3. It is easy to see that both formulations are equivalent. In this
paper we have an explicit contraction in the system because in the presence of
the structural rules (introduced in the next section), contraction is no longer
admissible.

As already observed in [2], not all combinations of modal rules lead to
complete cut-free systems. For example, the 5-axiom 3A ⊃ 23A is valid in
any {b, 4}-frame, but it is not possible to prove it in NK∪{b3, 43} without cut.
Therefore, to get a cut-elimination proof, Brünnler [2] introduced the notion of
45-closure.

Definition 2.6 The 45-closure of X is defined as:

X̂ =

X ∪ {4} if {b, 5} ⊆ X or if {t, 5} ⊆ X
X ∪ {5} if {b, 4} ⊆ X
X otherwise

We say that X is 45-closed, if X = X̂.

Proposition 2.7 Let X ⊆ {d, t, b, 4, 5}. We have that X is 45-closed, if and
only if the following two conditions hold:

- whenever 4 is derivable in K + X, then 4 ∈ X, and

- whenever 5 is derivable in K + X, then 5 ∈ X.

Now we can state Brünnler’s [2] main results:

Theorem 2.8 Let X ⊆ {d, t, b, 4, 5}. If a sequent Γ is derivable in NK ∪ X3 ∪
{cut} then it is also derivable in NK ∪ X̂3. [2]

Corollary 2.9 Let X ⊆ {d, t, b, 4, 5} be 45-closed. Then a formula A is a
theorem of K + X if and only if it is derivable in NK ∪ X3. [2]

The goal of this paper is to find a way to drop the 45-closed condition.

3 Structural Rules

The first attempt to drop the 45-closed condition was made in [3] where
the authors suggest to use the structural rules shown in Figure 5. For
X ⊆ {d, t, b, 4, 5}, we write X[ ] ⊆ {d[ ], t[ ], b[ ], 4[ ], 5[ ]} for the corresponding set
of rules from the left of that figure.

The work in [3] claims to prove cut elimination for NK ∪ {m[ ]} ∪ X[ ] (the
m[ ]-rule is shown on the right of Figure 5), in order to obtain the following:
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Claim 3.1 Let X ⊆ {d, t, b, 4, 5}. A formula is a theorem of K+X if and only
if it is derivable in NK ∪ {m[ ]} ∪ X[ ].

However, there is a mistake in the proof in [3], and the claim is not correct.
For example, the formula 32q∨2(3p̄∨33p) is a theorem of K4 (= K+4), and
also provable in NK∪{43}, but it is not provable in NK∪{m[ ], 4[ ]}. The reason
is that no rule in NK ∪ {m[ ], 4[ ]} can increase the modal depth of the sequent
(i.e., the maximal nesting of brackets and modalities) when read bottom-up.

The mistake in the cut elimination proof of [3] is rather subtle: In the cut
reduction lemma (Lemma 10), the cut is permuted up, together with a stack of
structural rule instances above the two premisses of the cut. If an instance of
the 3-rule is met, this 3-rule instance is permuted down under the structural
rules, using Lemma 7 and Lemma 8 of that paper, resulting in a derivation of
structural rules above a derivation of logical rules (as shown in Figure 4 above),
such that all rule instances in that derivation work on the same 3-formula as
the original 3-rule instance. This stack of logical rules is then “reflected” at
the cut (using Lemma 9), resulting in a stack of structural rules above the other
premise of the cut.

The problem is that this only works if that 3-formula is the cut-formula.
Otherwise, the logical 3-rules are not reflected at the cut but move under the
cut as in a commutative case. This concerns the 43-rule and the 53-rule. Thus,
the cut elimination proof of [3] breaks down if the 4- or 5-axiom is present.

For the convenience of the reader, we give an example in Appendix B.

4 Modularity for Classical Modal Logics

In this section, we show how the mistake of [3] can be corrected. We show that
we can drop the 45-closure condition that appears in Theorem 2.8 if we use
both the logical rules from [2] and the structural rules from [3].

Theorem 4.1 Let X ⊆ {d, t, b, 4, 5}. A formula A is a theorem of K+X if and
only if it is derivable in NK ∪ X3 ∪ X[ ].

To be able to prove this theorem, we need to state first some lemmas. In
particular, we need to show that weakening is still admissible.

Lemma 4.2 For any X ⊆ {d, t, b, 4, 5} the rule w is (contraction-preserving)
admissible for NK ∪ X3 ∪ X[ ].

Proof. This is a straightforward induction on the height of the derivation. 2

Lemma 4.3 If {t, 5} ⊆ X ⊆ {d, t, b, 4, 5} then the 43-rule is admissible for
NK ∪ X3 ∪ X[ ].

Proof. Any occurrence of the 43-rule can be replaced by the following deriva-
tion:

Γ{[3A,∆]}
w −−−−−−−−−−−−−−−−−−

Γ{[∅], [3A,∆]}
53 −−−−−−−−−−−−−−−−−−

Γ{[3A], [∆]}
t[ ] −−−−−−−−−−−−−−−

Γ{3A, [∆]}
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Then we apply Lemma 4.2. 2

Lemma 4.4 If {b, 5} ⊆ X ⊆ {d, t, b, 4, 5} then the 43-rule is admissible for
NK ∪ X3 ∪ X[ ].

Proof. Any occurrence of the 43-rule can be replaced by the following deriva-
tion:

Γ{[3A,∆]}
w −−−−−−−−−−−−−−−−−−

Γ{[[∅],3A,∆]}
53 −−−−−−−−−−−−−−−−−−

Γ{[[3A],∆]}
b[ ] −−−−−−−−−−−−−−−

Γ{3A, [∆]}
Then we apply Lemma 4.2. 2

To prove the admissibility of the 53-rule, we decompose it into three rules
that only use unary contexts, and are thus are easier to handle:

Γ{[∆],3A}
53
1 −−−−−−−−−−−−−−

Γ{[∆,3A]}
Γ{[∆], [3A,Σ]}

53
2 −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ]}
Γ{[∆, [3A,Σ]]}

53
3 −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A, [Σ]]}
(4)

Clearly, each of 53

1 , 53

2 , and 53

3 is a special case of 53. Conversely, we have:

Lemma 4.5 The 53-rule is derivable from {53

1 , 5
3

2 , 5
3

3}.
Proof. As in [2], but here the situation is a bit simpler since we do not have
to deal with contraction. 2

Lemma 4.6 If {4} ⊆ X ⊆ {d, t, b, 4, 5} then the 53

3 -rule is admissible for NK∪
X3 ∪ X[ ].

Proof. Any occurrence of the 53

3 -rule is an instance of the 43-rule. 2

Lemma 4.7 If {b, 4} ⊆ X ⊆ {d, t, b, 4, 5} then the 53

2 -rule is (contraction-
preserving) admissible for NK ∪ X3 ∪ X[ ].

