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Abstract

Recent years have witnessed a proliferation of attempts to apply
the mathematical theory of probability to the semantics of natural
language probability talk. These sorts of “probabilistic” semantics
are often motivated by their ability to explain intuitions about infer-
ences involving likely and probable—intuitions that Angelika Kratzer’s
canonical semantics fails to accommodate through a semantics based
solely on an ordering of worlds and a qualitative ranking of proposi-
tions. However, recent work by Wesley Holliday and Thomas Icard
has been widely thought to undercut this motivation: they present a
world-ordering semantics that yields essentially the same logic as prob-
abilistic semantics. In this paper, I argue that the challenge remains:
defenders of world-ordering semantics have yet to offer a plausible se-
mantics that captures the logic of comparative likelihood. Holliday &
Icard’s semantics yields an adequate logic only if models are restricted
to Noetherian pre-orders. But I argue that the Noetherian restriction
faces problems in cases involving infinitely large domains of epistemic
possibilities. As a result, probabilistic semantics remains the better
explanation of the data.

1 Introduction

Natural language talk of what is likely or what is probable has a foot in
two worlds: this language would appear to have ties to the mathematical
theory of probability, and yet talk of what is likely is commonplace even
among speakers with no special mathematical training. How then should we
approach the semantics of this language?

Semanticists were initially reluctant to base their theories on the quanti-
tative notion of probability employed by scientists and mathematicians. This
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latter notion may well have its origins in the folk concept of probability, but
it was thought to be a mistake to credit ordinary language users with a tacit
grasp of the mature theory itself.1

However, there has recently been a striking shift in opinion: semantics
based on Kolmogorovian probability (hereafter: probabilistic semantics) have
become increasingly widespread.2

One reason for this change in attitude has been the recognition that
non-probabilistic semantics cannot easily account for explicitly quantitative
assessments of probability, as in there is a 70% chance of rain. But what is
perhaps more surprising is that non-probabilistic semantics fail to capture
intuitions about even basic inferences involving judgments of comparative
likelihood.

For example, on Kratzer’s canonical world-ordering semantics (Kratzer
(1991, 2012)), an ordering on worlds generates an ordering on propositions,
which in turn fixes the facts about what is more/less/equally likely than
what.3 But Lassiter (2010, 2011, 2015) and Yalcin (2010) demonstrate that
this semantics validates clearly invalid inference patterns like the following:

The coin’s landing heads is as likely as its landing tails. Therefore, the
coin’s landing heads is as likely as any proposition whatsoever.

In contrast, probabilistic semantics validates a variety of intuitively valid
inference patterns and fails to validate obviously invalid inference patterns
like the one above.4

Nevertheless, recent work by Holliday & Icard (2013a) suggests that the
shift away from world-ordering semantics may be premature: they present a
world-ordering semantics that yields essentially the same logic as probabilistic
semantics. And indeed, their work has been widely thought to demonstrate
that world-ordering semantics can capture the logic of comparative likelihood
just as well as probabilistic semantics.5

1See Hamblin (1959, 234), Koopman (1940, 269-270), and Kratzer (2012, 25) for ex-
pressions of this sentiment.

2Defenders include Cariani (2016), Carr (2015), Lassiter (2010, 2011, 2015, 2017), Moss
(2013, 2015, 2018), Rothschild (2012), Swanson (2006, 2011, 2016), and Yalcin (2007, 2010,
2011).

3The label world-ordering semantics is due to Holliday & Icard (2013b).
4See Lassiter (2010, 2011, 2015) and Yalcin (2010).
5See Cariani (2016, n. 9), Carr (2015, 697 n. 23), Lassiter (2015, 663), and Suzuki

(2013, 216).
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However, in this paper, I argue that the challenge remains: defenders of
world-ordering semantics have yet to offer a plausible semantics that captures
the logic of comparative likelihood. Holliday & Icard’s semantics yields an ad-
equate logic only if models are restricted to Noetherian pre-orders: i.e. those
on which there is no infinite sequence of distinct worlds w1 � w2 � w3 . . .
where each world in the sequence is ranked at least as high as the preceding
world. But I argue that the Noetherian restriction faces problems in cases
involving infinitely large domains of epistemic possibilities. As a result, prob-
abilistic semantics remains the better explanation of the data.

2 Probabilistic vs. World-Ordering Semantics

Let’s begin by contrasting two approaches to the semantics of natural lan-
guage probability talk.

