Skip to main content
Log in

Multilevel Causation and the Extended Synthesis

  • Review Article
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

In this article we argue that the classical—linear and bottom-up directed—models of causation in biology, and the “proximate/ultimate” dichotomy, are inappropriate to capture the complexity inherent to biological processes. We introduce a new notion of “multilevel causation” where old dichotomies such as proximate/ultimate and bottom-up/top-down are reinterpreted within a multilevel, web-like, approach. In briefly reviewing some recent work on complexity, EvoDevo, carcinogenesis, autocatalysis, comparative genomics, animal regeneration, phenotypic plasticity, and niche construction, we will argue that such reinterpretation is a necessary step for the advancement of the “Extended Synthesis.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. On the organism conceived as a processual entity see Woodger (1929) and Dupré (2012).

  2. Multilevel causation is fundamental in organization processes of biological complexity: in areas of study such as complexity theory (Kauffman 1993; Emmeche et al. 2000; Hooker 2011), niche construction theory (Gilbert and Sarkar 2000; Laland et al. 2008), epigenesis (Newman 2003b), paleontology (Vrba and Eldredge 1984; Sepkoski 2008), systems biology (Palsson 2006; Trewavas 2006), cellular autocatalysis (Moreno and Umerez 2000), neurobiology (Ellis 2009), and evolutionary theory (Campbell 1974; Mitchell 2009; Martínez and Moya 2011), there are many advanced works about the importance of the co-determination of bottom-up and top-down causes. This co-determination is seen as a universal pattern of organization (El-Hani and Queiroz 2005).

  3. It is worth mentioning that several philosophers (e.g., Kim 1998; Craver and Bechtel 2007) call into question the notion of top-down or downward causation, arguing that it presents important difficulties in its conceptualization. But see Andersen et al. (2000) and Klister (2010) for a defense of downward causation’s concept.

  4. Such is the case of the female goldenrod gallfly. The proteins contained in the saliva of the gallfly larva induce a cellular proliferation on the goldenrod. A gall is formed and the larva enters in it and continues to be protected as it feeds.

References

  • Amundson R (2005) The changing role of the embryo in evolutionary thought. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Andersen PB, Emmeche C, Finnemann NO et al (2000) Downward causation: minds, bodies, and matter. Aarhus University Press, Aarhus

    Google Scholar 

  • Bolker JA (2000) Modularity in development and why it matters to evo-devo. Amer Zool 40:770–776

    Article  Google Scholar 

  • Brigandt I (2007) Typology now: homology and developmental constraints explain evolvability. Biol Philos 22:709–725

    Article  Google Scholar 

  • Callebaut W, Müller GB, Newman SA (2007) The organismic systems approach: streamlining the naturalistic agenda. In: Sansom R, Brandon RN (eds) Integrating evolution and development: from theory to practice. MIT Press, Cambridge, pp 25–92

    Google Scholar 

  • Campbell DT (1974) Downward causation in hierarchically organised biological systems. In: Ayala FJ, Dobzhansky T (eds) Studies in the philosophy of biology. MacMillan, London, pp 179–186

    Google Scholar 

  • Craver CF, Bechtel W (2007) Top-down causation without top-down causes. Biol Philos 22:547–563

    Article  Google Scholar 

  • Davidson EH (1993) Later embryogenesis: regulatory circuitry in morphogenetic fields. Development 118:665–690

    Google Scholar 

  • Dickins TE, Barton RA (2013) Reciprocal causation and the proximate–ultimate distinction. Biol Philos 28:747–756

    Article  Google Scholar 

  • Dupré J (2012) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford

    Book  Google Scholar 

  • El-Hani C, Queiroz J (2005) Downward determination. Abstracta 1:162–192

    Google Scholar 

  • Ellis GFR (2006) Physics and the real world. Found Phys 36:227–262

    Article  Google Scholar 

  • Ellis GFR (2009) Top-down causation and the human brain. In: Murphy N, Ellis G, O’Connor T (eds) Downward causation and the neurobiology of free will. Springer, Berlin, pp 63–81

    Chapter  Google Scholar 

  • Emmeche C, Køppe S, Stjernfelt F (2000) Levels, emergence, and three versions of downward causation. In: Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (eds) Downward causation. Aarhus University Press, Aarhus

