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Abstract
In this paper we give a positive answer to a problem posed by G. Hofer-

Szabó and M. Rédei (2004) regarding the existence of in�nite common
cause systems (CCSs). An example of a countably in�nite CCS is pre-
sented, as well as the proof that no CCSs of greater cardinality exist.

1 Preliminaries
The problem we tackle in this paper arose in the sub-�eld of philosophy of science
concerning the notion of common cause. The idea is traditionally thought to
have been �rst put forward by Hans Reichenbach in his book The Direction of
Time (1956). Various forms of it have been found to be of interest for di�erent
sorts of researchers, from those mainly interested in physics to those dealing
with Bayesian nets. We now give all de�nitions needed to state the problem we
will be dealing with in the next sections.

By a probability space we mean a tuple 〈S, P 〉, where S is a Boolean algebra
and P is a probability measure on S. Due to Stone's representation theorem
we can without loss of generality view S as a �eld of sets. Events A, B ∈ S are
(positively) correlated if P (A ∩B) > P (A)P (B).

De�nition 1 Let A,B ∈ S. An event C is said to be a screener-o� for the pair
{A,B} if P (A ∩ B | C) = P (A | C)P (B | C). In the case where A and B are
correlated we also say that C screens o� the correlation.

De�nition 2 Let A,B ∈ S. We say that a family of events {Ci} satis�es the
statistical relevance condition with regard to the pair {A, B} if whenever i 6= j

(
P (A | Ci)− P (A | Cj)

)(
P (B | Ci)− P (B | Cj)

)
> 0

De�nition 3 Let A,B ∈ S.
Then C ∈ S−{A,B} is said to be a common cause of these two events if (1)

both C and its complement C⊥ are screener-o�s for the pair {A,B} and (2) the
pair {C,C⊥} satis�es the statistical relevance condition with regard to {A,B}
with P (A | C) > P (A | C⊥).

A common cause C for events A, B may be viewed as a doubleton {C, C⊥}
with both elements screening o� the pair and one being statistically more rel-
evant for A and B than the other. This idea has been generalized with regard
to the number of screener-o�s in [3]. Recall that a partition of unity of S is a
family {Yi} of pairwise disjoint non-empty subsets of 1S such that

⋃{Yi} = 1S .
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De�nition 4 A partition of unity of S is said to be a common cause system
(CCS) for A and B if it satis�es the statistical relevance condition w.r.t. A and
B and all its members are screener-o�s for the pair.

The cardinality of the partition is called the size of the common cause system.

It was shown in [3] that existence of a common cause system (which was
then labelled `Reichenbachian common cause system') for events A,B ∈ S en-
tails a correlation between those events, so it can be considered an explanation
of the correlation.1 As mentioned above, a common cause together with its
complement form a CCS of size 2.

Some results regarding CCSs were published in [3] and [4]. These include
the fact that for any natural n (n > 2) it is possible to �nd a probability
space containing a correlation for which a CCS of size n exists. [3] asks whether
in�nite CCSs exist, conjecturing the positive answer. We con�rm the conjecture
in the following section, providing an example of a countably in�nite CCS, and
conclude with a proof of the non-existence of CCSs of greater size.

2 A countably in�nite common cause system

Let 〈[0, 1),W, λ〉 be the classical probability space comprising the real inter-
val [0, 1), W � the set of all its Lebesgue-measurable subsets, and the Lebesgue
measure λ. Put

Cn :=
[
2n − 1

2n
,
2n+1 − 1

2n+1

)
;

C := {Cn}n∈N

It is evident that if n 6= m (n,m ∈ N), Cn ∩ Cm = ∅ and that
⋃

C = [0, 1),
so C is a countably in�nite partition of [0, 1). Notice that for any natural n,
λ(Cn) = 1

2n+1 .
1In fact, the notion of a CCS appeared �rst in [2], but it was a bit di�erent: for a partition

to be a CCS for the pair {A, B} it was enough that all its elements screened o� the pair. We
are not concerned with this more limited notion, since it lacks the explanatory value of the
later one � one cannot deduce the correlation from screening o� alone.

2



For any n ∈ N, we want both λ(A ∩ Cn) and λ(B ∩ Cn) to be equal to
1

(n+2)·2n+1 . To improve the clarity of the notation below, put ln = 1
(n+2)·2n+1 .

De�ne

A :=
∞⋃

n=0

[
2n − 1

2n
,
2n − 1

2n
+ ln

)
;

B :=
∞⋃

n=0

[
2n − 1

2n
+

n + 1
n + 2

· ln,
2n − 1

2n
+

n + 1
n + 2

· ln + ln

)

Fix an n ∈ N. From the above de�nitions it follows that

λ(A | Cn) =
λ(A ∩ Cn)

λ(Cn)
=

1
(n+2)·2n+1

1
2n+1

=
1

n + 2
= λ(B | Cn);

whereas

λ(A ∩B | Cn) =
λ(A ∩B ∩ Cn)

λ(Cn)
=

(1− n+1
n+2 ) · 1

(n+2)·2n+1

1
2n+1

=

=
1

(n+2)2·2n+1

1
2n+1

=
1

(n + 2)2

and so

λ(A ∩B | Cn) = λ(A | Cn)λ(B | Cn),

which means that C satis�es the screening-o� condition.
Now, �x two distinct m,n ∈ N. Without loss of generality assume m > n.

