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Abstract

In this paper, we look at Bourbaki’s work as a case study for the
notion of mathematical style. We argue that indeed Bourbaki exemplifies
a mathematical style, namely the structuralist style.

1 Introduction
In his article in the Stanford Encyclopedia of Mathematics on mathematical
style, Paolo Mancosu presents the challenge of developing an “epistemology of
(mathematical) style”:

Are the stylistic elements present in mathematical discourse devoid
of cognitive value and so only part of the coloring of mathemati-
cal discourse or can they be seen as more intimately related to its
cognitive content? Mancosu (2017)

There is no doubt that there are stylistic elements in the presentation of mathe-
matics. After all, writing and talking about mathematics is not purely a matter
of manipulating formal symbols organized in a unique manner. It is another
issue to determine whether there are stylistic features in mathematics. Asking
the question brings us immediately to the practice of mathematics and all its
aspects. One has to define a concept. One has to state a theorem. One has to
prove a theorem. One has to construct a counter example. One has to find a

∗The author gratefully acknowledge the financial support of the SSHRC of Canada while
this work was done. This paper is part of a larger project on Bourbaki and structuralism which
would not have seen the light of day without Michael Makkai’s influence and generosity. I
want to thank him for the numerous discussions we had on the subject. I also want to thank
the organizers of the FilMat conference which was held in beautiful Mussomeli. Finally, I
want to thank Leo Corry, Robert Thomas and Elaine Landry whose comments and criticisms
allowed me to move from a bad draft to what I hope is a coherent paper.
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method to compute a formula. Etc. More often than one might think, in most
cases, there is no unique path to the solution to a given problem. Then, one
has to write. One has to talk. And there are myriad presentations possible.
There are many different ways to introduce and justify a definition, motivate
and contextualize a theorem, write up a proof and even organize a computation.
Of course the plurality of presentations is not unique to mathematics. Anyone
who has to present and prepare some material is faced with similar challenges.
Is there an element of style that would be intrinsic to mathematics? Or, at
least, a style that would bring an epistemological dimension that cannot be
dissociated from the style? Are there styles of definitions, styles that contain
an inherent epistemological component? This is how I understand Mancosu’s
challenge. Thus, if it is taken up, its resolution has at least two parts. First,
identify what constitutes the stylistic elements in mathematical knowledge, as
opposed to methods, approaches, etc., or merely “color”. Second, show that
these stylistic elements have cognitive value and, again, are not merely “part of
the coloring”.

It seems a priori easy to identify what the “coloring” of mathematical dis-
course might be: it should be some kind of ornament that accompanies a dis-
course, but that does not essentially contribute to its cognitive content. The
terminology itself brings us back to the arts, any art, be it music, painting,
sculpture, dance, acting, literature, etc. This is the traditional association. If
mathematical style is merely part of the coloring, it would be akin to literary
style, even a special case of the latter, it would refer to a specific way of writing
a mathematical presentation, dictated by esthetic choices that do not have an
impact on the epistemological content of the mathematics itself. It may make
a mathematical text clearer, more fun, more powerful, more enjoyable or what
have you, but if we are in the realm of coloring, then it does not convey a specific
epistemic content, it does not contribute to its justification. It could be com-
pletely removed and the mathematics would be in principle just as clear, just as
right, just as justified. Underlying this conception of mathematical knowledge
is the idea that the truths of mathematics are organized in an essentially unique
logical network and that to know mathematics is to know this web of logical
relations. Whatever is added to this network would be ornemental, for instance
the use of pictures, of certain types of notations and symbols and, of course, the
presence of texts that are not directly part of the logical deductions. However,
as Mancosu points out himself, it is easy to find claims in the philosophical
literature that there are mathematical styles, be they individual styles, national
styles or epistemic styles. I refer the reader to the list he provides in Mancosu
(2017).

This paper is an attempt to face Mancosu’s challenge head on1 by examining
the case of Nicolas Bourbaki, the well-known collective of French mathemati-

1As I will make clear in the second section, I am not the first one to do so. One could
go back to Gilles Gaston Granger’s work on the notion in Granger (1968), also discussed in
Mancosu’s article. I will not use nor refer to Granger’s work here, for it would take us too
far from our main objective. I will, however, follow the steps of David Rabouin in Rabouin
(2017).
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cians that initiated an ambitious and influential undertaking in 1934 and that led
to the publications of 28 volumes covering a large spectrum of modern math-
ematics — from set theory to algebraic topology2. The project was initially
meant to provide a modern treatise on analysis, but quickly became something
much larger, since Bourbaki decided to start from scratch and organize the ma-
terial from an abstract standpoint. Bourbaki’s work was extremely influential
and contributed to the development of contemporary mathematics in many dif-
ferent ways. It had, in the 1960s, its supporters and detractors. Although the
collective still officially exists and still organizes an important seminar held in
Paris, what we will focus on in this paper is the work done by the first two
generations of Bourbaki, namely the founding fathers and those who joined the
collective after WWII. Our main claim is that this Bourbaki is a generic case
of an epistemic mathematical style. We also claim that this style is a direct
consequence of a very specific conception of mathematics, its nature, organi-
zation and articulation, namely the structuralist style. Given these goals, the
plan of our paper is straightforward. We will first propose a general definition of
mathematical style. Then we will take a close look at Bourbaki’s mathematics.
We will then step back and try to explain what we mean by the structuralist
style.

2 The Notion of Mathematical Style
As a first approximation, I submit that a mathematical style is a systematic
way of doing mathematics which is then represented in its presentations. More
precisely, it is a global and systematic pattern of choices that are made to define
concepts, prove or disprove theorems, solve problems, compute formulas. Note
that we are within a set of goal-oriented activities. For this approximation not
to be a platitude, I have to put some flesh around the bones. By systematic, I
mean that the way of doing is repeated, thus is identifiable and used more than
once. A style, be it mathematical or otherwise, cannot be a fluke, a singular
manifestation of a behavior. It has to be a way of behaving, of doing, of making
that is a variation or a series of variations around an identifiable pattern, even
though the latter might be hard to define. But even for this to be possible,
I claim that the following conditions have to be satisfied. In order to have a
mathematical style, there has to be:

1. A “standard”, a way of doing mathematics against which the alternative
style is contrasted; most of the time, this standard is implicit and is not
recognized as such by the practitioners;

2. A combination of patterns of behavior that deviate significantly from the
standard;

2It is hard to determine the exact number of volumes, particularly in the original publi-
cations, since some were published in parts and then in complete volumes. The best source
of information about the origins of the collective and its early work is still found in Beaulieu
(1990). See also Beaulieu (1994). Other important sources are Corry (1992, 1996, 2001, 2009).
Corry’s work is extremely valuable and stimulating.
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3. A systematic and voluntary use of these patterns; these patterns have to
be used and sought in all possible cases. They are not adopted as a mere
option that can be discarded at will and they are not practiced without
the practitioner being willingly aware of them; it has to be implemented
as a conscious value in and for itself.

Some comments and clarifications are required. The first condition, namely
the existence of an implicit (or explicit) standard seems to me to be inescapable.
A style, to be identified as a style, has to be distinctive in one way or another
and for this to be possible, there has to be something that it is distinguished
from.

A style, to be recognized as a style, has to deviate significantly from a
(implicit or explicit) standard. It is, of course, difficult to qualify in general what
‘significantly’ means precisely. Within a given practice, there are variations.
These variations by themselves do not yield nor do they constitute a style, but
they might the precursor to a style. The expression ‘combination of patterns of
behavior’ refers to ways of doing that are guided or systematic, that follow a
pattern. Of course, it is not a method nor a combination of methods in the sense
of an algorithm or algorithms. For a style is fluid, changing within a certain
range or space of variations, but also rigid enough so that it can be recognized
as such.

Last but not least, for a style to be a style, the patterns of behavior under-
lying it have to be consciously adopted and applied in all possible cases, even
those that might seem outside the original scope of these behaviors. One subtle
point has to be made about the voluntary aspect. It is not that the person who
is adopting these patterns is aware that she is adopting a style — for she might
not think of it in these terms —, but she has to be aware that the patterns of
behavior she is adopting are deviant from the standards of the community. It is
entirely possible that she is simply adopting the patterns of behavior that seem
to her to be the best or most effective given her goal, what she knows and what
she can do. In other words, sometimes a style comes naturally and is not seen
as being the result of a conscious effort to behave the way that person behaves.
But in the eyes of others, it is definitely a style.

Notice that a style is intrinsically historical. It appears at some point and
can, and usually does, disappear at another point. But it has to last sufficiently
long so that it can be identified as such. It can also become the new standard
for a given community and thus lose its status as a style if the new generations
are taught to do mathematics by adopting these behavioral patterns.

We propose a more precise definition of mathematical style. Let us fix a few
conventions. First, by an agent α, we refer to the author of a piece of math-
ematics, be it an individual, a group of individuals, a collective, etc. Second,
by a cultural context γ, we refer to the accepted norms, implicit or explicit, in
a given community, that dictate how a certain activity has to be performed or
is usually performed. Needless to say, there are specialized cultural contexts,
e.g. homological algebra, descriptive set theory, etc., as well as more global cul-
tural contexts, number theory, algebra, analysis, even mathematics as a whole.
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Third, by patterns of definitions δ, we refer to ways of using a language, spoken
or written — we use the term ‘language’ in a broad sense, including diagram-
matic, visual, symbolic, etc., conventions —, even introducing a new language
and using it in a certain manner. Fourth, by patterns of inference ι, we refer to
ways of arguing based on the choice of linguistic and/or symbolic devices made,
that is the choice of δ. Contrast and compare, for instance, the way mathemati-
cians can now define the product of two sets X and Y . In the language of set
theory, one defines the Cartesian product in the usual fashion, that is as a set
containing the ordered pairs (x, y), with x ∈ X and y ∈ Y . In the language of
category theory, a product of two sets is defined as being an object P together
with two morphisms pX and pY satisfying the usual universal property. These
choices then determine to a certain extent the patterns of inference one can use
and will use, even though there is still room for variations in the patterns of
inferences employed within both contexts. We can now give our definition.

