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Abstract 
A large number of essays address the Sleeping Beauty problem, which undermines 
the validity of Bayesian inference and Bas Van Fraassen’s ‘Reflection Principle’. In 
this study a straightforward analysis of the problem based on probability theory is 
presented. The key difference from previous works is that apart from the random 

experiment imposed by the problem’s description, a different one is also considered, 
in order to negate the confusion on the involved conditional probabilities. The results 
of the analysis indicate that no inconsistency takes place, whereas both Bayesian 
inference and ‘Reflection Principle’ are valid. 
 

1. Another probability paradox? 
Probability puzzles often raise a great deal of controversy, resulting to a variety of 
contradictory explanations. This has also been the case for the Sleeping Beauty 
Problem (SBP), which was first formulated in Elga 2000. 
 
Elga’s formulation of the problem:  

Some researchers are going to put you to sleep. During the two days that your 
sleep will last, they will briefly wake you up either once or twice, depending on 
the toss of a fair coin (Heads: once; Tails: twice). After each waking, they will 
put you back to sleep with a drug that makes you forget that waking. When you 
are first awakened, to what degree ought you believe that the outcome of the 
coin toss is Heads? (Elga 2000: 143) 
 

According to Elga’s analysis, before you are put to sleep, your credence on a Heads 
coin toss should be 1/2, whereas when you are first awakened your credence on a 
Heads coin toss should be 1/3. However, no information gain (or loss) seems to take 
place, in order to justify the above change in your belief. Depending on whether a 
belief change is accepted and new evidence is assumed to be present or not, different 
attempts to resolve this “paradox” exist. To list a few, one may consider Elga 2000, 
Lewis 2001, Vaidman and Saunders 2001, Arntzenus 2002, Dorr 2002, Monton 2002, 
Hitchcock 2004, Weintraub 2004, Meacham 2005, White 2006, Horgan 2004, 2007, 
Karlander and Spectre 2010, and Hawley 2013. 

A radically different approach is presented in Groisman 2008, where it is argued 
that the two different degrees of belief presented in the SBP are in fact beliefs in two 
different propositions. Therefore, it is argued that there is no need to explain the 
(un)change of belief. 



Finally, in Rosenthal 2009 it is identified that SBP’s solution depends on 
conditional probabilities, which are well understood and they should be 
unambiguously analysable by straightforward mathematics. According to Rosenthal 
the difficulty in SBP seems to be that a precise mathematical interpretation of the 
condition involved is unclear, thus creating an obstacle to direct mathematical 
calculation. Rosenthal attempts to replace the problem with an equivalent one, where 
there is no ambiguity on the condition and then apply straightforward mathematical 
analysis. 

In this study, a straightforward mathematical formulation of SBP is presented, 
employing methods of probability theory. Then, by applying direct mathematical 
calculations, SB’s beliefs can be explicitly estimated without resulting to any 
ambiguities or contradictions. In contrast to Rosenthal’s approach, no equivalent 
problem is necessary, since the involved conditional probabilities are explicitly 
defined in the context of corresponding random experiments. The presented analysis 
pinpoints the source of the controversy to a) the confusion between similar events of 
two different random experiments, and b) erroneously considering evidence of an 
event. 
 
 

2. Defining the conducted random experiment 
Modern probability theory is an axiomatic theory, where probabilities are considered 
in the context of a random experiment. Sleeping Beauty is participating in a Random 
Experiment set by the Experimenter (ERE), consisting of a single coin toss. As 
explained below this random experiment can also be employed to calculate the 
probability in question, i.e. “to what degree ought you believe that the outcome of the 
coin toss is Heads when you are first awakened”. 

Let’s employ modern probability theory to describe ERE. The random part of 
ERE is the experimenter’s coin toss. The sample space is S = {H, T}, where outcome 
H denotes a Heads result and T denotes a Tails result. Since we assume a fair coin we 
should assign P(H) = P(T) = 1/2. Assuming that you are first put to sleep on Sunday, 
the probability of the event “a Monday awakening occurs” is P(Monday) = P(H) + 
P(T) = 1, since SB is always awakened on Monday independent of the toss result. In 
fact the coin toss may actually take place after the Monday awakening. In this random 
experiment any knowledge that a Monday awakening occurs provides no new 
information since P(Monday) = 1. Then P(Heads|Monday) = P(Heads,Monday) / 
P(Monday) = P(Heads,Monday) = P(H) = 1/2. Moreover, P(Monday|Tails) = 
P(Tuesday|Tails) = 1. 