Proof. Any occurrence of the 53

2 -rule can be replaced by

Γ{[∆], [3A,Σ]}
w −−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆], [∅], [3A,Σ]}
4[ ] −−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆], [[3A,Σ]]}
4[ ] −−−−−−−−−−−−−−−−−−−−

Γ{[∆, [[3A,Σ]]]}
43 −−−−−−−−−−−−−−−−−−−−

Γ{[∆, [3A, [Σ]]]}
43 −−−−−−−−−−−−−−−−−−−−

Γ{[∆,3A, [[Σ]]]}
b[ ] −−−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ]}

As before, we conclude by applying Lemma 4.2. 2

Lemma 4.8 If {b, 4} ⊆ X ⊆ {d, t, b, 4, 5} then the 53

1 -rule is admissible for
NK ∪ X3 ∪ X[ ].

Proof. If 5 ∈ X then there is nothing to prove, so assume 5 /∈ X. There is
no simple derivation that can replace 53

1 . We consider the topmost instance of
53

1 , and let π be the derivation above it. We proceed by induction on the pair
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〈cπ, hπ〉 (under lexicographic ordering), where cπ is the number of c-instances
in π, and hπ is the height of π. We have to carry out a case analysis on the
bottommost rule instance r of π. If r only affects the context of our 53

1 , we speak
of a trivial case, because we can immediately apply the induction hypothesis:

Γ′{3A, [∆′]}
r −−−−−−−−−−−−−−−−

Γ{3A, [∆]}
53
1 −−−−−−−−−−−−−−

Γ{[3A,∆]}
;

Γ′{3A, [∆′]}
53
1 −−−−−−−−−−−−−−−−

Γ′{[3A,∆′]}
r −−−−−−−−−−−−−−−−

Γ{[3A,∆]}

• r ∈ {id,∧,∨,2, d[ ]} : There are only trivial cases.

• r = c: There is one nontrivial case:

Γ{3A,3A, [∆]}
c −−−−−−−−−−−−−−−−−−−−

Γ{3A, [∆]}
53
1 −−−−−−−−−−−−−−

Γ{[3A,∆]}
;

Γ{3A,3A, [∆]}
53
1 −−−−−−−−−−−−−−−−−−−−

Γ{3A, [3A,∆]}
53
1 −−−−−−−−−−−−−−−−−−−−

Γ{[3A,3A,∆]}
c −−−−−−−−−−−−−−−−−−−−

Γ{[3A,∆]}

We can proceed by applying the induction hypothesis twice. This is possible
because the number of c-instances above both 53

1 has decreased. (Note that
none of our cases increases the number of contractions in the proof.)

• r = 3: There are two nontrivial cases:

Γ{[A,∆]}
3 −−−−−−−−−−−−−−

Γ{3A, [∆]}
53
1 −−−−−−−−−−−−−−

Γ{[3A,∆]}
;

Γ{[A,∆]}
w −−−−−−−−−−−−−−−−

Γ{[A, [∅],∆]}
b3 −−−−−−−−−−−−−−−−

Γ{[[3A],∆]}
43 −−−−−−−−−−−−−−−−−−

Γ{[3A, [∅],∆]}
b[ ] −−−−−−−−−−−−−−−−−−

Γ{[3A,∆]}

Γ{[∆], [A,Σ]}
3 −−−−−−−−−−−−−−−−−−−

Γ{[∆],3A, [Σ]}
53
1 −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ]}
;

Γ{[∆], [A,Σ]}
w −−−−−−−−−−−−−−−−−−−−−

Γ{[∆], [[∅], A,Σ]}
4[ ] −−−−−−−−−−−−−−−−−−−−−

Γ{[[∅], [∆], A,Σ]}
b3 −−−−−−−−−−−−−−−−−−−−−−−

Γ{[[∅], [∆,3A],Σ]}
4[ ] −−−−−−−−−−−−−−−−−−−−−−−

Γ{[[[∆,3A]],Σ]}
b[ ] −−−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ]}
In both cases, we can apply Lemma 4.2.

• r = d3: There is one nontrivial case.

Γ{[∆], [A]}
d3 −−−−−−−−−−−−−−

Γ{[∆],3A}
53
1 −−−−−−−−−−−−−−

Γ{[∆,3A]}
;

Γ{[∆], [A]}
4[ ] −−−−−−−−−−−−−

Γ{[∆, [A]]}
d3 −−−−−−−−−−−−−−

Γ{[∆,3A]}

• r = t3: There is one nontrivial case.

Γ{[∆], A}
t3 −−−−−−−−−−−−−−

Γ{[∆],3A}
53
1 −−−−−−−−−−−−−−

Γ{[∆,3A]}
;

Γ{[∆], A}
b3 −−−−−−−−−−−−−−

Γ{[∆,3A]}
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• r = b3: There is one nontrivial case.

Γ{[Σ, [∆]], A}
b3 −−−−−−−−−−−−−−−−−−−

Γ{[Σ, [∆],3A]}
53
1 −−−−−−−−−−−−−−−−−−−

Γ{[Σ, [∆,3A]]}
;

Γ{[Σ, [∆]], A}
w −−−−−−−−−−−−−−−−−−−−−

Γ{[Σ, [∅], [∆]], A}
4[ ] −−−−−−−−−−−−−−−−−−−−−

Γ{[Σ, [[∆]]], A}
b[ ] −−−−−−−−−−−−−−−−−−

Γ{[Σ], [∆], A}
b3 −−−−−−−−−−−−−−−−−−−

Γ{[Σ], [∆,3A]}
4[ ] −−−−−−−−−−−−−−−−−−−

Γ{[Σ, [∆,3A]]}

And we apply Lemma 4.2.

• r = 43: There are two nontrivial cases.

Γ{[3A,∆]}
43 −−−−−−−−−−−−−−

Γ{3A, [∆]}
53
1 −−−−−−−−−−−−−−

Γ{[3A,∆]}
; Γ{[3A,∆]}

Γ{[∆], [3A,Σ]}
43 −−−−−−−−−−−−−−−−−−−

Γ{3A, [∆], [Σ]}
53
1 −−−−−−−−−−−−−−−−−−−

Γ{[3A,∆], [Σ]}
;

Γ{[∆], [3A,Σ]}
53
2 −−−−−−−−−−−−−−−−−−−

Γ{[3A,∆], [Σ]}

In the second case, we need Lemma 4.7.

• r = t[ ]: There is one nontrivial case.

Γ{[∆], [3A,Σ]}
t[ ] −−−−−−−−−−−−−−−−−−−

Γ{[∆],3A,Σ}
53
1 −−−−−−−−−−−−−−−−−

Γ{[∆,3A],Σ}
;

Γ{[∆], [3A,Σ]}
53
2 −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ]}
t[ ] −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A],Σ}

Again, we can apply Lemma 4.7.

• r = b[ ]: There are three nontrivial cases.

