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Abstract

This is an initial systematic study of the properties of negation from
the point of view of abstract deductive systems. A unifying frame-
work of multiple-conclusion consequence relations is adopted so as
to allow us to explore symmetry in exposing and matching a great
number of positive contextual sub-classical rules involving this logical
constant —among others, well-known forms of proof by cases, conse-
quentia mirabilis and reductio ad absurdum. Finer definitions of para-
consistency and the dual paracompleteness can thus be formulated,
allowing for pseudo-scotus and ex contradictione to be differentiated
and for a comprehensive version of the Principle of Non-Triviality to
be presented. A final proposal is made to the effect that —pure pos-
itive rules involving negation being often fallible— a characterization
of what most negations in the literature have in common should rather
involve, in fact, a reduced set of negative rules.
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4.1 On negation: Pure local rules

Proposal

‘Contrariwise,” continued Tweedledee, ‘if it
was so, it might be; and if it were so, it would
be; but as it isn’t, it ain’t. That’s logic.’
—Lewis Carroll, Through the Looking-Glass,
and what Alice found there, 1872.

This is an investigation of negation from the point of view of universal logic,
the abstract study of mother-structures (in the sense of Bourbaki) endowed
with consequence relations. In that, it has as important predecessors [10],
[1], and related papers. The general framework adopted here for the study
of pure rules for negation —those that do not involve other logical constants
but negation— is that of multiple-conclusion consequence relations, as in
[32]. Section 0 introduces the general framework and main related defini-
tions and notations. Section 1 presents the most usual axioms regulating
the behavior of multiple-conclusion consequence relations, such as overlap,
(cautious) cut, (cautious) weakening, compactness and structurality, and
shows how several distinct notions of overcompleteness can be defined. The
latter notions can be used to catalogue four distinct varieties of triviality,
and allow for an extension of da Costa’s ‘Principle of Tolerance,” (or rather
‘Principle of Non-Triviality’) in the last section. Although the present study
is neither proof-theoretical nor semantical in nature, some hints are given
on the import of several abstract schematic rules hereby presented from
a semantic viewpoint, and reports are often given about the behavior of
those rules in the context of some non-classical logics —such as relevance,
modal and (sub)intuitionistic or intermediate logics— with which the reader
might be familiar. Local, or contextual, rules can be studied in opposition
to global rules —positive local schematic rules are meant to hold for any
choice of contexts and formulas contained therein, positive global schematic
rules are usually weaker rules meant to display relations among local rules.
These kinds of rules are contrasted in papers such as [28], [20] and [12]; in
[30] the author chooses to present global rules for the connectives as more
‘legitimate,” here I acknowledge instead that local rules are fairly more com-
mon, and concentrate on them. The distinction between local and global
rules is reminiscent of the traditional philosophical distinction between in-
ference rules and deduction rules —an elegant modern abstract account of
it can be found in ch. 3 of [14].

Section 2 presents a few blocks of local sub-classical rules for negation
—among them, some rules that are positive (being universally respected in
classical logic) and some rules that are negative (being classically valid for
some choices of contexts and formulas but failing for others). The first bunch
of rules comes in two dual sets: The first one regulates those properties of
negation which are related to ‘consistency assumptions’ (the inexistence of
non-dadaistic models for some formulas together with their negations), the
second regulates ‘completeness assumptions’ (the satisfiability of either a for-

252
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mula or its negation in each non-nihilistic model). Consistency rules include
pseudo-scotus, which underlies the Principle of Explosion, and ez contradic-
tione sequitur quodlibet, and these two rules can be sharply distinguished in
the present framework of multiple-conclusion consequence relations; com-
pleteness rules include excluded middle, proof by cases and consequentia
mirabilis; some of those rules will partly span both categories, as for in-
stance the completeness rule of reductio ad absurdum, which might interfere
with ex contradictione. A second bunch of rules deals with other forms
of manipulation of negation: Double negation introduction and elimination,
contextual contraposition and contextual replacement are among those rules.
The various interrelations between those sets of rules are carefully investi-
gated here. The present study teams up and generalizes in part some other
foundational studies on negation, such as [25], [9], [18], [22], [23] and [4].
Note that I will not insist here that a negation operator should have any
of the above mentioned properties. Finally, the last bunch of rules comes
again divided into two dual sets, which have the most distinguishing feature
of being negative rules, dealing with some minimal properties that a rea-
sonable negation should not have in order to reckon minimally interesting
interpretations —I would be more reluctant to abandon one of these last
negative properties than any of the preceding positive ones.

Paraconsistency, in particular, is equated to the failure of the Princi-
ple of Explosion, and this reflects in the failure of the most basic form of
pseudo-scotus. Dual definitions are offered for paracomplete logics and their
subclasses, and some ILLUSTRATIONS are given. Other fine definitions are
easily introduced in this framework, as in section 3, so as to characterize a
few interesting subclasses of paraconsistent logics. From the relations estab-
lished among and inside the three blocks of rules mentioned above, the reader
will immediately be able to trace, in particular, some causes and effects of
paraconsistency from the point of view of universal logic. For an account of
the effects of the above systematization for the praxis of the non-classical
designer, section 3 also illustrates some of the necessary and sufficient condi-
tions for paranormality —either paraconsistency or paracompleteness— in
logic.

The first part of section 4 argues that, while individual classes of logics
or classes of negations might well be characterized by positive rules, the
very notions of logic and of negation, or at least the interesting realizations
of those notions, are often best characterized negatively, by saying which
properties they should not enjoy. Definitions of minimally decent classes of
logics and classes of negations are then put forward. The section continues by
surveying some of the most remarkable attempts to answer the bold question
of ‘What is negation?’ ([22], [21], [23], [25] and [11]), calling attention to
some of the merits of each approach and some of their flaws or deficiencies,
while at the same time coherently situating them all in the framework set
in the present paper for easier comparison.
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The last section ends up by listing some of the main novelties and contri-
butions of the present paper (you can go there and read them at any time),
and hints at some generalizations and extensions of the basic notions hereby
assumed and at directions in which this research should be furthered.

A warning: The intended generality in the exposition of the pure rules
for negation, below, might make them hard to read, here and there. It is
always easier though to start by looking at the basic cases of each family
of rules. The reader should also try not to get psychologically deterred by
the formulation of the FACTs relating those rules. Some might have the
impression that I am trying to draw a map of the empire at a scale 1:1.
That is surely not the intention. The goal is indeed to be precise about our
roads and connections, but, curiously, the full details of the map itself are
often not that important here —besides, the map is really easy to draw,
once you get an idea of what’s going on. Much of what follows is in fact
part of many logicians’ folklore, now updated into a uniform setting, which
reveals relationships already known, and makes it easy to check some new
unsuspected relationships. .. and to introduce some new concepts altogether.
The idea, then, avoiding disorder, is that you get the spirit, and don’t lose
the feeling (let it out somehow).

0. Background

Logic, n. The art of thinking and reasoning in strict accordance
with limitations and incapacities of the human misunderstanding.
—Ambrose Bierce, The Devil’s Dictionary, 1881-1906.

After a century of historical reinvention in the field of logic, it rests still
rather uncontroversial to admit that there is no general agreement about
what a logic or a logical constant is. Nonetheless, one might feel quite safe
here, yet free, with the forthcoming non-dogmatic definitions.! Following
a good deal of the recent literature, this short investigation will assume
that logics are concerned with the formal study of (patterns of) reasoning,
or argumentation, that is, they are concerned with deduction, with ‘what
follows from what.” Accordingly, let’s take a logic £ as a structure of the
form (Sg, ), where Sg is a set of (well-formed) formulas and I, C p(S.) x
©(Sr) is a (multiple-conclusion) consequence relation, or entailment, defined
over sets of formulas (also called theories) of L. Using occasionally decorated
capital Greek letters as variables for theories, and doing a similar thing with

!By this ‘non-dogmatic’ I mean that the following definitions and formulations should
be taken and investigated as what they are: proposals, rather than prescriptions. So, I will
(try) not (to) be committing myself to any particular set of assumptions, but rather be
interested in investigating the effects of each particular choice. A gentle bias towards the
concerns of the paraconsistent scenario might though be noted —that is explained by this
being the area of my major expertise and experience, and the area whose open questions
originated this study.
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lowercase Greek for formulas, then putting the consequence relation in infix
format, I shall often write something as T, o, T I A’, 3, A to say that (I'U
{a}UT",A"U{B}UA) falls into the relation I-z. Such clauses will be called
inferences, and their intended reading is that some formula or another among
the alternatives in the right-hand side of I, should follow from the whole
set of premises in its left-hand side. The theories I', IV, A’, A will be called
contexts of the inference. A similar move is made by the canonical model-
theoretic account of a consequence relation: At least one of the alternatives
should be true when all the premises are true. Keeping in mind that each
such inference should always be relativized to some previously given logic, I
shall omit subindices whenever I see no risk of confusion among the plethora
of diverse consequence relations and logics which will be allowed to appear
below.

The following paragraphs are mostly notational and somewhat boring,
so I guess the reader can thread them very quickly and return only when
and if they feel the need of it. Note that expressions like ‘=A, ‘A / B’
and ‘A // B’ will be used as abbreviations for the metalogical statements
‘A is not the case,” ‘if A then B’ and ‘A if and only if B,” and expressions
like ‘A = B {NN}’ and ‘A < B {NN}’ will abbreviate the metalinguistic ‘A
implies B, in the presence of NN,” and ‘A is equivalent to B, in the presence
of NN.” Let [Ap]p<c denote some sequence of the form ‘Ay,, ..., Ay, ,” whose
members are exactly the members of the family {Ab}bgc;2 whenever the
sequence is composed of inference clauses, commas will be read as metalin-
guistic conjunctions; whenever C = 0, one is simply dealing with an empty
sequence. Note that at the metalinguistic level we shall be freely using the
mathematical reasoning from classical logic.

In order to add some structure to the set of formulas S, let ©; de-
note some logical constant of arity ar(i) € N. S will be dubbed schematic
(with respect to ©;) in case @;([ovj]j<ar(s)) € S and {Bj}j<ariy € S imply
@i([Bj]j<ar(s)) € S- This already embodies some notion of ‘logical form.’
To make it even stronger, S will be said to have an algebraic character in
case it is the algebra freely generated over some set LC of logical constants
with the help of a convenient set at of atomic sentences, thus implying, in
particular, that {3;};<ars) € S = @i([Bjlj<ar(i)) € S- An endomorphism
in £ is any mapping % : S — S that preserves the constants of £, that is,
such that (©;([e]j<ar(i)))” = @i([a]]j<ar(s)) for any @; € LC. Given a set S
of formulas with algebraic character and a set of generators at, a uniform
substitution —another commonly required ingredient of the notion of ‘log-
ical form’— is the unique endomorphic extension of a mapping * : at — S
into the whole set of formulas. Given the aims of this study, I shall assume

’In general this family will be finite, or at most denumerably finite —ultimately,
though, its cardinality will always be supposed here to be limited by the cardinality of the
underlying set of formulas S.
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below that a unary negation symbol ~ will always be present as a logical
constant in the underlying language of our logics, and S will be assumed
to contain at least one formula of the form ~¢. This assumption, together
with the schematism of S which shall be postulated from here on, will allow
us to quantify metalinguistically over formulas. As some further notational
help, I will use the following symbols for iterated negations: ~°
~H = At a—these will be used to inject a bit more of generality into
the formulation of the rules in section 2.

Here, a(n inference) rule will be simply a relation involving one or more
inferences. Given some rule A, I will sometimes be writing (Vform)A or
(Iform)A in order to quantify in this way over the lowercase Greek ele-
ments that appear in A; similarly, I will be writing (Vcont)A or (Jcont)A
in order to quantify accordingly over its elements in uppercase Greek. A
formula ¢ will be said to depend only on its component formulas [p;]i<1
whenever ¢ can be written with the sole help of the mentioned component
formulas and the logical constants of the language —this shall be denoted
by ¢([pi]i<1). In a similar vein, to denote a theory ® whose formulas depend
only on the formulas [p;];<1, one will write ®([p;]i<1). Unless I say some-
thing to the contrary, when I state a rule below I shall be referring to the
universal closure of this rule, that is, I shall be writing a schematic rule, a
rule that holds for any choice of contexts and formulas explicitly displayed
in it. In the same spirit, when I write by way of I, [a]i<1 If [Bj]j<3, A —or,
what amounts to the same, =(T', [a;]i<1 IF [55] <5, A)— the metalogical de-
nial of a rule, I shall mean that there is some choice of contexts I' and A
and of formulas [a;]i<1, [3j]j<5 under which the rule T', [og]i<t IF [B5]j<5, A
does not hold. The notation I', « | 3, A shall abbreviate the metalogical
conjunction of I';a IF B, A and I', 8 IF a, A —obviously, this is symmet-
ric, and it results in the same to write I', 8 | «, A. To be sure, most
statements below will have instances with the format [Ap]p<c # D, where
each element of [Ap]p<c and each D represents an inference clause, and #
represents some sort of ‘implication’: Positive local schematic rules such as
(C1) and (C2) a few lines below will be constituted of universally quantified
schemas, in the form (Vform)(Vcont)([Ap]p<c # D); negative local schematic
rules such as —(C1) are opposed to positive rules, having thus the form
(Fform)(3cont)—([Ap]p<c # D); global positive schematic rules will have the
form (Vform)([(Vcont)Aplp<c # (Vcont)D); global negative schematic rules
will have the form (3form)([(Jcont)—Ap|p<c # (3cont)—D). Note that each
local, or contextual, rule of the above formats can immediately be given a
global version, by suitably distributing some of the metalinguistic contextual
quantifiers as expected.

o=« and
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4.1 On negation: Pure local rules

1. Rules for abstract consequence relations

Ex falso nonnumquam sequitur verum, et tamen semper absurdum.
—Jakob Bernoulli, XVII century.