Start with a standard propositional language L enriched with the fol-
lowing operators:

• If φ and ψ are sentences of L , then p(φ > ψ)q is a sentence of L .

• If φ is a sentence of L , then p♦φq is a sentence of L .6

Sentences of the form (φ > ψ) are intended to model natural language judg-
ments of comparative likelihood: φ is at least as likely as ψ. Sentences of
the form ♦φ model talk of epistemic possibility: it might be that φ.

We also add the following definitions:

• (φ > ψ) models φ is more likely than ψ and is defined as
(φ > ψ) ∧ ¬(ψ > φ).

• ∆φ models it is likely that φ and is defined as (φ > ¬φ).

• �φmodels talk of epistemic necessity—it must be that φ—and is defined
as ¬♦¬φ.

What, then, is the semantics appropriate to L , in its intended interpre-
tation? There are two main approaches, which diverge in their semantics for
>. Before setting out these views, let’s give the semantic entries they have
in common.

6I omit corner quotes from here on out.
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Let a model be a tuple M = 〈W,S, V 〉, where W is a non-empty set
(intuitively, a set of metaphysical possibilities), S is a non-empty subset of
W (intuitively, an information state or a set of epistemic possibilities), and V
is a function assigning elements of P(W ) to atomic sentences AL ={p,q,...}
(intuitively, V specifies which proposition is expressed by a given atomic
sentence). We then define an interpretation J·KM for M as follows:

• JφKM = V (φ) if φ ∈ AL .

• J¬φKM = W − JφKM .

• J(φ ∧ ψ)KM = JφKM ∩ JψKM .

• J♦φKM = {w ∈ W : JφKM ∩ S 6= ∅}.7

A sentence φ is true at w in M (JφKwM = 1) iff w ∈ JφKM . A sentence is valid
in M iff it is true at every w ∈ W in M . A sentence is valid in a class of
models C iff it is valid in every model in the class. A semantics validates an
inference pattern in C iff every model M in C and w in M is such that if
the premises of the inference are all true at w in M , then the conclusion of
the inference is true at w in M .

Our first approach to the semantics of > treats judgments of comparative
likelihood as qualitative comparisons of propositions, where these compar-
isons are in turn grounded in a more fundamental ranking of the worlds that
comprise each proposition.

For example, on Kratzer’s (1991) semantics for >, context delivers a set
of propositions O—called the ordering source—that induces a pre-order, �O,
on the members of S as follows:8

w �O w
′ iff {α ∈ O : w ∈ α} ⊇ {α ∈ O : w′ ∈ α}.

Intuitively, the ordering source relevant to > represents a standard of nor-
mality, and worlds are ranked higher the closer they come to matching the
normal course of events.

Kratzer then uses this ranking of worlds to determine a ranking, &, of
propositions:

7I follow MacFarlane (2011, 2014) and Yalcin (2007) in using S to determine the inter-
pretation of ♦φ, as opposed to an accessibility relation. I opt for the former approach to
simplify the semantics, since the question of the world-sensitivity of ♦φ and > is not at
issue in what follows.

8A pre-order is a reflexive and transitive binary relation.
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α & β iff ∀w ∈ β : ∃w′ ∈ α : w′ �O w.

That is, α is ranked at least as high as β iff every β-world can be paired with
an α-world that is at least as highly ranked.9 Finally, Kratzer takes (φ > ψ)
to be true at a world in a model iff JφKM ,S & JψKM ,S, where JφKM ,S =
JφKM ∩ S.10

Generalizing from the particulars of Kratzer’s approach, world-ordering
semantics takes models to be the following: 〈W,S, V,�, ↑〉, where � is a
pre-order on S, and ↑ is a lifting operation—that is, a function from � to
a binary relation, �↑, on P(S). The role of the lifting operation is to take
us from a ranking on worlds to a ranking on propositions. So, for example,
Kratzer’s definition of & is one way to lift a pre-order on worlds to a pre-order
on propositions. We finally let J(φ > ψ)KwM = 1 iff JφKM ,S �↑ JψKM ,S.11

However, as Lassiter (2010, 2011, 2015) and Yalcin (2010) point out,
world-ordering semantics with Kratzer’s (1991) lifting operation faces what
Lassiter (2015) calls the disjunction puzzle—namely, the semantics validates
the following inference pattern:

I1:
P1. φ > ψ
P2. φ > χ
C. φ > (ψ ∨ χ)

I1 is clearly invalid: from the fact that heads is at least as likely as heads,
and heads is at least as likely as tails, it does not follow that heads is at least
as likely as heads or tails.12

Lassiter and Yalcin use the disjunction puzzle to motivate an alterna-
tive semantics for >. On probabilistic semantics, judgments of comparative

9This method of generating a ranking of propositions from a ranking of worlds is due
to Lewis (1973).

