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Categorization behavior can be fruitfully analyzed in terms of the trade-off4

between as high as possible faithfulness in the transmission of information5

about samples of the classes to be categorized, and as low as possible transmis-6

sion costs for that same information. The kinds of categorization behaviors we7

associate with conceptual atoms, prototypes, and exemplars emerge naturally8

as a result of this trade-off, in the presence of certain natural constraints on9

the probabilistic distribution of samples, and the ways in which we measure10

faithfulness.11

Beyond the general structure of categorization in these circumstances,12

the same information-centered perspective can shed light on other, more13

concrete properties of human categorization performance, such as the results14

of experiments on supervised categorization in J. D. Smith and Minda (1998).15

1 Introduction16

A central debate in cognitive science concerns whether concepts are unstructured symbols17

which refer to classes of entities (this position is often called atomism, Fodor 1980, 2008),18

or instead should be identified with bodies of information about the class of entities19

targeted by the concept (henceforth, sometimes simply “the class”). I will refer to this20

other position as informationism. In the most popular development of the informationist21

alternative, these bodies of information are prototypes (Reed 1972; Rosch 1999; Hampton22

2006; Minda and Smith 2011; J. D. Smith and Minda 1998): statistical summaries of23

the class, such as its central tendency, or the “centers of clusters of similar objects [of24

the class]” (Hampton 2006, 1). Another historically important way of elaborating the25

informationist idea is in terms of exemplars (Osherson et al. 1990; Nosofsky, Palmeri,26

and McKinley 1994; E. E. Smith and Medin 1999): individual instances of the class that27

the user of the concept remembers, and on which (instead of on prototypes) they rely28

when categorizing.29

Prototypes and exemplars provide compelling explanations of important phenomena30

related to our use of concepts. In this paper I focus on categorization, the process through31
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which we determine whether some entity belongs to one class or another (Medin and32

Heit 1999, 100). One of the main themes of the prototype approach to categorization is33

that entities are classified as belonging to class A (B, C. . . ) because they are closest to34

the A (B, C. . . ) prototype, according to some abstract measure of distance, defined over35

some abstract space of possible entities (more on these spaces in §2.3.) Prototype theory,36

for example, elegantly accounts for typicality effects (e.g., that, for many classes, some37

instances are more quickly and reliably categorized than others, and also are perceived as38

being better or more paradigmatic examples of the class, Rosch 1999; Minda and Smith39

2011): the typicality of an entity for a certain class can be seen as a manifestation of its40

distance to the prototype of that class.41

Conceptual atomism and conceptual informationism are often presented as rival accounts.42

See, e.g., Connolly et al. (2007); Fodor and Lepore (1996); or Laurence and Margolis’43

introduction to their very influential (1999) edited volume. Other theorists (notably44

Machery 2009, chap. 2) have argued that the situation is, in fact, even worse: atomists45

and informationists are not even theorizing about the same phenomenon. Concepts46

as bodies of information are posited by psychologists as a way to model and explain47

our performance in, e.g., categorization tasks; while concepts as unstructured symbols48

are chiefly posited by philosophers, among other things, as bearers of reference, and as49

building blocks in a compositional language of thought. My aim in this paper is not to50

offer an account of human categorization performance, with all its fascinating quirks, but51

to show how the main gists of atom-, prototype-, and exemplar-involving categorization52

strategies are in fact compatible, and continuous with one another. Behavior that53

involves all three, in various degrees, falls out from very simple principles related to54

information-processing efficiency: prototypes, exemplars and atoms are, all of them, part55

of an efficient solution to the problem of transmitting and storing information about a56

class. Small wonder information categorization often relies on them. I view the analyses57

of categorization I will develop here as continuous with Anderson’s (1990) “rationalist”58

strategy:1 we start from a characterization of what cognition is supposed to do, and,59

relying on that, we try to recover whatever details of cognitive performance we were60

interested in. In a sense, the approach I sketch here goes beyond Anderson (1990, chap.61

3), in that categorization itself can be seen as emerging from the more fundamental need62

to make perceptual information available downstream, in the production of behavior.263

In §2 I introduce and discuss the main model I explore in this piece: an agent in a64

toy world populated by entities with different features. Which entities will the agent65

encounter, and how frequently, is governed by a joint probability distribution over those66

1See also work on rational inattention (Sims 2003) and resource rationality (Lieder and Griffiths 2020;
Zaslavsky et al. 2018).

2One can also view the models explored here as inscribed in the tradition of idealized investigations
of communication and representation pursued in, e.g., Lewis (1969–2008); Skyrms (2010); Shea,
Godfrey-Smith, and Cao (2017); or Martínez (2019a). Those models do not aim to show that, e.g.,
human conventions, with all their quirks, just are Nash equilibria in signaling games, but they do
show that game-theoretic coordination captures, in an economical, formally perspicuous way, a good
deal of how convention comes about, and what it is. I aim at shedding a similar kind of light on
categorization behavior.
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features. I then consider the following problem: which coding strategy should the agent67

follow, if they aim to 1) transmit or store information about the entities they encounter,68

as faithfully as possible, while 2) keeping transmission and storage costs as low as possible.69

It turns out that, for worlds which present “correlational structure”, in the sense Eleanor70

Rosch (1999) gives to this notion, and under mild assumptions, optimal codebooks are71

composed by atoms (that is to say, by a discrete, finite number of signals), as atomists72

claim; yet these atoms are produced and consumed by processes of encoding and decoding73

that rely on prototypes, as informationists claim. There is no conflict between atoms and74

prototypes; both play a necessary role in efficient information transmission and storage.75

The resulting agent categorizes its inputs (the entities it encounters) by instantiating a76

discrete number of atomic signals, each of which is decoded by relying on a prototype.77

§2 can be seen as dealing with unsupervised category creation: under the principled78

understanding of “optimal” that I develop in that section, atomic conceptual repertoires79

that rely on prototypes are optimal for certain important classes of problems. In §3 I80

deal with supervised category creation: I show that efficient information transmission81

can explain results by J. D. Smith and Minda (1998; see also T. L. Griffiths et al.82

2011) which are sometimes interpreted as showing that subjects in a categorization83

task shift from prototype-based to exemplar-based categorization as the task progresses.84

Leaving aside whether this interpretation is warranted, this change in behavior can85

be more parsimoniously explained in terms of changes in the make-up of the optimal86

categorization repertoire as its richness (technically, its rate) increases. §4 offers some87

concluding remarks.88

2 Prototypes and Efficient Information Transmission89

In §2.1 I discuss a model in which an agent encounters entities with features drawn from a90

continuous probability distribution. In §2.2 I discuss a model with categorical features.91

2.1 The Continuous Case92

We first set up a toy world. This world is populated with entities, each of which has93

two features, A and B. These features take (or can be represented as) real values. You94

can think of the value of A and B as representing, say, length and weight respectively,95

according to some appropriate units and scale. Figure 3a provides an example of this96

sort of world: samples come from an equiprobable mixture of four bivariate Gaussian97

distributions with means ⟨7, 13⟩, ⟨9, 3⟩, ⟨14, 3⟩, and ⟨14, 10⟩, respectively,3 where the first98