I now proceed to consider some rules which have often been proposed as
general properties of ‘any’ consequence relation. Let’s start by:

(C1) Overlap, or Reflexivity: (I', o, TV IF A o, A)

(C2) (Full) Cut: T'lIF a,A and IV, IF A") / (T", T IF A, A7)
To facilitate reference in the following, call simple any logic whose conse-
quence relation respects the two above properties (cf. [1]). Given that it is
quite usual for a formula to be assumed to follow from itself, most known
logics will indeed respect overlap, thus I will not explicitly consider here any
weaker versions of this rule (but the reader should be aware of the existence
of, for instance, some relevance logics failing the general version of overlap).
The full formulation of cut above, however, is quite often more than one
needs (or that one can count on) for most practical purposes, as the reader
shall see in the following. Many a time, one of the following weaker formu-
lations will suffice:

(C2.1.1)  (I-)left cautious cut: ([I' IF ay, A< and T, [ ]i< IF A) / (T IF A)
(C2.2.J)  (J-)right cautious cut: (I' IF [o];<5, A and [I', a5 IF Al;<5) / (T'IF A)

Obviously, (C2.1.1) and (C2.2.1) are identical rules; call them 1-cautious cut,
and call 1-simple those logics respecting (C1) and (C2.k.1). In the FACTs I
will mention below, I shall often be relying on overlap and 1-cautious cut,
and sometimes I will use full cut. There are other interesting ‘contextual
versions’ of cut which dwell in between its cautious versions and the full
version, but I shall not study them here.

Other very common rules characterizing general consequence relations
are:

(C3) Weakening, or Monotonicity: left weakening plus right weakening

(C3.1) Left weakening: (I'IF A) / (I, T I+ A)
(C3.2) Right weakening: (I'IF A) / (T IF A, A)

Useful information to bear in mind, to fill the gaps in the proofs of the
assertions which will be found below, are the easily checkable derivations:

Fact 1.1 Consider the rules:
(r1) (T, [ou)i<t I [Bj] <3, A)
(r2)  [['lFag, Ali<t / (T [B5lj<5,A)
(r3) [I,8; Ik Alj<y / (D) [asli<r IF A)

Then:
(i) (r1) = (12),forI=0 {}
(rl) = (r2), for J=0 {(C2)}
(r1) = (r2), in all other cases {(C2) and (C3)}
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(ii) (rl) = (r3), for J=0 {}
(rl) = (13), for I=0 {(C2)}
(r1) = (r3), in all other cases {(C2) and (C3)}
(iii) (r2) or (r3) = (rl) {(C1)} L]

Standard tarskian consequence relations (cf. [36]) are characterized by the
validity of (C1), (C2) and (C3), but for non-monotonic logics this rule (C3)
(and also (C2)) fails to obtain in full generality. Thus, the model-theoretic
account related to non-monotonic logics should be expected to be an update
of the standard one, so as to take contexts into account in evaluating the
truth of formulas or the satisfiability of schematic rules. Some interesting
milder versions of the weakening rule are the following:
(C3.1.K) (K-)left cautious weakening:
([F I+ ak]keK and I' I+ A) / (F, [ak]keK I A)
(C3.2.L) (L-)right cautious weakening:
([Ozl I A]ZEL and I' I+ A) / (F I+ [ak]leln A)

Now, many interesting non-monotonic logics —the so-called plausible ones
(cf. [3]), of which adaptive logics (cf. [7]) under the ‘minimal abnormality’
strategy constitute a special case— will still respect (C1), (C2.1.1), (C2.2.J),
(C3.2) and (C3.1.K). Other exotic consequence relations, such as the one
induced by inferentially many-valued logics (cf. [26]), will only respect, in
general, the properties (C2.1.1), (C2.2.J) and (C3). I will call a logic cautious
tarskian in case it respects overlap, cautious cut and cautious weakening.

Note that, from this point on, I will often be using italic lowercase /
uppercase letters as wildcards for a string of one / finitely-many arbitrary
variables. Note also that ‘finitely-many’ does not exclude the empty string.
Separating dots are not parsed. One can then easily check that:

Fact 1.2
(i) (C2.k.0) and (C3.q.0) {}
(i) (C2) = (C2.2.0) 0
(iii) (C3.x) = (C3.x.a) {}
(iv) (Cn.z.a+b) = (Cn.z.a), for n € {2,3} {}
(v) (C2.z.a) and (C2.z.b) = (C2.x.a+b) {(C3.2)}
(vi) (C2.z.1) = (C2) {(C3)} L]

So, diverting from uninformative rules such as (i), we see that some forms of
cut imply others (see (ii) and (iv)), and the same holds for weakening (see
(iii) and (iv)). Cautious cut is in fact equivalent to full cut in the presence
of weakening (see (v) and (vi)).

Some further important properties of general consequence relations are:

(C4) Compactness: left compactness plus right compactness
(C4.1)  Left compactness: for any T and A such that (T' IF A) there is
some finite IV C T such that (I IF A)
(C4.2) Right compactness: for any I' and A such that (I' IF A) there is
some finite A’ C A such that (T IF A’)
(C5)  Structurality: for any endomorphism *, (I' IF A) implies (T* I A*)
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Compactness is usually invoked, for instance, to guarantee the finitary char-
acter of proofs, and is often equivalent to the axiom of choice in model
theory. Typical examples of consequence relations failing compactness are
those of higher-order logics. Structurality is the rule that allows for uniform
substitutions to preserve entailment. Still some other rules, such as those
regulating left- and right-contractions, expansions and permutation will in
the present framework come for free, given that I have chosen to express
inferences using only sets —when the repetition of formulas or their order
becomes important, as in the case of linear logics or in categorial gram-
mar, it is convenient to upgrade the previous definitions so as to deal with
multi-sets or ordered sets of contexts.

Not all the consequence relations which respect some or even all the
above properties are decent and worth of being studied. A particularly
striking way of being uninteresting and uninformative occurs when the na-
ture of the formulas of the contexts involved in an inference does not really
matter, but only the cardinality of the contexts is determinant of the va-
lidity of the inference involving them. Consider thus the following kind of

property:
(C0.I1.J) IJ-overcompleteness: (T, [a;<1 IF [5]<s, Q)

0.0-overcompleteness says that whatever set of alternatives follows from
whatever set of premises. This is clearly not a very attractive situation, as
it ceases to draw a difference between inferences. Everything is permitted
—one might call this ‘Dostoyevski’s God-is-dead situation’. But some other
instances of overcompleteness may be worth looking at. If you fix a particu-
lar sequence of alternatives [3;];<j, you might call it an I.J-alternative if for
some cardinal I and any contexts I" and A one has that (I", [a]i<1 IF [5]<3, A)
holds; call it simply a J-alternative if it is an I.J-alternative for any I. Sim-
ilarly, if you fix a particular sequence of premises [;]i<1, you might call it
I.J-trivializing if (T, [o];<1 IF [8]j<5, A) holds for some cardinal J and any
contexts I' and A; call it simply I-trivializing if it is an [.J-alternative for
any J. A particularly interesting case here is that of finitely trivializing the-
ories, i.e. those theories which are I-trivializing for some finite I. Of course,
if at least overlap holds then the whole set of formulas is both 1-trivializing
and a l-alternative theory. Note, for instance, that the difference between a
1.1-alternative and a 0.1-alternative is only very slight: It is the distinction,
if it makes any sense to say that there is any, between a formula being a
consequence of anything or of whatever (in Latin, quocumque versus qualis-
cumque). A similar observation can be made about 1.1- and 1.0-trivializing
theories.® Any formula ¢ will be called a top particle, or simply a thesis,*

3But the distinction becomes ineffable once you start using single-conclusion instead
of multiple-conclusion consequence relations (cf. [27]).

4The theses of a given logic are sometimes called its logical truths, in the manner of
Quine. Some authors would prefer, though, to call logical truths the formulas which are
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whenever it is a 0-alternative, and will be called a bottom particle, or an
antithesis, whenever it is 0-trivializing.
Note that:

Fact 1.3 By definition:

(i) Any formula of a 0.1-overcomplete logic is a top particle;
(ii) any formula of a 1.0-overcomplete logic is a bottom particle;
(iii) any logic respecting weak cut and having a formula which is both a top
and a bottom particle is 0.0-overcomplete;
(iv) any overcomplete logic is tarskian.

Moreover:
(v) (CO.LJ) & (COI+K.J+L), for I, J > 0 !
(vi) (C0.0.0) = (C0.I.J) {}
(vii) (C0.0.1) = (€0.0.0) {bottom and (C2.k.j)}
(viii) (C0.1.0) = (C0.0.0) {top and (C2.k.j)} =

From the above we see that all varieties of overcompleteness reduce thus
to one among 0.0-, 0.1-, 1.0- and 1.1-overcompleteness. From the point of
view of the standard model-theoretic account, 0.1-overcomplete logics can
be characterized by a unique model in which everything is true; similarly for
1.0-overcomplete logics and models in which everything is false. The empty
set of valuations, with no truth-values, provide an adequate semantics for
0.0-overcomplete logics, and for 1.1-overcomplete logics you might combine
two valuation mappings: One which makes all formulas true, and another
one which makes them all false. From this point on, I will be calling a
logic dadaistic in case it is 0.1-overcomplete, nihilistic in case it is 1.0-over-
complete, trivial in case it is 0.0-overcomplete, and semitrivial in case it is
I.J-overcomplete for any I,J > 0.

As we have seen, the four above kinds of overcompleteness collapse into
triviality in case weak cut is respected and there are bottoms and tops
around. A cheaper way of producing that collapse is by assuming the fol-
lowing properties on consequence relations (extending the proposal in [22]):

(CG) Coherence: left coherence plus right coherence

(CG.1) Left coherence: (T'IF 3,A) & (Vo)(T,alF 5,A)

(CG.2) Right coherence: (T, alF A) & (VB)([T,al- 5,A)
Although the above properties are clearly admissible in most usual logics,
they are also considerably esoteric, and we will not assume them at any
point in this paper.
A warning: From this point on, unless otherwise stated, all the above sorts
of overcompleteness shall explicitly be avoided.

proved under empty contexts (but not necessarily under all other contexts, what makes
a difference if your logic is non-monotonic). This terminology is not at issue here —I
shall rather, in general, just take invariance under contexts for granted and assume these
definitional matters to be largely conventional, in the manner of Carnap.
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2. Pure rules for negation

Sameness leaves us in peace, but it is contradiction that makes us productive.
—Johann Wolfgang Von Goethe, Conversations with Eckermann, March 28, 1827.

Let us now consider some general pure sub-classical properties of negation —
in the sense that their statement does not involve other logical constants but
negation— which often appear in the literature (some of them known since
medieval or even ancient times). Be aware that, even though I will be in what
follows presenting positive contextual (and, later on, negative contextual)
schematic rules for negation and then studying their interrelations in the
next FACTs by way of local or global schematic tautologies, lack of space
will prevent me from analyzing in this paper the (usually weaker) global
versions of the same contextual rules hereby presented, in spite of their
possible interest.

For each choice of levels m,n € N, consider the rules:

(1.1.m) (T, ~ma, ~™ ol A) (2.1n) (T Ik ~2FLg ~ng3 A)
pseudo-scotus, or explosion casus judicans, or implosion, or
excluded middle
(1.1.m.n) (T, ~a,~"H ok ~23 A)  (2.1nm) (T, ~®al- ~2 13 03 A)
ex contradictione sequitur quodlibet sequitur ad casos
quodlibet
Rules of the form (1.1.m) postulate the existence of special kinds of 2-trivial-
izing theories, those containing both a formula and its negation; rules (2.1.n)
do the same for some similar 2-alternatives. From the simple schematic
character of the rules, it is obvious that (1.1.m.n) follows from (1.1.m), and
(2.1.n.m) follows from (2.1.n) —the latter are, in fact, ex/ad nihil forms
of the former. The converses, however, are usually not that immediate,
as one can conclude from FACT 1.3(vii) and (viii). One form of the rules
in the family (1.X) or another have been in vogue since at least the XIV
century, where they could indeed be found in the work of John of Cornwall
(the ‘Pseudo-Duns Scotus’), commenting on Aristotle’s Prior Analytics. An
emphasis on the validity of all forms of casus judicans, as regulating the
so-called ‘Principle of Excluded Middle’ was strongly advocated already by
stoics like Chrysippus, in which they would early be opposed, with equal
strength, by Epicurus and, more modernly, by Brouwer. The validity of
all forms of its dual rule, pseudo-scotus, regulates the so-called ‘Principle
of Explosion.” Accordingly, the rules in family (1.X) will be related to the
metatheoretical notion of ‘consistency,” and those in family (2.X) will be
related to ‘(model-)completeness,’ or ‘determinedness.’