10Strictly speaking, Kratzer takes probability talk to have a world-sensitive semantics,
but I employ the information state parameter S in order to simplify the various semantic
theories discussed in this paper (see n. 7). A referee also notes that in Kratzer (1986), she
in fact leaves open the possibility that probability talk has a quantitative, not qualitative
semantics.

11This generalization of Kratzer’s semantics and the term lifting operation are due to
Holliday & Icard (2013b).

12This example is due to Yalcin (2010).
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likelihood are grounded in a quantitative ranking of propositions. Mod-
els are as follows: 〈W,S, V,F , µ〉, where F is a σ-algebra of subsets of S,
and µ is a finitely additive probability measure. That is, F is a subset
of P(S) such that S ∈ F , and F is closed under complementation and
countable union. µ is a function from F to [0,1] such that µ(S) = 1 and
µ(α ∪ β) = µ(α) + µ(β), for disjoint α and β. We then let J(φ > ψ)KwM = 1
iff µ(JφKM ,S) ≥ µ(JψKM ,S). Alternatively, one can give a probabilistic se-
mantics based on a set of probability measures P , where J(φ > ψ)KwM = 1 iff
µ(JφKM ,S) ≥ µ(JψKM ,S) for every µ ∈ P .13

Probabilistic semantics avoids the disjunction puzzle and also validates
a range of intuitively valid inference patterns identified by Yalcin (2010).14

As a result, there appear to be solid grounds for favoring probabilistic over
world-ordering semantics.15

3 Holliday & Icard’s Alternative

As Kratzer (2012) notes, her (1991) choice of lifting operation is one among
many. It thus remains to be seen whether one can formulate an alternative
lifting operation that yields better predictions.16

Holliday & Icard (2013a,b) claim to do just that: they present an alter-
native lifting operation that promises to resolve the disjunction puzzle and
capture the core inferences involving probability talk:

m-lifting: JφKM ,S �m JψKM ,S iff there exists an injective function
f : JψKM ,S → JφKM ,S such that ∀w ∈ JψKM ,S : f(w) � w.

13See Lassiter (2011, 81) and Rothschild (2012).
14See Lassiter (2010, 2011, 2015) and Yalcin (2010).
15My focus in this paper is strictly on the debate between probabilistic and world-

ordering semantics. Thus, there are numerous options for theorizing about the meaning of
natural language probability talk that lie outside the scope of this paper. To mention just
a few: I will leave aside the question of whether a probabilistic semantics should be based
on finite additivity, countable additivity, or qualitative additivity (see Holliday & Icard
(2013b) and Lassiter (2015) for discussion of qualitative additivity; see §5 for discussion
of countable additivity). I also leave aside the question of whether probabilistic semantics
fares better than what Holliday & Icard (2013b) call event-ordering semantics. Finally,
it is also worth considering whether probability talk should be understood in terms of
ranking functions, plausibility orders, or other tools from the belief revision literature.

16Kratzer (2012) proposes a different lifting operation, but Lassiter (2015) demonstrates
that the resulting semantics still fails to avoid a version of the disjunction puzzle.
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An injective function is one that maps every distinct element in the domain
to a distinct element in the codomain: that is, for every w,w′ in the domain,
if f(w) = f(w′), then w = w′. Thus, m-lifting tells us that a proposition α
is at least as highly ranked as β iff each β-world can be mapped to a distinct
α-world that is at least as highly ranked.

It’s easy to see how this new lifting operation resolves the disjunction
puzzle. Consider an instance of I1: ((p > q) ∧ (p > ¬q)) → (p > (q ∨ ¬q)).
Suppose W = S = {w,w′}, where w is the sole p-world and q-world. Our
instance of I1 will be false at w if w � w′.

Intuitively, m-lifting invalidates I1 because the same p-world can’t do
double duty in matching up to each of the q and ¬q-worlds: this is ruled out
by the requirement that each (q∨¬q)-world be mapped to a distinct p-world
in order for p to be at least as likely as the disjunction.