3There’s nothing special about those values. The exercise will work in exactly the same way with
a different number of Gaussians, centered at different positions. A Jupyter notebook with the
code necessary to generate the results and figures in this paper can be downloaded from https:
//osf.io/sz49u/?view_only=264a7f3a51944142b20d87f19561b4cb I encourage the reader to try out
different “toy worlds” there.
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number in each of the above ordered pairs corresponds to the value of feature A, and the99

second to the value of feature B. These four Gaussians have the same variance and are100

isotropic (in particular, they all have the 2 × 2 identity matrix as covariance matrix.).4101

This toy world is one in which the abstract space of possible entities (that is, the space102

of possible combinations of a value for feature A and a value for feature B—feature103

space, as I will be calling it, following standard usage) is occupied by four equally sized,104

Gaussian-shaped mounds, centered at the above four points. That is to say, as the figure105

shows, most samples are close to these four means, but arbitrary departures from them106

are possible, if increasingly unlikely the further away from the mean they are (that’s why107

the blobs thin out towards the periphery), and the number of samples close to each of108

the four means is more or less equal (that’s why the four blobs are more or less of equal109

size).110

This world presents what Rosch (1999, 190) calls perceived structure: “[C]ombinations111

of what we perceive as the attributes of real objects do not occur uniformly. Some112

pairs, triples, etc., are quite probable, appearing in combination sometimes with one,113

sometimes another attribute; others are rare. . . ” Our toy world is predictable in exactly114

these systematic ways: for example, if we know that the feature A of a certain sample115

has a value around 14, we can be quite confident that its feature B will be either around116

3 or around 10 (and that both these options are equally likely).117

The task for the agent in the model is as follows: this world produces random samples,118

with the probabilities dictated by the underlying probability distribution, and they are119

tasked with storing as faithful a version of the sample they encounter as possible, while120

using as little resources as possible. Alternatively (and, as far as the mathematics of the121

model are concerned, equivalently), you can think of the task as that of transmitting122

information about the sample for use downstream, say, in the production of behavior123

appropriate to the presence of that sample. This task is basically a redescription of124

what Eleanor Rosch calls cognitive economy, one of her two “psychological principles of125

categorization” (Rosch 1999, 189): “what one wishes to gain from one’s categories is126

a great deal of information about the environment while conserving finite resources as127

much as possible.” (Rosch 1999, 190). We have already encountered “perceived world128

structure”, Rosch’s other principle of categorization, in the description of our toy world.129

Roschian cognitive economy is an optimization problem with two objectives. First,130

maximizing faithfulness in transmission or storage: the signal you send forward or store131

should be decodable into a set of values which are as close as possible to the values132

you encountered. Second, minimizing costs in storage and transmission5 while doing133

so. One way to make this optimization problem more precise (among various other,134

4The results I will discuss here also apply to mixtures of Gaussians with different variances. An example
is worked out in the Supplementary Material, section 1.

5From here on out, and for the sake of brevity, I will only talk of transmission; but it should be
understood that the models to be discussed in this paper apply just as well to storage. Both operations
are indistinguishable from the point of view of information theory—the main formalism I will be
relying on in this paper.
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partially overlapping formalisms) is to cast it in the vocabulary of information theory.135

The main, point-to-point model (Shannon 1948; Cover and Thomas 2006; MacKay 2003)136

is well-known, and relatively straightforward (see figure 1): from left to right, we start137

with a source that generates samples from an underlying probability distribution, the138

way I described our toy world above—these samples are the M in figure 1. The entropy139

of the source, H(M), gives a measure of how unpredictable this source is: e.g., if only a140

handful of samples have high probability, entropy will be low; if many samples are more141

or less equally likely, entropy will be high.6 Entropy is systematically related to world142

structure in Rosch’s sense: for example, when “pairs, triples, etc.” of features change143

in tandem, the resulting source entropy is lower than if they were independent of one144

another. In general, structure in the relevant sense results from relation of probabilistic145

dependence among feature values.146

In the next stage of the point-to-point model, samples coming from the source are encoded147

into a signal, X. The purpose of this encoding is to make the information in the sample148

able to negotiate various constraints introduced by an intervening channel. Here I will149

focus on the kind of constraint that is most relevant to the Roschian cost-faithfulness150

trade-off: channels cannot transmit unlimited quantities of information, but have a151

limited capacity, C. This is just the average amount of information that signals leaving152

the channel carry about signals entering the channel.7 The encoder, therefore, needs153

to compress the incoming message, M , so that the resulting signal, X, can be squeezed154

through the channel, and decoded at the other side into a message M̂ that recovers155

as much of the relevant information in the original M as possible. The entropy of the156

signals, H(X), is also called the rate of the code—you can think of it as the richness, or157

expressiveness, of the signaling repertoire available at the encoder.8158

We can now reformulate Rosch’s cognitive economy principle as a trade-off between rate159

and faithfulness. Intuitively, the more compressed the encoded signal is (that is, the less160

expressive the signal repertoire is), the less faithful it will be—think of a high quality161

6In this paper I focus on the qualitative aspects of information theory and the light they can shed on
our theories of concepts. I will gloss over most mathematical details. For more on the formalism of
information theory, the reader should consult any of a number of standard textbook treatments (e.g.,
Cover and Thomas 2006, chap. 1 and 2).

7Calculated as the mutual information between the two random variables X and X̂, I(X; X̂). Mutual
information measures the change in the expected number of binary (yes/no) questions that one
needs to ask in order to know the value of X, before and after knowing the value of X̂—that is
to say, the difference between the unconditional entropy of X and its entropy conditional on X̂:
I(X, X̂) = H(X) − H(X|X̂).

8In this paragraph I have made liberal use of “conduit metaphors” (Reddy 1979; Eubanks 2001) according
to which information about samples is encoded, transmitted, and then decoded for its use downstream.
It is important to note, though, that fully explicit, non-metaphorical readings of the relevant notions
are available: for example, “coding” M into X just means implementing a function that takes M
as input and produces X as output. No more needs to be read into it, and, in particular, it is not
necessary to think of coding as translation, in a semantically charged sense. The quality of the
coding scheme in question, which is one of the main topics of what follows, will also be formalized
in a way that does not depend (or not more than pretty much everything else, anyway) on covert,
semantically-charged metaphors. I would like to thank an anonymous reviewer for pressing me here.
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Source Encoder Channel

Noise

Decoder Destination
M X X̂ M̂

Figure 1: The main, point-to-point, Shannon model of information transmission.