From the point of view of the standard model-theoretic account, (1.1.m)
will make sure that no formula (of the form ~™«) can ever be true together
with its negation; (1.1.m.0) will guarantee that any model for ~™«a and
its negation will be dadaistic. A dual remark can be made about (2.1.n),
(2.1.n.0), formulas being false together with their negations, and nihilistic
models.
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The attentive and well-informed reader will have already suspected that
general paraconsistency has to do with the basic failure of explosion, that is,
the failure of rule (1.1.0); dually, general paracompleteness has to do with the
failure of (2.1.0). Thus, in particular, relevance logics provide examples of
paraconsistent logics, and intuitionistic logic is an example of a paracomplete
logic. In fact, duality intuitions will guide the statement of most negation
rules above and below; sometimes rules from both sides of each dual pair will
be well-known from the logico-mathematical praxis, in some other occasions
only one of the sides will be really that common, like in the case of (1.1.m.n)
—people rarely mention (2.1.n.m) at all. As a matter of fact, it seems that it
is only because there is an old tendency to work under the asymmetrical mul-
tiple-premise-single-conclusion environments that people even care to look
at (1.1.m.n), localizing the issue of (para)consistency over there instead of
over (1.1.m). A more detailed discussion of that can be found in [27].

I proceed now to state some other rules which can easily be harvested in
the literature:

(1.2.m.]) (DI ~™a, A) / (2.20.]) (D,~"G1F A) /
(T, ~™ o - A) (T I ~2F18, A)
(1.2m.1) (T IF ~™+la, A) / (2.20.1) (D, ~*18 1 A) /
(T, ~™a I A) (T IF ~"3,A)
dextro-levo symmetry of negation levo-dextro symmetry of negation

(1.3.m.]) (T, ~™Fla |k ~ma, A) / (2.3n.]) (T,~"BIF~"F15 A) /
(T, ~ o - A) (T IF ~0F13, A)
(1.3.m.7) (T, ~"a Ik ~mFla A) / (2.30.7) (T,~"H131F~26,A) /
(T, ~™a |k A) (T IF ~"8,A)
causa mirabilis consequentia mirabilis

According to [29], forms of consequentia mirabilis were first applied in mod-
ern mathematics by Cardano and Clavius, in the XVI century. A century
later, Saccheri adopted them as some of his main tools for doing some early
work on non-Euclidean geometry. At about the same period, Huygens, and
to some extent also Tacquet, argued that one should refrain from merely
‘formal’ applications of consequentia mirabilis to mathematics, adopting in-
stead the more ‘intuitive’ forms of reductio ad absurdum (cf. [8], and below).
But then, results from FACT 2.3 will show that such a move is not without
consequences: The latter rule is in general much stronger than the former.
Rules of symmetry, from families (1.2.X) and (2.2.X) (cf. [1]), are quite
similar to their analogues in the families (1.3.X) and (2.3.X). They are
sometimes used, for instance, in presenting the very definition of negation
(cf. [18]) for logics intermediate between intuitionistic and classical logic.
Next, consider the rules:

(14m) (T'lF~"a,A and (24n) (T,~"FIF A and
I Ik~ o, ALY/ I, ~ G I A /
(I",T IF A, A) (T",T IF A, A)
right-redundancy left-redundancy, or proof by cases
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Forms of proof by cases are some of the most ancient and probably the most
common rendering of patterns of reasoning by excluded middle in mathe-
matics and philosophy.
(1.5.m.].n) (I',~B IF ~™a, A and
FI, Nn-&-lﬁ = Nma7 A/) /

(2.5.n.l.m) (T,~"G IF ~™a, A and
F/ Nnﬁ H_ Nm+1a)A/) /

(IV,T, ~™ o - A, A)

(1.5.m.T.n) (T, ~*B IF ~™Fla, A and
F/, Nn+1ﬂ = Nm+1a’ A') /

(I",T, ~™a IF A, AY)

reductio ex evidentia

(T',T Ik ~2 13 ALA)

(2.5.n.7.m) (T, ~" T3 IF ~ma, A and

F/, Nn+16 I+ Nm+1a, A/) /
(T, TIF~"3, A, A)

reductio ad absurdum

One or another form of reductio ad absurdum can be found integrating the
standard suite of mathematical tools at least since Pythagoras’s discovery
/ invention of irrational numbers —the reduction to absurdity is indeed the
gist of methods of indirect proof and of proof by refutation. Zeno of Elea
also excelled the use of this rule as applied to argumentation, foreshadow-
ing a sort of dialectical approach to critical thinking which was to become
very popular later on. But reductio is altogether dispensed by consequence
relations such as that of intuitionistic logic (in accordance with results from
FACT 2.3), in concert with its general demise of excluded middle.

Continuing, a second set of pure rules for negation which can also be
handy and which are often insisted upon are the following —for each choice
of levels a, b,c,d,e € N:

(3.1.ab.c.d) ([, ~2y I ~P5 A) /

( a+2c,_Y = Nb+2d§’ A)
(3.2.a.b.c.d) (F, ~AT2y I PG A) (4.1.a.¢) (T, ~y I ~a+2en A)
(I‘7 ~Ay |- Nb+2d5 A) double negation introduction
(3.3.a.b.c.d) (T, ~y Ik ~PF2d5 A) / (4.2.a.e) (T, ~2F2ey |- ~2y, A)

double negation elimination

(T, ~a+2eny |- b5, A)
(34.a.b.c.d) ( ,~a+2‘37 - ~PF2d5 A /
(T, ~2y IF ~P§ A)

double negation manipulation

(5.1.a.b.c.d) (T, ~*y IF ~P5 A) / (6.1.a.b.e) (T, ~*y |- ~P6,A) /
( Nb+2d+15|F~a+2c+1’y,A) (F Na+e,y4wwb+e5 A)
(5.2.a.b.c.d) ([, ~F2cHLy | b5 A) / (6.2.a.b.e) (T, ~2Fey |- ~P5, A) /
(D, ~PF2dH15 || 2y A) (T, ~2y | ~PFes A)
(5.3.a.b.c.d) (I, ~y IF ~PH2d+15 A) / (6.3.a.b.e) (T, ~*y | ~PFTe§ A) /
~P§ I ~at2etly TA) (T, ~atey H|k ~ b6 A)

(T,

(5.4.a.b.c.d) ( ,~a+25+1’y||-~b+2d+16 A)  (6.4.ab.e) (T,~2FeyH|-~Ptes A)
/ (T, ~P5 I~y A) / (T, ~2y A ~P5, A)
contextual contraposition contextual replacement

(for negation)

The above rules regulate some fixed-point and involutive properties of nega-
tion. I should here insist that one ought not to confuse any of the above
contextual rules with their (weaker) global versions. Note indeed, by way of
an example, that basic forms of global contraposition, or even better, basic
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forms of global replacement will provide exactly what one needs for a nega-
tion to be amenable to a Lindenbaum-Tarski algebraization, and to have
an adequate standard modal interpretation. But local forms of contextual
contraposition and replacement will often fail for non-classical logics such
as paraconsistent logics (see FACT 2.5 below), even though some of those
logics will in fact be perfectly algebraizable (cf. [33] and the subsection 3.12
of [17]).

Let me now invite you to have a look at some of the aftereffects and
interrelations among the rules introduced just above, to get a taste of how
powerful they can be.’

Fact 2.1 Some relations that hold among the last set of rules for nega-
tion are:

(i) (twawxY) = (tua+bwazY), fora,beN {}
(ii) (tww.azy)= (tuv.a+balY), forabeN {}
(ii) (4.w.a.w) = (4u.a+bw), fora,b e N {}
(iv) (3.7.a.b.0.0) {}
v) (4.2.0.0) & (C1) {}
(vi) (6.7.2.b.0) {}
(vii) (3.z.a.b.cd) = (B.zabt xctxd), fort>0 {}
(viii)) (4.z.a.e) = (4.z.a.t xe), fort >0 {(C2.k.1)}
(ix) (6.r.a.b.e) = (6.z.a.b.t x e), for t >0 {}
(x) (z.laaf+uf+v) = (dya+2f+ z.e), for {(C1)}

(x,u,v,y,z) € {(3,
(5,
a.a+ 2c+y.c.e

(
0,e,1,0),(3,¢,0,2,0),
e,0,1,1),(5,0,e,2,1)}
(z.2. ) = (4.z.a.c+e+y), for {(C1)}
(,9,2) € {(3,0,1),(5,1,2)}
(xii) (m3a+2c+yaec) (4.z.a.c+e+y), for {(C1)}
(,9,2) € {(3,0,2),(5,1,1)}
(x4a+2ra+2$c+tc+u) (4.y.a.e), for {(C1)}
<x r s’ t? u’ y> €{<3’ 07 e? e’ 07 1>7 <3’ e’ O’ 07 67 2>7
(5,€,0,0,e,1),(5,0,e,e,0,2)}
(xiv) (2.4.0.0.f+rf+ s) and (4.y.2f + z.e) = (C1), for {}
(x,r,s8,y,2) €{(3,0,e,1,0), (3,e,0,2,0),
(5,0,e,1,1), (5,¢,0,2,1)}

(xv) (v.z.a.b.e.e) and (v.y.b.a.e.e) = (6.z.a.b.2e + w), for {}
(v, w) € {(3, ) (5,1)} and
<£U>y7 Z> € { s Ly 1>7 <27 3, 2>7 <37 2, 3>= <47474>}

(xvi) (3.z.a+ 2e.b.c.d) and (4.z.a.c +e) = (3.y.a.b.e.d), {(C2)}, or
for (z,y,2) € {(1,2,1),(2,1,2),(3,4,1),(4,3,2)} {(C2.k.j) and (C3.1)}, or

{(4.3 — z.a.c+e) and (C2.k.j) and (C3.1.p)}

5In the next facts, I do not claim of course to present ‘all’ the interesting results, and
not even the ‘best’ possible results —in the sense of working always with the weakest
premises and deriving the strongest conclusions by way of the feeblest set of assumptions,
in the most general way. But I have advanced a great deal polishing the results in that
direction, and the reader will see they are indeed not that bad.
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(xvii)

(xviii)

(4.3

(xix)

(xx)

(xxi)
(xxii)

(xxiii)

(xxiv)

(xxv)

(xxvi)

(xxvi

(xxviii

(xxix
(xxx

NANA NGNS

(Xxxi)

(xxxii)

(3.xz.a.b 4+ 2f.c.d) and (4.2.b.d +f) = (3.y.a.b.c.f), {(C2)}, or

for (x,y,2) € {(1,3,2),(2,4,2),(3,1,1),(4,2,1)} {(C2.k.j) and (C3.2)}, or
{(4.3 = z.b.d + ) and (C2.k.j) and (C3.2.q)}

(3.xz.a+2eb + 2f.c.d) and (4.w.a.c+e) and (4.z.b.d + f)

= (3.y.a.b.et), for (z,y,w, z) € {(1,4,1,2),(4,1,2,1)} {(C2)}, or

—w.a.c+e) and (4.3 — z.b.d +f) and (C2.k.j) and (C3.1.p) and (C3.2.q)}

(4.z.a.c) and (4.y.b.d) = (3.z.a.b.c.d),
for (z,y,2) € {(2,1,1),(1,1,2),(2,2,3),(1,2,4)} {(C2)}, or
{(4.3 — w.a.c) and (4.3 — z.b.d) and (C2.k.j) and (C3.1.p) and (C3.2.q)}

(5.l.a.b.c.d) and (5.1.b+2d + L.a+2c + 1.f.e) = {}
(3.l.abc+e+1ld+f+1)

(5.2.a+2b + 1.b.e.d) and (5.3.b 4+ 2d + l.a.f.c) = {}
(3.2.abc+e+1d+£f+1)

(5.3.a.b+2d + l.c.f) and (5.2.b.a+ 2c + 1.d.e) = {}
(3.3.abc+e+1d+f+1)

(5.4.a+2c+ 1.b+2d + l.ef) and (5.4.b.a.d.c) = {}
(34abc+e+1ld+f+1)

(5.xz.a+2e+ 1.b.c.d) and (4.2.a.c+e+ 1) = (5.y.a.b.e.d), {(C2)}, or
for (x,y,2) € {(1,2,2),(2,1,1),(3,4,2),(4,3,1)} {(C2.k.j) and (C3.2)}, or

{(4.1.a.c+e+1) and (C2.k.j) and (C3.z.p)}
(5.xz.a.b +2f+ l.c.d) and (4.1.b.d+f+1) = (5.y.a.b.c.f), {(C2)}, or
for (z,y,2) € {(1,3,1),(3,1,2),(2,4,1),(4,2,2)} {(C2.k.j) and (C3.2)}, or

{(4.2.b.d+£f+1) and (C2.k.j) and (C3.z.p)}

(5.x.a+2+1.b+2f+ 1.c.d) and {(C2)}, or
(4.1.b.d+f+1) and (4.2.ac+e+1) and {(C2.k.j) and (C3.z.p)}
(4.2bd+f+1) and (4.1.a.cc+e+1) = (5.y.a.b.e.f),

for z,y € {1,4},x #y

(6.x.a.b.e) & (6.x.b.a.e), for x € {1,4} {}

(6.2.a.b.e) & (6.3.b.a.e)

(6.2.a.a+e.e) = (4.1.a.e) and (4.2.a.e) {(C1)}

(6.x.a+eb.e) and (4.1.a.e) and (4.2.a.e) = (6.y.a.b.e),

for z,y € {1,2}, 2 #y {(C2.k.j) and (C3.1.p) and (C3.2.q)}
(6.z.a.b + e.e) and (4.1.b.e) and (4.2.b.e) = (6.y.a.b.e),

for x,y € {2,4}, x # y {(C2.k.j) and (C3.1.p) and (C3.2.q)}
(6.x.a+eb+ee)and (4.1.m.e) and (4.2.m.e) = (6.y.a.b.e),

for x,y € {1,4}, x # v, {(C2.k.j) and (C3.1.p) and (C3.2.q)}
and m = min(a,b) L]

Assuming we are talking about 1-simple logics, that is, taking overlap and
1-cautious cut for granted, let me briefly comment on the above FACT: Note
that, by schematism (remember last section), less complex rules —those
dealing with fewer negations— usually imply more complex ones (see (i)—
(iii) ); less generous rules —those introducing or eliminating fewer negations—
often imply more generous ones (see (vii)—(ix)), and in the most basic cases
they sometimes do not tell you much (see (iv)—(vi)); each form of double
negation introduction / elimination is implied by some appropriate form of
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double negation manipulation or contextual contraposition (see (x)—(xiii))
and a similar thing happens with respect to contextual replacement (see
(xv)); moreover, some strong forms of the rules for double negation ma-
nipulation or contraposition can only hold together with the introduction /
elimination rules for double negation in case the underlying consequence
relation respects overlap (see (xiv)); contextual replacement alone can also
force double negation introduction / elimination rules to hold (see (xxix)
and (xxviii)); all forms of double negation manipulation can in fact be de-
duced from appropriate forms of double negation introduction / elimination
(see (xix)); combinations of appropriate forms of contextual contraposition
will also immediately yield some forms of double negation manipulation (see
(xx)—(xxiii)); some forms of double negation manipulation will even imply
others, given convenient rules for double negation introduction / elimination
(see (xvi)—(xviii)), and a similar thing will happen with contextual contra-
position (see (xxiv)—(xxvi)); some forms of contextual replacement will also
imply others, either in general (see (xxvii) and (xxviii)) or in the presence of
appropriate forms of double negation introduction / elimination (see (xxx)—
(xxxii)).