World-ordering semantics with m-lifting has further virtues. Not only
does the semantics resolve the disjunction puzzle: Harrison-Trainor et al.
(2017, 2018) prove that world-ordering semantics with m-lifting yields the
exact same logic as the set-of-measures probabilistic semantics when models
are restricted to Noetherian pre-orders—i.e. those on which there is no infinite
sequence of distinct worlds w1 � w2 � w3 . . .. World-ordering semantics with
m-lifting and the Noetherian restriction yields a logic that differs only slightly
from that of a single-measure probabilistic semantics. The latter but not the
former validates the comparability principle: (φ > ψ) ∨ (ψ > φ).17

The upshot would seem to be this: world-ordering semantics captures
the logic of comparative likelihood just as well as probabilistic semantics.
Consequently, semanticists will have to look elsewhere for grounds favoring
one semantics over the other.

To be clear: the threat here is not that there are no grounds for favoring
one semantics over the other. There are other motivations for probabilistic
semantics, and there are questions about whether m-lifting can capture other
data about the use of probability modals.18 But the general lesson of Holliday

17See Holliday & Icard (2013b) and Holliday & Icard (2018).
18See Lassiter (2010, 2011, 2015, 2017), Moss (2013, 2015, 2018), Rothschild (2012),

Swanson (2006, 2011, 2016), and Yalcin (2007, 2011) for discussion of alternative motiva-
tions for probabilistic semantics. See Lassiter (2015) for criticisms of Holliday & Icard’s
semantics distinct from those I raise below. There are further questions regarding how to
integrate m-lifting into Kratzer’s larger account of modal language. I1 is arguably valid
for deontic comparatives, so m-lifting cannot serve as a general lifting operation for all
comparative modal language. This means that different flavors of modality vary not just
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& Icard (2013a,b) and Harrison-Trainor et al. (2017, 2018) is thought to be
the following: whatever the grounds will be for favoring one semantics over
the other, they will not concern the logic of comparative likelihood.

4 The Noetherian Restriction

As it turns out, the dialectic is more complex. Holliday & Icard’s semantics
has two components: (i) m-lifting; (ii) the Noetherian restriction. It is only
the conjunction of these two components that delivers an adequate logic for
probability talk. But at present, (ii) has received no attention in the litera-
ture. I will argue, however, that (ii) faces problems that have no analogue
in probabilistic semantics. As a result, defenders of world-order semantics
have yet to offer a plausible semantics that captures the logic of compara-
tive likelihood. Instead of leading to a stalemate, the logic of comparative
likelihood still supplies a key motivation for probabilistic over world-ordering
semantics.

Let’s begin by examining the role of the Noetherian restriction. Sup-
pose we simply adopt world-ordering semantics with m-lifting without the
Noetherian restriction. The resulting semantics fails to validate an inference
pattern that Yalcin (2010) calls V11:

V11:
P1. φ > ψ
P2. ∆ψ
C. ∆φ

V11 is clearly a valid inference pattern. For example, if rain is at least as
likely as high winds, then if high winds are likely, rain is likely as well.

But the following constitutes a countermodel to V11 for world-ordering
semantics with m-lifting and no Noetherian restriction:

Let M = 〈W,S, V,�, ↑〉, where:

W = S = N

V (p) = {x ∈ N : x is even}

in their modal base and ordering source but also in their lifting operation. Thanks to Eric
Swanson for discussion on this point.
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� is a flat ranking: for every w,w′ ∈ S,w � w′

↑ = m-lifting

Choose any w ∈ W . The following instance of V11 is false at w:

(*) ((p > (p ∨ ¬p)) ∧∆(p ∨ ¬p))→ ∆p

To see why, notice that since every pair of worlds in S is equally ranked,
establishing the first conjunct of the antecedent of (*) simply requires showing
that there exists an injection from the (p∨¬p)-worlds to the p-worlds. Here
is such an injection: f(x) = 2x. Next, note that the second conjunct of the
antecedent is true at w since there is trivially an injection from the empty
set to N, but not vice versa. However, the consequent of the conditional is
false at w since (¬p > p) is true at w: f(x) = (x + 1) is an injection from
the p-worlds to the ¬p-worlds.19