CD track versus a compressed mp3 version thereof, or Goya’s Caprichos, as seen in the162

original printings versus low-resolution jpeg versions thereof. In order to quantify this163

trade-off we need a measure of faithfulness, or (more common in information theory)164

its converse, distortion, or loss—a function, d, which gives a score (say, a positive real165

number) to each pair of an incoming and a decoded message: d : M × M̂ → R+, higher166

scores meaning that the reconstruction is of worse quality, for whatever purposes the167

decoded message is to be put to at its destination. One widely used distortion measure168

when dealing with continuous data is the mean squared Euclidean distance, or mean169

squared error [MSE]:9170

d(M, M̂) = 1
n

∑

1≤i≤n

(Mi − M̂i)2

One of the foundational results in information theory, Shannon’s so-called lossy source171

coding theorem (Shannon 1948; Berger 1971, chaps. 2–3; Cover and Thomas 2006, chap.172

10,) formalizes the intuitive idea of a trade-off between expressiveness and faithfulness.173

Suppose that we wish to keep the average distortion of our signals below a certain value174

D. This theorem states that there is a specific minimum rate R, such that only signaling175

repertoires with a rate bigger than R can achieve an average distortion of D. Conversely,176

suppose that we can only afford to spend a rate R′ in our signaling repertoire. Then the177

theory states that there is a certain average distortion D′ which is the minimum we can178

achieve with that rate.179

In general, there exists a monotonically increasing function R(D) that gives the minimum180

9For illustration, if you are presented with a sample with values ⟨9.1, 2.8⟩ for features A and B respectively,
and you decode it as ⟨9, 3⟩, the distortion you are incurring in, according to the MSE measure, is:

(9.1 − 9)2 + (2.8 − 3)2

2 = .025

If, on the other hand, you decode it as ⟨9.5, 2.5⟩, which is intuitively further away from the original
message, you end up with a higher distortion:

(9.1 − 9.5)2 + (2.8 − 2.5)2

2 = .125
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rate, R, at which a certain target distortion D (the expected value of d) is achievable,10181

and a function D(R) that gives the minimum distortion D which can be achieved with a182

rate of R. Furthermore, there are algorithms that can calculate R(D) efficiently, at least183

for relatively simple, low-dimensional sources.11184

To gain some initial intuition about how this rate-distortion function works, consider a185

very simple source: a fair coin that is repeatedly tossed. This source has two possible186

values, heads and tails, with probabilities P (heads) = P (tails) = .5. Suppose that187

we want to communicate the value of one of these tosses downstream. If we wish to188

communicate it in full (with no distortion) then we need 1 bit: e.g., we send a 1 if heads,189

and a 0 if tails. That is to say, R(0) = 1 (in words: the minimum rate for zero distortion190

is one bit.) Suppose on the other hand that we want to spend no rate at all. That is191

to say, we don’t want to send anything. Then, the best that the decoder can do is to192

guess, say, heads every time, and be right half of the time. So, R(.5) = 0. We may also193

decide to use only .5 bits to encode each toss: this corresponds to an optimal distortion194

of 0.11.12 And so on. Figure 2 is the full rate-distortion curve for this source.195

0.0 0.1 0.2 0.3 0.4 0.5
Distortion

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

 (b
its

)

Figure 2: The rate-distortion curve for a source consisting of tosses of a fair coin

10R(D) happens to be the minimal mutual information, I(M ; M̂), at which the target distortion D can
be achieved (Cover and Thomas 2006, theorem 10.25).

11For the analyses in this paper I have used deterministic annealing for continuous data (Rose 1994, 1998)
and the Blahut-Arimoto algorithm for discrete data (Blahut 1972; Arimoto 1972). General-purpose
optimization algorithms can also be used.

12One way to achieve this rate-distortion pair (that is to say, <0.5 bits, 0.11 distortion>) is to use a
probabilistic coder that encodes “heads” as 1 with probability .89 and as 0 otherwise; and vice versa
for “tails”.

One can think of this as meaning that we can accept that level of unreliability, or noise, in our
encoder if we are prepared to put up with .11 distortion.
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Having operationalized richness-faithfulness trade-offs as rate-distortion trade-offs, we196

can now calculate the R(D) curve for the source in figure 3a, using MSE as our distortion197

measure. The result is in figure 3b. This is what’s going on in that curve: each point198

corresponds to a different source codec—that is to say, a pair of an encoder that takes199

every incoming source message M to a signal X, and a decoder that takes this signal200

to a decoded message, M̂ . The rate corresponds to the mutual information between201

incoming and decoded messages, I(M ; M̂), and the distortion (in this example) is the202

mean squared error between incoming and decoded messages. Distortion diminishes203

monotonically as rate grows, but the slope of the curve picks up the pace somewhat when204

the rate hits 2 bits—that is to say, once the encoder can use four different signals; this205

is the cross on the curve. Figure 3c summarizes what the codec is doing at that point:206

the encoder has a repertoire of four different signals, and, for example, signal 0 is sent207

whenever a sample corresponding to a point in the blue cluster is received. Signal 0, in208

its turn, is decoded as the centroid of the blue cluster. Analogously with the other three209

signals and the other three clusters.210

I claimed in the introduction that conceptual atoms and prototypes are not incompatible,211

and in fact participate jointly in efficient strategies of information transmission. The212

behavior of the codec in figure 3c provides a concrete illustration of this. First, it is a213

paradigmatic example of prototype-based categorization: each incoming sample, s, is214

encoded to a signal that, in turn, is decoded as s’s closest prototype (one of the four215

cluster centroids). The rule the encoder is using can be summarized as follows: encode216

the incoming sample using the signal corresponding to its closest prototype. The encoder217

is effectively classifying (encoding) s under a concept (a signal) that will subsequently218

be decoded as its closest prototype. Among the samples that are closest to prototype p219

than to any other prototype, some are closer to p than others (that is to say, some are220

closer to the centroid of their cluster than others): explanations of typicality effects can221

rely on this fact just as much as they do in traditional prototype theory.222

Second, optimal information transmission at this particular point in the rate-distortion223

curve is achieved with just four atomic signals. Note that this is not merely a consequence224

of the constraint that the rate at this point has to be 2 bits. There are indefinitely many225

ways to achieve a rate of 2 bits with more than four signals (although not with less than226

four): they involve probabilistically encoding individual samples to two or more signals227

(say, “toss a fair coin; if heads, encode this sample as signal 1, if tails, encode it as signal228

2”). It might have seemed plausible that having more available signals, perhaps even a229

continuum of them (while keeping rate fixed) might help reducing distortion: say, having230

forty signals to play with, even if we have to restrict ourselves to 2 bits in total, would231

seem to put us in an advantageous position compared to someone who has to restrict232

themselves to four signals. Somewhat surprisingly, that’s not how things turn out. Four233

atomic signals are enough for optimality.234

One way to see how and why this works is to focus on how different signals contribute to235

the R(D) function. Figure 3d shows how optimal groups of 1, 2, 3, . . . , up to 12 signals236

can be used to categorize our toy world. The figure shows the slope of the R(D) curve237
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Figure 3: Categorizing a mixture of Gaussians with atoms and prototypes. 3a: The
stimulus set is 4000 points coming from an equiprobable mixture of four
bivariate Gaussian distributions. Each point corresponds to a combination of
two feature values (the x and y coordinates). 3b: The rate-distortion curve
for the source in figure 3a and a mean square error distortion measure. The
cross marks the rate-distortion of the optimal 2-bit codec (four signals), which
coincides with a certain change of slope. 3c: This 2-bit codec is shown here:
each color represents points sent to the same signal. That signal, in turn,
is decoded as the cross at the centroid of each group of points. 3d: The
contribution of each new signal to the R(D) curve. Each new signal takes the
curve a bit further. The contribution made by larger groups overlaps that made
by smaller groups. This happens until there are four signals, at which point no
discrete group of signals is optimal. 3e: A close-up of the ‘explosion’ after four
signals.
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plotted against distortion. Reading the figure from right to left, we start with just one238

signal. This we cannot really see, as it corresponds to the rightmost point on the curve:239

with just one signal there can be no information transfer, and the rate is strictly zero.13240