It follows that
λ(A | Cn) =

1
n + 2

>
1

m + 2
= λ(A | Cm)

and
λ(B | Cn) =

1
n + 2

>
1

m + 2
= λ(B | Cm).

Therefore, for m,n ∈ N (m 6= n), the di�erences λ(A | Cm) − λ(A | Cn) and
λ(B | Cm)− λ(B | Cn) have the same sign and are nonzero, so

(
λ(A | Cm)− λ(A | Cn)

)(
λ(B | Cm)− λ(B | Cn)

)
> 0 (m 6= n)

which means that C satis�es the other condition of the de�nition of a CCS for
〈A,B〉. To complete the picture, from Proposition 1 of [3] it follows that events
A and B are correlated.

We have shown that in the space 〈[0, 1), W, λ〉 the countably in�nite set C is
a CCS for 〈A,B〉, thus giving the positive answer to the problem stated in [3].
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3 Proof of nonexistence of common cause sys-
tems of greater cardinality

As we will now show, countable in�nity is the limit when it comes to the cardi-
nality of CCSs. No uncountable CCSs exist.

It is straightforward to note that the cardinality of a CCS may not exceed
2ℵ0 . For suppose E = {Ci}i∈I is a CCS for the pair of correlated events A, B
in the probability space 〈S, P 〉. Then the de�nition of a CCS requires that the
function

f : E 3 C 7→ P (A | C) ∈ [0, 1] ⊆ R
be an injection, which is clearly impossible if E is of a greater cardinality.

It is however possible to prove more:

Theorem 5 The greatest possible cardinality of a CCS is ℵ0.

This follows from the following lemma:

Lemma 6 Let S be a Boolean algebra admitting countable joins and meets (i.e.
a measurable space) and µ � a bounded measure on it. Let Π be a partition of
unity in S.

Then µ assumes a positive value for at most countably many elements of Π.

Let S, µ and Π satisfy the hypothesis of the lemma. Then it su�ces to
prove that if µ assumes positive values for more than countably many elements
of Π, then there exists a positive real number δ with the property that for some
countably in�nite subset Q of Π, µ[Q] ⊆ [δ,+∞].

(In this case Σq∈Qµ(q) is divergent � the order of the summands is imma-
terial, because they are all positive � contradicting the assumption that µ is
bounded.)

Suppose µ does indeed assume positive values for uncountably many mem-
bers of Π, but no number δ possessing the property given above exists. Then
for any η ∈ (0,+∞) the set {q ∈ Π | µ(q) > η} is �nite. However,

⋃

η∈R∗+
{π ∈ Π | µ(π) > η} =

⋃

k∈N−{0}
{π ∈ Π | µ(π) > 1

k
}

would then be a countable union of �nite sets, and so countable, contradicting
the assumption that µ assumes positive values for uncountably many elements
of Π. ¤

Returning to the proof the theorem, suppose that in some probability space
〈S, P 〉 a CCS {Ci}i∈I of size greater than ℵ0 exists. Lemma 6 entails that only
countably many of the Cis may have positive probabilities. Therefore for some
k ∈ I, P (Ck) = 0, and so Ck cannot be a screener-o� because the required
conditional probabilities are not de�ned.2 This contradicts the assumption that
{Ci}i∈I is a CCS. ¤

2The reader may prefer conditional probabilities given probability zero events to be always
equal to 0, or 1 (see e.g. [1], p. 57). In these cases the proof is completed by noting that
for some distinct k, l ∈ I, P (A | Ck) = P (A | Cl), which violates the statistical relevance
condition.

4



References
[1] E.W. Adams (1998). A Primer of Probability Logic, CSLI Publications.

[2] G. Hofer-Szabó, M. Rédei, L. Szabó (2000). Reichenbach's Common Cause
Principle: Recent Results and Open Questions, Reports on Philosophy 20
(2000), 85-107.

[3] G. Hofer-Szabó, M. Rédei (2004). Reichenbachian Common Cause Systems,
International Journal of Theoretical Physics 43 (2004), 1819-1826.

[4] G. Hofer-Szabó, M. Rédei (2004). Reichenbachian Common Cause Systems
of arbitrary �nite size exist, Foundations of Physics 36 (2006), 745-756.

[5] H. Reichenbach (1956). The Direction of Time, Berkeley, University of Los
Angeles Press.

5