Γ{[∆, [3A,Σ]]}
b[ ] −−−−−−−−−−−−−−−−−−−

Γ{[∆],3A,Σ}
53
1 −−−−−−−−−−−−−−−−−

Γ{[∆,3A],Σ}
;

Γ{[∆, [3A,Σ]]}
43 −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A, [Σ]]}
b[ ] −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A],Σ}

Γ{[∆], [Σ, [3A,Θ]]}
b[ ] −−−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆],3A, [Σ],Θ}
53
1 −−−−−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ],Θ}
;

Γ{[∆], [Σ, [3A,Θ]]}
43 −−−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆], [Σ,3A, [Θ]]}
b[ ] −−−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆], [Σ,3A],Θ}
53
2 −−−−−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ],Θ}

Γ{[Σ, [Θ, [∆]]],3A}
b[ ] −−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ],Θ, [∆],3A}
53
1 −−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ],Θ, [∆,3A]}
;

Γ{[Σ, [Θ, [∆]]],3A}
53
1 −−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ, [Θ, [∆]],3A]}
b[ ] −−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ,3A],Θ, [∆]}
53
2 −−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ],Θ, [∆,3A]}
In the second and third case, we need Lemma 4.7. In the last case, we also
apply the induction hypothesis.
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• r = 4[ ]: There is one nontrivial case.

Γ{[∆], [3A,Σ]}
4[ ] −−−−−−−−−−−−−−−−−−−

Γ{[[∆],3A,Σ]}
53
1 −−−−−−−−−−−−−−−−−−−

Γ{[[∆,3A],Σ]}
;

Γ{[∆], [3A,Σ]}
53
2 −−−−−−−−−−−−−−−−−−−

Γ{[∆,3A], [Σ]}
4[ ] −−−−−−−−−−−−−−−−−−−

Γ{[[∆,3A],Σ]}

Then we can apply Lemma 4.7. 2

We can now put Lemmas 4.3–4.8 together to prove our first main result:

Proof of Theorem 4.1. All rules in NK∪X3∪X[ ] are sound wrt. K+X. This
has already been shown in [2,3] and can easily be verified. Thus, any formula
that is derivable in NK ∪ X3 ∪ X[ ] is also a theorem of K + X. Conversely, if A
is a theorem of K + X, then by Corollary 2.9 we have a proof of A in NK ∪ X̂3.
If X̂ = X, then a proof in NK ∪ X̂3 is trivially a proof in NK ∪ X3 ∪ X[ ], and we
are done. Otherwise, we must have one of the following three cases:

• If {t, 5} ⊆ X then X̂ = X ∪ {4}. Then, by Lemma 4.3, we can construct a
proof of A in NK ∪ X3 ∪ X[ ].

• If {b, 5} ⊆ X then X̂ = X ∪ {4}. We can use Lemma 4.4 similarly to get a
proof of A in NK ∪ X3 ∪ X[ ].

• If {b, 4} ⊆ X then X̂ = X ∪ {5}. We can replace the 53-rule with 53

1 , 5
3

2 , 5
3

3

using Lemma 4.5. Then we get a proof of Γ in NK∪X3∪X[ ] using Lemma 4.8,
Lemma 4.7 and Lemma 4.6. 2

5 Nested Sequents for Intuitionistic Modal Logics

Let us now turn to intuitionistic modal logics. The set of formulas is generated
by

A,B, . . . ::= p | ⊥ | A ∧B | A ∨B | A⊃B | 2A | 3A
where p stands for a propositional variable. The constant > can be recovered
via⊥⊃⊥. Since 2 and 3 are no longer De Morgan duals, it is not enough to just
add the k-axiom (1) to intuitionistic propositional logic. In fact, there have been
many different proposals of what should be added, e.g., [6,15,16,13,17,1,12].
Here, we consider the variant proposed in [16,13] and studied in detail by Simp-
son [17]. We add the following five axioms to intuitionistic propositional logic:

k1 : 2(A⊃B)⊃ (2A⊃ 2B)
k2 : 2(A⊃B)⊃ (3A⊃3B)

k3 : 3(A ∨B)⊃ (3A ∨3B)
k4 : (3A⊃ 2B)⊃ 2(A⊃B)
k5 : 3⊥⊃⊥

(5)

In a classical setting the axioms k2–k5 would follow from k1 and the De Morgan
laws. The theorems of the intuitionistic version of K, denoted by IK, are
obtained from the axioms using the rules modus ponens and necessitation (2).
As in the classical case, we write IK + X for the logic obtained by adding a set
of axioms X ⊆ {d, t, b, 4, 5}, shown in Figure 1.

Let us now recall how nested sequents can be used to give deductive systems
for all logics in the intituionistic modal S5-cube, as done in [18]. A similar
data structure is used in [8]. The sequents are essentially the same as in the
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⊥• −−−−−−−−
Γ{⊥•}

Γ{A•, A•}
c −−−−−−−−−−−−

Γ{A•}
id −−−−−−−−−−−

Γ{a•, a◦}

Γ{A•, B•}
∧• −−−−−−−−−−−−−

Γ{A ∧B•}
Γ{A◦} Γ{B◦}

∧◦ −−−−−−−−−−−−−−−−−−−
Γ{A ∧B◦}

Γ{A•} Γ{A•}
∨• −−−−−−−−−−−−−−−−−−−

Γ{A ∨B•}
Γ{A◦}

∨◦ −−−−−−−−−−−−−
Γ{A ∨B◦}

Γ{B◦}
∨◦ −−−−−−−−−−−−−

Γ{A ∨B◦}

Γ↓{A◦} Γ{B•}
⊃• −−−−−−−−−−−−−−−−−−−−

Γ{A⊃B•}
Γ{A•, B◦}

⊃◦ −−−−−−−−−−−−−−
Γ{A⊃B◦}

Γ{[A•,∆]}
2• −−−−−−−−−−−−−−−

Γ{2A•, [∆]}
Γ{[A◦]}

2◦ −−−−−−−−−−
Γ{2A◦}

Γ{[A•]}
3• −−−−−−−−−−

Γ{3A•}
Γ{[A◦,∆]}

3◦ −−−−−−−−−−−−−−−
Γ{3A◦, [∆]}

Fig. 6. System NIK

classical case, with the difference that formulas carry a polarity—there are
two polarities, input polarity (marked with a black dot •) and output polarity
(marked with a white dot ◦)—such that exactly one formula in the whole
sequent has the output polarity. More formally, a (full) nested sequent Γ for
intuitionistic modal logic has two distinct parts: an LHS-sequent Λ in which all
formulas have input polarity and an RHS-sequent Π which is either an output
formula or a boxed sequent: given by:

Γ ::= Λ,Π Λ ::= A•1, ..., A
•
m, [Λ1], ..., [Λn] Π ::= A◦ | [Γ]

The corresponding formula of a sequent Γ is now defined as:

fm(Λ,Π) = fm(Λ)⊃ fm(Π)
fm(A•1, ..., A

•
m, [Λ1], ..., [Λn]) = A1 ∧ ... ∧Am ∧3fm(Λ1) ∧ ... ∧3fm(Λn)

fm(A◦) = A
fm([Γ]) = 2fm(Γ)

The notion of context is here again crucial. Since there are two different
polarities, we also need two types of contexts: an input context (resp. an output
context) is a sequent with one or several holes that should be filled with an input
formula or an LHS-sequent (resp. an output formula, an RHS-sequent or a full
sequent) to give a full sequent. The depth of a context is defined similarly to
the classical case by induction.