With two signals (the first blue stretch, from right to left) we can account for a reduction241

of distortion from just above 30 to just below 15. After that, two signals exhaust their242

categorizing potential (that’s why the slope shoots to infinity), and we need three signals243

to continue reducing distortion.244

The interesting thing to note here is that the three-signal curve (and in fact all n-signal245

curves for n > 2) perfectly overlap the two-signal curve. As I said above, while we might246

have expected that a codec that utilizes three signals to communicate two bits (by being247

slightly inefficient with each signal) would be better than a two-bit two-signal codec, it is248

not. As long as the rate is below 1 bit, two signals are optimal. The same thing happens249

with four versus three signals. But beyond that point things change: once we have more250

than four signals, there are no longer groups of signals that are both rate-distortion251

optimal and discrete.14 Four is the biggest such group. Figure 3e is a close-up of this252

transition from discrete to continuous.253

The fact that one can minimize distortion at a certain rate with atomic (discrete) signals254

is not a peculiarity of this example. In general, if the distortion measure is the MSE, it can255

be shown that, unless we are working in high rate / low distortion regimes, atomic signals256

are enough to meet the rate-distortion optimum (Rose 1994, sec. III).15 In particular,257

for mixtures of Gaussians such as our toy world, the rate-distortion optimum can be258

achieved with atomic signals up until all sources of variation (all different Gaussians)259

have been accounted for. This is, precisely, the point marked with a cross in figure 3b260

which I have been discussing.16261

What I take to be the most important lesson of the example is this: I have not had to262

posit atoms and prototypes. They have emerged naturally as a solution to the problem of263

transmitting information about samples, under two mild constraints: MSE as a distortion264

measure, and a regime of relatively high distortion (Rose 1994). The results linking265

atomicity to regimes where information transmission happens at very low rates (see ibid.)266

suggest that concepts can afford to be atomic at least partly because they are, precisely,267

signals that convey the gist of a class, while aggressively disregarding finer details.17268

13The way we count stuff in information theory, one signal and its absence would be two signals.
14This is related to the fact that, in the rate-distortion-optimal way of clustering, cluster-splitting happens

“along the principal axis of the cluster” (Rose 1998, 2216). Once we have accounted for all isotropic
Gaussians there are no principal components left, and all directions are equal.

15More precisely, if the so-called Shannon lower bound [SLB] on R(D) is not tight, then the lowest
achievable distortion at any given rate can be achieved with atomic signals. For an introduction to
the SLB, see Gray (1990, chap. 4). Shannon introduced this notion in his (1959). For more on the
conditions under which the SLB is tight, see Linder and Zamir (1994), Koch (2016).

16Section 3 of the Supplementary Material presents a case in which there are no limits to the rate-
distortion optimality of discrete sets of signals, precisely because the sources of variation are not
Gaussian (but rather depend on a uniform probability distribution.)

17It is suggestive to think of the codec in figure 3c as a prototype denoiser : we can see the four clusters in
figure 3a as composed of noisy versions of the four centroids, which the four signals (concepts) clean
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2.2 The Discrete Case269

In fact, the MSE-distortion constraint can often be relaxed as well: consider now a270

different “stimulus set”, this time constructed out of a set of nine categorical features271

F1, . . . , F9. In our stimulus set, they will be binary features, that can be simply “on” or272

“off”, present or absent. So as to have a concrete example in mind, we could think of273

these features as being of the kind birds may or may not have, such as, e.g., has wings,274

which could be present (+has wings) or absent (-has wings). Other such features275

are flies, has feathers, or hatches eggs (Hampton 2006). The instantiation of276

each of these nine features replicates, noisily, the state of a central, hidden node which277

is instantiated at random. You can think of it as some kind of probabilistic essence,278

perhaps, as in Boyd’s homeostatic property clusters (1999). Figure 4a shows the very279

simple structure of this class as a graph. Specifically, the probabilities of instantiations280

of nodes in the graph in figure 4a are:281

• Pr(+hidden) = Pr(-hidden) = .5282

And, for all i,283

• Pr(+Fi|+hidden) = Pr(−Fi|-hidden) = .95284

• Pr(+Fi|-hidden) = Pr(−Fi|+hidden) = .05285

Here, each sample can be thought of as a binary vector with nine entries, such as, e.g., [0,286

0, 1, 1, 0, 1, 0, 1, 1]. For each entry, 1 means that the corresponding feature is present,287

and 0 that it is not. The naïve method of storing or transmitting this information requires,288

therefore, 9 bits. The entropy of this source is, in fact, not 9 but ~3.6 bits, though,289

because features are far from independent from one another. But we can compress290

further than this, if we are ready to accept some distortion. Because we are dealing with291

categorical data, we cannot use MSEs to measure our distortion. One common alternative292

for discrete sources is the so-called Hamming distortion, which simply counts the number293

of differences between original and decoded vectors, and then normalizes.18 Figure 4b294

shows the R(D) curve for this stimulus set under the Hamming distortion. Here, too,295

there is a comparatively sudden change of slope—at 1 bit this time. The explanation is296

entirely analogous to the previous example: 1 bit is all you need to account for the main297

source of variation (the hidden node, in this case), and the rest, literally, is noise.298

Encoder and decoder at the cross in figure 4b are, again, relying on two prototypes: on299

the one hand, the all-ones vector (you can think of this as the most typical member of300

the class (the prototypical bird, with all of its usual birdy features); on the other, the301

all-zeros vector (something like the “prototypical absence” of a class member: no birdy302

features at all). The encoder sends a different signal depending on which of these two303

and recover. This perhaps partly explains why thinking of concepts as ideal versions of real-world
samples, from Plato’s Phaedo to Barsalou (1985), has often seemed attractive.