  • Esposito M (2013) Romantic biology—1890–1945. Pickering and Chatto, London

    Google Scholar 

  • Gilbert SF (1997) The “re-discovery” of morphogenetic fields. DevBio: a companion to Developmental Biology, 8th edn. Sinauer, Sunderland. http://8e.devbio.com/article.php?ch=3&id=18

  • Gilbert SF (2002) Predator-induced polyphenism. In: Tickle C (ed) The encyclopedia of life sciences, vol 15. Macmillan, London, pp 134–138

    Google Scholar 

  • Gilbert SF (2003) The reactive genome. In: Müller GB, Newman SA (eds) Origination of organismal form: beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge, pp 87–101

    Google Scholar 

  • Gilbert SF, Sarkar S (2000) Embracing complexity: organicism for the 21st century. Dev Dynam 219:1–9

    Article  Google Scholar 

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    Article  Google Scholar 

  • Gottlieb G (1992) Individual development and evolution: the genesis of novel behavior. Oxford University Press, Oxford

    Google Scholar 

  • Hall B (2000) Evo-devo or devo-evo—does it matter? Evol Dev 2:177–178

    Article  Google Scholar 

  • Hamburger V (1980) Embryology and the modern synthesis in evolutionary theory. In: Mayr E, Provine W (eds) The evolutionary synthesis: perspectives on the unification of biology. Cambridge University Press, New York, pp 97–112

    Google Scholar 

  • Hamburger V (1988) The heritage of experimental embryology: Hans Spemann and the organizer. Oxford University Press, Oxford

    Google Scholar 

  • Hooker C (2011) Philosophy of complex systems. North Holland Elsevier, Amsterdam

    Google Scholar 

  • Huang S (2000) The practical problems of post-genomic biology. Nat Biotechnol 18:471–472

    Article  Google Scholar 

  • Kauffman SA (1993) The origins of order. Oxford University Press, Oxford

    Google Scholar 

  • Kim J (1998) Mind in a physical world. MIT Press, Cambridge

    Google Scholar 

  • Klister M (2010) Causation across levels, constitution, and constraint. In: Suárez M, Dorato M, Rédei M (eds) EPSA Philosophical issues in the sciences. Springer, Berlin, pp 141–151

    Google Scholar 

  • Laland KN, Odling-Smee J, Gilbert SF (2008) EvoDevo and niche-construction: building bridges. J Exp Biol Mol Dev Evol 310B:1–18

    Article  Google Scholar 

  • Laland KN, Sterelny K, Odling-Smee J et al (2011) Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science 334:1512–1516

    Article  Google Scholar 

  • Laland KN, Odling-Smee J, Hoppitt WJE et al (2013) More on how and why: cause and effect in biology revisited. Biol Philos 28:719–745

    Article  Google Scholar 

  • Laubichler MD, Maienschein J (2007) Embryos, cells, and organisms: reflections on the history of evolutionary developmental biology. In: Sansom R, Brandon RN (eds) Integrating evolution and development. MIT Press, Cambridge, pp 1–24

    Google Scholar 

  • Lee D, Severin K, Gadhiri M (1997) Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems. Curr Opin Chem Biol 1:491–966

    Article  Google Scholar 

  • Levin M (2012) Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. BioSystems 109:243–261

    Article  Google Scholar 

  • Levins R, Lewontin RC (1985) The dialectical biologist. Harvard University Press, Cambridge

    Google Scholar 

  • Love A (2003) Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental Biology. Biol Philos 18:309–345

    Article  Google Scholar 

  • Love A (2006) Evolutionary morphology and evo-devo: hierarchy and novelty. Theory Biosci 124:317–333

    Article  Google Scholar 

  • Martínez M (2011) EvoDevo, complexity and multilevel causation. In: Martínez-Contreras J, Ponce A (eds) Darwin’s evolving legacy. Siglo XXI, Mexico City

    Google Scholar 

  • Martínez M, Moya A (2011) Natural selection and multi-level causation. Philos Theory Biol 3:e202

    Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  Google Scholar 

  • Merhej V, Raoult D (2012) Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin. Front Cell Infect Microbiol 2:113

    Article  Google Scholar 

  • Mesoudi A, Blanchet S, Charmantier A et al (2013) Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biol Theory 7:189–195. doi:10.3389/fcimb.2012.00113

    Article  Google Scholar 

  • Mitchell SD (2009) Unsimple truths: science, complexity, and policy. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Miyakawa H, Imai M, Sugimoto N et al (2010) Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. Dev Biol 10:45