As only one output formula is allowed in a sequent, we need, in some infer-
ence rules, to remove the output.

Definition 5.1 For an input context Γ{ } we obtain its output pruning Γ↓{ }
by removing the unique output formula from it. For an output context Γ{ }
we have Γ↓{ } = Γ{ }.
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Γ{[A◦]}
d◦ −−−−−−−−−−

Γ{3A◦}
Γ{A◦}

t◦ −−−−−−−−−−
Γ{3A◦}

Γ{[∆], A◦}
b◦ −−−−−−−−−−−−−−−

Γ{[∆,3A◦]}
Γ{[3A◦,∆]}

4◦ −−−−−−−−−−−−−−−
Γ{3A◦, [∆]}

Γ{∅}{3A◦}
5◦ −−−−−−−−−−−−−−

Γ{3A◦}{∅}

Γ{[A•]}
d• −−−−−−−−−−

Γ{2A•}
Γ{A•}

t• −−−−−−−−−−
Γ{2A•}

Γ{[∆], A•}
b• −−−−−−−−−−−−−−−

Γ{[∆,2A•]}
Γ{[2A•,∆]}

4• −−−−−−−−−−−−−−−
Γ{2A•, [∆]}

Γ{∅}{2A•}
5• −−−−−−−−−−−−−−

Γ{2A•}{∅}

Fig. 7. Intuitionistic 3◦- and 2•-rules; 5◦ and 5• have proviso depth(Γ{ }{∅}) ≥ 1.

Example 5.2 Let Γ1{ } = A•, [B•, { }] and Γ2{ } = A•, [B◦, { }]. Then

Γ↓1{ } = A•, [B•, { }] and Γ↓2{ } = A•, [{ }].

The inference rules for intuitionistic modal logic are essentially the same as
for classical modal logic. But since we are in an intuitionistic framework, each
connective needs to be introduced by two rules, one for the input polarity and
one for the output polarity, which doubles the number of rules. The system
shown in Figure 6 is called system NIK.

Then, Figure 7 shows the rules for the axioms d, t, b, 4, 5. Again, because
we are intuitionistic now, the number of rules is doubled. For X ⊆ {d, t, b, 4, 5},
we write X◦ and X• for the corrseponding subset of {d◦, t◦, b◦, 4◦, 5◦} and
{d•, t•, b•, 4•, 5•}, respectively.

As in the classical case, we have the rules for weakening and cut:

Γ{∅}
w −−−−−−

Γ{Λ}
Γ↓{A◦} Γ{A•}

cut −−−−−−−−−−−−−−−−−−−−
Γ{∅}

Note that in the w-rule, the Λ has to be an LHS-sequent, i.e., must not contain
the output formula. In the cut-rule we use the output pruning as for ⊃•.

Remark 5.3 As in the classical case, the original formulation of NIK in [18]
had no explicit contraction, but contraction was absorbed in into the rules of
⊃•, 2•, and the rules in X•, instead. As before, we need explicit contraction
here because of the structural rules. However, as in the classical case, both
formulations are equivalent.

Remark 5.4 It is easy to see that we can use the two polarities ◦ and • to
present a classical system in which negation ¬ is a primitive, as follows:

• allowing an arbitrary number of output-formulas in a sequent, and allow
“contraction on the right”, i.e., also for output formulas,

• add the two negation rules to NIK:

Γ{A◦}
¬• −−−−−−−−−−

Γ{¬A•}
Γ{A•}

¬◦ −−−−−−−−−−
Γ{¬A◦}

(6)

• and drop the output pruning from the left premiss in the ⊃•- and cut-rules.

From this classical system, one could obtain an alternative intuitionistic system
by allowing at most one output formula in the sequent and keeping the negation
rules (6). However, we think that the systems presented here are simpler.
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The notion of 45-closure is also justified in the intuitionistic case:

Proposition 5.5 Let X ⊆ {d, t, b, 4, 5}. We have that X is 45-closed iff

- whenever 4 is derivable in IK + X, then 4 ∈ X, and

- whenever 5 is derivable in IK + X, then 5 ∈ X.

The following has been shown in [18]:

Theorem 5.6 Let X ⊆ {d, t, b, 4, 5}. If a sequent Γ is derivable in NIK ∪ X• ∪

X◦ ∪ {cut} then it is also derivable in

{
NIK ∪ X̂

•
∪ X̂
◦

if d 6∈ X

NIK ∪ X̂
•
∪ X̂
◦
∪ {d[ ]} if d ∈ X

Remark 5.7 In the statement of Theorem 5.6, we distinguish whether d is
or is not present in X rather than make use of Lemma 6.3 (ii) of [18] because
it actually remains unclear how to permute the rule d[ ] over the rules 4◦ and
5◦, respectively, since the contraction-rule is not available for output formulas.
Furthermore, with this formulation of Theorem 5.6, we do not need to extend
the notion of 45-closure to t45-closure, as done in [18].

Corollary 5.8 Let X ⊆ {d, t, b, 4, 5}, and let Z = NIK ∪ X̂• ∪ X̂◦ if d 6∈ X, and

let Z = NIK∪ X̂•∪ X̂◦∪{d[ ]} if d ∈ X. Then a formula A is a theorem of IK+X
iff it is derivable in Z.

6 Modularity for Intuitionistic Modal Logics

In this section, we prove a similar result as Theorem 4.1 for the intuitionistic
setting. After our preparatory work of making the intuitionistic system look
almost the same as the classical system, this work now becomes almost trivial.
The key observation is that the structural rules in X[ ] are also sound in the
intuitionistic case, independently of the position of the output formula [18].

Theorem 6.1 Let X ⊆ {d, t, b, 4, 5}. A formula A is a theorem of IK + X if
and only if it is derivable in NIK ∪ X• ∪ X◦ ∪ X[ ].

Lemma 6.2 For any X ⊆ {d, t, b, 4, 5} the w-rule is height-preserving and
contraction-preserving admissible for NK ∪ X◦ ∪ X• ∪ X[ ].

Proof. This is a straightforward induction on the height of the derivation. 2

Lemma 6.3 If {t, 5} ⊆ X ⊆ {d, t, b, 4, 5} then the rules 4◦ and 4• are admis-
sible for NIK ∪ X◦ ∪ X• ∪ X[ ].

