
The Multi-Engine ASP Solver ME-ASP

Marco Maratea, Luca Pulina, and Francesco Ricca

1DIBRIS, Univ. degli Studi di Genova, Viale F.Causa 15, 16145 Genova, Italy
2POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sassari, Italy

3Dipartimento di Matematica, Univ. della Calabria, Via P. Bucci, 87030 Rende, Italy
marco@dist.unige.it, lpulina@uniss.it, ricca@mat.unical.it

Abstract. In this paper we describe the new systemME-ASP, which applies ma-
chine learning techniques for inductively choosing, among a set of available ones,
the “best” ASP solver on a per-instance basis. Moreover, we report the results of
some experiments, carried out on benchmarks from the “System Track” of the
3rd ASP Competition, showing the state-of-the-art performance of oursolver.

1 Introduction

Answer Set Programming [7] (ASP) is a truly-declarative programming paradigm pro-
posed in the area of non-monotonic reasoning and logic programming. The idea of ASP
is to represent a given computational problem by a logic program whose answer sets
correspond to solutions, and then use a solver to find such solutions [12]. The language
of ASP is very expressive, indeed all problems in the second level of the polynomial
hierarchy are expressible in ASP [4]. Moreover, the applications of ASP nowadays be-
long to several fields from Artificial Intelligence to Knowledge Management [2]. The
development of efficient and fast ASP systems is, thus, a crucial task made even more
challenging by existing and new-coming applications.

As witnessed by the ASP competition series (see [3] for the most recent), several
efficient ASP solvers have been proposed up to now, which are based on different solv-
ing techniques ranging from ASP-specific approaches to translation to SAT/Difference
Logic. Inspired by the recent research results on the neighbor fields of SAT and QBF,
where inductive techniques for algorithm selection were applied with success [18, 16],
we have developedME-ASP, amulti-enginesolver for propositional ASP programs.

In this paper we describe this new system. In order to obtain arobust ASP solver,
i.e., a system able to perform well across a wide set of problem domains, we lever-
age a number of efficient ASP systems (e.g., [6, 14, 10, 11, 9, 17]), and we apply ma-
chine learning techniques for inductively choosing, amongthe available ones, the “best”
solver to be run on the basis of the characteristics, also called features, of the input pro-
gram at hand.

We also report the results of some experiments carried out onthe grounded version
of all benchmarks employed in the “System Track” of the 3rd ASP Competition [3]
falling in the “NP” and “Beyond NP” categories of the competition, that show the state-
of-the-art performance of our multi-engine solver; indeed, ME-ASP is able to solve
substantially more instances than the winner of the “SystemTrack” of the 3rd ASP
Competition.



Fig. 1. The architecture ofME-ASP. The dotted box denotes the whole system and, inside it, each
solid box represents its modules. Arrows denote functional connectionsbetween modules.

It is worth mentioning that, machine learning techniques have been already applied
to ASP solving, i.e.CLASPFOLIOandDORS [5, 1]. In particular, theCLASPFOLIOsys-
tem was conceived and implemented for selecting the “best” heuristic configuration of
theCLASP solver. An important difference withME-ASP is that the application of algo-
rithm selection strategies is limited inCLASPFOLIO(which is, actually, a unique binary
includingCLASP) to the variants of a single engine; moreover,CLASPFOLIO is not able
to deal with ASP programs with syntactically-unrestricteddisjunction.

2 The structure of ME-ASP

Figure 1 presents the architecture ofME-ASP1. Looking at the figure, we can see that
ME-ASP is composed of the five modules described in the following.

INTERFACE manages both the input received by the user and the output of the
whole system. It also dispatches the input data to the remaining modules, as denoted by
the outgoing arrows. In particular,INTERFACE collects(i) the ground ASP program
in ASP-Core format [3], and(ii) the classifier type and its inductive model.

FEATURE EXTRACTION extracts the syntactic features of the input ground pro-
gram, as detailed in [13]. The CPU time spent for the extraction is negligible.

CLASSIFICATION ALGORITHMS is devoted to the prediction of the engine to
run. It implements five different inductive models, namely Aggregation Pheromone
density based pattern Classification, Decision Rules, Decision Trees, Nearest-neighbor,
and Support Vector Machine. We implemented the first one following the methodol-
ogy described in [8], while the remaining ones are built on top of the RAPIDMINER

library [15]. This module receives as input both the classifier type and its inductive

1 ME-ASP is available for download athttp://www.mat.unical.it/ricca/me-asp .



Table 1. Results on the 10 grounded instances for each domain evaluated at the 3rd ASP compe-
tition. The instances of the DisjunctiveScheduling, PackingProblem and WeightAssignmentTree
are not solved by any solver. The table is organized as follows. In the first column we report the
benchmark, followed by three groups of columns, each one related to an evaluated solver. Each
group is composed of two columns, namely “#Solved” (i.e., the total amount of solved instances
within the time limit) and “Time” (i.e., the total CPU time spent on the solved instances).