We say that a corpus of mathematics µ, embodied in books, papers, talks,
etc., produced by an agent α exhibits or has an epistemic style σ in the cultural
context γ if and only if σ is a systematic way of solving problems that rests
upon:

i. specific and systematic patterns δ of definitions that differ significantly
from the standards of γ;

ii. specific and systematic patterns ι of inference that differ significantly from
the standards of γ;

iii. combinations κ of components of δ and ι in the solution of problems, the
organization of concepts, results and relations between the parts of µ that
differ significantly from the standards of γ.

This gives a general definition of a mathematical style, but it does not provide
the features of a particular mathematical style. To get the latter, one has to
define δ, ι, their combinations κ and specify how they deviate from the standards
of γ.

Let me immediately illustrate this definition by a concrete example, which
I hope will be useful. I claim that members of the contemporary community of
logicians, mathematicians and computer scientists who are developing and using
homotopy type theory could end up practicing a new style of mathematics in
the foregoing sense. I cannot, of course, describe homotopy type theory in such
a short paper3. I will sketch the main elements that I believe can justify my
claim.

First, homotopy type theory can be used systematically to do mathematics,
to solve mathematical problems. It differs as such significantly from the stan-

3See Collective (2013) for a presentation of the theory and how mathematics is developed
within it. Of course, homotopy type theory is also presented as a new foundational framework.
As a consequence, it is taken to be global and systematic, which are two elements that are
crucial to our approach. I underline again that the ‘global’ is always relative to a community.
It could be all of homological algebra, or all of algebraic geometry, but not all of mathematics,
for instance.
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dards used, implicitly or explicitly, by the contemporary community of mathe-
maticians. The language of homotopy type theory is not based on the standard
universe of sets or a variant thereof. Classical mathematical entities are defined
by using new means of definitions and theorems and computations are obtained
by novel inferential and computational patterns. Classical constructions and
concepts, e.g. sets, the homotopy groups, the Hopf fibration, Eilenberg-Mac
Lane spaces, etc., are defined in novel ways and proofs of theorems have to go
through new paths (no pun intended). See Licata and Finster (2014); Rijke and
Spitters (2015); Buchholtz et al. (2018) for some examples.

I want to emphasize that we need not have such a well-defined, formal frame-
work to characterize a singular mathematical style. In fact, as it develops, the
mathematical practice based on homotopy type theory might become a mix-
ture of purely formal, computational mathematics, checked by computers, and
informal expositions containing the main mathematical ideas involved in the
computations. However, the latter does not constitute its style. Its style resides
in the patterns of definitions, patterns of inferences and their combinations in
the solutions of mathematical problems. It is not tied up to specific axioms,
e.g. the univalence axiom, of homotopy type theory, but rather basic method-
ological features built into it. Thus, some of the technical, formal aspects of
homotopy type theory might be modified, even abandoned, and the style could
still be present. The style is not attached to the specific (univalent) foundational
framework presented and explored, but rather to the language, the manners of
defining, proving and calculating that can be kept apart from the specific formal
framework.

To make sure that our example does not mislead the reader in thinking that
our definition of mathematical style applies only to formalized mathematics
and formalized theories, let me fall back on a recent analysis of the notion of
mathematical style proposed by David Rabouin. Even though Rabouin does
not give a general definition of the notion of mathematical style in his paper
Rabouin (2017), his approach is close to ours in many respects and has, in fact,
inspired ours4.

Based on Chevalley’s paper on mathematical style, Rabouin identifies a
mathematical style with a way of writing that inflects mathematical thought.
After pointing out that Chevalley does not give a definition of mathematical
style, Rabouin presents Chevalley’s position thus: “...he [Chevalley] merely
states that one can identify general tendencies in ways of writing mathemat-
ics...”(Rabouin, 2017, 142), and then quotes Chevalley saying that there are
“revolutions that inflect writing, and thus thought.”(Rabouin, 2017, 145) There
are other elements that are implicitly included in Rabouin’s analysis. Two fea-
tures have to be underlined, for they are directly tied to our analysis. The first
component has to do with patterns of inferences, which he mentioned in an
example:

When Poincaré used the ε-style, it was not because he shared a
4There are also parallels with Kvasz (2008), but we will not expand on this particular point

here.
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certain conception with Weierstrass of what the objects (...) involved
in this manipulation were and about the good (in this case ‘rigorous’)
delineation of the theories, but because this way of writing allowed
some powerful inferences that were not possible in the previous style.
(Rabouin, 2017, 148)[my emphasis]

Finally, another relevant element comes up when he discusses the Cartesian
style:

Both Descartes’s and Fermat’s methods rely on a kind of inferential
black box coupled with geometrical reasoning. This allows us to give
a more precise characterization of the Cartesian style (at least for one
important aspect): its core is not the use of algebra in and of itself
(which existed long before Descartes and Fermat) but the coupling of
specific kinds of computational inferences with geometrical ones. In
this sense, one can say that the Cartesian style of geometry, even if it
did not suddenly disappear, took a dramatic turn around 1750 with
the first formulations, which, as later emphasized by Joseph-Louis
Lagrange, were free from any diagrammatic inferences — Leonhard
Euler (1748) can be considered a starting point here. (Rabouin,
2017, 154)[my emphasis]

It is not only the computational inferences but also the geometrical inferences
that we want to underline here, which we include in the patterns of inferences
contained as an intrinsic part of the language or the writing.

Rabouin gives also the examples of Leibniz’s style of (transcendental) ge-
ometry, set theory as a language (as opposed to formalized set theory) and the
Euclidean style of geometry5 as examples of his notion of mathematical style.

As emphasized by Rabouin, a style can be adopted for a variety of reasons,
even incompatible reasons, and these reasons are not necessarily philosophical.
For some, it might be associated with a specific ontology. To others, it might
be seen as a consequence of a chosen epistemology. It is even conceivable that
some see in it an ideological or political component. Finally, it might simply be
more effective than another way of solving certain problems. The main point
here is that the style is not defined by only a common ontology or a common
epistemology, etc.

I will now try to show that Bourbaki is an exemplar of the notion of a
mathematical style6.

3 Bourbaki’s Style
Bourbaki is particularly interesting when looked at from the point of view of
the notion of mathematical style. The fact is, we could use the expression
“Bourbaki’s style” in three different senses.

5At least as interpreted by Ken Manders in his Manders (2008).
6I am using the term ‘exemplar’ in a sense similar to Kuhn’s usage in his postscript of the

second edition of Kuhn (1970).
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1. Bourbaki had a unique method of work; it was a collaborative effort unlike
any other before and, as far as I know, ever since7. This in itself deserves
to be called “Bourbaki’s style of work”.

2. Bourbaki developed a unique, terse way of presenting mathematics which
even became known as “Bourbaki’s style”. We can therefore talk about
“Bourbaki’s presentation style”.

3. Finally, and most importantly for our project, Bourbaki’s modes of de-
velopment of mathematics itself, centered on a certain notion of structure
and of how to do mathematics in a structuralist fashion. It is of course
at this level that our characterization of the notion of mathematical style
ought to apply to Bourbaki. Thus, there is “Bourbaki’s structuralist style”.

These three senses of styles are not independent. The third, namely the math-
ematical style as such, emerged in part from the first, Bourbaki’s method of
work. The second, the writing style, is a direct consequence of the third and
the first components. We will look at these three senses in turn. But before we
do so, we have to provide a minimum amount of information about Bourbaki,
for it is an essential part of the context.

3.1 Bourbaki: a very short description of the group and
the project

Bourbaki was famous among mathematicians, and intellectuals in general, from
the 1960s until the beginning of this century approximately. The new generation
of philosophers, logicians and mathematicians have very little knowledge of who
they are, what they did and why it was important, and thus it seems appropriate
to give a short presentation of the group8.

André Weil (1906-1998), Henri Cartan (1904-2008), Claude Chevalley (1909-
1984), Jean Delsarte (1903-1968), Jean Dieudonné (1906-1992), René de Possel
(1905-1974), a group of young and ambitious mathematicians, all former stu-
dents from the École Normale Supérieure in Paris, an élite school, met for the
first time in December 1934 to discuss the idea of writing together a modern
textbook in analysis. Except for Claude Chevalley, the youngest member of the
group, they were all university professors who found that they did not have at
their disposal a decent textbook to work with and Weil convinced them that
the best solution was simply to write one. They certainly did not know then
that they had just set in motion a unique collaborative enterprise that would
not only last well after their withdrawal from the group, but that would also

7The closest I can find nowadays are The Stack Project in algebraic geometry, the nLab
in higher dimensional category theory and Gowers’s Polymath Project. But they all differ in
one way or another from Bourbaki’s work. See https://stacks.math.columbia.edu/about
for the Stack Project, https://ncatlab.org/nlab/show/HomePage for the nLab and https:
//en.wikipedia.org/wiki/Polymath_Project for the Polymath project.