Proof. This is similar to Lemma 4.3. Any occurrence of the 4◦-rule (respec-
tively the 4•-rule) can be replaced by the derivation on the left (respectively
on the right) below:

Γ{[3A◦,∆]}
w −−−−−−−−−−−−−−−−−−−−

Γ{[∅], [3A◦,∆]}
5◦ −−−−−−−−−−−−−−−−−−−−

Γ{[3A◦], [∆]}
t[ ] −−−−−−−−−−−−−−−−−

Γ{3A◦, [∆]}

Γ{[2A•,∆]}
w −−−−−−−−−−−−−−−−−−−

Γ{[∅], [2A•,∆]}
5• −−−−−−−−−−−−−−−−−−−

Γ{[2A•], [∆]}
t[ ] −−−−−−−−−−−−−−−−−

Γ{2A•, [∆]}

We then apply Lemma 6.2. 2
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Γ{[∆],3A◦}
5◦1 −−−−−−−−−−−−−−−

Γ{[∆,3A◦]}
Γ{[∆], [3A◦,Σ]}

5◦2 −−−−−−−−−−−−−−−−−−−−
Γ{[∆,3A◦], [Σ]}

Γ{[∆, [3A◦,Σ]]}
5◦3 −−−−−−−−−−−−−−−−−−−−

Γ{[∆,3A◦, [Σ]]}

Γ{[∆],2A•}
5•1 −−−−−−−−−−−−−−−

Γ{[∆,2A•]}
Γ{[∆], [2A•,Σ]}

5•2 −−−−−−−−−−−−−−−−−−−−
Γ{[∆,2A•], [Σ]}

Γ{[∆, [2A•,Σ]]}
5•3 −−−−−−−−−−−−−−−−−−−−

Γ{[∆,2A•, [Σ]]}

Fig. 8. Variants of the rules 5• and 5◦

Lemma 6.4 If {b, 5} ⊆ X ⊆ {d, t, b, 4, 5} then the rules 4◦ and 4• are admis-
sible for NIK ∪ X◦ ∪ X• ∪ X[ ].

Proof. For the 4◦-rule, the proof is the same as for Lemma 4.4, and for 4•-rule
we use 5• instead of 5◦. 2

As in the classical case, to prove the admissibility of the rules 5◦ and 5•, we
need again to decompose them into variants asking for unary context, shown
in Figure 8. The rules 5◦1, 5◦2, 5◦3, are special cases of 5◦, and the rules 5•1, 5•2,
5•3, are special cases of 5•.

Lemma 6.5 The 5◦-rule is derivable from {5◦1, 5◦2, 5◦3}, and the 5•-rule is
derivable from {5•1, 5•2, 5•3}. [18]

Lemma 6.6 If {4} ⊆ X ⊆ {d, t, b, 4, 5} then the rules 5◦3 and 5•3 are admissible
for NIK ∪ X◦ ∪ X• ∪ X[ ].

Proof. Any occurrence of the 5◦3-rule (resp. 5•3-rule) is an instance of the 4◦-
rule (resp. 4•-rule). 2

Lemma 6.7 If {b, 4} ⊆ X ⊆ {d, t, b, 4, 5} then the rules 5◦2 and 5•2 are admis-
sible for NIK ∪ X◦ ∪ X• ∪ X[ ].

Proof. For the 5◦2-rule this is similar to Lemma 4.7. For the 5•2-rule, we use
4• instead of 4◦. 2

Lemma 6.8 If {b, 4} ⊆ X ⊆ {d, t, b, 4, 5} then the rules 5◦1 and 5•1 are admis-
sible for NIK ∪ X◦ ∪ X• ∪ X[ ].

Proof. For the 5◦1-rule this is similar to Lemma 4.8. For the 5•1-rule, we use
the corresponding 2•-rules instead of the 3◦-rules. 2

Proof of Theorem 6.1. All rules in NIK∪X•∪X◦∪X[ ] are sound wrt. IK+X
(see [18] and Appendix A). Hence, the first direction is trivial. Conversely, if A

is a theorem of IK+X, then by Corollary 5.8, it is derivable in NIK∪X̂•∪X̂◦∪X[ ].
If X̂ = X, we are done. Otherwise, we have the same three cases as in the proof
of Theorem 4.1, and we use Lemmas 6.3–6.8 instead of Lemmas 4.3–4.8. 2

7 Future Work

We have used in this paper a combination of logical and structural rules, but
for some axioms only the structural or/and only the logical rules would be
sufficent, depending on the system, i.e., depending on which other axioms are
present. This is a rather strange observation, and in strong contrast to what
happens with substructural logics.
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In order to better understand this phenomenon, we need to find a general
pattern for translating axioms into structural and/or logical rules. In partic-
ular, it is an important question for future research, for which type of axioms
such a translation is possible. Given the nature of nested sequents, we conjec-
ture that this is possible for all Scott-Lemmon axioms [11], which are of the
shape

3h2iA⊃2j3kA

where h, i, j, k ≥ 0. However, for obtaining a general result, it might first be
necessary to collect more evidence, as we provide it in this paper.

Another direction of future research is to investigate constructive modal
logics [1], which reject axioms k3, k4, and k5, shown in (5). The challenge here
lies in the fact that some of the structural rules, for example 4[ ] and 5[ ], and
some of the logical rules, for example b• and 5• , are not sound anymore.
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A Soundness of the Structural Rules

The soundness of the logical rules has been shown directly in [2] and [18]. The
soundness of the structural rules follows only indirectly from these papers. For
the convenience of the reader we give here a direct proof of the soundness of the
structural rules in Figure 5 for the intuitionistic systems. Then their soundness
in the classical systems follows immediately.

For simplicity, we show soundness with respect to the Hilbert system. Let
us begin with two lemmas from [18], justifying the use of deep inference:

Lemma A.1 Let X ⊆ {d, t, b, 4, 5}, let ∆ and Σ be full sequents, and let Γ{ }
be an output context. If fm(∆) ⊃ fm(Σ) is a theorem of IK + X, then so is
fm(Γ{∆})⊃ fm(Γ{Σ}).

Lemma A.2 Let X ⊆ {d, t, b, 4, 5}, let ∆ and Σ be LHS-sequents, and let Γ{ }
be an input context. If fm(Σ) ⊃ fm(∆) is a theorem of IK + X, then so is
fm(Γ{∆})⊃ fm(Γ{Σ}).

Both lemmas are shown by an induction on the structure of Γ{ }, using the
following:

Lemma A.3 Let X ⊆ {d, t, b, 4, 5}. For any formulas A, B, and C we have:

(i) If A⊃B is a theorem of IK + X, then so is (C ⊃A)⊃ (C ⊃B).

(ii) If A⊃B is a theorem of IK + X, then so is 2A⊃2B.