It is clear that before you are put to sleep you can employ ERE to calculate the 
probability that the coin tosses Heads to P(Heads) = P(H) = 1/2. The ambiguous part 
is what happens when you are first awakened. The “when you are first awakened …” 
situation introduces a new kind of uncertainty, namely your current state upon 
awakening. However, this uncertainty is not about the ERE setup, which you still 
know that it is valid. Therefore, you can still consider the coin toss an ERE event and 
assign credence to it according to the probabilities calculated in ERE. Therefore, 
when you are first awakened you should still believe that the coin toss is Heads with 
probability P(Heads) = P(H) = 1/2. This result comes as no surprise, since upon your 
first awakening you have not gained or lost any information relevant to the coin toss. 
Moreover, using the same rationale, if you are informed that it is Monday you can still 
use ERE and calculate P(Heads|Monday) = 1/2, which is in agreement with Elga’s 



proposition that if one were to learn that the waking day is a Monday, one should 
assign equal credence to Heads and Tails. 
 
 

3. Defining a different random experiment 
We saw above the probabilities that can be calculated using the ERE sample space, 
but the source of the confusion following Elga’s analysis is actually the probabilities 
that cannot be calculated within the ERE setup. Upon awakening you are not only 
uncertain about the coin toss result but also upon your state, namely whether you are 
awakening on a Monday or on a Tuesday. Therefore, if you ask “to what degree you 
ought to believe at your first awakening that it is Monday”, it makes no sense to use 
the ERE event “a Monday awakening occurs”, since it is a certain event in the ERE 
setup, i.e. P(Monday) = 1. Although, such a probability is not explicitly calculated in 
Elga 2000, it affects the conditional probabilities employed in that analysis. 

In order to calculate probabilities of events like “to what degree you ought to 
believe at your first awakening that it is Monday”, a different random experiment that 
accounts for the extra uncertainty about one’s current state should be considered. 
Let’s call this suitable random experiment SBRE and define its outcomes. 

When you wake up, according to your information it could be Monday and the 
experimenter’s coin is Heads or Tails (or not tossed yet), or it could be Tuesday and 
the coin was tossed Tails. Based on the available information you can model your 
current state as the outcome of a random experiment with two stages: 

i. ERE is performed 
ii. If in stage i) the coin is tossed Heads a Monday awakening is selected as your 

current state. If in stage i) the coin is tossed Tails either a Monday or a 
Tuesday awakening is randomly selected as your current state 

Let Monday* denote the event “a Monday awakening is randomly selected as your 
current state” and Tuesday* denote the event “a Tuesday awakening is randomly 
selected as your current state”. 
Then the sample space of SBRE is S = {H1, T1, T2}, where 
H1 denotes the outcome “the coin tosses Heads” and Monday* 
T1 denotes the outcome “the coin tosses Tails” and Monday* 
T2 denotes the outcome “the coin tosses Tails” and Tuesday* 

Let’s assign probabilities to SBRE’s outcomes. H1, T1, and T2 are mutually 
exclusive and jointly exhaustive, hence P(H1) + P(T1) + P(T2) = 1. Moreover, since a 
Heads toss is associated only with outcome H1, P(Heads) = P(H1). However, the coin 
toss occurs in the first stage of the random experiment, therefore its outcome does not 
depend on what happens on the second stage. Thus, if we assume that the coin is fair 
we should assign P(Heads) = P(Tails) = 1/2, and this implies that we should also 
assign P(H1) = 1/2. Since P(H1) + P(T1) + P(T2) = 1 and P(H1) = 1/2, consequently 
P(T1) + P(T2) = 1/2. Moreover, by adopting Elga’s argument (2000: 145), given a tail 
toss the events T1 and T2 are subjectively indistinguishable and should therefore be 
accorded the same credence. Hence, according to an indifference principle, one 
should assign P(T1|Tails) = P(T2|Tails). This implies that also P(T1) = P(T2), thus, we 
should assign P(T1) = P(T2) = 1/4. 

Then by applying probability theory it is easy to calculate that within the SBRE 
setup:  
P(Monday*) = P(H1) + P(T1) =3/4 

P(Heads|Monday*) = P(Heads,Monday*) / P(Monday*) = P(H1) / P(Monday*) = 2/3 



P(Tails|Monday*) = P(Tails,Monday*) / P(Monday*) = P(T1) / P(Monday*) = 1/3 

Thus, in the context of the SBRE setup, when you are first awaken, you should 
also believe that the probability of the coin tosses Heads, is P(Heads) = P(H1) =1/2. 
This is in agreement with ERE and your initial belief. Hence, both random 
experiments agree that after awaking credence of 1/2 should be assigned to the Heads 
toss. 