8There is nothing original in this section. The interested reader can consult Beaulieu (1990,
1994); Corry (2004, 2009); Houzel (2004); Mashaal (2000) for more.
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have a deep impact on the face and development of mathematics in the 20th
century.

They were well aware that mathematics was changing and that Hilbert and
his school were promoting the axiomatic method in mathematics. Many of them
had visited Göttingen, Berlin, Hamburg, Frankfurt, Munich, Rome, Stockholm,
Zurich, Copenhagen, Princeton (to mention but the most important places) dur-
ing their graduate studies or afterwards. They had all read Van der Waerden’s
Moderne Algebra and it had a great impact on them.

The first “extensive” meeting took place in the summer of 19359. The com-
position of the group changed somewhat in the meantime and would change
again in the following fall. We will not follow the exact composition of the
group through time. Suffice it to say that Weil, Cartan, Chevalley, Delsarte and
Dieudonné formed the core of the group for the first 20 years or so. Charles
Ehresmann (1905-1979) joined the group in the fall of 1935 and left in 1947.
After WWII, Laurent Schwartz (1915-2002), Pierre Samuel (1921-2009), Roger
Godement (1921-2016), Jean-Louis Koszul (1921-2018), Armand Borel (1923-
2003), Jean-Pierre Serre (1926- ), Alexandre Grothendieck (1928-2014) and
Pierre Cartier (1932- ) joined the collective at some point. Samuel Eilenberg
(1913-1998), one of the fathers of category theory, became a member in 1950.
All the members were creative mathematicians who all had respected individ-
ual careers. All of them nonetheless said that being members of Bourbaki and
working together had a deep influence on their individual work10.

The original plan was simple enough: write a modern textbook on analysis.
It became clear that they needed to start with what they called an “abstract
packet”, which included set theory, general topology and algebra as it was then
known. Notice that these three disciplines were being created at the time. In-
deed, Bourbaki contributed to their evolution and stabilisation11. What was
supposed to be merely an introductory chapter rapidly became a large under-
taking. Bourbaki first published a fascicle of results on set theory in 1939. It
was not, as such, a textbook, for it contained no proofs. They decided to publish
it nonetheless, since many of the results on sets were to be used in subsequent
volumes. The complete volume on set theory finally came out in two parts, one
published in 1954 and the other in 1957. The last one contains the chapter on
structures. Notice how long it took them to finally get it published: almost 20
years. The volume on sets and structures has a tortuous history and it went
through numerous versions12. It might be worth pointing out that the general
notion of structure was not in Bourbaki’s mind in 1935. It showed up for the
first time during the meeting held in the summer of 1936, but as an undefined
concept. It then went through various presentations and the final, published

9In fact, the group had met every two weeks during the winter and the spring of 1935. The
summer meeting was an intensive session where they hoped to do more work together.

10In a late interview, Henri Cartan declared: “In Bourbaki I learned very much. Almost all
I know in mathematics I learned from and with the Bourbaki group.”(Jackson, 1999, 785)

11Suffice it to say that the axioms of topology in terms of open sets came directly from
Bourbaki. So does the notation for the empty set, ∅, among other things.

12It is now possible to consult these versions on line, since the early documents have been
digitized and made available on the site http://sites.mathdoc.fr/archives-bourbaki/
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version, did not satisfy the group, for reasons that we will clarify later.
Despite the fact that they had to modify the original project in numerous

ways and even, at some point, to scale it down, Bourbaki started publishing
books as early as 1940. The first volume contained the first chapters of General
Topology, quickly followed by the first chapters of Algebra in 1942. Subsequent
chapters on topology and algebra follow in 1947 (topological groups, linear alge-
bra), 1948 (multilinear algebra, real numbers), 1949 (functions of a real variable,
functional spaces) and in the 1950s, they basically published a volume a year,
up to the theory of integration. It was an intensive undertaking, ambitious and
systematic. No single author could have done that. Even for a distinguished
group, and especially given their method of work, it is remarkable that they
succeeded in doing anything.

3.2 Bourbaki’s method of work
Team work is neither easy nor simple13. A large amount of trust and respect
has to exist between the members for anything to be done. There also has to be
an agreement as to what the final goal is, otherwise the group spends countless
hours wasting time discussing that goal. In Bourbaki’s case, the target was clear
at the beginning, but it changed as the work developed. Somehow, the original
members agreed on a method of work and it led to the publications mentioned.
The method was brutal. Here is how Dieudonné presented it later14.

The work method used in Bourbaki is a terribly long and painful
one, but is almost imposed by the project itself. In our meetings,
held two or three times a year, once we have more or less agreed on
the necessity of doing of book or chapter on such and such a subject
(...), the job of drafting it is put into the hands of the collaborator
who wants to do it. So he writes one version of the proposed chapter
or chapters from a rather vague plan. Here, generally, he is free to
insert or neglect what he will, completely at his own risk and peril,
.... After one or two years, when the work is done, it is brought
before the Bourbaki Congress, where it is read aloud, not missing a
single page. Each proof is examined, point by point, and criticized
pitilessly. One has to see a Bourbaki Congress to realize the virulence
of this criticism and how it surpasses by far any outside attack. (...)
Once the first version has been torn to pieces – reduced to nothing
– we pick a second collaborator to start it all over again. This poor
man knows what will happen because although he sets off following
new instructions, meanwhile the ideas of the Congress will change
and next year his version will be torn to bits. A third man will start,
and so it will go on. One would think it was an endless process, a

13For more on Bourbaki’s method of work, the reader can consult the references given in
the previous footnotes.

14Other original members have provided similar descriptions and later members concurred.
See, for instance Guedj (1985) or Cartan (1979).
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continual recurrence, but in fact, we stop for purely human reasons.
When we have seen the same chapter come back six, seven, eight, or
ten times, everybody is so sick of it that there is a unanimous vote
to send it to press. This does not mean that it is perfect, and very
often we realize that we were wrong, in spite of all the preliminary
precautions, to start out on such and such a course. So we come up
with different ideas in successive editions. But certainly the greatest
difficulty is in the delivery of the first edition. (Dieudonné, 1970, pp.
141-142).

The result was perhaps not perfect, but very few books are written in that
way and go through such a rigorous editing process. Although not faultless,
the final result was certainly better is some ways than what it would have been
had it been the product of a single individual. Definitions were weighed, proofs
were criticized, the organisation of theorems was analyzed, the overall network
of concepts and results was evaluated by first-rate mathematicians. The result
was something unique. There is one important component of the method that
Dieudonné did not underline. As Chevalley later put it: “This allowed our
work to submit to a rule of unanimity: anyone had the right to impose a veto.
As a general rule, unanimity over a text only appeared at the end of seven or
eight successive drafts.”(Guedj, 1985, 47) Majority was not enough. If only one
member thought that a manuscript was not good enough, it had to be rewritten.
Like I said, it was a brutal process.

This mode of collaboration certainly played a role in the redactions of the
volumes published over the years. It contributed in an essential way to the
construction of the presentation of the material and its organization. For, when
one looks at the works of its individual members, it is clear that there are dif-
ferences between what Bourbaki published and what they published, even when
some of the members produced expository material. Chevalley, for instance, is
more radical than Bourbaki in some ways. I cannot refrain from quoting a long
passage from a review of Chevalley’s textbook on algebra, Chevalley (1956),
written by Mattuck:

Chevalley has written a text-book, and his mathematical personality
permeates every paragraph. [...] The book is tight, unified, direct,
severe; relentlessly and uncompromisingly it pursues its ends: out of
the simplest basic notions of algebra to build up with perfect preci-
sion the theory of multilinear algebras which have found applications
in topology and differential geometry. [...] The unity is monolithic.
Gone is the discursive rambling of previous texts. This one marches
unswerving and to its own music. [...]

The general approach to the subject matter is that of Bourbaki’s first
three algebra chapters, but there are significant differences in content
and treatment (Chevalley is often more general). As for the style,
Bourbaki emerges from the comparison a warm, compassionate, and
somewhat elderly gentleman. (Mattuck, 1957, 412)[my emphasis]
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Mattuck directly refers to Bourbaki’s style or presentation and compares it to
Chevalley’s. There is no doubt that to characterize Bourbaki’s style of pre-
sentation as “warm, compassionate, and somewhat elderly” was deeply ironical.
To most readers at the time, Bourbaki was anything but warm, compassionate
and somewhat elderly! Mattuck’s description of Chevalley’s book as “tight, uni-
fied, direct, severe” is precisely what its contemporaries would have claimed of
Bourbaki’s books. Chevalley was pushing it even further.

Weil, on the other hand, wrote books that are definitely not in Bourbaki’s
style, at least not in the sense that I am using the term. For instance, in his
review of Weil’s Foundations of Algebraic Geometry, Oscar Zariski underlines
the fact that “It is a remarkable feature of the book that — with one exception
(Chap. III) — no use is made of the higher methods of modern algebra. The
author has made up his mind not to assume or use modern algebra ‘beyond the
simplest facts about abstract fields and their extensions and the bare rudiments
of the theory of ideals’.”(Zariski, 1948, 671) Zariski himself claims afterwards
that “we may just as well help ourselves to modern algebra to the fullest possible
extent”, a claim certainly consistent with Bourbaki’s style. And then, he goes
on, this time talking about Weil’s writing itself: “To achieve his objectives Weil
wages a campaign of the Satz-Beweis type. Most readers will find it difficult
to follow the author through the seemingly endless series of propositions, theo-
rems, lemmas and corollaries (their total must be close to 300).”(Zariski, 1948,
674). Thus, it can be claimed that, although the choice of exposition made by
Weil was close to what one finds in Bourbaki — the Satz-Beweis type —, the
patterns of definitions and inferences were not. In fact, as we will argue, there
is another important aspect of Bourbaki’s style that Weil does not quite follow
to its natural conclusion in his work.