18For illustration, if [0, 0, 1, 1, 0, 1, 0, 1, 1] were to be decoded as [1, 1, 1, 1, 1, 1, 1, 1, 1], the Hamming
distortion would be 4

9 : 4 mistakes in 9 entries.
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Figure 4: Categorizing a cluster of categorical features. 4a: A model of a class with nine
categorical features that noisily replicate the state of a hidden node. 4b: The
R(D) curve for the class in figure 4a and Hamming distortion. The cross marks
a comparatively sudden change of slope. (The small hump to the right of the
cross is noise in the numerical approximation.) 4c: 1-bit codec that attains the
rate-distortion pair at the cross of the R(D) curve in figure 4b.

vectors is closest to the sample received. This signal is in turn decoded as its associated304

prototype. This is, again, an example of cooperation of atomic signals (two of them, in305

this case) with prototypes in providing efficient solutions to information-transmission306

problems.19307

As we have seen, Rosch’s cognitive-economy principle presents a multiobjective optimiza-308

tion problem (optimize both information about the environment and resource expenditure)309

which is, therefore, underdetermined: multiobjective optimization problems are “solved”310

by providing a Pareto frontier—the set of solutions such that you cannot improve one of311

the objectives (say, information about the environment) without worsening the other (say,312

resource expenditure). The discussion so far in this section can be read as an argument313

that the R(D) curve is a compelling formalization of at least an important aspect of the314

cognitive-economy Pareto frontier.20 Furthermore, as we have also seen, not all points315

19It is also interesting to note that, while the encoder only sees the surface features Fi, the signal most
closely correlates with none of them, but with the hidden node. The codec is recovering the causal
structure of its class by compressing it.

20In this paper I am not distinguishing between memory and channel capacity on the one hand (these are
the kinds of resources that information theory concerns itself with), and computational complexity
(Rooij et al. 2019; Arora and Barak 2009; Li and Vitányi 2008) on the other hand. Complexity is
as central a “resource”, in Rosch’s sense, as memory or capacity. In particular, the main reasons to
prefer atomic signals to, say, a probability distribution of continuous signals, all else being equal, are
complexity-related ones: a repertoire of (say) four signals is computationally a much simpler object
than a probability distribution over a space of signals. In this paper I am focusing on information-
theoretic constraints, but a full evaluation of how cognitive-economy-related considerations should
inform our theories of concepts will need to treat computational complexity independently as a third
optimization objective, alongside rate and distortion.
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in the R(D) curve are equal. In both the examples discussed so far in this section (the316

Gaussian mixture in figure 3a and the cluster of categorical features in figure 4a), there317

is a change of slope, an elbow, that corresponds to the point at which all of the main318

sources of variations have been accounted for (each of the Gaussians in the first example,319

the hidden node in the second), and the remaining distortion corresponds to noise (cf.320

Martínez 2019b). In these two examples, this elbow was also the most informative point321

for which atomic signals are optimal.21322

In the optimization problems in particular that I have examined here, the elbow of323

the R(D) curve (the points marked with a cross in figures 3b and 4b) offer excellent324

cognitive-economic compromises. For the system portrayed in figure 4b, as we saw, zero325

distortion can only be achieved with ~3.6 bits (this is the entropy of the stimulus set),326

and the maximum distortion (at zero rate) is 0.5 (this is the best expected distortion you327

can get when you are simply guessing the sample). Yet the distortion at rate 1 bit (i.e., at328

the cross) is .05. That is to say, with only 1
3.6 = 28% of all the rate you can throw at this329

problem, you get from 50% distortion to 5% distortion—a 90% improvement. For the330

system portrayed in figure 3b, the least expected distortion you can get at rate 0 is around331

30.6: this is the distortion when you have to guess the sample without any information,332

and corresponds to the expected squared distance to the centroid of the whole stimulus333

set. With the codec in figure 3c, on the other hand, we attain a distortion of ~1.93 with334

2 bits. That is a reduction of distortion of 96%. In this example, furthermore, getting335

the distortion all the way to zero essentially requires as much entropy as there are data336

points; in our case, approximately 12 bits for 4000 samples.337

2.3 Conceptual Spaces338

A word on how the above continuous and discrete toy models relate to work on “conceptual339

spaces”, as developed by Peter Gärdenfors (2000; see also Chella, Frixione, and Gaglio340

2001; Millikan 2017, among many others). The main asumptions embodied in the above341

models are that342

• Samples to be classified are points in an abstract n-dimensional feature space; each343

point corresponding to a different combination of values of n different features.344

• Treating a certain point p in feature space as if it was a different point p′ instead345

incurs in a penalty (a “distortion”) that, in the models above, is cashed out in terms346

of a distance between p and p′: Euclidean for continuous feature values, Hamming347

for discrete ones.348

21The elbow in the slope of the R(D) curve need not always coincide with the minimum distortion
achieved by discrete signals: they will not coincide, for example, if various Gaussians are close enough
as to be unimodal. The fact remains, though, that in those cases the largest optimal, discrete set of
signals has as many signals as there are independent Gaussians in the mixture.

An example of unimodality is presented in the Supplementary Material. I would like to thank an
anonymous referee for prompting me to discuss this kind of case.
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• Feature space is not uniformly occupied. There are regions that concentrate most349

of the probability of instantiation of samples to be classified, and regions that are350

mostly empty.351

Seeing categorization behavior as relying on some pre-existing “psychological distance”352

among samples (and therefore, implicitly, seeing those samples as embedded in an353

abstract feature space) is a widespread modeling decision since at least Shepard (1957).354

Furthermore, the notion that feature space is not uniformly occupied, as I briefly discussed355

above, can be seen as a more general, more formally perspicuous way of cashing out what356

Eleanor Rosch, and many others following her, call “correlational world structure”.357

There are at least two ways in which the above discussion treats feature spaces in a358

way that is different from, and could fruitfully inform, work on the conceptual-spaces359

tradition. First, for Gärdenfors (and many other cognitive psychologists before and after360

him, including Rosch), feature space does not model how physical samples are, but how361

they are represented. That is to say, the space in question is a psychological entity—hence362

the talk of “conceptual” or “cognitive” (Bellmund et al. 2018) spaces.22 In the above363

models no such assumption is made: they are agnostic as to whether feature space364

models the actual distribution of features of physical objects in a certain relevant domain365

and context; or instead models some internal representation thereof. In fact, much of366

the appeal of information-theoretic analyses comes from noting that resource-efficient367

representation for categorization does not need a psychological space, fully populated368

with samples; but that a handful of prototypes is often enough.369

A second important way in which the above models differ from conceptual-spaces de-370

velopments of the idea of a feature space is that, e.g., Gärdenfors (2000) makes several371

assumptions as to what conditions a region of feature space needs to meet in order372

to fall under a single concept. Importantly, he claims that such regions need to be373

convex (Gärdenfors 2000, chap. 3). I, on the other hand, have not made any such374

assumptions: regions of space mapped to each protototype, indeed, come out convex375

for the Euclidean and Hamming distances I have utilized here—but this, and the very376

presence of prototypes, are side effects of the process of optimizing a rate-distortion377

trade-off, not put in by hand.23378

In fact, it is entirely possible to devise ecologically plausible distortion measures such379

that the related rate-distortion-optimal concepts are not convex. For example, if the380

distortion in question is relative to the distance to a single designated focal point, then381

22Gärdenfors (2000, sec. 1.4) distinguishes between “phenomenal” and “scientific” spaces, where the
latter are best conceived as objective, non-mental entities (such as, e.g., literal Newtonian space.) In
any event, in his discussions of categorization he always takes the relevant spaces to be psychological.