What drives this countermodel is the following distinctive feature of in-
finitely large sets: a proper subset of a set may have the same cardinality as
the set itself. In this case, V (p) is a subset of N that has the same cardinality
as N. Hence, since each element of N is ranked equally high, p will be at least
as likely as N.20 But the entire domain, N, is trivially likely, while p is not,
since its complement is equally likely. Hence, the semantics fails to validate
V11.21

19Our model also constitutes a countermodel to what Holliday & Icard call V13:

V13:
P1. (φ ∧ ¬ψ) > ⊥
C. (φ ∨ ψ) > ψ

The following instance is false at any w ∈W : (((p∨¬p)∧¬p) > ⊥)→ (((p∨¬p)∨p) > p).
See §6 for further discussion of V13. Note also that our model serves as a countermodel
to V11 and V13 even if ∆φ is stronger than (φ > ¬φ)—the countermodel requires only
that ∆φ entail (φ > ¬φ).

20This itself is an odd result and suggests that the semantics still does not handle
disjunctions properly.

21We can construct a similar countermodel with an uncountably infinite domain. Let
W = S = [0, 2π), let V (p) = [0, π], and retain the rest of our original countermodel. (*)
is false in this model for the same reason: the cardinality of V (p) is the same as that of S
and that of J¬pK.
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The same countermodel also shows that world-ordering semantics with
m-lifting and no Noetherian restriction fails to validate the following infer-
ence pattern, which I’ll call V14:

V14:
P1. φ > >
C. ∆φ

By contrast, it’s trivial to verify that probabilistic semantics validates V11
and V14 regardless of the size of S.

These results are clearly problematic for world-ordering semantics with
m-lifting and no Noetherian restriction: V11 and V14 are intuitively valid
regardless of the size of the domain of epistemic possibilities. For example,
suppose you learn that there is a finite number of stars, but you do not know
the finite upper bound. If you then learn that there being an even number of
stars is at least as likely as a tautology, you should obviously conclude that it
is likely that there is an even number of stars.22 However, on world-ordering
semantics with m-lifting and no Noetherian restriction, this conclusion does
not follow.

The upshot: the Noetherian restriction plays a crucial role in Holliday
& Icard’s semantics. If we remove this restriction, holding fixed the other
elements of their semantics, their theory invalidates obviously valid inference
patterns.23

22This interpretation of the countermodel is inspired by an example from Portner (2009,
33).

23I leave open the possibility that Holliday & Icard might supplement their theory in
other ways in order to secure the correct logic through m-lifting without relying on the
Noetherian restriction. One option, of course, is simply to restrict models to those with
finite domains. One might instead appeal to differences in density between subsets of an
infinite set as compared with the entire set itself. But these options lead to other problems,
e.g. infinite domains are plausibly necessary for representing natural language meaning,
and appealing to density arguably relies on quantitative probability. A referee suggests
another strategy: one might allow for non-Noetherian models but hold that �↑ is defined
only if the cardinality of the compared propositions is finite. However, this strategy rules
out the possibility of capturing intuitively true comparisons such as: there being an even
number of stars is more likely than the epistemically impossible scenario in which there
are no stars.
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5 Problems with the Noetherian Restriction

I will present two problems for the Noetherian restriction. But let me first
raise an objection to Holliday & Icard’s grounds for making the restriction
in the first place.

Holliday & Icard motivate the Noetherian restriction by analogy with a
similar constraint on probabilistic semantics:

[W]e assume world-ordering models are Noetherian: there is no infinite
sequence w1 � w2 � w3 . . . of distinct worlds, just as with a finitely
additive measure, there is no infinite sequence of distinct worlds with
non-zero, non-decreasing measure (Holliday & Icard (2013a, 526)).24

But this analogy is flawed. One cannot have a finitely additive, non-zero,
non-decreasing measure over an infinite domain—but one can have a finitely
additive measure over an infinite domain that assigns probability zero to each
outcome. Indeed, one of the principal motivations for finite but not countable
additivity is that it allows one to assign probability zero to each outcome in
a countably infinite domain and thereby capture the judgment that each
outcome is equally likely.25 Furthermore, if the sample space is continuous—
i.e. if it contains an uncountably infinite set of possible outcomes—then we
must assign probability zero to an uncountable number of outcomes.26

Defenders of probabilistic semantics are aware of these facts. Several of
them explicitly allow for assigning probability zero to every outcome in an
infinite domain.27 Thus, without further argument, there is no reason to
believe that defenders of probabilistic semantics have to make a stipulation
analogous to the Noetherian restriction. The former theorists can allow for
assigning probability zero to every outcome in an infinite domain, but Holl-
iday & Icard cannot allow for a flat ranking over an infinite domain: as we
saw in §4, models with such rankings invalidate V11 and V14.