It is now easy to conclude from the above that there are some rules which
are somehow ‘more fundamental’ than others. For instance:

Illustration 2.2 Here are a few possible choices of rules from which all the
other rules from families (3.X), (4.X), (5.X) and (6.X) follow, inside any
cautious tarskian logic:

(1) (5.4.0.0.0.1) and (5.4.0.0.1.0)

(2) (5.1.1.1.0.0) and (5.2.0.1.0.0) and (5.3.1.0.0.0)
To check that, use the last FACT. In case (1), parts (i) and (ii) give you schematism,
from which you can conclude (5.4.a.b.0.1) and (5.4.a.b.1.0), for any a,b € N. From
that you have in particular that (5.4.2.0.0.1) and (5.4.0.2.1.0), thus (4.1.0.1) and
(4.2.0.1) are inferred from (xiii). From (iii), (viii) and (v) you can derive all rules
from family (4.X). With the help of those rules and (xxvi) all the rules of the form
(5.1.Y) and (5.4.Y") ensue, and using (xxiv) and (xxv) you can derive the rest of
the family (5.X). The remaining derivations are left to the reader.
In case (2), (4.2.0.1) follows from (5.2.0.1.0.0) by (xi) and (4.1.0.1) follows from
(5.3.1.0.0.0) by (xii). From that, (5.1.1.1.0.0), and schematism, (5.4.a.b.c.d) follows,
using (xxvi), and we're back to case (1). L]

Another interesting set of results concerning the above rules is presented in
what follows.

Fact 2.3 Here are some other relations which can be checked to hold among
the above rules for negation:

(i) 1.XaY)= (1.Xa+bY), forab#],1 {}

266



4.1 On negation: Pure local rules

(l.xz.a+Db.Y) and (4.1 ) (lL.z.a.Y), for e > 0 and
(0,9, 2) € {1, 1), (2,1,2), (4,2,2), (5,1,2)} {(C2)}, on
{(C2.k.j) and (C3.y) and (C3.2)}, or
{(4.2.a.e) and (C2.k.j) and (C3.y.p) and (C3.z.q)}
(lL.z.Y.a+Db) and (4.2.a.¢) = (1.z.Y.a), for e > 0 and {(C2)}, or
(x,y,2) € {(1,2,2),(5,1,1)} {(C2.k.j) and (C3.y) and (C3.2)}, or
{(4.1.a.e) and (C2.k.j) and (C3.y.p) and (C3.2.q)}

(1.3.a+b.]) and (4.1.a.e) = (1.3.a.]), {(4.2.a+ 1.e) and (C2)}, or

fore >0 {(4.2.a.¢) and (C2.k.j) and (C3.1.p) and (C3.2.q)}

(1.3.a+b.7) and (4.2.a.e) = (1.3.a.1), {(4.1.a.¢) and (C2)}, or

fore >0 {(4.1.a.¢) and (C2.k.j) and (C3.1.p) and (C3.2.q)}

(1.1.0.1) and (5.4.0.0.0.0) = (C1) 0

(1.1m) = (1.1.m.x) {}

(1.1.m.0) = (1.1.m) {bottom and (C2.k.j)}

(I1m) = (1.2.m.]) and (1.2.m.7) {(C2)} or {(C2.k.j)+(C3.1)}

(1.2m.}) or (1.2.m.7) = (1.1.m) {(C1)}

(1.2m.z) = (1.3.m.z) {}

(1.1.m) = (1.3.m.]) and (1.3.m.7) {(C2.k.j)}

(1.3.m.}) or (1.3.m.7) = (1.1.m) {(C1)}

(11.m) = (1.4.m) {(C2)}

(14m) = (lxm.Y), for x € {1,2,3}  {(Cl1)}

(1.3m.7) and (2.1.m + 1.m) = (4.1.m.1) {}

(I.3m+1.]) and (2.1 mm+2) = (4.2m.1) {}

(1.5m.Tm+1) = (41.m.1) {(C1)}

(1.5.m+1.l.m) = (4.2.m.1) {(C1)}

(1.5.m + l.z.n) and (4.1.m.1) = (1.5.m.y.n), {(C2)}, or

ey 2) € (U110 (1, 1,2)} {(C2j) and (C3.2)}, or
{(4.2.m.1) and (C2.k.j) (C3.2.p)}

(1.5.m.z.n) and (4.2.m.1) = (1.5.m + l.y.n), {(C2)}, or

(5,9,2) € {(L.1,2), {1, |, )} {(C2kj) and (C3.2)}, or
{(4.1.m.1) and (C2.k.j) (C3.z.p)}

(1.5.m.|.z) or (1.5.m.T.z) = (1.1.m) {(C1)}

(1.5.m.T.n) = (2.1.n.m) {(C )}

(1.5m.|l.n) = (2.1.n.m + 1) {(C1)}

(1.2.m.z) and (2.4.n) = (1.5.m.z.n) {}

(1.3.0.7) and (2.1.0.0) = (C1) {}

(1.3.m.7) and (2.1.n.m) = (1.5.m.T.n) {(C2)}

(1.3.m.|) and (2.1.nm + 1) = (1.5.m.].n) {(C2)}

This much for the (1.X)-column. Dual results obtain for the (2.X)-column,
if one only uniformly substitutes, in the formulation of the above items,
each: (1.X) for (2.X), and vice-versa; (4.1.X) for (4.2.X), and vice-versa;
tops for bottoms; (C3.1.X) for (C3.2.X), and vice-versa. "

To make things more concrete, if we assume we are talking about simple
consequence relations then the non-obvious parts of the previous FACT boil
down to something like this: Again, by schematism, less complex rules imply
more complex ones (see (i)), but then, in the presence of appropriate forms of
double negation introduction elimination, complex rules can on their turn be
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simplified (see (ii)—(v)); there are always equivalent forms of pseudo-scotus,
dextro-levo symmetry of negation, causa mirabilis and right-redundancy
(see (ix)—(xv)); ex contradictione is in reality weaker than pseudo-scotus®
(see (vii) and (viii)); 7-forms and |-forms of reductio ex evidentia can in
fact imply each other if appropriate forms of double negation introduction
or elimination are available (see (xx) and (xxi)); moreover, some double
negation rules are implied by reductio (see (xviii) and (xix)); reductio ex
evidentia also gives you pseudo-scotus (see (xxii)) and some forms of quodli-
bet sequitur ad casos (see (xxiii) and (xxiv)); in fact, you can only count
on both ‘full consistency’ and ‘semicompleteness’ then you can get reductio
ex evidentia back (see (xxv), (xxvii) and (xxviii)); no surprise, appropriate
forms of causa mirabilis and ad casos can tell you something about double
negation (see (xvi) and (xvii)). Note also, for more general classes of logics,
that a consequence relation cannot fail overlap once it respects, for instance,
either some basic forms of causa mirabilis and ad casos, or some forms of
ex contradictione and contextual contraposition (see (xxvi) and (vi)). This
much for the ‘consistency’ column (1.X); dual readings are readily available
for the column of ‘determinedness,” (2.X). Consequently, in case you have
a (simple) paraconsistent or paracomplete logic you are bound to lose some
forms of symmetry of negation, some of its miraculous and redundancy rules,
and some forms of reductio.

In a single-conclusion framework, rules such as pseudo-scotus, symmetry,
proof by cases and reductio ex evidentia are not expressible in the way they
were here presented —so it will happen, for instance, that pseudo-scotus
and ez contradictione will be indistinguishable. Observe that, if your (mul-
tiple-conclusion) consequence relation respects overlap, then the validity of
reductio ad absurdum implies the validity of ex contradictione; differently
from the single-conclusion case, though, pseudo-scotus can now still fail in
such a situation. The attentive reader will have noticed that not every-
thing is completely symmetrical, however, even in the multiple-conclusion
framework. For instance:

Illustration 2.4 Inside simple logics:

(1) (z.5m.7m) = (z.5.m.l.m), forn <m+1

(2) (x.5m.l.n) = (z.5m+ 1.T.n), forn <m
To check those assertions, use parts (i) and (xviii)—(xxi) from the last FACT. More-
over, you can now easily check that all rules from families (1.X) and (2.X) become
valid once both (1.5.0.7.0) and (2.5.0.7.0) are verified by a simple logic. Another
option to generate a basis for all the other rules is to include a top particle together
with (1.5.0.7.0), or else to include a bottom particle together with (2.5.0.1.0).
Notice, at any rate, that one can easily think of a simple logic for which (z.5.m.].n)

SRecall for instance the semitrivial logic from the last section. That specific 1.1-over-
complete logic respects ex contradictione but not pseudo-scotus. A more general realiza-
tion of that phenomenon as applied to non-overcomplete logics was explored in [27].
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holds good, for all levels m,n € N, and where tops and bottoms are present, while
(2.5.0.1.0) is still not inferable —such is the case, for instance, of intuitionistic
logic. ]

In [9], Béziau pointed out an interesting way of correcting the above asym-
metry, which runs like this. Recall from section 0 that we have added and
have been using symbols for iterated negations, defined in terms of a single
negation, ~, by setting ~%a:=a and ~**la:=~"~a, for n € N. Now,
take instead all such symbols ~" as primitive symbols, and consider the
‘symmetric domain’ given by the integers, requiring only the schematic ax-
atby = ~2~Pq, for every a,b € Z, to be respected. Keeping the
above rules exactly as they were presented, it is clear that all the FACTs
that we proved (or else some slightly modified versions of them) keep prov-
able with this new definition. But now the above pathology cannot obtain,
and if (z.5.m.|.n) holds good, for a given simple logic and any given lev-
els m,n € Z, then (z.5.m.7.n) will also hold good, as a consequence, for
all m,n € Z. So far, so well. The author of [9], however, after using this
symmetrization on the content of the above ILLUSTRATION to suggest that,
in a symmetric domain, the differences between classical and intuitionistic
negation will vanish, also proceeded to use particular cases of the derivations
in FACT 2.3 in order to point some forms of the above rules from which all
the other rules would be derived. More specifically, in the single-conclusion
environment that he works in, he points out that the validity of reductio
ad absurdum in a simple logic will be enough to allow for the derivation
of all the other rules for negation. But, as we have seen above, in case we
use a multiple-conclusion environment and there is no bottom present in
the language of the logic, one might quite well have all forms of reductio ad
absurdum holding good while pseudo-scotus still fails; in case there is no top
in the logic, all forms of reductio ex evidentia might be available and still
casus judicans might fail. (It does not really help to point out that canonical
sequent-style presentations of intuitionistic logic are single-conclusion. Mul-
tiple-conclusioned presentations for that same logic have been known since
long —check [35], for instance.) So, to be sure, contrarily to what Béziau
asserts, here we see that reductio ad absurdum alone does not sanction the
derivation of all the other rules for negation. One always has to be alert not
to let a particular choice of framework fool oneself into deceivingly general
conclusions.

iom ~

Fact 2.5 Some further interesting relations among the two above sets of
rules for negation are (let opt = {(|, 1, 1), (T, 1,2), (1, 1,3), (1,1, 4)}):

(i) (1.2.a+r.x) and (1.2.b + s.y) and (2.2.a+ t.z) and (2.2.b +u.x) = {}
(3.z.a.b.c.d), for (z,y,z) € opt and