It is important to note that Bourbaki’s volumes are expository. They are
not research monographs, even though some of them include some very recent
developments at the time of their writing. But I do not believe that the analysis
that I propose is limited to these expository works. It can and was adopted by
some of Bourbaki’s members. I would claim, for instance, that Chevalley and
Grothendieck both have produced mathematics that exhibit Bourbaki’s style,
although in the case of Grothendieck, it is a structuralist style that is a variant
or an extension of Bourbaki’s. These are empirical claims that will have to be
established by looking at their work if my analysis holds any water.

Let us now briefly look at the mode of presentation of the material chosen
by Bourbaki. We first want to emphasize one aspect that, although important
in the organization and the presentation of the material, does not constitute, in
my opinion, an essential aspect of Bourbaki’s structuralist style.

3.3 Bourbaki’s writings
Every book of Bourbaki’s Éléments de mathématique comes with a user guide15.
They all open with a warning “To the Reader”. The first paragraph goes like

15Once again, I do not claim any originality in this section. But it is essential to untangle
different components present in the writings.
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this:

1. This series of volumes, [...], takes up mathematics at the begin-
ning, and gives complete proofs. In principle, it requires no particu-
lar knowledge of mathematics on the reader’s part, but only a certain
familiarity with mathematical reasoning and a certain capacity for
abstract thought. [...] (Bourbaki, 2004, v)

It is no accident that Bourbaki insists right from the beginning on a ‘certain
capacity for abstract thought.’ We will argue that it is in fact a crucial part of
Bourbaki’s mathematical style. The next paragraph goes into more detail.

2. The method of exposition we have chosen is axiomatic and ab-
stract, and normally proceeds from the general to the particular.
This choice has been dictated by the main purpose of the treatise,
which is to provide a solid foundation for the whole body of modern
mathematics. For this it is indispensable to become familiar with a
rather large number of very general ideas and principles. Moreover,
the demands of proof impose a rigorously fixed order on the subject
matter. It follows that the utility of certain considerations will not
be immediately apparent to the reader... (Bourbaki, 2004, v)

Notice that this solid foundation rests on the abstract axiomatic foundation,
not explicitly on logic and set theory, although the first volume is indeed on
logic and set theory. They certainly play a role and are part of the style, but
it is clear that the weight is placed on the abstract axiomatic method which
is grounded on them. Logical aspects of the volumes are nonetheless identified
immediately. Logic plays two important roles in the enterprise. The first one is
global and described in paragraph 4:

4. This series is divided into volumes (here called “Books”). The
first six Books are numbered and, in general, every statement in the
text assumes as known only those results which have already been
discussed in the preceding volumes. This rule holds good within each
Book, [...]. At the beginning of each of these books (...), the reader
will find a precise indication of its logical relationship to the other
Books and he will thus be able to satisfy himself of the absence of
any vicious circle.

Thus, there is a global logical organization of the whole books. It is systematic
and coherent.

The second one is local and shows up in the following paragraph.

5. The logical framework of each chapter consists of the definitions,
the axioms, and the theorems of the chapter. These are the parts
that have mainly to be borne in mind for subsequent use. (Bourbaki,
2004, vi)

13



This is now a specific mode of presentation, based on a logical framework. And
indeed, anyone who has looked at and studied mathematics by reading Bourbaki
is struck by the following facts, which make it hard not to fall back on Mattuck’s
adjectives. The presentation can only be qualified as being extremely dry, severe,
austere, unified and terse. There are no images, no informal motivations or
descriptions, no explanations of the value of this theorem or that definition.
But at the same time, it is clean, elegant, and efficient. As some say that there
are no unnecessary notes in Mozart’s music, there are no unnecessary definitions,
axioms, theorems, lemmas and examples in Bourbaki’s mathematics. Another
comparison readily comes to mind: Bourbaki’s organisation of the material is
akin to the plans of the architects of the Bauhaus school and their students.

Here is how Cartan described these components in 1958, at the heyday of
their production. Not surprisingly, we find the same elements contained in the
note to the reader.

All the books of part I are arranged from a strictly logical point of
view. A concept or result may be used only if it has appeared in a
previous chapter of a book. Obviously, one has to pay a high price
for such rigor: the resulting presentation tends to become somewhat
ponderous. The reader finds its weightiness repellant, and the style is
certainly not what one would call inspiring. The mathematical text
consists of a series of theorems, axioms, lemmas, etc. This rigorous,
precise style stands in sharp contrast to the light and not too precise
style of the French tradition at the end of the last century. [...] Today
it is apparent that this precise style is finding its way more and more
into mathematical literature. Cartan (1979)

Nothing is presupposed. Everything is defined from scratch and thereafter, the
proofs all depend on notions and theorems already given and proved. This is
an adequate characterization of Bourbaki’s expository style. But I argue that
it does not give us, as such, Bourbaki’s mathematical style.

In a different paper, written much earlier, Cartan makes the following re-
marks about the logical component and the epistemic component of the ax-
iomatic method:

Now suppose these axioms chosen once and for all. Our mathemati-
cal theory must not restrict itself to be a dull compilation of truths,
that is of consequences of axioms that we note, for each and every
one of them, laboriously the accuracy. For mathematics to be an
effective instrument and, also, for us, mathematicians, to be able to
take a true interest in it, it must be a living construction: one must
clearly see the web of theorems, group the partial theories. In this
task, it is again the axiomatic method that comes to our help, by
giving us the principle of classification. [...] Today, more and more
we tend to study algebraic structures, topological structures, and
ordered structures, etc. [...]
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Thus, not only the axiomatic method, based on pure logic, gives
a steadfast seat to our science, but it also allows us to organize it
better and to understand it better, it makes it more effective, it
substitute general ideas to “computations” that, carried out haphaz-
ardly, would most likely lead nowhere, unless done by an exceptional
genius. (Cartan, 1943, 11) [my translation and emphasis]

Thus, we have to distinguish the logical dimensions of the axiomatic method
from the epistemic dimensions. The epistemic dimensions are built upon the
logical ones. A purely logical presentation of mathematics already existed when
Bourbaki wrote their books: it was given by Russell and Whitehead Principia
Mathematica. Granted, it was not based on sets, and in some respects it was a
failure, but it certainly was rigorous, austere and precise. Bourbaki and some
of its members did publish on the logical foundations of mathematics16 And
Bourbaki did claim that he wanted to derive the whole of mathematics from the
axioms of set theory17. It is clear that there is a polemical element present in
these papers, in particular the first two. Indeed, they present the foundational
program in the spirit of Hilbert’s answer to Brouwer. It is therefore tempting to
reduce Bourbaki’s project to its logical development. We believe that this move
is, however, far too quick. For one thing, Bourbaki did not want to include
logic in their project at first. And Bourbaki always looked at logic as a mere
instrument, as providing the proper grammar of mathematics.

3.4 Bourbaki’s style
Before we apply our general definition of mathematical style to Bourbaki, we
first have to present and discuss Chevalley’s article published in 1935 and en-
titled “Variations of mathematical style”, Chevalley (1935), in the Revue de
Métaphysique et de Morale18. Interestingly, while Bourbaki was coming to life,
one of its members published a paper in a philosophy journal that discusses
precisely the notion of mathematical style19.

3.4.1 Chevalley on mathematical style

As we have already indicated, when discussing Rabouin’s analysis of the notion
of mathematical style in the foregoing section of our paper, Chevalley does not

16See Dieudonné (1939); Cartan (1943); Bourbaki (1949).
17This is explicit in Bourbaki (1949).
18The title is Variation du style mathématique in French.
19Chevalley is a very interesting case. Not only was he a brilliant mathematician, but he

was also interested in politics, philosophy and the foundations of mathematics. As he himself
revealed later, he was solely responsible for the inclusion of logic in Bourbaki’s books. One of
his best friends was Jacques Herbrand, a brilliant young logician who unfortunately died in a
hiking accident in 1931 at the age of 23. Albert Lautman, the philosopher of mathematics who
was killed by the Nazis in 1944, was also one of his good friends. Later in his life, Chevalley
joined Grothendieck and founded the movement Survivre et vivre in Montreal during the
summer of 1970. It might also be worth mentioning that Chevalley studied under Emil Artin
in the early 1930s and then with Helmut Hasse, both vigorous developers of what was then
called the “axiomatic method”.
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give a general definition of mathematical style. He identifies three different
mathematical styles in his paper: the style based on infinitesimals, the ε-style
and the axiomatic style. Each one of these is characterized by contrasting it
with the preceding style.

Chevalley opens up his paper by saying that he is not interested in the
personal style of some mathematician, but rather the style of a period, a general
tendency that becomes the norm under the influence of certain individuals. To
illustrate what he means, he presents the “ε-style", a style forged under the
influence of Weierstrass.