23The existence of an optimal and discrete set of signals (a set of atoms) does depend on feature space
being “clumpy” (Millikan 2017, chap. 1), but the optimality of convex regions around propototypes
does not: rate-distortion-optimal categorization of any feature space under an MSE distortion measure
will result in a Voronoi tessellation (cf. Jäger and Van Rooij 2007). See the Supplementary Material
for an example of this in a dataset sampled from an uniform probability distribution.
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the optimal categories are (non-convex) concentrical bands around that focal point.24382

Investigating categorization from the point of view of information-processing efficiency383

reveals possibilities that other treatments of conceptual spaces may be prone to overlook.384

In this section I have shown how atoms and prototypes, two standard components of385

the psychologist’s categorization toolbox, emerge naturally from the trade-off between386

faithfulness and resource expenditure that Eleanor Rosch called “cognitive economy”.387

In the following section I show how, beyond shedding light on the phenomenon of388

categorization in general, rate-distortion analyses can also illuminate other features of our389

categorization behavior; in particular, some aspects of supervised categorization that are390

sometimes interpreted as demonstrating a shift from reliance on prototypes to reliance391

on exemplars.392

3 Supervised Categorization393

Exemplars are actual instances of a class—actual birds, cats or chairs. In exemplar-based394

models of categorization, the class to which a certain sample belongs is decided by395

calculating its distance to those exemplars, not to a prototype (E. E. Smith and Medin396

1999; T. Griffiths et al. 2007). I should first note that the difference between exemplar-397

and prototype-based models is often not as momentous as one might initially think, and398

as the literature sometimes makes it out to be. Many of the classes that psychologists399

focus on (because they appear to be the kinds of classes we care most about) are highly400

correlational in Rosch’s sense: instances of the class do not uniformly occupy feature space,401

but are confined, with high probability, to small regions, or low-dimensional manifolds, of402

feature space. That is to say, often, randomly picking an exemplar will land you close to a403

typical member of the class; consequently, categorization based on a random exemplar will404

typically be close to categorization based on a prototype. For example, if the probability405

distribution of a one-dimensional stimulus set is Gaussian, ~68% of exemplars are less406

than one standard deviation away from the mean (the prototype), and ~99.7% less than407

three standard deviations away. If our exemplar-based categorization is based on the408

expected distance to n exemplars, exemplar- and prototype-based categorization become409

more and more similar the larger n is, and indistinguishable in the limit.410

I will not develop these observations here. In any event, leaving aside their behavior411

in the limit, categorization models relying on exemplars and prototypes can make very412

different predictions when the classes they are dealing with are small, or when they do413

not closely align with the structure of feature space. The two models discussed in section414

2 can be seen as instances of unsupervised categorization: I only fixed the probabilistic415

24A distortion like this might plausibly be relevant, e.g., to sports such as golf (where the focal point
would be the hole) or basketball (where it would be the basket). I present a model of this kind of
situation in the Supplementary Material. It should be possible to investigate empirically whether
enforcing this kind of distortion measure in a laboratory task results in the emergence of non-convex
categorization behavior.
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structure of the stimulus set (the source) and what counts as more or less faithful decoding416

(the distortion measure), and categorization took care of itself. The resulting categories417

are comparatively natural, in that they are exploiting source structure to find efficient418

solutions to the rate-distortion trade-off. But much of the debate on the relation between419

prototype- and exemplar-based categorization depends on classes being antecedently420

defined by the researcher, in ways which do not necessarily exploit this structure, or that421

go against its grain.422

The example I will discuss here (J. D. Smith and Minda 1998; but I learned about it423

from T. L. Griffiths et al. 2011) relies on the artificial classes given in Table 1. We can424

think of these classes as emerging from adding a small amount of noise to 000000 for425

class A and 111111 for class B, and then swapping one of the members of each class426

with one another (those would be the last members in each class enumeration). The427

resulting classes have an odd member out each. When human subjects try to learn these428

categories, they follow the pattern in figure 5a: the odd ones out are incorrectly classified429

with what would be their “natural” classes, and only after some learning do they start430

moving to the correct ones.431

Figure 5: Learning non-linearly separable categories. Reproduced from T. L. Griffiths et
al. (2011)

Table 1: The two linearly non-separable classes in J. D. Smith and Minda (1998). The
“odd ones out” are the last elements in each column.

A B
000000 111111
100000 011111
010000 101111
001000 110111
000010 111011
000001 111110
111101 000100

5b and 5c show the behavior of prototype- and exemplar-based categorizers respectively.432
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None of them adequately captures the gist of human categorization: the prototype model433

always categorizes the odd ones out with their natural classes, and the exemplar model434

never does, and hence fails to cluster them with their natural classes during the early435

training segments. The way these results were interpreted in J. D. Smith and Minda436

(1998), subjects can be seen as first employing a prototype-based strategy and, after437

some learning, switching to an exemplar-based strategy.25438

As it happens, just like in the previous section, the behavior of human categorizers can439

be explained directly as the result of rate-distortion optimization. I first turn the two440

classes in Table 1 into a single source by adding the class each sample belongs to as an441

extra feature (following Anderson 1990, 99, and many others). See Table 2. I will also442

assume that all stimuli are equiprobable, as each was presented an equal number of times443

in the original experiment, but of course this could be modified as needed.444

Table 2: Representing the two classes in Table 1 as a single source. The class each sample
belongs to is represented as an extra feature (0 for class A and 1 for class B, in
red).

0000000
1000000
0100000
0010000
0000100
0000010
1111010
1111111
0111111
1011111
1101111
1110111
1111101
0001001

255d records the behavior of a Dirichlet-process mixture model (details in T. L. Griffiths et al. 2011),
which is able to capture the crisscrossing pattern typical of human data. The rate-distortion approach
I am exploring in this paper comes to this problem from a very different, perhaps ecologically more
basic perspective: not (as in the work by Griffiths and colleagues) by trying to model a probabilistic
source, but by trying to transmit information from perception to behavior.