Now, the first problem with the Noetherian restriction itself concerns
the origin of the ranking on worlds. The standard account—due to Kratzer
(1981, 1991, 2012)—is that the ranking on worlds is fixed by a contextually-
determined set of ordering source propositions, as we reviewed in §2. But

24Holliday & Icard (2018, 87) offers the same motivation for the Noetherian restriction.
25See de Finetti (1974).
26See Williamson (2007).
27See Cariani (2016), Carr (2015), and Yalcin (2007).
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suppose the set of ordering source propositions is empty: every world will
trivially verify the same ordering source propositions and will thus be equally
ranked. Consequently, if the domain of epistemic possibilities is infinite, the
Noetherian restriction precludes an empty ordering source (recall that a flat
ranking on an infinite domain is not a Noetherian model).

This is a bad result. Epistemic possibility modals are often thought to
have readings that involve an empty ordering source, so why should the sit-
uation be any different for probability modals, or different when the domain
is infinite?28 Furthermore, the ordering source for probability modals is sup-
posed to represent a contextually determined standard of normality. But the
context of use might simply fail to determine some such standard and thereby
leave the ordering source empty. The Noetherian restriction thus conflicts
with the standard account of what determines the ranking on worlds in the
first place: the mere fact that the domain is infinite should not rule out the
possibility of an empty ordering source.

The second problem with the Noetherian restriction concerns our intu-
itions about examples involving infinite domains. Recall the star interpre-
tation of our countermodel discussed above: suppose we are wondering how
many stars there are in the universe, and we are unwilling to place a finite
upper bound on the answer. Here our information state is best modeled by a
countably infinite domain of possible worlds, each containing an ever-greater
number of stars. Now, prima facie, it is possible to be in a coherent infor-
mation state of this sort according to which, above a certain threshold, any
number of stars is as likely as any other number of stars. Or suppose we
are wondering about the precise value of some physical constant. Again, it is
plausible that there exists some state of belief or evidence according to which
each of an uncountably infinite range of values is equally likely.29 One can-
didate for such an information state is that of total ignorance.30 There are

28See Faller (2011) and Peterson (2010) for inventive applications of empty-ordering-
source readings of epistemic possibility modals. Note that Kratzer herself allows for such
readings (see Kratzer (1981)).

29Cf. Easwaran (2014, 19–20).
30It is controversial whether a single probability measure can adequately represent a

state of total ignorance. A referee notes that there is no constructive proof of a uniform
distribution over the natural numbers (see Lauwers (2009)). And the non-constructive
choices required to generate such a distribution seem at odds with the distribution’s mod-
eling a state of total ignorance. However, the set-of-measures semantics discussed at the
end of §2 may help avoid this problem. Also, it may be easier to model ignorance when
the domain is uncountably infinite—e.g. consider the Lebesgue measure on [0,1], on which

12



others. One might possess—or merely believe that one possesses—positive
evidence that the value of this constant is determined by a random process.
All of this is to say: our semantics for probability modals should not rule out
the possibility that each of an infinite set of outcomes is equally likely.

But the Noetherian restriction does rule this out. Equiprobability of out-
comes requires a flat ranking—one that is not Noetherian if the domain of
epistemic possibilities is infinitely large.31 By contrast, probabilistic seman-
tics allows for equiprobability of outcomes across an infinite domain. One
need only assign each outcome probability zero.32

To sum up: the Noetherian restriction secures an adequate logic at the
cost of (a) introducing an unmotivated constraint on world-orders; (b) pre-
cluding an empty ordering source when the domain is infinite; (c) ruling out
the possibility of equiprobable outcomes across an infinite domain.

6 Partners in Crime?

In defending probabilistic semantics, I’ve appealed to probability-zero epis-
temic possibilities. But one might wonder whether allowing such possibil-
ities leads to undesirable consequences. If so, one could argue that a vi-
able probabilistic semantics must indeed make a stipulation analogous to
the Noetherian restriction: models cannot include a measure µ such that
µ({w1}) ≤ µ({w2}) ≤ µ({w3}) . . . for an infinite sequence of distinct worlds.
Such a measure is possible only if each world is assigned probability zero
(any greater value would violate the requirement that µ(S) = 1).33

the probability of every interval in [0,1] is equal to its length.
31A world-order in which each possibility is incomparable will deliver the result that

none of the outcomes are more or less likely than the others. However, incomparability of
outcomes is not the same as equiprobability—i.e. that each is equally likely.