(z,r,s,t,u) € {(1,1,0,0,1),(2,0,0,1,1), (3,1,1,0,0), (4,0,1,1,0)}

(

(ii) (w.2.a.x) and (3 —w.2.a+ l.z) = (4.y.a.e), for w € {1,2} {(C1)}
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(iii) (1.2.b.y) and (2.2.a.z) = (5.2.a.b.0.0), for (x,y,z) € opt {}
(iv) (1.2.a+4 1.z) and (1.2.b.y) and (2.2.a.z) and (2.2.b + 1.y) = {}
(5.z.a.b.c.d), for (z,y,z) € opt
(v) (1.2.a.x) and (1.2.b.y) and (2.2.a.z) and (2.2.b.y) = {}
(6.z.a.b.w), for w > 0 and (z,y, z) € opt
vi) (1.2.a+41.7) and (4.1.a.1) = (1.1.a) {}
(vii) (1.2.a.]) and (4.2.a.1) = (1.1.a+ 1) {}
(viii) (1.2.a+ 2e.x) and (4.1.a.e) = (1.1.a) {(C2.k.j)}
(ix) (1.2.a.x) and (4.2.a.e) = (1.1.a+ 2e) {(C2.kj)}
x) (5.l.a.b.c.d) and (4.2.b.d) = (1.1.b+2d.a+2c+1) {}
(xi) (5.2.a.b.c.d) and (4.2.b.d) = (1.1.b + 2d.a) {}
(xii) (5.3.a.b.c.d) and (4.1.b+1.d) = (1.1.b.a+2c+ 1) {}
(xiii) (5.4.a.b.c.d) and (4.1.b 4+ 1.d) = (1.1.b.a) {}
(xiv) (5.l.a.b.c.d) and (4.1.b+1.d) = (1.1.b.a+2c+ 1) {(C1) and (C2.k.]
(xv) (5.2.a.b.c.d) and (4.1.b+ 1.d) = (1.1.b.a) {(C1) and (C2.k.]
(xvi) (5.3.a.b.c.d) and (4.2.b.d) = (1.1.b+2d.a+2c+ 1) {(C1) and (C2.k.j
(xvii) (5.4.a.b.c.d) and (4.2.b.d) = (1.1.b 4 2d.a) {(C1) and (C2.k.j
(xviii) (C0.0.1) = (z.y.Z), for x € {2,3,4,5,6} and z.y # 2.4 {}
(xix) (C0.0.1) = (x.y.Z), for x.y = 2.4 {(C2)}
(xx) (C0.0.0) = (2) {}

Dual results hold if one uniformly substitutes, in the above items, each:
(1.X) for (2.X), and vice-versa; (4.1.X) for (4.2.X), and vice-versa; (3.z.b.a.X)
for (3.z.a.b.X); (5.z.b.a.d.c) for (5.z.a.b.c.d); (3.2.X) for (3.3.X), and vice-
versa; (5.2.X) for (5.3.X), and vice-versa; (C0.1.0) for (C0.0.1). "

So, at least as far as simple logics are concerned, one sees that appropriate
forms of symmetry rules from the consistency and the completeness families
together are enough to imply each rule from the second bunch of rules,
that is, those rules involving double negation, contraposition or contextual
replacement (see (i)—(v), and recall also FACT 2.1(xix)); furthermore, in the
presence of appropriate forms of double negation introduction / elimination,
one sees how symmetry rules imply pseudo-scotus and casus judicans, and
how contextual contraposition rules imply ex contradictione and ad casos
(see (vi)—(ix) and (x)—(xvii)). Finally, note that overcompleteness might
give you the positive properties for free (see (xviii)—(xx)). As a particularly
interesting base for deriving all the other rules, one might consider:

INlustration 2.6 Inside any logic respecting overlap (rule (C1)), all the
rules from families (1.X)-(6.X) follow from the validity of basic rules such
as (1.4.0) together with (2.4.0).

To check that all rules from families (1.X) and (2.X) follow from (1.4.0) and (2.4.0),
recall parts (xv), (vii), (xxv) and (i) of FACT 2.3. For the remaining rules, use parts
(ii)—(v) of FACT 2.5, together with parts (iv)—(vi) and (xx)—(xxiii) of FACT 2.1. =

We might now reasonably ask ourselves: Have we not been too permissive?
Is there anything in common, after all, among ‘all negations’? I have pru-
dently not said a word about that matter this far. More interesting for me
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was to note the consequences of each set of rules assumed to hold at each
given moment. For instance, taking FACT 2.3 into consideration, if you are
talking about a simple paraconsistent logic, then you should first allow for
inconsistent models, thus you cannot expect any of the rules of the form
(1.2.0.Y") to be valid —except perhaps for ex contradictione, and this only
in case there is no bottom particle present in your logic. Now, if ex contra-
dictione is also not valid, as it is usually the case, then reductio ad absurdum
must also fail. Moreover, taking FACT 2.1 into consideration, if your logic
also lacks some form of double negation introduction / elimination, then
not all forms of contextual contraposition will be interderivable, and not all
forms of contextual replacement will be interderivable; in fact, some forms
of contextual contraposition and of contextual replacement will be simply
prevented from holding. Finally, taking FACT 2.5 into consideration, any
double negation manipulation, contextual contraposition or contextual re-
placement rule that might be lacking will cause a failure of symmetry, and
your simple logic might end up being either paraconsistent or paracomplete,
in the presence of appropriate forms of double negation introduction / elimi-
nation; the failure of pseudo-scotus at given levels is incompatible with both
symmetry and double negation rules at related levels; the failure of ex con-
tradictione will condemn either some form of contextual contraposition or
of double negation, and so forth. Dual results hold for paracomplete logics
and undetermined models.

All that said and done, it might come as no surprise the acknowledge-
ment that some of the few things which are common to all negations in the
literature are not ‘positive properties,” but ‘negative’ ones. In fact, it is not
that they have something in common, but that they lack some things in
unison. Consider the following set of negative rules, for each level a € N:

(7.1.a) (T, ~a Tl IF A) (8.1.a) (T If ~2 o A)
nonbot nontop

(7.2.2) (T, ~Flplf ~2p, A) (8.2.2) (T, ~*plf ~*lp A)
verificatio falsificatio

Of course, I continue to consider above only sub-classical properties of nega-
tion: The negative rules stated above are rules which can hold in classical
logic for some particular choice of contexts and of (negated) formulas, but
that should not, I contend, hold in general for an object we intend to call
‘negation.’””

" Note that I did not at any point require —and I will not require— that logics should
have any theses / theorems / tautologies / top particles, as much as I also did not require
at any point that logics should have any antitheses. Important logics such as Kleene’s
3-valued logic have no theses at all. In particular, I surely did not require that logics
should have negated theses, that is, theses of the form ~«a. An example of paraconsistent
logic extending positive classical logic by the addition of (2.1.0) and (4.2.0.1) and which
can be proven to have no negated theses nor bottom particles is the logic studied under
the name Chyip in [16].
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From a semantic point of view, (7.1.a) makes sure that our negation is
not an operator which produces only bottom particles, and (8.1.a) poses
a similar restriction on operators which produce only top particles —these
could be held as some sort of very basic requirements for a decent version of
this logical constant. Now, a decent negation operator should also embody
some reasonable notion of ‘opposition’: Accordingly, (7.2.a) requires that
the negation of some formula can be true while that formula itself is false,
and (8.2.a) requires, dually, that some true sentence should have a false
negation —thus, no extreme case will be allowed in which all models are
dadaistic (that is, thoroughly inconsistent) or nihilistic (that is, thoroughly
undetermined). In particular, any of those last two rules preclude identity as
an interpretation of negation. This negative axiomatic outlook seems rare,
but, I submit, is not really that controversial —in fact, I am unaware of any
connective which has been seriously proposed intending to represent some
sort of ‘negation’ and that does not respect all the above negative rules.
Some interesting results involving the last set of rules follow:

Fact 2.7 Some further interesting relations among the three above sets of
rules for negation are:

(i) —(7.1.a) = (1.1.a) {}
(ii) —(7.1.a) = (4.z.a+ l.e) {}
(iii) (7.z.a+b) = (7.z.a) {}
(iv) (7.1.a) and (4.1.a+ 1.e) = (7.1.a+b), fore >0 {(C2)}, or
{(C2.k.j) and (C3.1))}, or {(4.2.a+ 1.e) and (C2.k.j) and (C3.1.p))}
(v) (7.2.a) and (3.4.a+ l.a.e.e) = (7.2.a+D), fore >0 {}
(vi) (7.1.a) and (1.3.a.]) = (7.2.a) {}
(vii) (7.2:2) = (7.1a) 0
(viii) (7.l.a+1) and (1.2.a+1.]) = (8.1.a) 0
(ix) (7.1.a) and (1.2.a+1.7) = (8.1.a+ 1) {}
(x) (72.a+1) = (8.1.a) {}
(xi) (7.1.a) and (1.3.a+1.7) = (8.2.a+1) {}
(xii) (7.2.a) and (5.4.a.a+ l.e.e) = (8.2.a+2e+1) {}
(xiii) (C0.0.1) = —~(8.z.y) {}
(xiv) (2.1.0) and —(7.2.0) = (C0.0.1) {(C2.k.j)}

Dual results hold if one uniformly substitutes, in the above items, each:
(1.X) for (2.X), and vice-versa; (7.X) for (8.X), and vice-versa; (4.1.X) for
(4.2.X), and vice-versa; (r.4.a.a+ l.e.e) for (z.4.a+ l.a.e.e), and vice-versa;
(C3.2.q) for (C3.1.p); (C0.1.0) for (C0.0.1). "

So we see that: If a logic disrespects nonbot then it cannot fail pseudo-scotus
nor double negation elimination (see (i) and (ii)); this time more complex
negative rules imply simpler ones by schematism (see (iii)), the converses
being true in some special cases, in an appropriate logical environment,
given some appropriate form of double negation introduction / elimination
or some form of double negation manipulation (see (iv) and (v)); nonbot
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implies werificatio in the presence of causa mirabilis, while the converse is
always true in virtue of schematism (see (vi), (vii) and (iii)); nonbot implies
an appropriate form of nontop in the presence of an appropriate form of
dextro-levo-symmetry (see (viii) and (ix)); verificatio always implies nontop
in virtue of schematism (see (x)); falsificatio is implied by nonbot by way
of an appropriate form of causa mirabilis, and is implied by verificatio in
the presence of a conveniently strong form of contraposition (see (xi) and
(xii)). This much if we put the family (7.X) at the side of the premises;
dual readings can be effected if we now put the family (8.X) there. Notice
also that, on the one hand, basic forms of overcompleteness imply the failure
of the rules from the last two families (see (xiii)) and, on the other hand,
a failure of any of the most basic forms of the last given rules occasions
overcompleteness in the appropriate positive environment (see (xiv)) —or, to
put it differently, non-overcompleteness together with determinedness might
imply werificatio, together with consistency it might imply falsificatio.

One can conclude from this last fact that no paraconsistent logic can
disrespect nonbot (and a similar restriction applies to logics without dou-
ble negation introduction / elimination); on the other hand, if you fix a
logic which respects weak cut, any explosive negation in it had better re-
spect nontop, or else it can occasion overcompleteness. Moreover, if a logic
respects verificatio then it automatically respects nonbot as well, and simi-
larly for falsificatio and nontop; besides, in the presence of appropriate forms
of levo-dextro-symmetry of negation, nonbot implies nontop. If a logic re-
spects some of the above negative rules, then we are safeguarded against the
most basic forms of overcompleteness. Non-overcomplete logics respecting
weak cut and some of the above positive rules will also often respect some of
the above negative rules, but a logic can respect all the given negative rules
and yet respect none of the given positive rules (ok, I concede: This would
be quite weak of a ‘negation’ —but check the next sections). Dual results
can easily be checked for paracomplete logics.

Another pure negative rule which might occur to the reader at this point
is the following:

(9.a) (T, ~2p | ~2 L A)

paradoxical inequivalence
Many set-theoretical paradoxes end up by sanctioning a paradoxical infer-
ence which fails some form of (9.a), rather than directly proving a pair of
contradictory formulas. But the failure of (9.a) means the failure of both of
the corresponding rules (7.2.a) and (8.2.a), and from that it follows, using
the last FACT, that those failures leave us standing a very short step from
some form of overcompleteness.
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3. Causes and consequences for paranormal logics

It is contrary to common sense to entertain apprehensions or ter-
rors upon account of any opinion whatsoever, or to imagine that
we run any risk hereafter, by the freest use of our reason. Such a
sentiment implies both an absurdity and an inconsistency.
—David Hume, Dialogues Concerning Natural Religion, 1779.

As I see it, a natural continuation of the last section should include an
analysis of the consequences of the ‘paraconsistent attitude,” that is, a brief
list of properties enjoyed or avoided by logics for which the positive rule
(1.1.0) fails, in the light of all previous FACTs. Calculating this is a purely
mechanical task, so this section will only provide some ILLUSTRATIONs of
such calculations, instead of trying the reader’s patience with further lengthy
enumeration of facile results.