Dasgupta and Griffiths (2022) is a recent introduction to non-parametric Bayesian approaches to
categorization. Other approaches that, like mine, view prototype-exemplar transitions as gradual,
and not a sharp substitution of one categorizing strategy by another are the SUSTAIN model (Love,
Medin, and Gureckis 2004) and the varying abstraction model (Vanpaemel and Storms 2010). None
of these models gets to categorization behavior purely from information-theoretic considerations, but
comparing them in detail with the rate-distortion approach is matter for future research.
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We now have a source of binary strings. As we did in §2.2, we can explore what happens445

as we try to transmit as much information about stimuli as possible (including the last bit446

with the class they belong to), at different rates, quantifying faithfulness with Hamming447

distortion. The rate-distortion curve for this exercise is in figure 6a. Here, in particular,448

we are interested in how different samples are classified. This can be calculated by449

focusing on the last bit of the stimuli (which corresponds to the preassigned class; see450

Table 2), and keeping track of whether, and how, it changes after passing through the451

codec. So, for example, if 0111111 is decoded as 0111110 with a probability of .6, as452

1110111 with a probability of .2, and as 0111111 with a probability of .2, we’ll say that453

the original sample is categorized correctly with a probability of .4 (corresponding to454

the sum of the probabilities of the two ways in which the last bit is decoded correctly).455

Figure 6b shows what happens when we do this exercise for all samples, using the optimal456

codec at each rate from .8 to 1.5 bits.457

Here too we find the familiar pattern in which all samples are consistently categorized into458

the correct classes, except for the two odd ones out, which are initially categorized with459

the classes that would correspond to them as if a prototype was governing the process,460

and only later are assigned to their correct class, as in exemplar-based categorization.461

Why does this behavior emerge? Recall that the x-axis measures the rate at which462

information is transmitted. That is to say, it measures the amount of information about463

samples that can be used in the categorization decision. At low rates (i.e., around 1 bit464

at the left end of the plot) there is barely enough information to losslessly transmit the465

value of a single binary feature, let alone seven of them (the six original ones plus the466

category feature). The codec therefore has to find a way to provide a gist of the stimulus467

in (less than) 1 bit, or a single binary feature, and rely on the statistics of the source468

to “puff up” this single feature into the seven features of the reconstructed stimulus.469

The result is not unlike the majority rule that the optimal codec in figure 4c relies on:470

send a 1 if the majority of features are 1s, send a 0 otherwise—then copy the received471

signal seven times at the receiver side. This effectively sees the source as a collection472

of noisy departures from the all 1s and all 0s vectors, which aligns with the externally473

enforced classes (the seventh feature) very well, except, of course, for the two odd ones474

out. This is why the probability of their being misclassified is very high. As we increase475

rate (as we move to the right along the x-axis) we gain expressive power and can start476

accommodating the odd ones out with their own signal, at least probabilistically. That’s477

how the probability of correct classification grows, until we hit the entropy of the source478

and all samples are classified correctly (at ~2.8 bits, well to the right of the region shown479

in figure 6b.)480

In their description of the Smith and Minda experiment, Griffiths and colleagues claim481

that “a prototype model was found to provide a better explanation for human performance482

on a categorization task during the early stages of learning, while an exemplar model was483

found to be a better fit to the later stages” (T. L. Griffiths et al. 2011, 190f). We have484

seen that, in fact, capturing the gist of human performance in the experiment just requires485

a system that aims at minimizing distortion at different rates. Such a system may know486

nothing of prototypes or exemplars, but will display qualitatively equivalent behavior.487
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Figure 6: A rate-distortion analysis of the Smith-Minda experiment: 6a: Rate-distortion
curve for the source in Table 2 and Hamming distortion. 6b: Classification of
samples in classes by the optimal codec at each rate.
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Many critiques of the intended interpretation of the Smith and Minda experiment,488

according to which it provides evidence of a “representational shift” (Johansen and489

Palmeri 2002) from prototypes to exemplars as category learning progresses, point out490

that prototype-like behavior in the early segments of training can be just as well explained491

by subjects focusing their attention on one, or a few, of the more highly predictive features492

of the stimuli (Nosofsky and Zaki 2002, 938; Johansen and Palmeri 2002, 531; see also493

Nosofsky 1986 for more on this “attention-optimization” idea; Nosofsky cites Reed 1972;494

and Shepard, Hovland, and Jenkins 1961 as early suggestions along similar lines.) But,495

if the values of different features are highly correlated (as they are in the Smith and496

Minda experiment, and as demanded by Rosch’s principle of perceived world structure,)497

this is equivalent to saying that in the early stages of category learning subjects are498

using low-rate coders to categorize stimuli.26 In §2 I showed that categorization against499

a discrete number of prototypes can be seen as emergent behavior that results from500

rate-distortion-efficient coding at low rates. Under that perspective, protesting that,501

instead of prototype-based categorization, what we have is categorization based on one or502

a few features is somewhat arbitrary: both are, under the relevant circumstances, largely503

equivalent ways of describing rate-distortion-efficient behavior at low rates.504

This does not mean that prototype- and exemplar-based models are somehow irrelevant or505

misguided, of course. For one thing, they aim at capturing not just the gist, but the actual506

numerical detail of human performance, which is why they have various tunable parameters507

while the rate-distortion analysis I have presented here has none.27 For another, they can508

be seen as the way cognitive systems approximate rate-distortion optima: they provide509

much needed implementational detail to the purely abstract “solution” offered by rate-510

distortion analysis. The same can be said about the more sophisticated Dirichlet-process511

approach to categorization in T. L. Griffiths et al. (2011).512

My point is, rather, that a picture of human categorization performance in which513

categorizers come to the task with a repertoire of tools (prototypes and exemplars,514

among others) and then, somewhat fancifully, switch from one to another as the task515

progresses risks missing the forest for the trees. What happens is that the coding strategy516

that optimally minimizes distortion evolves as rate increases. It is fine to interpret517

this evolution as a switch from prototypes to exemplars, if one remembers that what is518

26More precisely, focusing one’s attention on one or a few dimensions is a sufficient, but not necessary,
condition for implementing a low-rate coder: it is theoretically possible, for example, that the rate-
distortion optimal 1-bit coder need to be calculated by taking into account two or more stimulus
dimensions. This will happen if each such dimension is not very predictive of the class the stimulus
belongs to, but the two of them together are. That is, if they carry information about their class
synergistically (Williams and Beer 2010; Wibral et al. 2017; Martínez 2020). It should be possible
to test empirically whether these considerations of informational efficiency make a contribution to
explaining categorization behavior, over and above the purported broadening of attentional scope
from one to more dimensions. Developing these ideas is matter for another paper.

27For example, in J. D. Smith and Minda (1998, 1414), there is an “attentional weight”, wk, for each of
the k features that to-be-classified items and exemplars share, and a “sensitivity parameter”, c, that
governs the whole process of categorization. These k + 1 parameters are set so as to maximize fit
with human performance.
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driving the process, at a higher level of abstraction, is a uniform process of optimizing519

rate-distortion trade-offs.520

One important assumption I have made in this section is that learning, of the sort521

subjects undergo in the Smith-Minda experiment as they go through task segments,522

results in higher rate in the flow of information between input samples and their decoded523

reconstructions (again see figure 1). That is to say, learning to do a task, among other524

things, consists in a widening of the informational bottleneck between the random variables525

that describe inputs to the task, sensory or otherwise, and the random variables that526

describe task-related behavior. This seems to capture an important aspect of what learning527

consists in.528

4 Conclusion529

In this paper I have, first, intervened in the debate between atomists and informationists530

about concepts. I have argued that, far from being alternative hypotheses as to the531

nature of concepts (and a fortiori far from being incompatible) both atoms and bodies532

of information are jointly useful for efficient transmission or storage of information about533

a class.534

For prototypes to emerge in efficient transmission, though, one needs the world to be535

relevantly similar to the mixture of Gaussians in Fig. 3: that is to say, the world536

needs to be sufficiently “clumpy”, in Millikan’s (2017, chap. 1) sense; or, more or less537

equivalently, show correlational world structure in Rosch’s (1999) sense; or, also more or538

less equivalently, be composed out of property clusters in Boyd’s sense (1999; see also539