The presented analysis demonstrates that there is no change of beliefs regarding 
the credence of the Heads toss before and after awakening. However, it also yields 
that in the context of the SBRE setup, P(Heads|Monday*) = 2/3. This seems to imply 
that if you are informed upon awakening that it is actually Monday you should change 
your credence on Heads from 1/2 to 2/3. However, this is contradictory to the ERE 
results, which as already explained can also be employed upon awakening, yielding 
P(Heads|Monday) = 1/2 when you are informed about the day. 

At first it looks like there is some disagreement on what you should believe once 
you learn that you awakened on a Monday, but as explained below this is not the case. 
The events “Monday” and “Monday*” are two different events defined within two 
different random experiments. Although, once you learn that it is Monday you have 
evidence of the event “Monday” in the ERE setup, you don’t actually have evidence 
of the event “Monday*”, i.e you don’t have evidence that the SBRE event “a Monday 
awakening is randomly selected as your current state” has occurred. In fact, according 
to SBRE formulation, only 3/4 of Monday awakenings are expected to be randomly 
selected as your current state. Therefore, you cannot claim that you have actual 
evidence of “Monday*”, and you cannot use the conditional probabilities 
P(Heads|Monday*) in SBRE to update your belief. 

The above analysis reveals one of the most interesting aspects of the Sleeping 
Beauty Problem. Namely, it has been demonstrated that even if you are informed that 
it is Monday you cannot update your belief using the conditional probabilities 
P(Heads|Monday*). Thus, in SBP one should be careful to avoid the pitfall of 
performing Bayesian updating based on evidence that are not actually provided. 
 
 

4. The “paradox’s” resolution 

In Elga 2000, a change of the credence assigned to the coin tossed Heads is 
calculated. Namely, according to Elga, before you are put to sleep the assigned 
credence should be 1/2, whereas it should become 1/3 upon awakening. Elga’s first 
argument is that, if the experiment were to be repeated a large number of times, 
roughly 1/3 of the awakenings would be associated with Heads. Well, this is exactly 
the case, since Elga is referring to the ERE random experiment and counts all 
awakenings, even if they occur in the same trial of the experiment. However, in order 
to determine the probability of Heads based on awakenings, one should consider only 
the number of the current state awakenings that are associated with Heads. This can 
only be calculated in the context of the SBRE setup. If SBRE is repeated a large 
number of times roughly 3/4 of current state awakenings would occur on Monday and 
in 2/3 of them the coin toss would be Heads. Hence, 1/2 of your current state 
awakenings would be associated with Heads. 

 
Elga’s second argument is that: 

…If (upon awakening) you were to learn that it is Monday, that would amount 
to your learning that you are in either H1 or T1. Your credence that you are in H1 



would then be your credence that a fair coin, soon to be tossed, will land Heads. 
It is irrelevant that you will be awakened on the following day if and only if the 
coin lands Tails — in this circumstance, your credence that the coin will land 
Heads ought to be 1/2. But your credence that the coin will land Heads (after 
learning that it is Monday) ought to be the same as the conditional credence 
P(H1| H1 or T1). So P(H1| H1 or T1) = 1/2, and hence P(H1) = P(T1). Combining 
results, we have that P(H1) = P(T1) = P(T2). Since these credences sum to 1, 
P(H1) = 1/3. (Elga 2000: 145-146). 

 
In Elga’s analysis H1 denotes the predicament “it is Monday and the coin tosses 
Heads”, T1 denotes the predicament “it is Monday and the coin tosses Tails” and T2 
denotes the predicament “it is Tuesday and the coin tosses Tails”. However, in 
modern probability theory, predicaments cannot be used directly for calculating 
probabilities. Therefore, predicaments H1 and T1 should be associated to events of a 
sample space, before they can be assigned with probabilities. Within the SBRE setup 
predicament H1 can be associated to the event H1 (see Section 3) yielding P(H1) = 

P(Heads, Monday*) = 1/2, predicament T1 can be associated to the event T1 yielding 
P(T1) = P(Tails, Monday*) = 1/4, predicament T2 can be associated to the event T2 
yielding P(T2) = P(Tails, Tuesday*) = 1/4, whereas “H1 or T1” can be associated to the 
event Monday* yielding P(H1 or T1) = P(Monday*) = 3/4. 

After learning that it is Monday you know that you are either in ‘predicament’ H1 
or ‘predicament’ T1, but as explained in the previous section, your learning that you 
are awakening on a Monday provides no evidence for the occurrence of an “H1 or T1” 
SBRE event, such as Monday*. Thus, after learning that it is Monday your credence 
that the coin will land Heads, which is 1/2, does not have to be the same as the 
conditional credence P(H1| H1 or T1), which as demonstrated in Section 3 is equal to 
2/3, and Elga’s argument is rebutted. 

