The Multi-Engine ASP Solver ME-ASP

Marco Maratea, Luca Pulina, and Francesco Ricca

'DIBRIS, Univ. degli Studi di Genova, Viale F.Causa 15, 16145 Gantialy
2POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 071004 ltaly
3Dipartimento di Matematica, Univ. della Calabria, Via P. Bucci, 87030 Rehidly
marco@li st.unige.it, |pulina@niss.it, ricca@mt.unical.it

Abstract. In this paper we describe the new systee-AspP, which applies ma-
chine learning techniques for inductively choosing, among a set dhl@ones,
the “best” ASP solver on a per-instance basis. Moreover, we regoretults of
some experiments, carried out on benchmarks from the “SystenkToa¢he
3rd ASP Competition, showing the state-of-the-art performance csauer.

1 Introduction

Answer Set Programming [7] (ASP) is a truly-declarativegueanming paradigm pro-
posed in the area of non-monotonic reasoning and logic progning. The idea of ASP
is to represent a given computational problem by a logic rn@mgwhose answer sets
correspond to solutions, and then use a solver to find suaticas [12]. The language
of ASP is very expressive, indeed all problems in the secewel lof the polynomial
hierarchy are expressible in ASP [4]. Moreover, the appbes of ASP nowadays be-
long to several fields from Artificial Intelligence to Knovdge Management [2]. The
development of efficient and fast ASP systems is, thus, d@alriask made even more
challenging by existing and new-coming applications.

As witnessed by the ASP competition series (see [3] for thetmexent), several
efficient ASP solvers have been proposed up to now, whichagedon different solv-
ing technigues ranging from ASP-specific approaches talagion to SAT/Difference
Logic. Inspired by the recent research results on the neigfidlds of SAT and QBF,
where inductive techniques for algorithm selection wengliag with success [18, 16],
we have developedE-AsP, amulti-enginesolver for propositional ASP programs.

In this paper we describe this new system. In order to obtagbast ASP solver,
i.e., a system able to perform well across a wide set of preldemains, we lever-
age a number of efficient ASP systems (e.g., [6, 14,10, 17]8,4nd we apply ma-
chine learning techniques for inductively choosing, amihregavailable ones, the “best”
solver to be run on the basis of the characteristics, aldedcBatures, of the input pro-
gram at hand.

We also report the results of some experiments carried othteogrounded version
of all benchmarks employed in the “System Track” of the 3rdPASompetition [3]
falling in the “NP” and “Beyond NP categories of the competition, that show the state-
of-the-art performance of our multi-engine solver; indeeé-AspP is able to solve
substantially more instances than the winner of the “Systeack” of the 3rd ASP
Competition.

: FEATURE E CLASP
. —
INPUT : N
; EXTRACTION o
— | L
N | H CLASPD
T A
E "l
0 CLASSIFICATION > cMODELS
h ALGORITHMS Ml
0| |2
A N |
c N DLV
: E G [+
OUTPUT | L —> E
4—— MANAGER : M
«— —| " |+

Fig. 1. The architecture ofie-AsP. The dotted box denotes the whole system and, inside it, each
solid box represents its modules. Arrows denote functional connedigingen modules.

It is worth mentioning that, machine learning techniquegehaeen already applied
to ASP solving, i.ecLASPFoOLIOandDORSI5, 1]. In particular, thecLASPFOLIOSYS-
tem was conceived and implemented for selecting the “besitiktic configuration of
thecLAsP solver. An important difference witklE-AsPis that the application of algo-
rithm selection strategies is limited @aLAsPFoOLIO(which is, actually, a unique binary
including CLASP) to the variants of a single engine; moreov®rASPFOLIOIS not able
to deal with ASP programs with syntactically-unrestrictésjunction.

2 Thestructureof ME-ASP

Figure 1 presents the architecturemi-AspP'. Looking at the figure, we can see that
ME-ASPis composed of the five modules described in the following.

I NTERFACE manages both the input received by the user and the outptieof t
whole system. It also dispatches the input data to the rengamodules, as denoted by
the outgoing arrows. In particuldrNTERFACE collects(7) the ground ASP program
in ASP-Core format [3], an¢ii) the classifier type and its inductive model.

FEATURE EXTRACTI ON extracts the syntactic features of the input ground pro-
gram, as detailed in [13]. The CPU time spent for the extoads negligible.

CLASSI FI CATI ON ALGORI THVE is devoted to the prediction of the engine to
run. It implements five different inductive models, namelgghegation Pheromone
density based pattern Classification, Decision Rules,di@tiTrees, Nearest-neighbor,
and Support Vector Machine. We implemented the first oneioilg the methodol-
ogy described in [8], while the remaining ones are built om &6 the RAPIDMINER
library [15]. This module receives as input both the classifype and its inductive

1 ME-ASPis available for download &tt t p: / / www. mat . uni cal .it/riccal ne-asp.

Table 1. Results on the 10 grounded instances for each domain evaluated ad th8Bicompe-

tition. The instances of the DisjunctiveScheduling, PackingProblem aigh¥essignmentTree

are not solved by any solver. The table is organized as follows. In gtecblumn we report the
benchmark, followed by three groups of columns, each one relatadévaduated solver. Each
group is composed of two columns, namely “#Solved” (i.e., the totalarnof solved instances
within the time limit) and “Time” (i.e., the total CPU time spent on the solved inganc