(iii) If A⊃B is a theorem of IK + X, then so is (C ∧A)⊃ (C ∧B).

(iv) If A⊃B is a theorem of IK + X, then so is 3A⊃3B.

(v) If A⊃B is a theorem of IK + X, then so is (B ⊃ C)⊃ (A⊃ C).

Now, for showing soundness of a rule, we have to show that for every in-
stance of the rule, if the premiss is a theorem of IK+X, then so is the conclusion.
For this, we often use the following lemma:

Lemma A.4 For all formulas A,B, the following are theorems of IK:

(i) 3(A ∧B)⊃3A ∧3B,

(ii) 3A ∧2B ⊃3(A ∧B), and

(iii) (2A ∧2B)⊃2(A ∧B).

The proofs of the Lemmas A.3 and A.4 are straightforward and left to the
reader. We are now ready to see the main result of this appendix:

Proposition A.5 Let X ⊆ {d, t, b, 4, 5} and x ∈ X. The corresponding struc-
tural rule x[ ] shown on the left of Figure 5 is sound with respect to IK + X.

Proof. For each x ∈ {d, t, b, 4, 5}, let
Γ1

x[ ] −−
Γ2

denote the corresponding structural

rule. We show that fm(Γ1)⊃ fm(Γ2) is a theorem of IK + x.

• x = d: We have that > is the unit for ∧ (i.e., > =
∧
∅). Therefore, we have

that fm([∅]) = 3> and fm(∅) = > while >⊃3> is a theorem of IK+d. Thus,
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by applying Lemma A.2, we get that fm(Γ{[∅]})⊃ fm(Γ{∅}) is a theorem of
IK + d.

• x = t: We proceed by a case analysis on the position of the output formula
in the sequent (see Figure 5).
· If the output formula is in Γ{ }, then fm([∆]) = 3fm(∆). Since D ⊃3D

is a theorem of IK + t, so is fm(Γ{[∆]})⊃ fm(Γ{∆}) by Lemma A.2.
· If the output formula is in ∆, then fm([∆]) = 2fm(∆). Since 2D⊃D is a

theorem of IK + t, so is fm(Γ{[∆]})⊃ fm(Γ{∆}) by Lemma A.1.

• x = b: We proceed as in the previous case by a case analysis on the position
of the output formula in the sequent (see Figure 5).
· If the output formula is in Γ{ } we use the fact that (3S∧D)⊃3(S∧3D)

is a theorem of IK + b, together with Lemma A.2.
· If the output formula is in Σ we use the fact that 2(3D ⊃ S)⊃ (D ⊃2S)

is a theorem of IK + b, together with Lemma A.1.
· If the output formula is in ∆ we use the fact that 2(S ⊃2D)⊃ (3S ⊃D)

is a theorem of IK + b, together with Lemma A.1.
The three formulas can be shown using the following three derivations, where
each line stands for a valid implication in IK + b:

3S ∧D
−−−−−−−−−−−−−− b + A.3.(iii)
3S ∧ 23D
−−−−−−−−−−−−−− A.4.(ii)
3(S ∧3D)

2(3D ⊃ S)
−−−−−−−−−−−−−− k1
23D ⊃ 2S
−−−−−−−−−−−−−− b + A.3.(v)
D ⊃ 2S

2(S ⊃ 2D)
−−−−−−−−−−−−−− k2
3S ⊃32D
−−−−−−−−−−−−−− b + A.3.(i)
3S ⊃D

• x = 4: We proceed by a case analysis on the position of the output formula
in the sequent (see Figure 5).
· If the output formula is in Γ{ } we use the fact that 3(3S∧D)⊃(3S∧3D)

is a theorem of IK + 4, together with Lemma A.2.
· If the output formula is in ∆ we use the fact that (3S⊃2D)⊃2(S⊃2D)

is a theorem of IK + 4, together with Lemma A.1.
· If the output formula is in Σ we use the fact that (3D⊃2S)⊃2(3D⊃S)

is a theorem of IK + 4, together with Lemma A.1.
As before, we can show the three formulas by simple derivations:

3(3S ∧D)
−−−−−−−−−−−−−− A.4.(i)
33S ∧3D
−−−−−−−−−−−−−− 4 + A.3.(iii)
3S ∧3D

3S ⊃ 2D
−−−−−−−−−−−−−− 4 + A.3.(i)
3S ⊃ 22D
−−−−−−−−−−−−−− k4
2(S ⊃ 2D)

3D ⊃ 2S
−−−−−−−−−−−−−− 4 + A.3.(v)
33D ⊃ 2S
−−−−−−−−−−−−−− k4
2(3D ⊃ S)

• x = 5: For showing soundness of 5[ ], we observe that it is derivable using the
following three rules and show soundness for each of them individually:

Γ{[Θ, [∆]]}
5[ ]

1
−−−−−−−−−−−−−
Γ{[Θ], [∆]}

Γ{[Θ, [∆]], [Σ]}
5[ ]

2
−−−−−−−−−−−−−−−−−
Γ{[Θ], [[∆],Σ]}

Γ{[Θ, [∆], [Σ]]}
5[ ]

3
−−−−−−−−−−−−−−−−−
Γ{[Θ, [[∆],Σ]]}

For each of 5[ ]

1 , 5[ ]

2 , and 5[ ]

3 , we proceed by a case analysis on the position of
the output formula in the sequent. The cases for 5[ ]

1 are the following:
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· If the output formula is in Γ{ } we use Lemma A.2, together with the fact
that (3T ∧3D)⊃3(T ∧3D) is a theorem of IK + 5.
· If the output formula is in Θ we use Lemma A.1, together with the fact

that 2(3D ⊃ T )⊃ (3D ⊃2T ) is a theorem of IK + 5.
· If the output formula is in ∆ we use Lemma A.1, together with the fact

that 2(T ⊃2D)⊃ (3T ⊃3D) is a theorem of IK + 5.
The following derivations show that the three formulas are theorems of IK+5:

3T ∧3D
−−−−−−−−−−−−−− 5 + A.3.(iii)
3T ∧ 23D
−−−−−−−−−−−−−− A.4.(ii)
3(T ∧3D)

2(3D ⊃ T )
−−−−−−−−−−−−−− k1
23D ⊃ 2T
−−−−−−−−−−−−−− 5 + A.3.(v)
3D ⊃ 2T

2(T ⊃ 2D)
−−−−−−−−−−−−−− k2
3T ⊃32D
−−−−−−−−−−−−−− 5 + A.3.(i)
3T ⊃ 2D

Let us now consider the cases for 5[ ]