32Equiprobability of outcomes across a countably infinite domain requires a finitely but
not countably additive measure. Equiprobability across an uncountably infinite domain is
consistent with countable additivity.

33Lassiter (2015, 2016, 2017) avoids relying on probability-zero epistemic possibilities
by appealing to the non-zero granularity of natural language meaning. He argues that
sentences that appear to describe real number quantities with probability zero (e.g. that a
car is going exactly 35 miles per hour) really express propositions about a range of values
(e.g. that the car is going 35 miles per hour plus or minus some non-zero, real number g),
where the range has non-zero probability. But as a referee notes, Lassiter’s strategy cannot
accommodate intuitions of equiprobability across a countably infinite domain, since here
our intuitions concern precise natural number quantities that must all receive probability
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So: what sort of undesirable consequences might follow from allowing
probability-zero possibilities? It is true that if we allow for probability-zero
possibilities, leaving the rest of our probabilistic semantics unchanged, our
theory will invalidate a plausible principle connecting epistemic possibility
and comparative likelihood:

RegularityC : ♦φ→ (φ > ⊥)34

Recall that on the probabilistic semantics discussed in §2, facts about com-
parative likelihood are settled by comparing the measure value of each propo-
sition. Thus, since contradictions receive probability zero, no probability-zero
possibility will be more likely than a contradiction. This is a highly unintu-
itive result. Returning to our star case above, it seems absurd to claim that
a googol stars in the universe is no more likely than 0 = 1.35

However, it is possible to amend our probabilistic semantics to validate
RegularityC while allowing for probability-zero possibilities. To see how, first
distinguish RegularityC from a similar principle, also called “Regularity”,
that is often discussed in formal epistemology and probability theory:

RegularityP : if α 6= ∅ and α ∈ F , then µ(α) > 0.36

RegularityP simply expresses a constraint on probability measures, yet it’s
natural to think that RegularityP is the only way to secure RegularityC

in a probabilistic semantics. If so, one cannot validate RegularityC if one
accepts probability-zero possibilities: such possibilities violate RegularityP ,
since they would be non-empty members of F that do not receive greater-
than-zero probability.

But the natural thought is false. There are other routes to validating
RegularityC in a probabilistic semantics. Easwaran (2014, 16) captures the
general idea:

What we need is some mathematical relation p � q that says when
p is more likely than q. But this relation can depend on mathemati-
cal facts beyond P (p) and P (q). . . . [S]tandard probabilism gives two

zero (recall the star example from §5).
34The subscript C indicates that the principle constrains judgments of comparative

likelihood; I discuss a different type of regularity principle below.
35This case is adapted from an example due to [reference removed for blind review].
36“Regularity” is sometimes formulated as the stronger thesis that all non-empty subsets

of S receive positive probability.
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further mathematical features that might be relevant—the conditional
probability function P (·|·), and the set [S] of doxastic possibilities.

Easwaran (2014, 16–17) goes on to offer several proposals for maintaining
RegularityC without RegularityP by using Popper’s (1955) axioms for condi-
tional probability. I offer another alternative here, which exploits features of
the set S of doxastic possibilities:37

Modified Probabilistic Semantics:

J(φ > ψ)KwM = 1 iff (i) µ(JφKM ,S) ≥ µ(JψKM ,S),

(ii) J(♦ψ → ♦φ)KwM = 1, and

(iii) J(�ψ → �φ)KwM = 1.

On this semantics, judgments of comparative likelihood are sensitive to the
epistemic possibility or necessity of the propositions so compared—not just
their measure values. That is, φ’s being at least as likely as ψ requires not
just an equal or higher measure value; φ must also match up to ψ quali-
tatively, being epistemically possible if ψ is, and epistemically necessary if
ψ is. These qualitative comparisons are responsible for yielding the correct
predictions for comparisons involving probability zero and probability one
propositions. In particular, clause (ii) ensures that a contradiction is never
at least as likely as an epistemically possible proposition—even if the latter
has probability zero. But any proposition is at least as likely as a contradic-
tion, so an epistemically possible proposition will always be more likely than
a contradiction. Clause (iii) ensures that epistemically necessary propositions
will be more likely than those that merely receive probability one. This is a
desirable result: additivity requires that the negation of any probability-zero
possibility receive probability one, but such propositions—e.g. the proposi-
tion that the number of stars is not equal to a googol—are clearly less likely
than epistemic necessities, such as the proposition that the number of stars
is either even or odd. Finally, the semantics validates V11, V14, and the
other validities on Yalcin’s (2010) list.