However, if you are informed that the coin toss was performed on Sunday and the 
outcome was Tails you have evidence that a Tails result occurred and you can use 
SBRE to calculate the probability that today is Monday as P(Monday*|Tails) = 
P(Monday*,Tails) / P(Tails) = P(T1) / P(T1 or T2) = 1/2. 

The above results indicate that, although Bayesian inference is consistent, one 
must be very careful not to confuse: 

a) probabilities of events that belong to different random experiments 
b) facts and assumptions when deciding on the evidence of an event 

Of course, once you are informed that it is Monday there is no longer need to use 
SBRE setup, since your current state is no longer uncertain. You can use the ERE 
setup, or even assume a new random experiment in which a coin is tossed only on 
Monday, and calculate P(Heads) = 1/2. 
 
 

5. Sleeping Beauty goes to the casino 
In this section the betting odds for Heads are examined. It is assumed that Sleeping 
Beauty is asked to bet on Heads every time she has been awakened during the ERE 
experiment. Although, it is not part of Elga’s analysis the aforementioned betting odds 
are often used by thirders as a compelling argument that 1/3 is the correct answer. In 
particular, they argue that in order to accept the bet SB should be offered at least 2:1 
odds. Namely, if the bet costs 10$ she should only accept it if the payoff is at least 
30$. Coincidentally, they are correct, since in that case the expected gain is zero. 
What is important however, is how the expected gain is calculated. According to 



thirders it can be calculated by P(Heads)*20$+P(Tails)*(-10$), which yields 
1/3*20$+2/3*(-10$)=0$. According to halfers it should be calculated by 
P(Heads)*20$+P(Tails)*(2*(-10$)), which also yields 1/2*20$+1/2*(2*(-10$))=0$. 
Notice that the loss is doubled in case of Tails because SB is offered the bet twice 
(once on Monday and once on Tuesday). If the ERE experiment is repeated a large 
number of times it is the second formula that provides the correct expected gain for 
any betting odds. Hence, if you are given 5:1 odds (e.g. if the bet costs 10$ and the 
payoff is 60$), thirders calculate an expected gain of 10$, whereas halfers calculate 
the correct expected gain of 15$. The subtle point is that every time it is Tails (hence 
SB loses the bet) the bet is offered twice. This is completely different than being 
offered a bet once with twice as much probability of loosing than winning. However, 
in both cases bets with 2:1 payoff result to a zero expected gain. Actually, since you 
are offered the same bet twice it is misleading to refer to the ratio between gain and 
loss amounts as odds. The actual odds for Heads is always 1:1, although due to the 
betting setup a 2:1 payoff is required for zero expected loss. 
 
 

6. Conclusion 
In this study, a straightforward analysis of the SB problem, based on basic concepts of 
modern probability theory, has been presented. The conducted random experiment has 
been rigorously defined, the associated sample space has been constructed and the 
corresponding probabilities have been assigned. In contrast to the majority of related 
works, the above analysis predicts no change in the original credence, which is 
calculated to 1/2. 

Although the conducted random experiment can be used to calculate the 
probability in question, Elga’s analysis involved also probabilities that cannot be 
calculated in the context of this experiment. Therefore, a different random 
experiment, which accounts for the uncertainty about the day of awakening, has also 
been defined. The current state upon awakening can be modelled as the outcome of 
such random experiment, calculating the probabilities of corresponding events. The 
calculations about the credence assigned to the Heads coin toss upon awakening lead 
to the same results with those reported by the first experiment. Therefore, no change 
of beliefs upon awakening is predicted by the second experiment, as well. Moreover, 
the probabilities assigned to other events of this experiment can be used to rebut 
Elga’s arguments on the change in the belief, demonstrating that Bayesian inference 
leads to no inconsistency and no paradox takes place. Moreover, in a more practical 
approach, a brief discussion on the betting odds for Heads has been presented. The 
thirder’s argument that P(Heads)=1/3 since at least a 2:1 ratio is needed in order to 
accept a bet on Heads, has been rebooted. 

The Sleeping Beauty problem has raised a great deal of controversy resulting to a 
variety of proposed explanations which are related to open philosophical questions, or 
even in the many worlds interpretation of quantum mechanics (Lewis 2007). 
However, the presented approach indicates that, as predicted by Rosenthal, the 
problem can be adequately addressed by modern probability theory. Moreover, the 
presented analysis provides insight on some of the pitfalls accompanying probability 
puzzles that, to the author’s knowledge, have not been addressed in the published 
literature. 
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