2 :
· If the output formula is in Γ{ } we use Lemma A.2, together with the fact

that (3T ∧3(3D ∧ S))⊃ (3(T ∧3D) ∧3S) is a theorem of IK + 5.
· If the output formula is in ∆ we use Lemma A.1 together with the fact

that (3S ⊃2(T ⊃2D))⊃ (3T ⊃2(S ⊃2D)) is a theorem of IK + 5.
· If the output formula is in Σ we use Lemma A.1 together with the fact

that (3(T ∧3D)⊃2S)⊃ (3T ⊃2(3D ⊃ S)) is a theorem of IK + 5.
· If the output formula is in Θ we use Lemma A.1 together with the fact

that (3S ⊃2(3D ⊃ T ))⊃ (3(S ∧3D)⊃2T ) is a theorem of IK + 5.
These formulas are shown by the following derivations:

3T ∧3(3D ∧ S)
−−−−−−−−−−−−−−−−−−− A.4.(i) + A.3.(iii)
3T ∧33D ∧3S
−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, iv)
3T ∧323D ∧3S
−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii)
3T ∧ 23D ∧3S
−−−−−−−−−−−−−−−−−−− A.4.(ii) + A.3.(iii)
3(T ∧3D) ∧3S

3S ⊃ 2(T ⊃ 2D)
−−−−−−−−−−−−−−−−−−−− k2 + A.3.(i)
3S ⊃3T ⊃32D
−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(i)
3S ⊃3T ⊃ 232D
−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(i, ii)
3S ⊃3T ⊃ 22D
−−−−−−−−−−−−−−−−−−−−
3T ⊃3S ⊃ 22D
−−−−−−−−−−−−−−−−−−−− k4 + A.3.(i)
3T ⊃ 2(S ⊃ 2D)

3(T ∧3D)⊃ 2S
−−−−−−−−−−−−−−−−−−−−−− A.4.(ii) + A.3.(v)
(3T ∧ 23D)⊃ 2S
−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(3T ∧323D)⊃ 2S
−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, iv, v)
(3T ∧33D)⊃ 2S
−−−−−−−−−−−−−−−−−−−−−−
3T ⊃33D ⊃ 2B
−−−−−−−−−−−−−−−−−−−− k4 + A.3.(i)
3T ⊃ 2(3D ⊃ S)

3S ⊃ 2(3D ⊃ T )
−−−−−−−−−−−−−−−−−−−− k1 + A.3.(i)
3S ⊃ 23D ⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−
(3S ∧ 23D)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(3S ∧323D)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, iv, v)
(3S ∧33D)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−− A.4.(i) + A.3.(v)
3(S ∧3D)⊃ 2T

Finally, let us consider the cases for 5[ ]

3 :
· If the output formula is in Γ{ }, we use Lemma A.2, together with the fact

that 3(T ∧3(3D ∧ S))⊃3(T ∧3D ∧3S) is a theorem of IK + 5.
· If the output formula is in Θ, we use Lemma A.1, together with the fact

that 2((3D ∧3S)⊃ T )⊃2(3(3D ∧ S)⊃ T ) is a theorem of IK + 5.
· If the output formula is in ∆, we use Lemma A.1, together with the fact

that 2((T ∧3S)⊃2D)⊃2(T ⊃2(S ⊃2D)) is a theorem of IK + 5.
· If the output formula is in Σ, we use Lemma A.1, together with the fact

that 2((T ∧3D)⊃2S)⊃2(T ⊃2(3D ⊃ S)) is a theorem of IK + 5.
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Below are the derivations showing that these formulas are indeed theorems
of IK + 5:

3(T ∧3(3D ∧ S))
−−−−−−−−−−−−−−−−−−−−− A.4.(i)
3T ∧33(3D ∧ S)
−−−−−−−−−−−−−−−−−−−−−−− A.4.(i) + A.3.(iii)
3T ∧3(33D ∧3S)
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, iv)
3T ∧3(323D ∧3S)
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, iv)
3T ∧3(23D ∧3S)
−−−−−−−−−−−−−−−−−−−−−−− A.4.(i) + A.3.(iii)
3T ∧323D ∧33S
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii)
3T ∧323D ∧323S
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii)
3T ∧ 23D ∧ 23S
−−−−−−−−−−−−−−−−−−−−− A.4.(ii) + A.3.(iii)
3(T ∧3D) ∧ 23S
−−−−−−−−−−−−−−−−−−−−− A.4.(ii)
3(T ∧3D ∧3S)

2((3D ∧3S)⊃ T )
−−−−−−−−−−−−−−−−−−−−−− k1
2(3D ∧3S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−− A.4.(iii) + A.3.(v)
(23D ∧ 23S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(323D ∧323S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(323D ∧33S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(3323D ∧33S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(333D ∧33S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−−−− A.4.(i) + A.3.(v)
3(33D ∧3S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−−−− A.4.(i) + A.3.(v)
33(3D ∧ S)⊃ 2T
−−−−−−−−−−−−−−−−−−−−−− k4
2(3(3D ∧ S)⊃ T )

2((T ∧3S)⊃ 2D)
−−−−−−−−−−−−−−−−−−−−−− k2
3(T ∧3S)⊃32D
−−−−−−−−−−−−−−−−−−−−−−−− A.4.(ii) + A.3.(v)
(3T ∧ 23S)⊃32D
−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(3T ∧323S)⊃32D
−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iv, iii, v)
(3T ∧33S)⊃32D
−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(i)
(3T ∧33S)⊃ 232D
−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(i, ii)
(3T ∧33S)⊃ 2232D
−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(i, ii)
(3T ∧33S)⊃ 222D
−−−−−−−−−−−−−−−−−−−−−−−−−
3T ⊃33S ⊃ 222D
−−−−−−−−−−−−−−−−−−−−−−−− k4 + A.3.(i)
3T ⊃ 2(3S ⊃ 22D)
−−−−−−−−−−−−−−−−−−−−−−−− k4 + A.3.(i, ii)
3T ⊃ 22(S ⊃ 2D)
−−−−−−−−−−−−−−−−−−−−−− k4
2(T ⊃ 2(S ⊃ 2D))

2((T ∧3D)⊃ 2S)
−−−−−−−−−−−−−−−−−−−−−− k2
3(T ∧3D)⊃32S
−−−−−−−−−−−−−−−−−−−−−−−− A.4.(ii) + A.3.(v)
(3T ∧ 23D)⊃32S
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(i)
(3T ∧ 23D)⊃ 232S
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(ii, i)
(3T ∧ 23D)⊃ 22S
−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iii, v)
(3T ∧323D)⊃ 22S
−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iv, iii, v)
(3T ∧3323D)⊃ 22S
−−−−−−−−−−−−−−−−−−−−−−−−−−− 5 + A.3.(iv, iii, v)
(3T ∧333D)⊃ 22S
−−−−−−−−−−−−−−−−−−−−−−−−−−
3T ⊃333D ⊃ 22S
−−−−−−−−−−−−−−−−−−−−−−−− k4 + A.3.(i)
3T ⊃ 2(33D ⊃ 2S)
−−−−−−−−−−−−−−−−−−−−−−−− k4 + A.3.(i, ii)
3T ⊃ 22(3D ⊃ S)
−−−−−−−−−−−−−−−−−−−−−− k4
2(T ⊃ 2(3D ⊃ S)

2

B Addendum to Section 3

In this appendix we use a concrete example to explain the error in [3]. The
example is due to an anonymous reviewer who first observed the problem. Let
us consider the formula 32q ∨ 2(3p̄ ∨ 33p), which is a theorem of K4 (it is
derivable in NK ∪ {43}, as the reader can easily verify).