The ε-style itself has a history and became the norm when infinitesimals
were seen to lead to difficulties. Thus, the desire to bring rigor into some math-
ematical demonstrations, in particular those involving infinitesimal quantities,
brought about important changes in the practice of mathematics. Not that in-
finitesimals were not useful; thinking and doing mathematics with infinitesimal
quantities was fruitful, even fertile. But their use needed some justification and
it opened the door to some anomalies, for instance Weierstrass’s discovery of a
continuous real function in one variable that is nowhere differentiable, but which
can be defined nonetheless by an ordinary looking Fourier development. It ap-
peared that something was wrong somewhere. Similar functions could show up
in classical analytic theories without notice. It was by trying to clarify the foun-
dations of these infinitesimal quantities that a new mathematical style emerged.
This style, according to Chevalley, can be identified by certain obvious traits.

As its name indicates, the usage, sometimes immoderate according to Cheval-
ley, of various ε, with indices, is the most obvious feature of that style. The
progressive replacement of equalities by inequalities in proofs, theorems, etc. is
the second sign. Notice immediately that the components of the style identified
by Chevalley are argumentative strategies, ways of proving that are brought in
to make mathematics more rigorous. Although he does not mention what we
called ‘means of definitions’ explicitly, he certainly could have done so.

According to Chevalley, it is precisely this reliance on inequalities that in-
evitably lead to the limitation of that style and the need to develop a different
style.

Indeed, while equality is a relation that makes sense for arbitrary
mathematical beings, inequality can only bear upon objects pro-
vided with a certain order, in practice only on real numbers20. This
therefore leads, in order to embrace the whole of analysis, to the
complete reconstruction from real numbers and functions of real
numbers. ... One could believe at some point that mathematics
would constitute itself in a unitary domain, founded entirely by con-
structive definitions from the real numbers. ((Chevalley, 1935, p.
379)) [Our translation]

20It is interesting to see that Chevalley does not consider abstract ordering structures at
that point. He did not know about Birkhoff’s or Ore’s work at the time. See Corry (2004)
for more on the latter. Bourbaki will later on think of order structures as fundamental to
mathematics.
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He simply states that this unification did not happen. For, some mathematical
concepts cannot be constructed from the real numbers, for instance the concept
of group. Geometry, although it can be constructed to a certain extent in the ε
style, becomes somewhat ad hoc or artificial. The nature of points, as n-tuples
of real numbers, is not essential to geometry, as Klein had conclusively shown.
It is the group of transformations of a geometry that provides the equality of
figures inherent to that geometry, not the equality of points. Thus, in some
cases, constructive definitions provided by analysis hide the real nature of what
they were trying to define.

Chevalley then states that geometry provided, in fact, the material of what
was to become the new style. He attributes the emergence of this way of doing
mathematics to Hilbert’s work in geometry21. One does not construct points,
lines, planes, and other geometric objects from more primitive notions, but
rather one simply stipulates, by stating axioms, some of their fundamental
properties, leaving the nature of the objects completely undetermined. One
then proceeds by proving theorems from these axioms and then note that the
points of the geometry can be associated to points of real numbers and that the
axioms of the theory are true when geometric points and planes are replaced by
objects constructed from real numbers22. Hilbert’s success apparently inspired
other mathematicians. Chevalley mentions Lebesgue’s integral, which is given
by a list of properties and the concept of topological space, in which Weier-
stass limits are obtained from a purely abstract characterization, as Fréchet
has shown. And then, there is algebra. Chevalley points out that one could
even claim that the whole movement in fact originates from that source, more
precisely from Dedekind’s work and teaching of abstract groups. However, in al-
gebra, Chevalley claims that the turning point can be found in Steinitz’s work on
field theory. Chevalley then claims that “the axiomatization of theories has pro-
foundly changed the style of contemporary mathematical writings"((Chevalley,
1935, p. 381)).

Thus, the hallmark of the new style is the axiomatic method. Chevalley
already emphasizes the fact that the axioms are not chosen arbitrarily. Math-
ematicians start from given, known proofs. One then performs an analysis of
these proofs and tries to identify the properties that are strictly necessary to ob-
tain a given result. One looks for the minimal logical requirements and tries to
identify the domain of mathematics in which the result can be proved. Once this
is done, it is possible to eliminate unnecessary hypotheses. In this way, according
to Chevalley, one obtains elegant demonstrations. Chevalley, in 1935, identifies
the autonomous domains of mathematics: in algebra, field theory, the theory of
abstract groups, ring theory, hypercomplex numbers (now known as algebras);
in analysis, measure and integration theory, topology, Riemann surfaces, Hilbert
spaces; in geometry, projective and conformal geometries, Riemann spaces, com-
binatorial topology (renamed algebraic topology soon afterwards). In each case,

21Whether this is historically adequate, we will simply ignore. It is a debate among Hilbert
scholars that need not concern us here.

22In the paper, Chevalley does not talk about interpretations, but by replacing one by
another.
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we get a specific type of abstract structure. Chevalley then claims that these
theories combine, yielding, for instance, topological groups, which is seen as a
new abstract structure. In other cases, some theories turn out to be based on
the same axioms, or, in the words of Chevalley, their axioms yield the same
structure, as is the case of probability theory and measure theory.

Traditional mathematical objects emerge from the combinations and inter-
actions of some of these abstract structures. Chevalley mentions the system of
real numbers: it is a field, a topological space, a topological group, an ordered
set, a measured space, etc. The properties of real numbers are either theorems
of one of these abstract structures that apply to them, or “properties resulting
from the simultaneous validity of many of these theories”((Chevalley, 1935, p.
383)[our translation]). It is worth quoting the closing paragraph of Chevalley’s
paper:

It results from all this that contemporary mathematics tries to define
mathematical objects in comprehension, that is by their character-
istic properties, and not by extension, that is by construction. This
aspect is undoubtedly not definitive. But it is hard to predict at
this point in which direction it will evolve. Be that as it may, the
actual tendency seems far from having exhausted its internal dy-
namism. The diverse theories that have been separated up until
now probably have not attained their definitive form. Many of them
will probably be analyzed in terms of superpositions of even more
general theories; others will turn out to be equivalent with one an-
other or deriving from a common source. The structural analysis
of facts already known is far from being done, not mentioning the
analysis of these new facts that manifest themselves once in a while.
((Chevalley, 1935, p. 384))[our translation]

Chevalley is thus well aware that these autonomous domains, as he calls them,
might change as mathematics evolves.

The last sentence of the paragraph is, for us, revealing: one has to effectuate a
structural analysis of facts. Both words are important: one looks for a structure
and it is obtained via an analysis. Both words are philosophically loaded and
have a long history. Chevalley was certainly aware of that. Be that as it may,
the expression captures perfectly the basis of the new style. The structural
analysis leads to the identification of one or more structures and the latter are
then explicitly captured by the axiomatic method23.

In his paper, Chevalley provides a sketch of the ‘new point of view’ under-
lying Bourbaki’s structuralist standpoint, Bourbaki’s style24. It is striking to

23But it might also be somewhat too short. In his paper Mathématiques et réalité published
in 1936, Albert Lautman characterizes the work of the Hilbert school as providing ‘the syn-
thesis of necessary conditions and not that of the analysis of first notions.’(Lautman, 2006,
49). Lautman is emphasizing the synthetic component inherent to the process of abstraction
as embodied in the axiomatic method. He also explicitly refers to Carnap’s work and the role
of analysis in the latter.

24Patras, in his book Patras (2001), takes a similar position with respect to the idea that
Bourbaki adopts a certain mathematical style.
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see that the paper The Architecture of Mathematics and other papers written
in the 1940s by various members of the collective essentially repeat and expand
on what Chevalley had already said in 1935. They appear to be nothing more
nor less than a more precise and updated version of the same ideas.

3.4.2 Bourbaki’s epistemic mathematical style

Contemporary mathematicians did not hesitate to talk about Bourbaki’s style
in such a way that it pointed towards something more than simply the writing
style. But no one clearly provided a characterization of the style. Halmos made
a direct comparison with music:

The Bourbaki style and spirit, the qualities that attract friends and
repel enemies, are harder to describe. Like the qualities of music,
they must be felt rather than understood. Halmos (1957)

There is no doubt that the style of presentation must be felt, but we will nonethe-
less propose a characterization of Bourbaki’s epistemic style by applying our
general framework.

First, we have to identify γ, the background culture, more specifically the
standards against which Bourbaki’s style has to be compared and contrasted.
Since their original goal was to write a textbook on analysis, the background
is given by the French textbooks of the time, those that they were using them-
selves25. One of the texts used at the time was Émile Goursat’s Cours d’analyse
mathématique26. Even a cursory look at Goursat’s books indicates that it is an
instance of what Chevalley called the ε-style, with many epsilons. Needless to
say, Goursat does not use the language of sets systematically, the definitions are
informal, in the sense that there is no explicit logical apparatus and there are
no abstract structures involved either.

Let us move to δ, the patterns of definition. First, Bourbaki decides to use
systematically, explicitly and in all cases the language of set theory as expressed
in first-order logic. As we have already mentioned, no less than three different
papers were written, namely by Jean Dieudonné, Henri Cartan and André Weil,
in the late 1930s and 1940s, the latter presented by André Weil at the meeting
of the Association of Symbolic Logic, to emphasize the need to provide explicit
logical foundations for the working mathematicians. They are clearly not inter-
ested in the logical foundations of mathematics for its own sake, nor do they
see in the latter as having any real impact on the work of mathematicians27.