To make things even more interesting, I will in fact start by quickly
showing how the present environment can help in the specification of some
interesting specializations of the notion of paraconsistency (see [17]). Re-
call that in paraconsistent logics the rule (I',a, ~a IF A) does not hold in
general, that is, it is not valid for some choice of contexts I' and A and
some formula «. Of course, the rule does hold, for instance, in case either «
or ~qa are bottom particles. Now, suppose there is some formula ¢([@;]ic1)
of a special format such that neither ¢ nor ~¢ are bottom particles for all
choices of components [¢;];e1, but such that the rule (T, o, ~p IF A) always
holds. In that case the logic will be said to be controllably explosive (in con-
tact with ). Explosive logics are those which are controllably explosive in
contact with any formula ¢ to which the definition applies, and controllably
explosive logics are always non-1.0-overcomplete, by definition. Paraconsis-
tent logics cannot be explosive, but they can be controllably explosive, and
they often are. Consider for instance the case of a logic in which (1.1.m)
fails only for some m < a, where m,a € N, and suppose that (7.1.a) holds
good —this logic will obviously be paraconsistent yet controllably explosive
in contact with ~®a. An example of logic with that property is given by the
3-valued maximal paraconsistent logic P!, studied in [31]. Dual definitions
can easily be offered for paracompleteness and controllable implosion. Next,
remember that the failure of the rule (T', o, ~a IF 3, A) is equivalent to the
failure of the rule (T', o, ~a I A) in the presence of a bottom particle and
(C2.k.j). Of course, (I',a, ~a IF B, A) does hold, for instance, in case [ is
a top particle. Suppose then that ¢([¢;]icr) is a formula of a special for-
mat such that ¢ is not a top particle for all choices of components [¢;]icr,
but such that the rule (I', o, ~a I ¢, A) always holds. Logics with that
property are called partially explosive (with respect to ¢). Given a the-
ory ®([p;lic1) which happens not to make a J-alternative for every choice
of its components, but such that (T, a, ~a IF ®, A) always holds, one may
now naturally extend the previous definition so as to call the underlying
logic partially explosive with respect to ®. Explosive logics are partially
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explosive with respect to any formula ¢ or theory ® to which the definition
applies, and partially explosive logics are always non-0.1-overcomplete, by
definition. Paraconsistent logics can be partially explosive with respect to
some formulas, but not with respect to all sets of alternatives. Consider
the case of a logic having a bottom and such that (1.1.0.n) fails only for
some n < a+ 1, where n,a € N, and suppose that (8.1.a) holds good —this
logic will obviously be paraconsistent yet partially explosive with respect to
~2*13. Kolmogorov-Johdnsson’s minimal intuitionistic logic gives an exam-
ple of a partially explosive paraconsistent logic, since (1.1.0.0) fails in it while
(1.1.0.n) holds good for every n > 0. Finally, a logic is called boldly paracon-
sistent in case it is not partially explosive; obviously, boldly paraconsistent
logics are, in particular, paraconsistent. Dual definitions can be offered for
paracompleteness and both its partial and its bold varieties of implosion.
Note that most paraconsistent logics are in practice designed, expected or
even required to be boldly paraconsistent (see [34]). Relevance logics, in par-
ticular, are always boldly paraconsistent, in virtue of their variable-sharing
property: Any inference (I' IF A) can only hold good in case I' and A depend
on some common atomic sentences. It is not true though that every boldly
paraconsistent logic must have the variable-sharing property.

Say that a logic is foo paranormal in case it is either foo paraconsistent
or foo paracomplete, where foo is one of the above varieties of paraconsisten-
cy / paracompleteness. Can we spell out some of the sufficient and some of
the necessary conditions for foo paranormality? Surely. Note, for instance,
that: From parts (xii) and (xxvi) of FACT 2.3, any logic respecting weak
cut and the Principle of Excluded Middle but failing overlap will forcibly
be paraconsistent; from parts (x)—(xiii) and (xx)—(xxiii) of FACT 2.1 and
parts (x)—(xvii) of FACT 2.5 it follows that contextual contraposition and
double negation rules are incompatible with each other, inside any 1-simple
boldly paraconsistent logic; from part (i) and the qualification of part (ix)
of FACT 2.3 we see that there is no reason to suppose, given a non-mono-
tonic logic, that the failure of dextro-levo-symmetry should be held as a
characterizing mark of paraconsistency. And, of course, similar things can
always be said and done about the other paranormal class of logics, the
paracomplete ones. In the way we have formulated, in the last section, the
positive local rules for negation, from families (1.X)—(6.X), it turns out that
no rule alone has all the others as consequences, given some convenient set
of properties of the underlying consequence relation, and, in the same spirit,
there is no single rule whose failure causes the failure of all the other rules
at once. But, in general, neither the validity nor the failure of a given rule,
or set of rules, will be without consequences for some of the other rules. In
particular, one could conclude from what has been seen in the above ILLUS-
TRATIONs and FACTs that all positive rules are inferable, for instance, from
pseudo-scotus, (1.1.0), and casus judicans, (2.1.0), via overlap and cut.

Here are a few other selected causes and consequences of the paracon-
sistent stance:
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Illustration 2.8 Let’s look first for some possible causes for paraconsis-
tency, that is, some (combinations of) conditions leading to the failure of
(1.1.0). The following logics are paraconsistent:

(1) Simple logics respecting all rules from families (2.1.X) to (2.4.X) but failing
any other rule from families (1.X) to (6.X).

(2) Logics respecting weak cut and some rule from family (7.X), while failing a
rule at the same level from family (8.X) (e.g. respecting (7.1.a) and failing
(8.2.a)).

(3) Non-nihilistic logics respecting weak cut and failing basic forms of the rules
from family (8.X) (viz. (8.1.0) or (8.2.0)).

Here are some selected consequences of paraconsistency, that is, some con-
ditions inferable from the failure of (1.1.0):

(4) If a logic respects overlap, then the basic forms of most rules from family
(1.X), namely (1.2.0.x), (1.3.0.z), (1.4.0) and (1.5.0.z.y), will fail. More-
over, some basic forms of contextual contraposition, namely (5.2.0.0.2.0) and
(5.4.0.0.2.0), will also automatically fail.

(5) The most basic form of nonbot (viz. (7.1.0)) will always be respected.

(6) The underlying logic will not be nihilistic.

If a logic respects the rules from family (8.X) and is not controllably explo-

sive then:

(7) The logic is paraconsistent.

(8) All forms of nonbot are also respected.

Finally, here are a few consequences of bold paraconsistency:

(9) Ez contradictione will fail alongside with pseudo-scotus (and there is no need
for a bottom to get that result).

(10) Several other basic forms of contextual contraposition, namely (5.1.0.0.z.0)
and (5.3.0.0.2.0), will also fail inside logics respecting overlap. If the logic
also respects weak cut, that is, if the logic is simple, then it will in general
fail every rule of the form (5.2.y.0.2.0). L]

As usual, the whole thing is easily dualizable for the paracomplete case.

4. Oh yes, why not?...
(But then again, what is negation, after all?)

There are only two means by which men can deal with one another:
guns or logic. Force or persuasion. Those who know that they cannot
win by means of logic, have always resorted to guns.

—Ayn Rand, Faith and Force: Destroyers of the Modern World, 1960.

The results in the above sections have painfully illustrated the intricate links
that tie the several positive contextual sub-classical rules for negation to-
gether. You might have noticed that, inside the appropriate logical environ-
ment, all positive rules were derivable, for instance, from (1.1.0) and (2.1.0),
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the most basic forms of pseudo-scotus and casus judicans. Alternatively, in
a similar logical environment, some rules for contextual contraposition were
also shown to be sufficient for deriving all the positive rules. Besides, if
non-overcompleteness was also guaranteed, then you could also derive the
negative rules from the above mentioned positive rules. The requisites for
checking each link have also been made clear. You might have noticed, in
particular, that full monotonicity had little use in the previous FACTs. Any-
way, one of the basic lessons one should draw from the whole thing is that
the failure of each positive rule carries forward to the failure of some, but
not necessarily all, of the other positive rules.

But there is more. I now discuss another, perhaps even more basic
lesson, that one should learn from the above. It is easy to run into ‘triviality,’
in an intuitive sense, if one does not explicitly try to regulate and avoid it.
So, 0.0-overcomplete logics respect all the positive rules for negation, but at
the same time respect none of the negative rules. Moreover, if an arbitrary
logic does not respect (7.1.0) then it will automatically respect explosion,
if only for silly reasons, and silliness will also guide you from the failure
of (8.1.0) to the failure of implosion. Together with basic casus judicans,
the failure of either (7.1.0) or (7.2.0) will lead you to a dadaistic logic, and
together with basic pseudo-scotus the failure of either (8.1.0) or (8.2.0) will
lead you to a nihilistic logic. What seems to be the safest thing to do about
that? To be sure that you have some negative rules about logics and about
negation around! This way you can at least avoid both the nonsensical
situation of overcompleteness and the uncomfortable situation in which you
have a sample of a logical constant —mnegation— which turns out to lack
any real substance.®

This connects to the difficult trouble of defining what a logic or a logical
constant is (or, in this case, what it is not). Well, one might complain that
this discussion does not lead us anywhere, and that it is very likely that
researchers will never reach anything like a general and final agreement about
those notions (though they are very likely to keep on trying, perhaps by use
of force or by appeal to some argument stemming from some unformalizable
consideration about aesthetics or about the ultimate goal of science). Hey,
but why should there be an agreement? This is not what we should be
striving for! It seems to me that we should rather, as scientists and (meta-
)logicians, be quite content in investigating, comparing and argumenting

8This approach is in fact an application of a certain metaphysical stance focused in some
sort of accidentalism: The really ‘essential’ properties in certain characterizations might in
some cases turn out to be the accidental ones —you enumerate the properties which your
class of objects should not possess from among the ones which are actualizable, and then
you have at least some necessary conditions for that class of objects to be ‘meaningfully
defined.” It is a bit like deciding what you will be when you grow up by listing all the
things you do not want to be. There is of course no space for better defending this strategy
here, from a more abstract point of view, so this had better be left for another occasion.
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for and against each possible ‘interesting’ definition. Then, as the Western
Canon says, “by their fruits ye shall know them.” Irrespective of religious
backgrounds, one might always aspire to find a bit more of impartiality and
tolerance around. . .

Suppose you want to define a class of objects falling under the denomina-
tion D. If D has some common sense meaning(s) in ordinary language, that
might give you a good start. You begin by abstracting from that meaning
toward some specific direction, but it might happen that you do not want
to give neither a purely normative nor a purely descriptive characterization
of the D-objects. What should you do then? You might say, “Listen, I am
only interested in D-objects in case they have the positive property bunda.”
The problem about positive properties is that there will often be some smart
guy to come and say, “Now look how interesting is the class of D-objects
which do not have bunda!” What is left of D in such a case? Some people
say that you cannot negotiate all your positive properties (and our present
commitment to negative properties is at least consistent with the idea that
positive properties are important). For instance, you might define the class
of non-monotonic logics as the class of logics given by consequence relations
which do not have such-and-such property; but then, why should you still
think that such consequence relations should still be said to define a logic?
Fixed a given logic, it might be quite all right that you define a paraconsistent
negation as the negation which lacks such-and-such property; but then, how
can you really be sure in that case that you have a paraconsistent negation
(cf. [13])? The problem about positive properties is that they can easily
mutate from a happy finding into a heavy burden. And, depending on the
way you write them down and insist on them, your preferred set of positive
properties might easily make you oblivious of other interesting classes of
objects which are very much related to your original intuitions about D,
but remain excluded by your rigid dogmatic definition of it. On the other
hand, having positive properties can be very convenient, for you to get a
good glimpse of what rests ahead. It is just so easy to work with them.

So, suppose next that we all agree that ‘decent’” D-objects should not
have the property favela. We might still have an argument as to whether D-
objects should have bunda or not, as bunda and favela might be but slightly
related properties, and turn out to be quite independent from each other.
Now, the advantage of such a negative property is that it does give you a
necessary condition for the objects to fall into an ‘decent’ compartment of
the class D. To be sure, there might be trivial examples of D around, but
now you are at least confident about having avoided some of them. Anyway,
it seems hard to you and me to negotiate property favela. What is ‘decent’
though might not be ‘decent enough’! So now we might go on to discuss
whether ‘decent’ D-objects should not suffer from the property pipoca, in
addition to (or instead of) their not having the property favela. Well, I
do have my doubts as to whether we will be able to reach a complete and
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undisputable set of sufficient conditions for characterizing D —we might
soon have a debate on the status of the next negative property that we
consider: Is the denial of property pipoca ‘really innegotiable’? Does it
make sense to strive endlessly towards a really ‘comprehensive’ definition?
Anyway, no matter the answer we will give to that, now we have at least
agreed in avoiding favela, right?

Which positive properties are the indisputable ones, if any? I will not
take a stand on that. I do not aim to convince you here of adopting any of
the above positive properties about logics or logical constants. Just look at
their consequences and make up your own mind about them, in the face of
the particular application you might be targeting. Now, I do hope we will
agree in avoiding inanity. In that case, take my hand and follow me to a
cut-and-dried territory where we will look for ‘minimally decent’ versions
of our objects of discourse. Note that I will not maintain that what is not
minimally decent does not fall under the scope of those definitions, but only
that I will not care about what is not minimally decent, and I can only hope
to convince you that you should also not care about that. Anyway, feel free
to disagree and propose and study some other smaller or incomparable set
of minimally decent properties, at any point!

I hope you did not get tired with the previous long abstract argumenta-
tive digression. Here is the meat. Given some set of formulas, I now proceed
to define a mid-consequence relation as a binary relation over theories (sub-
sets of the initial set of formulas) which is not I.J-overcomplete, for any
finite I and J. We get rid thus of trivial, semitrivial, dadaistic and nihilis-
tic logics, besides all other logics suffering from other kinds of finite over-
completeness. One might call this the Principle of Non-Triviality, (PNT):
“Thou shalt not trivialize!” Newton da Costa has proposed some sort of
such principle many decades ago (check [19] and [17]): “From the syntac-
tical-semantical standpoint, every mathematical theory is admissible, unless
it is trivial” (notice that he does not say what ‘theory’ or ‘triviality’ mean).?
Interestingly, much more recently, people like Avron, with a completely dif-
ferent background and intentions, have been incorporating some instances
of such a principle: In [2] and [4] this author requires consequence relations
to be (simple and) non-0.0-overcomplete. People in the paraconsistent logic
community working with single-conclusion consequence relations have ac-
cordingly interpreted (PNT) as requiring only that a logic should not be
0.1-overcomplete. They have thus explicitly tried to avoid both trivial and
dadaistic logics, while they theoretically allowed for semitrivial and nihilis-
tic logics to linger (a further discussion of this can be found in [27]). The
above definition of a mid-consequence relation, however, clearly extends all
the preceding definitions in a natural way —of course, in view of FACT 1.3,

9Da Costa dubbed this methodological principle the ‘Principle of Tolerance in Mathe-
matics,” by analogy to Carnap’s homonymous principle in syntax (check p.52 of [15]).
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if the logic has both a bottom and a top particles and respects weak cut,
then the present requirement is identical to Avron’s.! By the way, in view
of the same FACT, it is only reasonable to define a mid-top as a top particle
that is not also a bottom, and a mid-bottom as a bottom particle that is
not also a top.