Let us now argue why this formula is not derivable in NK ∪ {4[ ],m[ ]}. For
this, observe that the m[ ]-rule becomes admissible if we replace the c-rule by

Γ{∆,∆}
ĉ −−−−−−−−−−

Γ{∆}

which allows contraction on arbitrary sequents, and which is derivable for
{c,m[ ]}. Additionally, observe that the rules for ∧, ∨, and 2 are invertible
and can therefore be applied eagerly. We can also apply the 3-rule and 4[ ]-rule
eagerly, if we first apply the ĉ-rule on the formula/subsequent that is moved by
the 3/4[ ]-rule. It can also be shown that there is no other need fo the ĉ-rule
(see [2] for a proof of admissibility of ĉ for such a system). This means we can
do an exhaustive proof search without the need of backtracking. The following
derivation shows our attempt to prove 32q∨2(3p̄∨33p) in NK\{c}∪{ĉ, 4[ ]}:
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32q, [q], [[q], q, p], [[q, p], q, p̄,3p], [[q, p̄,3p],3p̄,33p]
ĉ, 4[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [[q], q, p], [[q, p], q, p̄,3p], [[q, p̄,3p],3p̄,33p]
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [2q, q, p], [[q, p], q, p̄,3p], [[q, p̄,3p],3p̄,33p]
ĉ,3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [q, p], [[q, p], q, p̄,3p], [[q, p̄,3p],3p̄,33p]
ĉ, 4[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [[q, p], q, p̄,3p], [[q, p̄,3p],3p̄,33p]
ĉ,3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [[q], q, p̄,3p], [[q, p̄,3p],3p̄,33p]
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [2q, q, p̄,3p], [[q, p̄,3p],3p̄,33p]
ĉ,3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [q, p̄,3p], [[q, p̄,3p],3p̄,33p]
ĉ, 4[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [[q, p̄,3p],3p̄,33p]
ĉ,3,3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

32q, [[q],3p̄,33p]
2 −−−−−−−−−−−−−−−−−−−−−−

32q, [2q,3p̄,33p]
ĉ,3 −−−−−−−−−−−−−−−−−−−−−−

32q, [3p̄,33p]
∨,2,∨ −−−−−−−−−−−−−−−−−−−−−−−

32q ∨ 2(3p̄ ∨33p)

Now we are essentially stuck. If we proceed, we can only obtain copies of
existing sequent nodes, and none of them contains both p and p̄. Thus, we will
never be able to conclude with the id-rule.

However, if we allow the cut-rule, we can prove our formula as follows:

id −−−−−−−−−−−−−−−−−−−
32q, [[q], [q, p, p̄]]

3 −−−−−−−−−−−−−−−−−−−−−
32q, [[q], [q, p],3p̄]

4[ ] −−−−−−−−−−−−−−−−−−−−−
32q, [[[q, p], q],3p̄]

3 −−−−−−−−−−−−−−−−−−−−−−−
32q, [[[q], q,3p],3p̄]

2 −−−−−−−−−−−−−−−−−−−−−−−−
32q, [[2q, q,3p],3p̄]

id −−−−−−−−−−−−−−−−−−−
[[q, q̄], q,3p], [3p̄]

3 −−−−−−−−−−−−−−−−−−−−−
[[q],3q̄, q,3p], [3p̄]

2 −−−−−−−−−−−−−−−−−−−−−−
[2q,3q̄, q,3p], [3p̄]

3 −−−−−−−−−−−−−−−−−−−−−−−−
32q, [3q̄, q,3p], [3p̄]

4[ ] −−−−−−−−−−−−−−−−−−−−−−−−
32q, [[3q̄, q,3p],3p̄]

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32q, [[q,3p],3p̄]∥∥∥∥∥∥∥∥∥∥NK

32q ∨ 2(3p̄ ∨33p)

(B.1)

Then, [3, Lemma 8] suggests to transform the branch on the right in (B.1) as
shown on the left below:

id −−−−−−−−−−−−−−−−−−−
32q, [[q], [q, p, p̄]]

3 −−−−−−−−−−−−−−−−−−−−−
32q, [[q], [q, p],3p̄]

4[ ] −−−−−−−−−−−−−−−−−−−−−
32q, [[[q, p], q],3p̄]

3 −−−−−−−−−−−−−−−−−−−−−−−
32q, [[[q], q,3p],3p̄]

2 −−−−−−−−−−−−−−−−−−−−−−−−
32q, [[2q, q,3p],3p̄]

id −−−−−−−−−−−−−−−−−−−
[[q, q̄], q,3p], [3p̄]

3 −−−−−−−−−−−−−−−−−−−−−
[[q],3q̄, q,3p], [3p̄]

2 −−−−−−−−−−−−−−−−−−−−−−
[2q,3q̄, q,3p], [3p̄]

4[ ] −−−−−−−−−−−−−−−−−−−−−−
[[2q,3q̄, q,3p],3p̄]

3 −−−−−−−−−−−−−−−−−−−−−−−−
[32q, [3q̄, q,3p],3p̄]

43 −−−−−−−−−−−−−−−−−−−−−−−−
32q, [[3q̄, q,3p],3p̄]

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32q, [[q,3p],3p̄]∥∥∥∥∥∥∥∥∥∥NK

32q ∨ 2(3p̄ ∨33p)

;

id −−−−−−−−−−−−−
[[q], [q, p, p̄]]

3 −−−−−−−−−−−−−−−
[[q], [q, p],3p̄]

4[ ] −−−−−−−−−−−−−−−
[[[q, p], q],3p̄]

3 −−−−−−−−−−−−−−−−−
[[[q], q,3p],3p̄]

2 −−−−−−−−−−−−−−−−−
[[2q, q,3p],3p̄]

3 −−−−−−−−−−−−−−−−−−−
[32q, [q,3p],3p̄]

43 −−−−−−−−−−−−−−−−−−−
32q, [[q,3p],3p̄]∥∥∥∥∥∥∥∥∥∥NK

32q ∨ 2(3p̄ ∨33p)

However the 43-rule does not apply to the cut-formula so it must be moved
under the cut-rule as in a commutative case, and thus, Lemma 9 of [3] cannot
be applied. This means that the proof of the reduction lemma (Lemma 10)
in [3] is incorrect, and the instance of 43 remains in the derivation after cut
elimination, as shown on the right above.
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