Slater 2015; Martínez 2015, among many others). One can see all of these attempts at540

characterizing the metaphysics of knowable worlds as ways of ensuring that those worlds541

are compressible—and that, furthermore, their associated rate-distortion function shows542

the kind of elbow we see in Figs. 3b and 4b.543

For atoms to emerge, we also need to be working at relatively low rates: in particular,544

in the case of Gaussian mixtures, we can optimally transmit information with atoms545

insofar as we are content with the level of distortion that comes from simply ignoring546

Gaussian dispersion around its mean: that is to say, a maximum n atoms for a mixture547

of n Gaussians. This fact (proven by Rose 1994) sheds light on two intuitive properties of548

conceptual repertoires: first, conceptual repertoires are comparatively small, and certainly549

smaller than what we take to be the repertoire of possible (“nonconceptual”) perceptual550

contents. Second, concepts are sometimes taken to be closely related to idealized versions551

of samples in their target class plausibly because of their being tightly related to the552

centroids of more or less Gaussian regions in feature space.553

I have also shown how thinking of concepts in the context of processes of information554

transmission helps explain apparently unrelated data about human categorization perfor-555

mance: the claimed substitution of prototypes by exemplars in J. D. Smith and Minda556
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(1998). This result further showcases the explanatory usefulness of information-processing557

(and in particular rate-distortion) models and analyses of concepts and categorization.558

Obviously, none of the above entails that other theoretical approaches to concepts, and559

in particular classical prototype- and exemplar-based theories, are without merit. There560

is a lot that the analyses in this paper do not explain, from the actual detail of human561

categorization performance, to the actual detail of how concepts are learned. For these562

other ends, a parametrized theory, which can be fit to numerical data, is needed. My aim563

has been, rather, to show that a good deal of what would perhaps appear to be surprising564

features of concepts in fact fall right off the way efficient transmission of information565

needs to behave.566
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1 Different Variances

The example discussed in section §2 of the main document is a dataset sampled from a
mixture of four Gaussians with the same variance. While the mathematical results on
which the discussion in that section relies do require that Gaussians be isotropic (i.e.,
that they have a covariance matrix proportional to the identity matrix,) they do not
require those variances to be equal (i.e., the proportionality constant may change from
Gaussian to Gaussian.) I present here an example, fully analogous to the one discussed
in §2 of the main paper, in which the equal-variance condition is relaxed.

The dataset is in fig. S1: a mixture of 5 Gaussians with different variances. The rate-
distortion curve and the best codec with 5 signals (in figs. S2 and S3) are entirely
analogous to those calculated in section §2.

2 Unimodal Gaussians

In the example discussed in §2.1 of the paper, the maximum number of discrete signals
which still can be rate-distortion optimal is 4. This optimal codec also corresponds to a
change of tendency (an “elbow”) in the rate-distortion function. In general, the following
two quantities need not coincide:

1. On the one hand, the maximum number of discrete signals that can be rate-
distortion-optimal.

2. On the other, the number of signals at which the optimal codec corresponds to an
elbow in the rate-distortion curve.

The first quantity still corresponds to the number of Gaussians in the mixture. This
is just the straightforward consequence of the results proven in (Rose 1994, sec. III):
accounting for all Gaussian sources of variation (i.e., for our current purposes, placing
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Figure S1: A toy world sampled from five Gaussians with unequal variances.
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Figure S2: The rate-distortion curve for the unequal-variances dataset in fig. S1.
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Figure S3: Optimal 5-signal codec at the cross of fig. S2.
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prototypes on their means) always corresponds to a rate-distortion-optimal codec. But
the second quantity roughly follows the number of modes in the mixture, which might be
smaller than the number of Gaussians itself. Here I present example of such a mixture
(fig. S4).

The 1-bit (that is, two-signal) codec in fig. S6 is rate-distortion-optimal and sits on an
“elbow”, as shown by fig. S5. Still, there are rate-distortion-optimal codecs with 3 and 4
signals—just not with more.
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Figure S4: A toy world sampled from four Gaussians which result in two modes.
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Figure S5: The rate-distortion curve for the unimodal-variances dataset.
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3 Uniform Source Distributions and Voronoi Tessellations

In this paper I aim at showing, among other things, that discrete repertoires of signals
(what Fodor 1998 calls “conceptual atoms”) and prototypes can be both part of an
optimal information-processing strategy. I have focused on Gaussian mixtures because,
for them, there is a maximum optimal number of discrete signals. This, I suggest, partly
explains why conceptual repertoires typically provide a crude gist of a situation, while
entirely disregarding finer detail.

For other kinds of source (e.g., uniform distributions), discrete repertoires of arbitrarily
large numbers of signals can still be optimal. In such cases, optimal repertoires are
reminiscent of the evolutionarily stable repertoires of color terms studied in Jäger and
Van Rooij (2007): if the target distortion measure is an Euclidean distance, the resulting
optimal partition, for any arbitrary numbers of signals, is a Voronoi tessellation, with
prototypes in the centroid of each Voronoi cell. I show this in fig. S7, for an uniform source,
mean squared error as the target distortion error, and various numbers of signals.
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4 Non-Euclidean Distances

All analyses in this paper have used an Euclidean distance (or its discrete counterpart,
the Hamming distortion) as distortion measure. This is why the rate-distortion-optimal
partitions have always been Voronoi tessellations.

In fact, rate-distortion analyses can rely on arbitrary distortion measures. For example,
here, I run a similar analysis to §2.1 in the main paper, but now using a distortion
measure according to which m̂ is a good decoding of m to the extent that both are
equally close to some antecedently designated point, p. That is to say, if we want to
encode and subsequently decode a certain point, m, in our abstract feature space, the
decoded counterpart, m̂ will have no distortion iff m and m̂ are at the same distance to
p. The more dissimilar these two distances are, the more distortion.
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Figure S8: The rate-distortion-optimal 2-bit codec for the dataset in Fig. 3a of the main
paper, using a “distance to a designated point” distortion measure. The black
cross marks the position of the designated point.

For this distortion measure, the optimal categories are concentrical bands around the
designated point (marked with a black cross in Fig. S8.) Two things to note about this.
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First, these categories no longer rely on the “natural” structure imposed by the mixture
of Gaussians. This structure is only relevant for Euclidian-distance-based distortion
measures. Second, the resulting categories are no longer convex (i.e., straight lines
connecting two points in a category may pass through other categories.) Gärdenfors
(2000), among many others, have argued that “natural properties” are convex. Fig. 8
shows that convexity depends on an Euclidean-distance-minimizing goal. The implicit
assumption that all natural categorization systems are of this sort needs to be explicitly
tested and validated.
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