Now, for us here a mid-negation will be any unary operator satisfying
the negative properties from families (7.X) and (8.X). Note that this re-
quirement alone safeguards us against 0.0-, 0.1- and 1.0-overcompleteness.
In view of the FACTs from the last section, on the one hand, even if a logic
respects the above positive properties, nothing guarantees that it will re-
spect the negative ones as well, and that it will escape overcompleteness.
On the other hand, if some of the positive properties fail for a given logic,
then this logic will often respect some negative properties as well, but not
necessarily all of them. So, the safest thing to do seems to be just to strive
for a mid-negation from the start.

By the bye, if our negative sub-classical properties alone are so weak,
as one might complain, how is it that one can arrive from them to a full
characterization of classical negation? One possibility is to guarantee, from
a semantic perspective, that (7.2.0) and (8.2.0) come together with truth-
functionality and two-valuedness. The margins of this paper are however too
narrow to contain the truly marvelous demonstration of that proposition.

Ways of nay-saying. Before putting an end to this, let me now make a brief
comparison among the present necessary properties of a (mid-)negation, and
other characterizations which have been recently proposed in the literature
(all the following proposals appeared in single-conclusion form, so here I will
work with their straightforward reformulations into the multiple-conclusion
environment).

In [22], Gabbay proposes a few increasingly complex ‘definitions of nega-
tion,” based on a couple of necessary and sufficient sets of properties. The
idea behind his most sophisticated definition was the following. Suppose
you are working with structural tarskian logics. Let © = {[f;]r<x} be
a non-empty set of ‘undesirable results’ of ‘unwanted sentences’ of a logic
L1 = (Sg1,lk£1), subject to the restriction that © should not be a K-triv-
ializing set. Let £2 = (Spa,lFr2) be called a conservative extension of L£1
if D' lFpg A < T ikpgy A, whenever 'UA C Spq. Consider next a binary
connective @ such that:

190ne should notice, though, that the present requirement on non-triviality, which sets
all 0.0-, 0.1-, 1.0-, 1.1-overcomplete consequence relations into a class of their own, is
exactly the same requirement to be found, later on, in Avron & Lev’s [5]. The only
methodological difference is that in the last paper the structures corresponding to such
relations are somehow “excluded from our [theirs] definition of a logic”; in the present
paper, instead, they are just said to constitute not ‘minimally decent’ such relations, but
are allowed to stay as ‘trivial’ (that is, ‘degenerate’) examples of logics. Do notice also
that the entailment relation usually associated to relevance logics, with its characterizing
variable-sharing property, automatically respects the present formulation of (PNT).
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(Gl) (@ fIFa)and (a«® S IFG)

(G2) (a,fIFa®p)

(G3) (Y@ T H|F~v) and (T ®~v |k v), for any top particle T
(G4) (alFpB) / (@@vylFB@y) and (alF3) / (Yo alFvye 3)

Notice that a connective having properties (G1)—(G4) will behave just
like a classical conjunction. Now, a connective ~ of L1 is said to be a
negation if, for some conservative extension £2 of £1 having a connective ©®
with properties (G1), (G3) and (G4):

(GB) (vlFz1 ~a) & (y© alkge ), for some 0 € O

For an intuition about that sort of negation, you might understand (GB)
as conveying the idea that v and « are ‘in conflict’ in the presence of the
undesirable sentence 6.

How can one capture the set of unwanted sentences, when it exists? Easy:
Just consider the set of all negated 1-alternatives, that is, © = {6 : (vVv,T, A)
(T, IFz1 ~0,A)}. In case L1 has some top particle, then © turns to be
more simply the set of all formulas whose negations are theses of this logic.
You might recall though from footnote 7 that this already goes much beyond
our present general requirements on logics. Let me note in passing a few
particular features of the above definition. Suppose that this connective
© of L2 also respects property (G2), that is, suppose that it behaves like a
classical conjunction. Then, by overlap we have that ~«a IF;; ~a and so,
by (GB), ~a ® a IFzo 6, for some § € ©. From (G2) and cut, together
with the fact that £2 is a conservative extension of £1, one can conclude
that a,~a IFg; 6. Similarly, from (G1), (G2) and (GB) again, one also
concludes that « IFy; ~~a. Moreover, in this case the underlying logic
will be at least partially explosive: «,~a« kg1 ~3, for every a,3 € Spri.
Obviously, © should not contain a top particle, under pain of causing £1 to
fail (8.2.0), thus producing a negation that is not mid. For similar reasons,
L1 should not be 0.1-overcomplete, and we know that it is not 1.0-over-
complete from the very postulated existence of a non-trivializing set ©. In
case L1 counts on some top particle T, and the connective ® of £2 not
only respects properties (G1)—(G4) but it is already expressible in £1, then
IFz1 ~(a ® ~a) (use (G3) to check that). The interested reader will find
in [24] an extension of the above definition of negation so as to cover also a

class of non-monotonic logics.

In [23], the authors propose a ‘simplified version’ of (GB). Starting from
full classical propositional logic, for each formula « they explicitly intro-
duce the connective ~, for ‘graded negation,” together with another set of
connectives for ‘graded tolerance,” in order to axiomatize what they claim
to be a conservative extension of classical logic. Next, they require graded
negation to respect the following property:

(GH) (T'IF ~y0) < (T'IF ) and (e A G IF)
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The idea, again, is that the inference of o from I' is ‘in contention with’ 5.
As the authors claim that “it is becoming more widely acknowledged that
we need to develop more sophisticated means for handling inconsistent infor-
mation,” one might be led to think that graded negations are non-explosive.
This is surely not the case. Indeed, given overlap and any unary connective
%, it is easy to check that both (~,x¢ IF ¢) and (¢ A x¢ IF) should hold
good in their logic. The last inference seems quite puzzling, given that it
holds for any definable unary connective * (thus also for identity, and for
any negation originally intended to be non-explosive), and A is classical con-
junction. Thus, we finally conclude, in particular, that (¢ IF). This renders
the present ‘extension of classical logic’ both non-conservative and nihilis-
tic, thus non-paraconsistent —and so the paper seems not really to delivers
what it promises. (To go back to single-conclusion consequence relations
and write (aw A B IF ) instead of (a A B IF) at the right-hand side of (GH)
does not help at all: The resulting logic will not be mid, being at least
semitrivial.) The proposal is glaringly unsound.

Another fascinating investigation of negation was made by Lenzen, in [25].
One can find in that paper a list of ‘necessary conditions for negation-
operators,” namely (check PROPOSAL 42):

(L1) (T, a lf ~a, A)

(L2) (T,al-B,A) = (I, ~f I ~a, A')

(L3) TIFa,A)= (I IF ~ra, A)

(L4) If the logic has a top, then Ja(T" IF ~a, A)

Now, (L1) is simply our own property (8.2.0). Even though the paper by
Lenzen aims to give a special account of paraconsistent negations, it seems
ungainly not to find in the above list of necessary properties for negation the
dual of property (L1) in family (7.X). I cannot say much here about (L2)
and (L3) —they are global properties, and I have postponed the discussion
of such properties to a future paper. But again, it is a bit strange not
to find other versions of (L2) —global contraposition— in the above list,
and also not to find the dual verstion of (L3) there. At any rate, for the
purposes of algebraization and modalization, (L2) is surely more than one
needs (as keenly pointed out in [33]), given that the following version of
global replacement is already enough:

(L2*) (T,a -k B,A) = (I, ~a HF ~3,A)

There are, though, an awful amount of interesting logics, algebraizable
or not, with known modal interpretations or not, which are supposed to
have a ‘negation’ that respects neither (L2) nor (L2*) (check [17] for many
remarkable paraconsistent samples of such logics). As a final remark, in a
multiple-conclusion consequence environment, it would of course seem only
natural to add and study also the dual of (L4):

(L44) If the logic has a bottom, then Ja(T', ~a IF A)

282



4.1 On negation: Pure local rules

Let’s leave it as a suggestion for further development.

Here is a last case study. In [11], Béziau aims to propose “a definition of
negation not depending on explicit logical laws but on a conceptual idea.”
To that purpose, the author tries to formulate a semantical constraint which
would be such that the following condition (BZ) is respected: Given a set of
‘true’ (designated) truth-values and a disjoint set of ‘false’ (undesignated)
truth-values, it would always be possible to find models M1 and M2 such
that ¢ and @y would not be both true in M1 nor both false in M2, for some
symbol ‘@’ aimed to model ‘negation,” as opposed to ‘affirmation’ (check
Fig. 1). Clearly, our rules (7.2.0) and (8.2.0), from the end of section 2, are
just what one needs for the job, under a structural tarskian interpretation of
semantics, but that’s not the path trodden by the author. What he does in
that paper, in fact, amounts to the following. Call any true value T and any
false value F', and define the natural order among them, that is, set F' < F,
F T, and T < T. Next, call a unary operator ® positive in case it is
monotonic over <, that is, in case §;(p) < §2(¢) implies §1(@¢) < §2(@¢p),
for any choice of valuations §; and §9. Finally, call © negative in case it is
not positive. Béziau proposes that negative connectives have all the right to
be called negations. Indeed, the identical operator (@3 in Fig. 1), for one, is
surely not negative. But then, unfortunately, the last definition is not strong
enough to get rid of the other forms of affirmation. Mind you, consider the
operator ©3 in Fig. 1, and consider valuations §; and §2 and a formula ¢
such that §1(¢) = F = §2(p), but §1(®3p) = T while §2(@3¢) = F. Those
valuations would characterize @% as a negative operator, contrary to our
expectations, and a similar example can be written with @%, this time taking
81(¢) = T = 8§2(¢). In neither case can we say that condition (BZ) holds
good. The proposal thus is not sound.

| lef] [ [e3] ;
| ©
T T | T . kinds of
T F FlT Zj; i; affirmation
F| F F| F

%,

2 3 1
—rer]  [Tet]  [Tetd

kinds of — T| F T| F T|F

negation T F rl r T T r| T

F| T F| F

F| T F| T 7

Figure 1: Affirmation X negation
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A full stop comes. I will make no further inquiries here into what nega-
tion is (or what it is not). I just wanted to convince you that the connective
that is studied in this paper has some right to be called ‘negation.” My feel-
ing, though, is that a really good theory of ‘what negation is’ can only come
as a byproduct of a more general and modern and comprehensive version of
a theory of oppositions, as we learned from good ol’ Aristotle. My interest
here, however, was much more modest: This was rather a study about what
negation could be, and what it should not be.

5. Directions

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to,” said the Cat.
‘I don’t much care where. ..’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

‘...s0 long as I get somewhere,” Alice added as an explanation.

‘Oh, you’re sure to do that,” said the Cat, ’if you only walk long
enough.’

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865.

The present paper aimed at making several different contributions, sug-
gestions, and some forceful yet not always claimed to be original remarks,
among which:

-1- An elaborate illustration is given on the general use of multiple-conclusion
consequence relations in the abstract study of deductive systems and logi-
cal connectives. Most studies in abstract (universal) logic, such as those by
Béziau, have concentrated on single-conclusion consequence relations, and so
have missed a lot of what you can get straightforwardly by considerations of
symmetry. Other studies of multiple-conclusion consequence relations have
usually not been made in a purely abstract setting, but more frequently in a
proof-theoretical setting (as in the case of some excellent papers by Avron)
or in a semantical setting (as in the case of the excellent book by Shoesmith
& Smiley). The present paper should be read, then, as a call for integration.

-2- Many local sub-classical rules for consequence relations and for the
negation connective are systematically studied here in multiple-conclusion
format, and negative rules are given so much emphasis —or even more
emphasis— as positive ones. In fact, failing those negative rules can be
much more dangerous than failing the positive rules, as you can check at
the end of section 2. Negative rules are argued to be, in a sense, more ‘es-
sential’ than positive ones. An extensive justification for that argument is
presented in the first part of section 4.

-3- Important general approaches to those same rules in the literature (Avron,
Béziau, Curry, Gabbay, Hunter, Lenzen, Wansing, etc.) are surveyed, all
along the paper. Corrections are made on some proposals and results by
Béziau, and a proposal by Gabbay & Hunter is shown to apply only to
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overcomplete logics (though that flagrant limitation seems to have gone un-
noticed up to this moment).

-4- A small yet comprehensive taxonomy of the most well-known classes of
consequence relations is presented in section 1.

-5- The prerequisites for proving each fact interrelating rules for consequence
relations and rules for negations are in each case clearly highlighted. This
is quite useful for you to know at once whether you shall make use, say,
of monotonicity (weakening) or of rules for double negation to prove each
given relation.

-6- General rules that make consequence relations ‘trivial’ are presented,
generalizing many other distinguished approaches from the literature.

-7- The multiple-conclusion environment allows us to present ‘consistency’
rules as dual to ‘completeness’ rules, in a clear and compelling way. As a con-
sequence, rules that are duals to ex contradictione, consequentia mirabilis,
proof-by-cases, and reductio ad absurdum are here introduced, apparently
for the very first time.