37I leave it as an open question which probabilistic semantics is best for maintaining
RegularityC without RegularityP . Detailed comparison of the various alternatives is out-
side the scope of this paper. My goal in this section is simply to show that abandoning
RegularityP is a plausible move for defenders of probabilistic semantics.

15



Now, the Modified Probabilistic Semantics will fail to validate what Hol-
liday & Icard call V13:

V13:
P1. (φ ∧ ¬ψ) > ⊥
C. (φ ∨ ψ) > ψ

But it’s not obvious that this inference is actually valid. I take it that V13
is not self-evident in the way that V11 or V14 is. Rather, V13 reflects
something like the following line of reasoning: if (φ∧¬ψ) is more likely than
a contradiction, then it’s possible for φ to occur without ψ; but then there
are more ways for (φ ∨ ψ) to be true than for ψ itself to be true—namely,
all of the ψ-ways plus the (φ ∧ ¬ψ)-ways. This is a valid line of reasoning
when the domain of possibilities is finite. Not so when the domain is infinite.
Suppose φ expresses the proposition that the number of stars is a multiple of
3, and ψ expresses the proposition that the number of stars is a multiple of 6.
It is possible for the number of stars to be a multiple of 3 and not a multiple
of 6, but the cardinality of {w : the number of stars in w is a multiple of 3
or a multiple of 6} is the same as the cardinality of {w : the number of stars
in w is a multiple of 6}. Thus, there is a perfectly respectable notion of size
according to which the above line of reasoning goes wrong when the domain
is infinite. Of course, others might wish to understand size in terms of the
proper superset relation, in which case there is nothing wrong with the above
line of reasoning even in the case of an infinite domain. But this only shows
that we reach a standoff over V13.38

Still, it might be thought that the Modified Probabilistic Semantics falters
on a related point. Surely there being 1010 or 1011 stars is more likely than
there being 1011 stars, but if each disjunct is assigned probability zero, the
disjunction will be just as likely as either disjunct.39 Again though, infinite
domains reveal a problem. Intuitively, the disjunction is more likely because
there are more ways for it to be true. But it’s easy to miss that when the
domain is infinite, the disjunction and each disjunct are still false in the same
number of worlds—namely, a countably infinite number. We can then reason
as follows. The disjunction and each disjunct are just as likely to be false,
since they are false in the same number of worlds and there are no grounds

38Cf. McCall & Armstrong (1989).
39Cf. Pruss (2014).
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for thinking that the set of worlds in which one is false is more likely than
the set of worlds in which the other is false. And since the disjunction and
each disjunct are equally likely to be false, they are equally likely to be true.

What this shows is that we confront a puzzle. Let V (p10) = {w : there
are 1010 stars in w}, let V (p11) = {w : there are 1011 stars in w}, and model
judgments of equal likelihood as follows: φ , ψ =df ((φ > ψ) ∧ (ψ > φ)).
Each of the following is plausible, but they are jointly inconsistent:

(a) (p10 ∨ p11) > p11

(b) ¬(p10 ∨ p11) , ¬p11

(c) If ¬φ , ¬ψ, then φ , ψ.

I suggest we reject (a). Its plausibility results from the failure to recognize
that when the domain is infinite, each sentence is false in the same number
of worlds. So our semantics indeed yields the correct verdict about the case.

I take the upshot to be the following. Probabilistic semantics does not
bear the same costs as Holliday & Icard’s world-ordering semantics with the
Noetherian restriction: there exists a well-motivated probabilistic semantics
that captures the logic of comparative likelihood, allows for equiprobable
outcomes across an infinite domain, and retains RegularityC . As a result,
probabilistic semantics still provides a better account of the inference pat-
terns governing natural language probability talk.

To be sure, nothing I’ve said rules out the possibility that an alternative
lifting operation can capture the logic of comparative likelihood without the
Noetherian restriction. But it remains an open question whether such a
lifting operation exists. For now, then, the data favors probabilistic semantics
over world-ordering semantics.
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