25Needless to say, it would be relevant to do more detailed historical research and look
carefully at the textbooks that were in circulation in France in the 1920s and early 1930s.
We know that the original members of Bourbaki knew about and were influenced by books
published outside of France, e.g. van der Waerden’s Moderne Algebra, Seifert & Threlfall’s
Lehrbuch der Topologie, Alexandroff & Hopf’s Topologie, Lefschetz’s Topology, among others.
We rely here on Beaulieu (1990); Corry (2004); Houzel (2004).

26Goursat’s books can be consulted online at https://archive.org/details/
coursdanalysema00gourgoog/mode/2up.

27Again, Chevalley is the only one who seemed to have taken a genuine interest in
foundational studies at the time. He even wrote a report on Gödel’s work on the con-
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In fact, this choice has to be put in the perspective of the cultural background
γ. For no one before Bourbaki had explicitly decided to present concretely in a
unified manner, in one language, all the concepts required to do analysis, and,
as they thought could be done in the 1930s and 1940s, the whole of mathemat-
ics. We will not belabor the idiosyncratic system of axioms of set theory chosen
by Bourbaki, for what matters to us is merely the fact that they adopted the
language of sets and the formalism of first-order logic in their presentation and
practice28.

It is in this language that the axiomatic method is used to define abstract
structures. But we have to be clear as to what is meant here; it is not merely
that a mathematician postulates what she likes and derives theorems from there.
The axioms that come at the beginning of a presentation are in fact the result
of a “structural analysis”, to use Chevalley’s words, and they are put together,
thus synthesized, into a new, autonomous whole. The same idea appears later.
In the 1940s, under the name of Bourbaki, Dieudonné wrote:

Today, we believe, however, that the internal evolution of mathemat-
ical science has, in spite of appearance, brought about a closer unity
among its different parts, so as to create something like a central
nucleus that is more coherent than it has ever been. The essential
aspect of this evolution has been the systematic study of the rela-
tions existing between different mathematical theories, and which led
to what is generally known as the “axiomatic method”. (Bourbaki,
1950, 222)[my emphasis]

The function of the axiomatic method is to abstract new, original concepts from
classical settings, and then to use this to reconstruct and extend these classical
results in new directions. The idea is expressed later by Cartan:

From the beginning, Bourbaki was a decided supporter of the so-
called axiomatic method. [...] How does it [the axiomatic method] ap-
ply to higher mathematics? A mathematician setting out to con-
struct a proof has in mind well defined mathematical objects which
he is investigating at the moment. When he thinks he has found the
proof, and begins to test carefully all his conclusions, he realizes that
only a very few of the special properties of the objects under consid-
eration have played a role in the proof at all. He thus discovers that
he can use the same proof for other objects which have only those
properties he had employed previously. Here we can see the simple
idea underlying the axiomatic method: instead of declaring which
objects are to be investigated, one only has to list those properties

sistency of the continuum hypothesis and I suspect that Gödel’s work did influence him
in his thinking as to how to give a general metamathematical account of the notion of
structure. But this specific point will have to be argued elsewhere. For his report, see
http://sites.mathdoc.fr/archives-bourbaki/PDF/065_iecnr_074.pdf.

28For critical evaluations of the axiomatic system adopted by Bourbaki, see Mathias (1992);
Anacona et al. (2014).

20

http://sites.mathdoc.fr/archives-bourbaki/PDF/065_iecnr_074.pdf


of the objects to be used in the investigation. These properties are
then brought to the fore expressed by axioms; whereupon it ceases to
be important to explain what the objects are, that are to be studied.
[...] It is quite remarkable how the systematic application of such a
simple idea has shaken mathematics so completely. (Cartan, 1979,
176-177)

This passage emphasizes the standards γ of the time again: when Bourbaki
started to work on their project, this so-called axiomatic method was not sys-
tematically used in this way. There were important examples of its use in
diverse areas, but it was not conceived as a way to reconstruct the whole of
mathematics, as a way to introduce mathematical structures in general.

We are clearly dealing with a special type of axiomatic method which is now
part of a new set of patterns of definition. The axioms are merely a contingent
vehicle to talk about the concept of an abstract mathematical structure. The
first step of the axiomatic method is to excavate the essential working compo-
nents in diverse mathematical situations and extract or abstract the properties,
operations, relations, etc. that are then expressed in the axioms. The latter
provide a structure, an object of study in itself. Structures are related to one
another in ways that classical mathematical fields were not, that is, by the
properties, operations, relations that are abstracted out. It thus leads to a com-
plete reorganization of mathematics and a completely different understanding
of mathematical concepts.

Bourbaki’s decision to use the axiomatic method throughout brought
with it the necessity of a new arrangement of mathematics’ various
branches. It proved impossible to retain the classical division into
analysis, differential calculus, geometry, algebra, number theory, etc.
Its place was taken by the concept of structure, which allowed def-
inition of the concept of isomorphism and with it the classification
of the fundamental disciplines within mathematics. (Cartan, 1979,
177)

This last sentence by Cartan captures an essential part of Bourbaki’s epistemic
style: “the concept of structure... allowed definition of the concept of isomor-
phism and with it the classification of the fundamental disciplines within math-
ematics.” Thus, Bourbaki’s patterns of definition of structures include intrinsi-
cally the notion of isomorphism. The latter is built in, it is part of the axioms,
thus the definitions and, it will be part of the inference patterns, as we will see.
Alas, Bourbaki’s formal characterization of the notion of mathematical struc-
ture is often seen as a failure. We strongly believe that to discard it completely
is a mistake; there is no need to throw the baby out with the bathwater.

3.4.3 Bourbaki’s definition of abstract mathematical structures and
isomorphisms

The importance of including the notion of isomorphism in the very definition of
structures was understood early by Bourbaki. Here is how Chevalley expressed
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it in an unpublished version of the introductory chapter on sets:

There are finally cases where the content of thought refers almost
uniquely to the formal aspect of the notion considered. This is how,
when a mathematician thinks of the content of the idea that he has
of isomorphic mathematical beings, he will note, we believe, that
he thinks less of the complete similarity of two objects as things
than the following: any theorem concerning one of these objects
can be translated into a theorem concerning the other. (Chevalley,
Chevalley, 26) [my translation]

Chevalley expresses a very important shift in this quote, a shift that will be in-
cluded in the final version of Bourbaki’s technical definition of species of struc-
ture. We move from the idea of isomorphic mathematical beings in terms of
similar objects to the claim that they are objects that satisfy the same the-
orems of a theory, or, from a proof-theoretical point of view, that the same
theorems can be proved about these isomorphic beings. Thus, the idea is to
define structures with the notion of isomorphism built in, so that if a specific
theorem about one of these structures is proved, then any structure isomorphic
to it will satisfy the very same theorem. Moreover, the only theorems such a
theory ought to be able to prove are precisely those that are invariant under
isomorphism. Thus, the pattern of definition includes a pattern of inference.
This is the key component of the structuralist style.

Bourbaki’s published technical definition of a “species of structure” is indis-
putably clumsy and was recognized as such. Moreover, and as we will briefly
indicate later, when the final version was finally accepted by Bourbaki, they
were very well aware that their definition could not accommodate categories
and functors, and after many different attempts by different members, even
Eilenberg, one of the creators of category theory, they simply gave up and pub-
lished their latest attempt, which could only cover set-based structures.

I will not sketch Bourbaki’s technical definition. I will rather offer a re-
construction of Bourbaki’s notion of species of structure29. There are two rea-
sons for presenting the reconstruction rather than Bourbaki’s published version.
First, we will use a more standard and transparent presentation. Second, it will
be clear that Bourbaki’s definition, which is really a different way of introduc-
ing the same ideas, is fully metamathematical. Indeed, in their final published
version, when the reader finally gets to the definition of a species of structure,
he or she reads “A species of structures in T is a text Σ formed of...”(Bourbaki,
2004, 262) Look at it again: a species of structures is a text. How should one
interpret this sentence? Is Bourbaki adopting a formalist stance? Notice that
it is consistent with Chevalley’s position with respect to mathematical style:
it is a way of writing. It is nonetheless clear that Bourbaki’s formal set-up
has a natural interpretation in a universe of sets. It is a text with a canonical
interpretation. More specifically, a species of structures has to be given by a
formulas in a language, and when interpreted, it is a set together with relations,

29We thank Michael Makkai for this reconstruction.
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etc. But what this clearly indicates is that Bourbaki is firmly, when he writes
this, in metamathematics and not in mathematics30. This is methodologically
very important, for it translates concretely the idea contained in Chevalley’s
foregoing quote. It is only in a metamathematical framework that one can state
in full generality the requirement that isomorphic structures satisfy the same
theorems. Moreover, one needs a fully general notion of isomorphism, some-
thing that did not exist when Bourbaki started to define species of structures,
and this point has to be taken as an additional deviation from γ. Now, to the
reconstruction.

We work in first order logic. Let ~X = X1, ..., Xn, a finite list of basic set
variables31 and ~B = B1, ..., Bm another sequence of parameters. The latter are
necessary to cover cases like vector spaces over a field k, modules over a ring R,
etc.

Definition 1. An echelon construction on the set variables X1, ..., Xn and pa-
rameters B1, ..., Bm, is a collection S of terms defined inductively as follows:

1. Each of X1, ..., Xn, B1, ..., Bm is in S;

2. If A1 and A2 are in S, so is A1 ×A2;

3. If A is in S, so is P(A)32.

This is a standard inductive definition which gives us terms, that is denoting
expressions, constructed in a systematic fashion.