Problem ME-ASP CLASPD SOTA

#Solved Time #Solved Time #Solved Time

GraphColouring 4 527.67 3 302.09 4 523.38
HanoiTower 9 1107.67 2 416.94 9 1041.76
KnightTour 8 755.67 8 544.21 8 728.12
Labyrinth 5 415.43 3 275.12 5 344.95
MazeGeneration 10 52.15 10 32.63 10 31.37
MinimalDiagnosis 10 1889.46 10 1859.86 10 69.01
MultiContextSystemQuerying 10 687.93 10 1177.08 10 87.45
Numberlink 8 254.01 7 47.32 8 226.06
SokobanDecision 9 1312.74 7 487.50 9 1182.24
Solitaire 5 767.98 2 57.98 8 1238.21
StrategicCompanies 5 1290.27 3 484.14 5 1152.00

TOTAL 83 9060.98 65 5684.87 86 6624.55

model (fromINTERFACE) and a vector of features (fromFEATURE EXTRACTION).
It returns toMANAGER the name of the predicted engine.

ENGINE MANAGER manages the interaction with the engines. It receives from
MANAGER information about the engine to fire. At the end of the engine computa-
tion,ENGINE MANAGER returns toMANAGER the result. Finally,MANAGER works as
a coordinator ofME-ASP modules, and it also provides the final result toINTERFACE.

The engines ofME-ASP, as depicted in Figure 1 (the rightmost boxes) are five state-
of-the-art ASP solvers, namelyCLASP [6] and its disjunctive versionCLASPD, CMOD-
ELS [11], DLV [10], and IDP [14]; nonetheless, the architecture ofME-ASP is modular
and allows one to easily update the engines set with additional solvers. Finally note that
engines are used as “black-boxes”, i.e.,ME-ASP interacts with them via system calls.

3 Performance at a glance

The experiments were carried out on CyberSAR, a cluster comprised of 50 Intel Xeon
E5420 blades equipped with 64 bit Gnu Scientific Linux 5.5. The resources granted to
the solvers are 600s of CPU time and 2GB of memory. Time measurements were carried
out using thetime command shipped with Gnu Scientific Linux 5.5.2 In Table 1 we
report the results of theME-ASPversion using Decision Trees as classifier in comparison
with CLASPD – the winner of the “System Track” of the 3rd ASP Competition– and

2 We remind that these are different hardware setting w.r.t. the 3rd ASP competition in both
computer architecture and memory limits; importantly, the inputs were pre-grounded and saved
in ASP-Core format.



the state of the art (SOTA) solver, i.e., considering a problem instance, the oracle that
always fares the best among available solvers.

Looking at Table 1, we can see thatME-ASPsolves 18 instances more thanCLASPD.
More, here it is very interesting to note that its performance is very close to the SOTA
solver which, we remind, has the ideal performance that we could expect on these in-
stances with these engines. More details and additional experimental data concerning
ME-ASPsettings (i.e., solver selection, program features, solver training, and classifica-
tion algorithms) can be found in [13].

References

1. M. Balduccini Learning and using domain-specific heuristics in ASP solvers. AICOM,
24:147-164, 2011.

2. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Tempe, Arizona, 2003.

3. F. Calimeri, G. Ianni, F. Ricca, et al. The Third Answer Set Programming Competition:
Preliminary Report of the System Competition Track. InProc. of LPNMR11., pages 388–
403, 2011. LNCS Springer.

4. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog.ACM Transactions on Database
Systems, 22(3):364–418, September 1997.

5. M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. T. Schneider, and S. Ziller. A portfolio
solver for answer set programming: Preliminary report. InProc. of LPNMR11, LNCS, pages
352–357, Vancouver, Canada, 2011. Springer.

6. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proc. of IJCAI-07, pages 386–392, 2007. Morgan Kaufmann Publishers.

7. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs andDisjunctive
Databases.New Generation Computing, 9:365–385, 1991.

8. A. Halder, A. Ghosh, and S. Ghosh. Aggregation pheromone density based pattern classifi-
cation.Fundamenta Informaticae, 92(4):345–362, 2009.

9. T. Janhunen, I. Niemelä, and M. Sevalnev. Computing stable models via reductions to dif-
ference logic. InProc. of LPNMR 09, LNCS, pages 142–154, 2009. Springer.

10. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, andF. Scarcello. The DLV
System for Knowledge Representation and Reasoning.ACM TOCL, 7(3):499–562, 2006.

11. Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. InProc. of LPNMR’05,
volume 3662 ofLNCS, pages 447–451. Springer Verlag, September 2005.

12. V. Lifschitz. Answer Set Planning. InProc. of ICLP’99, pages 23–37, Las Cruces, New
Mexico, USA, November 1999. The MIT Press.

13. M. Maratea, L. Pulina, and F. Ricca. Applying machine learning techniques to ASP solving.
Number CVL 2012/003, page 21. University of Sassari Tech. Rep.,March 2012.

14. M. Marïen, J. Wittocx, M. Denecker, and M. Bruynooghe. Sat(id): Satisfiability of proposi-
tional logic extended with inductive definitions. InProc. of SAT 08, LNCS, pages 211–224,
2008. Springer.

15. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping for
complex data mining tasks. InProc. of KDD ’06, pages 935–940. ACM, 2006.

16. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified boolean for-
mulas.Constraints, 14(1):80–116, 2009.

17. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics.Artificial Intelligence, 138:181–234, June 2002.

18. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based algorithm
selection for SAT.Journal of Artificial Intelligence Research, 32:565–606, 2008.