    Google Scholar 

  • Moreno A, Umerez J (2000) Downward causation at the core of living organization. In: Andersen PB, Emmeche C, Finnemann NO et al (eds) Downward causation. Aarhus University Press, Aarhus

    Google Scholar 

  • Müller GB (2005) Evolutionary developmental biology. In: Wuketits FM, Ayala FJ (eds) Handbook of evolution. Wiley, Weinheim, pp 87–115

    Chapter  Google Scholar 

  • Müller GB (2007) Six memos for evo-devo. In: Laubichler MD, Maienschein J (eds) From embryology to evo-devo. MIT Press, Cambridge, pp 459–524

    Google Scholar 

  • Müller GB, Newman SA (2003) Origination of organismal form: the forgotten cause in evolutionary theory. In: Müller GB, Newman SA (eds) Origination of organismal form. MIT Press, Cambridge, pp 3–10

    Google Scholar 

  • Müller GB, Olsson L (2003) Epigenesis and epigenetics. In: Hall BK, Olson W (eds) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, pp 114–123

    Google Scholar 

  • Newman SA (2003a) From physics to development: the evolution of morphogenetic mechanisms. In: Müller GB, Newman SA (eds) Origination of organismal form. MIT Press, Cambridge, pp 221–239

    Google Scholar 

  • Newman SA (2003b) Hierarchy. In: Hall BK, Olson W (eds) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, pp 169–174

    Google Scholar 

  • Newman SA, Forgacs G, Müller G (2006) Before programs: the physical origination of multicellular forms. Int J Dev Biol 50:289–299

    Article  Google Scholar 

  • Noble D (2006) The music of life: biology beyond genes. Oxford University Press, Oxford

    Google Scholar 

  • Noble D (2013) Physiology is rocking the foundations of evolutionary biology. Exp Physiol 98:1235–1243

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Olsson L, Levit GS, Hoßfeld U (2010) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969

    Article  Google Scholar 

  • Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Passera L, Roncin E, Kaufmann B et al (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–631

    Article  Google Scholar 

  • Pigliucci M, Müller GB (eds) (2010) Evolution: the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  • Plutynski A (2008) Explaining how and explaining why: developmental and evolutionary explanations of dominance. Biol Philos 23:363–381

    Article  Google Scholar 

  • Raoult D, Koonin EV (2012) Microbial genomics challenge Darwin. Front Cell Infect Microbiol 2:127

    Article  Google Scholar 

  • Reif WE, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91

    Article  Google Scholar 

  • Riedl R (2005) A systems theory of evolution. In: Hösle V, Illies C (eds) Darwinism and philosophy. University of Notre Dame Press, Notre Dame, pp 121–143

    Google Scholar 

  • Sepkoski D (2008) Macroevolution. In: Ruse M (ed) Oxford handbook of philosophy of biology. Oxford University Press, Oxford, pp 211–237

    Google Scholar 

  • Soto A, Sonnenschein C (2005) Emergentism as a default: cancer as a problem of tissue organization. J Biosci 30:103–118

    Article  Google Scholar 

  • Spemann H (1919) Experimentelle forschungen zum determinations- und individualitätsproblem. Naturwissenschaften 7:581–591

    Article  Google Scholar 

  • Strohman RC (2000) Organization becomes cause in the matter. Nat Biotechnol 18:575–576

    Article  Google Scholar 

  • Thierry B (2005) Integrating proximate and ultimate causation: just one more go! Curr Sci 89:1180–1184

    Google Scholar 

  • Trewavas A (2006) A brief history of systems biology. Plant Cell 18:2420–2430

    Article  Google Scholar 

  • van Der Weele C (1999) Images of development: environmental causes in ontogeny. SUNY Press, Albany

    Google Scholar 

  • Vrba E, Eldredge N (1984) Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology 10:146–171

    Google Scholar 

  • Weider LJ, Pijanowska J (1993) Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67:385–392

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origins of species differences. Proc Natl Acad Sci USA 102:6543–6549

    Article  Google Scholar 

  • Woodger JH (1929) Biological principles: a critical study. Kegan Paul, Trench, Trubner, London

Download references

Acknowledgments

We are grateful to all the members of PhiBio, Seminario de Filosofía de la Biología UAM-C, for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, M., Esposito, M. Multilevel Causation and the Extended Synthesis. Biol Theory 9, 209–220 (2014). https://doi.org/10.1007/s13752-014-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-014-0161-3

Keywords

Navigation