Thus, an echelon construction S gives us the basic terms that are given or
have to be constructed for the structure of a given kind to be defined. Let us
denote an element of an echelon construction S by si and we will call such an
element a sort. We can now introduce the notions of a similarity type, which
was not in Bourbaki but is standard in logic.

Let S be an echelon construction and
−→
S = s1, ..., sp a sequence of chosen

elements of S. These are now called specified sorts.

Definition 2. A signature L = L(
−→
X,
−→
B,
−→
S ,
−→
R ) (or similarity type) is given by:

1. A list
−→
X = X1, ..., Xn of (basic set-)variables;

2. A list
−→
B = B1, ..., Bm of parameters;

3. A list of specified sorts
−→
S = s1, ..., sp, each si ∈ S;

30Granted, there is a clear shift in the section on structures. Bourbaki undisputably starts in
a metamathematical framework, but as the section develops and tries to incorporate concepts
that clearly belong to category theory, it morphs into a mathematical mode. It is a case of
conceptual schizophrenia.

31We follow Bourbaki for the time being and talk about sets. They really are simply formal
variables that will stand for sets. As variables, they are distinct.

32Some readers might be struck by the fact that we seem to be moving towards a type
theory. Indeed, in many early versions of the theory of species of structures, Bourbaki does
work with types. He progressively abandons the type theoretical terminology in favor of a
purely set theoretical.

23



4. A list of relation symbols
−→
R = R1, ..., Rp, each Rj specified as a (sorted)

relational symbol Rj ⊂ sj , more precisely the arity of Rj is Rj ⊂ sij,1 ×
sij,2 × · · · × sij,kj

33.

This is all purely formal. We are just setting up the syntactic framework
that allows us to talk about structures. In fact, we are now in a position to
specify what a structure for a given signature L(

−→
X,
−→
B,
−→
S ,
−→
R ) is.

Definition 3. An L-structure M is given by the following data:

1. A tuple
−→
XM = XM

1 , ..., XM
n of (not necessarily distinct) sets, the basic

sets;

2. A tuple
−→
BM = BM1 , ..., BMm of sets, the parameter sets;

3. A tuple
−→
SM = sM1 , ..., s

M
p of derived sets; each of these is understood as

the set-interpretation of the corresponding echelon term; with the given
setsXM

1 , ..., XM
n , BM1 , ..., BMm plugged in for the variablesX1, ..., Xn, B1, ..., Bm

respectively;

4. Actual relations RM1 , ..., RMp with RMj a relation of the type

RMj ⊂ sMij,1 × s
M
ij,2 × · · · × s

M
ij,kj

;

RMj ⊂ sMj .

Now, the parameter sets, although arbitrary are fixed for a given structure.
We will make that explicit in the notation.

Let us fix
−→
B = B1, ..., Bm, the parameter sets. Notice the change in the

notation here: we denote an actual, fixed set by an underline B. We define
an L−→

B
-structure to be an L(

−→
X,
−→
B,
−→
S ,
−→
R )-structure M where BMi = Bi for

1 ≤ i ≤ n.
So far, we haven’t done anything extraordinary or difficult. We have given

a simple type of L-signature and L-structure. The only original element comes
from the echelon construction underlying both definitions. We hasten to add
that this notion of L-structure is not (yet) the notion we are driving at. We
still have to impose a restriction on the latter to get to the notion of a Bourbaki
species of structure. But for that, we need to define isomorphism and isomor-
phism transfer for L−→

B
-structures.

Isomorphism and transport of structure We start with two n-tuples of
basic sets

−→
X 1 = X1

1 , ..., X
1
n and

−→
X 2 = X2

1 , ..., X
2
n. We assume we are given an

echelon construction S and an element s of S. We now fix the following notation.
The interpretations of s−→

X1 and s−→
X2 of s is given inductively as follows:

1. If s is Xi, then s−→X1 is X1
i and s−→

X2 is X2
i ;

33Needless to say, functions can be introduced as special kind of relations, as usual.
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2. If s = Bi, then s−→X j = Bi for both j = 1, 2;

3. If s = s1 × s2, then s−→X j = (s1)−→
X j × (s2)−→

X j for j = 1, 2;

4. If s = P(s′), then s−→
X j = P((s′)−→

X j ) for j = 1, 2.

The foregoing is straightforward bookkeeping and is merely an exercice in no-
tation and substitution.

Assume that we are given a tuple
−→
φ = 〈φ1, ..., φn〉 of bijections φi : X1

i →
X2
i , for i = 1, ..., n. The parameters Bj ’s are not part of the bijection tuple.
The bijection-tuple

−→
φ induces bijections, for every s in S

φs : s−→
X1 → s−→

X2 ,

in the obvious way, where we use the identity maps 1Bi
: Bi → Bi.

We can now explain how to transfer an L-structure M to an L-structure N .
Let M be an L~B-structure with the basic sets

−→
X 1 = X1

1 , ..., X
1
n interpreted

as XM
1 , ..., XM

n , respectively and, similarly, let N be an L−→
B
-structure with the

basic sets
−→
X 2 = X2

1 , ..., X
2
n interpreted as XN

1 , ..., X
N
n , respectively. We use the

bijections φi : XM
i → XN

i to transfer the L−→
B
-structure M to the L−→

B
-structure

N as follows34.

Definition 4. 1. For each of the sorts s1, ..., sp,

sNj = (sj)−→X2 ;

2. For each of the relation symbols R1, ..., Rp, Rj ⊂ sj with arity Rj ⊂
sij,1 × sij,2 × · · · × sij,kj

, we have the interpretation

RMj ⊂ sMij,1 × s
M
ij,2 × · · · × s

M
ij,kj

,

RMj ⊂ sMj
together with the bijective mappings

φsij,1 × · · · × φsij,kj
: s
−→
X1

ij,1 × · · · × s
−→
X1

ij,kj
→ s

−→
X2

ij,1 × · · · × s
−→
X2

ij,kj

φsj : (sj)−→X1 → (si)−→X2 .

We define RNj as the image of RMj ⊂ sMij,1 × s
M
ij,2
× · · · × sMij,kj

, RMj ⊂ sMj

under the foregoing bijective mapping. Thus, RNj necessarily satisfies

RNj ⊂ sNj = (sj)−→X2 ; (1)

RNj ⊂ (sij,1)N × · · · × (sij,kj
)N , that is (2)

RNj ⊂ s
−→
X2

ij,1 × · · · × s
−→
X2

ij,kj
. (3)

34These are Bourbaki’s ‘transportable relations’.
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This definition can be captured by the following diagram:

(sj)−→X1 (sj)−→X2

RMj RNj

φsj

'

where the dotted arrow signifies that it is induced by the given data to make
the diagram commute.

We thus obtain an isomorphism
−̂→
φ : M

'−→ N that is completely determined
by the given bijection-tuple

−→
φ on the basic sets φi : XM

i
'−→ XN

i , i = 1, ..., n,
that preserves the relations R1, ..., Rp.

Now let us be given a set-theoretic formula

Φ(
−→
X,
−→
R,
−→
B )

with the same free variables as before and no more. We assume that the formula
Φ implies, that is contains as conjuncts, the specifications that

Rj ⊂ sj (4)
Rj ⊂ sij,1 × sij,2 × · · · × sij,kj

. (5)

We have a standard formula Iso(
−→
φ ;
−→
X 1,
−→
R 1;
−→
X 2,
−→
R 2;
−→
B ) with the distinct free

variables as shown that expresses that
−→
φ is an isomorphism of the L−→

B
-structures

M and N
~φ : M

'−→ N

where M is given by
−→
X 1 and

−→
R 1 and N by

−→
X 2 and

−→
R 2. We can now formulate

Bourbaki’s condition of isomorphism invariance:
In the adopted set-theory, it is provable that

` Φ(
−→
X 1,
−→
R 1,
−→
B 1) ∧ Iso(

−→
φ ;
−→
X 1,
−→
R 1;
−→
X 2,
−→
R 2;
−→
B ) =⇒ Φ(

−→
X 2,
−→
R 2,
−→
B 2).

This is, of course, the key component of the whole construction and will be part
of the notion of species of structures.

Bourbaki’s definition of species of structures is now at hand.

Definition 5. A Bourbaki species of structures is given by the L−→
B
-structures

whose relations satisfy the condition of isomorphism invariance.

The crucial element to notice is that the notion of isomorphism is system-
atically built into the definition of species of structures. It is defined for all
L−→
B
-structures before the structure is required to satisfy any condition, any ax-

iom. This is now a norm for all concepts defined with the axiomatic method:
one has to make sure that the concept is invariant under the proper notion of
isomorphism on the technical sense given above.
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We now have one of the main components we were after. Bourbaki’s meta-
mathematical analysis of the notion of abstract structure automatically yields
a crucial component of Bourbaki’s mathematical style. Bourbaki is using the
axiomatic method as a mode of definition, but he adds an essential ingredient
to it, namely the condition of isomorphism invariance. This is not part of the
standard axiomatic method. It was not intrinsic to Hilbert’s axiomatic method,
nor was it clear that it ought to be built into all of mathematics. The notion
of abstract structure comes with the notion of invariance under isomorphism.
Again, this is an important deviation from the standards γ.