-8- The same environment, again, allows one in fact to draw a sharp distinc-
tion between pseudo-scotus and ex contradictione sequitur quodlibet. This is
certainly new, as new as the accompanying proposal to draw the very defini-
tion of paraconsistency as the failure of the former rules instead of the latter,
in direct duality to the (most) characterizing feature of (intuitionistic-like)
paracomplete systems: the failure of excluded middle.

-9- The definitions of paraconsistency and paracompleteness are precisely
stated, and clearly shown not to bear any compulsory effect, for instance,
on the invalidation of rules for double negation (and vice-versa). Some
definitions of important subclasses of paraconsistent and paracomplete logics
(partial, controllable, and bold) are also presented and exemplified, under a
new generality and always having symmetry in mind.

-10- Studies of consequentia mirabilis (e.g. Pagli & Bellissima) have at times
proposed to identify mirabilis with reductio. This is a historical and a tech-
nical abuse, clarified in the present paper.

-11- An illustrative list of sufficient and necessary conditions for (bold)
(non-controllable) paraconsistency is presented, in section 3.

-12- Other proposals of characterizations of negation are offered and ana-
lyzed in section 4. Proposals by other authors are summarized and criti-
cized. Incidentally, having already been mentioned by other authors, n-ary
negations can also in this paper be seriously be taken into consideration
(see below, in the present section), as they pretty smoothly fit the general
framework.
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The present study of negation was made quite general, this far, under
the natural liberties and restrictions of the chosen framework and our deci-
sion to concentrate on pure local sub-classical rules for negation. The picky
reader might observe, though, that even some seemingly innocuous assump-
tions that we made may turn out disputable, or at least limited from their
very inception. Thus, I have assumed from the start, for example, that, in
this paper, “a unary negation symbol ~ will always be present as a logical
constant in the underlying language of our logics.” Now, why should nega-
tion be unary? One might think instead that it is much more natural to
think of ‘negation as conflict,” as in the second part of section 4. With that
idea in mind, consider the following rules for a binary negation connective:

(A1.1) (T IF ~(a1, a0),A) / (A2.1) (T, 1,00 IFA) /
(F 1,02 I A) (F I+ N(al, 062), A)
(A1.2) (TIF a1,A) and (T'IF ag,A) / (A2.2) (T, ~(a1,a0) IFA) /
(T, ~(ag,a2) IF A) (T'IF a1, A) and (T IF ag, A)

Clearly, a unary negation for a formula a can be defined from the above
binary connective by considering ~(a, ). The rules of the preceding con-
nective are analogous to the rules of NAND, also known as Sheffer stroke, or
alternative denial. One could also look at the rules of its dual, joint denial,
also known as NOR:

(J1.1) (T IF ~(ag,00),A) / (J2.1) (T'yay IF A) and (T, ag IF A) /
(T,aq1 IFA) and (T, g IF A) T IF ~(a1,a2),A)

(J1.2) (T IF a1, a2,4A) / (J2.2) (T, ~(a1,a2) IFA) /
(T, ~(ag,a2) I A) (T IF ag,az,A)

The above connectives obviously generalize our symmetry rules (1.2.X) and
(2.2.X). Exercises for the reader: Check what should be done for gener-
alizing the other positive and negative rules in accordance with the above
binary connectives, and check what happens when other n-ary ‘negations’
are defined, including —don’t be lazy— infinitary versions. (By the way, as
you have the pencil in hand: I have checked the results in the above sections
to exhaustion, but I would not be so surprised if some errors had slipped
into the easy but general calculations. Have fun on the search for mistakes!
I just hope the whole thing has worked well as an illustration of the idea
behind the systematization.)

Finally, I must acknowledge that all of this was but an initial step into
the realm of negation. I had better just add a last note of intentions. The
reader should not assume that I am defending the pure negative rules from
the families (7.X) and (8.X), which I used in the last section in the definition
of ‘minimally decent negations,” to be THE rules common to all negations.
By no means. Not only do I want to leave, on the one hand, also those very
rules open to debate, but on the other hand I also think that those rules are
not even enough if you are serious about the notion of a decent negation. In
fact, in most normal modal logics, operators such as the necessity operator
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are also expected to respect rules from families (7.X) and (8.X). But we
surely do not want negation to be interpreted as necessity, or necessity to
be read as a kind of negation! So, a ‘minimally decent negation’ is more
likely to be the one that, besides being a mid-negation, also respects some
non-local negative rules such as the following ones:

(Gl.l.a)  =[(IF ~*p) = (IF ~2T1y)] (G2.1.a) —[(~2plF) = (~TpIF)]
(Gl.2.a) [T IF~2p,A) = (G2.2.a) [T, ~*¢lFA) =
(Na+1r “_ Na—H(p7 Na+1A)] (Na+11-\7 Na"'l@ H— Na+1A)]

where ~*¥ denotes, as you might expect, {~?c : 0 € ¥}.

A follow-up to the present investigation should include statements of
rules mixing negation and other more usual logical constants, such as con-
junction, disjunction, implication and bi-implication, always from the point
of view of universal logic, and maybe a survey of the effects of paracon-
sistency also in this terrain —it is well known for instance that some laws
of implication might have dreadful consequences for paraconsistency, that
rules such as disjunctive syllogism will often fail, that De Morgan laws will
not always be convenient, that even modus ponens might in some situations
be problematic, that adjunctive conjunctions might be dangerous, and so
on. The present results will surely be decisive in the future investigation of
the mixed rules. It would also be interesting and important, at some mo-
ment, to have a good look at global versions of most preceding contextual
rules. This discussion also relates to the trouble of algebraization, which
should be clarified in detail, and the whole thing will be easily dualizable
from paraconsistent to paracomplete logics.

The next step should include the study of some recent contributions to
the field: the consistency connective, and its dual completeness (or deter-
minedness) connective, which can help internalizing the homonymic metathe-
oretical notions at the object language level, recovering through them the
inference rules which might be lacking in columns (1.X) and (2.X). Such
connectives also allow us to translate and talk about many (sub-)classical
properties inside ‘gentle’ logics which do not enjoy them.

All that and we are still talking, in a sense, about sub-classical proper-
ties of negation. By way of closure, a few notes should also be added —
without any intention of gauging the full ramifications of the subject in the
literature— about some rules for negation which are ‘really non-classical’:
This is the case of MacColl & McCall’s connexive negation (depending on
how you look at it), Post’s cyclic negation, Humberstone’s demi-negation,
and so on and so forth. This much for the future.

References

[1] Arnon Avron. Simple consequence relations. Information and Computation,
92:105-139, 1991.

287



4.1 On negation: Pure local rules

2]

3]

[15]

[16]

Arnon Avron. Negation: Two points of view. In Gabbay and Wansing [21],
pages 3—22.

Arnon Avron. Formula-preferential systems for paraconsistent non-monotonic
reasoning. In H. R. Arabnia, editor, Proceedings of the International Confer-
ence on Artificial Intelligence (IC-AI’2001), volume II, pages 823-827. CSREA
Press, Athens GA, USA, 2001.

Arnon Avron. On negation, completeness and consistency. In D. M. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, volume 9, pages
287-319. Kluwer, Dordrecht, 2 edition, 2002.

Arnon Avron and Iddo Lev. Canonical propositional Gentzen-type systems.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Automated Reasoning: Pro-
ceedings of the 1 International Joint Conference (IJCAR 2001), held in Siena,
IT, June 2001, volume 2083 of Lecture Notes in Artificial Intelligence, pages
529-544. Springer-Verlag, 2001.

D. Batens, C. Mortensen, G. Priest, and J. P. Van Bendegem, editors. Frontiers
of Paraconsistent Logic, Proceedings of the I World Congress on Paraconsis-
tency, held in Ghent, BE, July 29-August 3, 1997. Research Studies Press,
Baldock, UK, 2000.

Diderik Batens. A survey of inconsistency-adaptive logics. In Batens et al. [6],
pages 49-73.

Fabio Bellissima and Paolo Pagli. Consequentia Mirabilis. Una regola tra
matematica e filosofia. Leo Olschki, Florence, 1996.

Jean-Yves Béziau. Théorie legislative de la négation pure. Logique et Analyse,
147/148:209-225, 1994.

Jean-Yves Béziau. Universal Logic. In T. Childers and O. Majers, editors, Log-
ica’94, Proceedings of the VIII International Symposium, pages 73-93. Czech
Academy of Science, Prague, CZ, 1994.

Jean-Yves Béziau. Negation: What it is & what it is not. Boletim da Sociedade
Paranaense de Matemdtica (2), 15(1/2):37-43, 1996.

Jean-Yves Béziau. Rules, derived rules, permissible rules and the various types
of systems of deduction. PRATICA, pages 159184, 1999.

Jean-Yves Béziau. What is paraconsistent logic? In Batens et al. [6], pages
95-111.

Carlos Caleiro. Combining Logics. PhD thesis, IST, Universidade Técnica de
Lisboa, PT, 2000.
http://www.cs.math.ist.utl.pt/ftp/pub/CaleiroC/00-C-PhDthesis.ps.

Rudolf Carnap. The Logical Syntazx of Language. Routledge & Kegan Paul,
London, 1949. 1949.

Walter A. Carnielli and Joao Marcos. Limits for paraconsistent calculi. Notre
Dame Journal of Formal Logic, 40(3):375-390, 1999.

288


http://www.cs.math.ist.utl.pt/ftp/pub/CaleiroC/00-C-PhDthesis.ps

4.1 On negation: Pure local rules

[17]

18]
19]
20]
21]

[22]

[25]

Walter A. Carnielli and Joao Marcos. A taxonomy of C-systems. In W. A.
Carnielli, M. E. Coniglio, and I. M. L. D’Ottaviano, editors, Paraconsistency:
The Logical Way to the Inconsistent, Proceedings of the 2nd World Congress
on Paraconsistency, held in Juquehy, BR, May 8-12, 2000, volume 228 of
Lecture Notes in Pure and Applied Mathematics, pages 1-94. Marcel Dekker,
2002. Preprint available at:
http://www.cle.unicamp.br/e-prints/abstract_5.htm.

Haskell B. Curry. On the definition of negation by a fixed proposition in
inferential calculus. The Journal of Symbolic Logic, 17(2):98-104, 1952.

Newton C. A. da Costa. Observacoes sobre o conceito de existéncia em
matematica. Anudrio da Sociedade Paranaense de Matemdtica, 2:16-19, 1959.

Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi. What is an inference
rule? The Journal of Symbolic Logic, 57(3):1018-1045, 1992.

D. M. Gabbay and H. Wansing, editors. What is Negation?, volume 13 of
Applied Logic Series. Kluwer, Dordrecht, 1999.

Dov M. Gabbay. What is negation in a system? In F. R. Drake and J. K.
Truss, editors, Logic Colloguium’86, Proceedings of the colloquium held at the
University of Hull, UK, July 13-19, 1986, volume 124 of Studies in Logic and
the Foundations of Mathematics, pages 95—112. North-Holland Publishing Co.,
Amsterdam, 1988.

Dov M. Gabbay and Anthony Hunter. Negation and contradiction. In Gabbay
and Wansing [21], pages 89-100.

Dov M. Gabbay and Heinrich Wansing. What is negation in a system? Nega-
tion in structured consequence relations. In A. Fuhrmann and H. Rott, editors,
Logic, Action and Information: Essays on logic in philosophy and artificial in-
telligence, pages 328-350. Walter de Gruyter, 1996.

Wolfgang Lenzen. Necessary conditions for negation-operators (with particu-
lar applications to paraconsistent negation). In Ph. Besnard and A. Hunter,
editors, Reasoning with Actual and Potential Contradictions, pages 211-239.
Kluwer, Dordrecht, 1998.

Grzegorz Malinowski. Inferential many-valuedness. In J. Wolenski, editor,
Philosophical Logic in Poland, pages 75-84. Kluwer, Dordrecht, 1994.

Jodo Marcos. Ineffable inconsistencies. Forthcoming
http://www.cs.math.ist.utl.pt/ftp/pub/MarcosJ/04-M-ii.pdf.

Grigore Moisil. Sur la logique positive. Acta Logica (An. Univ. C. I. Parhon
Bucuresti), 1:149-171, 1958.

Gabriel Nuchelmans. A 17th-century debate on the consequentia mirabilis.
History and Philosophy of Logic, 13(1):43-58, 1992.

Dana S. Scott. Rules and derived rules. In S. Stenlund, editor, Logical Theory
and Semantical Analysis, pages 147-161. D. Reidel, Dordrecht, 1974.

Antonio M. Sette. On the propositional calculus P'. Mathematica Japonicae,
18:173-180, 1973.

289


http://www.cle.unicamp.br/e-prints/abstract_5.htm
http://www.cs.math.ist.utl.pt/ftp/pub/MarcosJ/04-M-ii.pdf

4.1 On negation: Pure local rules

[32]

[33]

D. J. Shoesmith and Timothy J. Smiley. Multiple-Conclusion Logic. Cam-
bridge University Press, Cambridge-New York, 1978.

Igor Urbas. Paraconsistency and the C-systems of da Costa. Notre Dame
Journal of Formal Logic, 30(4):583-597, 1989.

Igor Urbas. Paraconsistency. Studies in Soviet Thought, 39:343-354, 1990.

Lincoln Wallen. Automated Deduction in Nonclassical Logics. MIT Press,
Cambridge, 1990.

Ryszard Wojcicki. Theory of Logical Calculi. Kluwer, Dordrecht, 1988.

290