Problem ME-ASP CLASPD SOTA

#Solved Time [#Solved Time [#Solved Time
GraphColouring 4| 527.67 3| 302.09 4| 523.38
HanoiTower 9/1107.67 2| 416.94 9/1041.76
KnightTour 8| 755.67 8| 544.21] 8| 728.12
Labyrinth 5| 415.43 3| 275.12 5| 344.95
MazeGeneration 10| 52.15 10| 32.63 10| 31.37
MinimalDiagnosis 10(1889.46 10|1859.86 10| 69.01
MultiContextSystemQuerying 10| 687.93 10|1177.08 10| 87.45
Numberlink 8| 254.01 7| 47.32 8| 226.06
SokobanDecision 9]1312.74 7| 487.50 9]1182.24
Solitaire 5| 767.98 2| 57.98 8(1238.21
StrategicCompanies 5[1290.27 3| 484.14 5[1152.00
[TOTAL \ 83[9060.9§ 65/5684.87 86]6624.55

model (froml NTERFACE) and a vector of features (frofFEATURE EXTRACTI ON).
It returns toMANAGER the name of the predicted engine.

ENG NE MANAGER manages the interaction with the engines. It receives from
MANAGER information about the engine to fire. At the end of the engiomputa-
tion, ENG NE MANAGER returns toMANAGER the result. FinallyMANAGER works as
a coordinator ofMme-ASP modules, and it also provides the final result téTERFACE.

The engines ofiE-ASP, as depicted in Figure 1 (the rightmost boxes) are five state-
of-the-art ASP solvers, nametyL AsP [6] and its disjunctive versiooLASPD, CMOD-
ELS[11], DLV [10], and1DP [14]; nonetheless, the architecturen-AspPis modular
and allows one to easily update the engines set with additgmivers. Finally note that
engines are used as “black-boxes”, iN&-ASP interacts with them via system calls.

3 Performanceat a glance

The experiments were carried out on CyberSAR, a cluster deetpof 50 Intel Xeon
E5420 blades equipped with 64 bit Gnu Scientific Linux 5.5e Tésources granted to
the solvers are 600s of CPU time and 2GB of memory. Time measmts were carried
out using thet i me command shipped with Gnu Scientific Linux 3.50 Table 1 we
report the results of thee-AspPversion using Decision Trees as classifier in comparison
with cLASPD — the winner of the “System Track” of the 3rd ASP Competitioand

2 We remind that these are different hardware setting w.r.t. the 3rd ARetition in both
computer architecture and memory limits; importantly, the inputs wereqmended and saved
in ASP-Core format.

the state of the art (SOTA) solver, i.e., considering a @wbinstance, the oracle that
always fares the best among available solvers.

Looking at Table 1, we can see that-AsPsolves 18 instances more thanaspPD.
More, here it is very interesting to note that its performeaigcvery close to the SOTA
solver which, we remind, has the ideal performance that wédcexpect on these in-
stances with these engines. More details and additionarampntal data concerning
ME-ASPsettings (i.e., solver selection, program features, sdta@ing, and classifica-
tion algorithms) can be found in [13].

References

1. M. Balduccini Learning and using domain-specific heuristics in ASP solvekCOM,
24:147-164, 2011.

2. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Sol@iam-
bridge University Press, Tempe, Arizona, 2003.

3. F. Calimeri, G. lanni, F. Ricca, et al. The Third Answer Set Prognarg Competition:
Preliminary Report of the System Competition Track.Plimc. of LPNMR11.pages 388—
403, 2011. LNCS Springer.

4. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalo§CM Transactions on Database
Systems22(3):364—-418, September 1997.

5. M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. T. Sche@tel S. Ziller. A portfolio
solver for answer set programming: Preliminary reporPioc. of LPNMR11 LNCS, pages
352-357, Vancouver, Canada, 2011. Springer.

6. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflicén answer set solving.
In Proc. of IJCAI-07 pages 386—392, 2007. Morgan Kaufmann Publishers.

7. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs &nsjunctive
DatabasesNew Generation Computing:365-385, 1991.

8. A. Halder, A. Ghosh, and S. Ghosh. Aggregation pheromonetyddrased pattern classifi-
cation. Fundamenta Informatica®2(4):345-362, 2009.

9. T. Janhunen, |. Niem&] and M. Sevalnev. Computing stable models via reductions to dif-
ference logic. IrProc. of LPNMR 09LNCS, pages 142-154, 2009. Springer.

10. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, Bn8carcello. The DLV
System for Knowledge Representation and Reasor@M TOCL, 7(3):499-562, 2006.

11. Y. Lierler. Disjunctive Answer Set Programming via Satisfiability.Phoc. of LPNMR’05
volume 3662 oLNCS pages 447-451. Springer Verlag, September 2005.

12. V. Lifschitz. Answer Set Planning. IRroc. of ICLP’99 pages 23-37, Las Cruces, New
Mexico, USA, November 1999. The MIT Press.

13. M. Maratea, L. Pulina, and F. Ricca. Applying machine learning tgcles to ASP solving.
Number CVL 2012/003, page 21. University of Sassari Tech. Régrch 2012.

14. M. Marién, J. Wittocx, M. Denecker, and M. Bruynooghe. Sat(id): Satisfiabififyroposi-
tional logic extended with inductive definitions. Broc. of SAT 0BLNCS, pages 211224,
2008. Springer.

15. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. EulerleY&apid prototyping for
complex data mining tasks. Proc. of KDD '06, pages 935-940. ACM, 2006.

16. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver t@ngified boolean for-
mulas.Constraints 14(1):80-116, 2009.

17. P. Simons, I. Niemal and T. Soininen. Extending and Implementing the Stable Model
SemanticsArtificial Intelligence 138:181-234, June 2002.

18. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Pditfdbased algorithm
selection for SAT Journal of Atrtificial Intelligence ResearcB2:565-606, 2008.