This has a direct impact on the patterns of inference ι that are part of
Bourbaki’s style. Of course, as we have noted, the presentation style is of
the form Satz-Beweis throughout. The logical structure of the proofs and the
logical organisation of the volumes are all explicit. This is all well and good, and
indeed is a part of ι. But there is more, and this additional element has to do
with the specifically structuralist component of the style. Although we are in a
set-based universe, the species of structures possess all and only the properties
they have as structures. The patterns of reasonings are therefore constrained
to these and only to these. One could therefore say that the reasonings are, in
fact, structure-based. All the steps, all the reasonings have to be done up to
isomorphism.

There is an additional aspect to the style that follows from the analysis-
synthesis method, i.e. the abstract axiomatic method, and this is the use of a
certain type of maximality principle. When one analyses a proof and determines
the necessary and sufficient components to get the proof, one thus synthesizes
the most abstract structure in which the proof is obtainable — relative to the
given language and context. One is therefore naturally lead to axiomatize the
most general abstract concept. This is an additional epistemic feature of Bour-
baki’s style, at least from 1935 until the late 1940s, and that has to be included
in the δ. The patterns of definition have a direct impact on the patterns of
inference and the interactions κ between δ and ι. Thus, Bourbaki introduces, in
Bourbaki (1950), the so-called “mother-structures” and their combinations. The
specific mother-structures — algebraic, topological, order —, although perhaps
intriguing and thought provoking, are epistemically speaking, only secondary.
It is the reasoning modes that matter here and it is these that explain the
organization of mathematics that emerges from the structuralist standpoint.

The organization of the first four chapters of Bourbaki’s General Topology
illustrates Bourbaki’s epistemic style. Chapter One deals with the structure
of topological spaces. Filters and ultrafilters are used to deal with the notion
of convergence. These two latter notions are purely structural and are not
defined with respect to certain numbers and their properties. In the second
chapter, the notion of uniform structure is defined and basically replaces the
notion of metric space. Chapter Three moves to topological groups, the generic
example of a genuinely new structure emerging from the interaction of two
abstract structures, and the notion of uniform structure plays an important role
in the presentation. We then move to topological rings and their completions.
Once these structures and their properties have been studied, Bourbaki finally
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introduces the real numbers as a topological group which is the completion of
the additive group of rationals. They then extend the field structure of the
rationals to the reals. Thus, the real line is a combination of a topological, an
algebraic and an order structure.

We are now in position to say more specifically how Weil’s way of doing
mathematics diverged from Bourbaki’s style. As we have seen in the foregoing
section, Weil did not always start from the most general abstract structure and
move down to the more specific context he was interested in. Indeed, instead of
adopting a maximality principle with respect to abstract structures, one could
claim that Weil adopted a minimality principle instead. Indeed, as Zariski had
noticed in his review, Weil restricted himself to the ‘simplest facts about abstract
fields and their extensions and the bare rudiments of the theory of ideals’. In
contrast, Bourbaki uses modern algebra and abstract structures in general ‘to
the fullest possible extent’. Furthermore, in his approach to the foundations
of algebraic geometry, Weil did not take into account the idea of working with
structures that are invariant under isomorphism. In fact, Weil was recalcitrant
towards the idea of automatically attaching a type of morphism to a species of
structures. Indeed, in his (Corry, 1996, 380), Corry quotes a letter from Weil
to Chevalley:

As you know, my honorable colleague Mac Lane claims that every
notion of structure necessarily implies a notion of homomorphism,
which consists in indicating for each data constituting the struc-
ture, those which behave covariantly and those which behave con-
travariantly [...] What do you think can be gained from this kind of
considerations?

Weil, interestedly, was also opposed to categories in general and, perhaps, just
for this reason.

Categories and species of structures Of course, Bourbaki species of struc-
tures are based on sets even though a species of structures does not automati-
cally come with a set-theoretic notion of morphism. Indeed, Bourbaki explicitly
rejects this possibility in the final version of the chapter on structures : “A
given species of structures therefore does not imply a well-defined notion of
morphisms.”(Bourbaki, 2004, 272). Bourbaki did not find a way to incorporate
categories in their definitions and, with hindsight, many members came to the
conclusion that Bourbaki’s analysis came short35.

Of course, one of the main problems was that some categories cannot be
sets. And if one allows for the existence of classes, then problematically there
are some operations on categories, e.g. functor categories and functors between
those, that are not legitimate. But there is more, and it is important to under-
stand this point. When Bourbaki was thinking about these problems, category

35For instance, see Dieudonné (1970); Cartier (1998) for their evaluation of the situation.
See Corry (1996, 2004); Krömer (2006, 2007) for a more general analysis. Unfortunately, we
still don’t have access to all the documents of that period which would allow us to better
understand how and why Bourbaki failed to include categories in their enterprise.
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theory had not attained its full maturity. In particular, the proper notion of
isomorphism for categories had still not been identified properly. Indeed, it ap-
peared in press for the first time in Grothendieck’s Grothendieck (1957), and
even then it was not properly defined. Thus, to cover categories properly, and
in particular, to cover categories in a structuralist fashion, in Bourbaki’s style,
required a change in the metamathematical analysis and the metamathematical
framework. The fact is, categories are more abstract than set-based structures
and in that framework, category-based structures have to be defined up to equiv-
alence, not up to isomorphism. Two frameworks deal explicitly with these levels
of abstraction and so can be readily employed for reconstructing the structural-
ist style, namely Makkai’s FOLDS, as in Makkai (1998), and Homotopy type
theory with the univalent axiom, as in Collective (2013).

Thus, we claim that even for categories Bourbaki’s structuralist style is en-
tirely clear and legitimate. The main components of Bourbaki’s style are a
direct consequence of their metamathematical analysis of abstract mathemat-
ical structures and, in a sense, the style provides a set of norms that guide
mathematicians both globally, with the overall organization of mathematics,
and locally, with the patterns of definition and patterns of proof.

3.4.4 Doing mathematics up to isomorphism: Bourbaki’s legacy

Nowadays, pure mathematics is done up to isomorphism. Bourbaki’s style has
become the norm, the standard. It is not questioned. It is a new norm. Stu-
dents of pure mathematics are taught mathematics that way. We simply do not
explicitly see it as their method36; we do not have to. The previous styles could
have prevailed; likewise, the Bourbaki style could disappear37.

Every field is based on a structure or a combination of structures. Theo-
rems are proved by establishing properties of structures and relations between
structures. One gets to classical results by combining and specifying various
structures. The whole organization of mathematics is turned upside down. The
whole ontology of mathematics is revised38. Numbers, geometric figures, etc.,
are now elements of structures, more or less abstract. The (conceptual) founda-
tions of mathematics — in contrast with the logical foundations of mathematics
— are now made up of monoids, groups, rings, modules, fields, vector spaces,
topological spaces, measure spaces, partial orders, etc. By specifying properties

36The status of the alleged proof of the ABC conjecture by Mochizuki rests on a subtle
discussion regarding isomorphisms and identities, the abstract and the concrete! See http:
//www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-08.pdf, section 2.

37It is certainly evolving. Grothendieck and his school have contributed to this change.
The structuralist style nowadays includes categories, functors and working up to equivalence
of categories. The introduction of higher dimensional categories makes the style even more
abstract than it was.

38We use the term ‘ontology’ in its traditional philosophical sense. We could also use it
in its modern, engineering sense of classificatory principle. It is quite interesting to see the
evolution of the organization of the field and compare, say how mathematical disciplines were
organized around 1920 and in the 1960s. In the sense of a classification of disciplines, the
mathematical ontology has radically changed with Bourbaki’s work.
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of those, one gets more structures, and their combinations give rise to genuinely
new structures.

When one does mathematics à la Bourbaki: one identifies the appropriate
abstract structures involved in a given context; one looks at the theorems about
these structures that are relevant to the given problem; one applies these theo-
rems appropriately and solves the problems by using all and only the abstract
properties needed. It is highly abstract. It is elegant. It is clean. It is rigorous.
But it is awfully hard, for one needs to learn all about these abstract structures
and know how and when to use them. Sometimes, it seems unnecessary, uselessly
abstract. Does one need to use a theorem about locally compact abelian groups
to prove Plancherel’s theorem about Fourier transforms of certain functions on
the real line? Of course not. Plancherel certainly did not prove his theorem by
using the structure of locally compact abelian groups. Proceeding that way is
sometimes seen as a form of intellectual terrorism or a form of elitism. To some,
it is repelling. But it can be done this way and there are cognitive benefits to
doing so.

4 The Structuralist Style
Bourbaki’s style is an instance of what might be dubbed the ‘structuralist style.’
Using our definition of mathematical style, we submit that the structuralist style
is based on these interrelated components.

1. Patterns of definition for abstract structures. Bourbaki naturally used the
axiomatic method. He was well aware that the term ‘axiom’ does not
refer to its usual epistemological sense. One merely needs a systematic
procedure to list properties, relations and how they are connected with one
another. Sketches could be used and in the context of higher dimensional
categories, might very well be used. We assume that the structures are
abstract simply because they have been abstracted from previously given
mathematical contexts39.

2. These patterns of definition have to include criteria of identity for the
abstract structures. Bourbaki helped clarify the general notion of isomor-
phism for species of structures. At the time, it was the natural criterion
of identity to define and use. Nowadays, we know that we need homotopy
equivalence, categorical equivalence and higher dimension equivalences.
Mathematics is done up to a certain type of isomorphism, the latter being
derived from the abstract structures one is working with.

3. An appropriate logical framework is needed to codify the inference pat-
terns inherent in these abstract structures. In a sense, first-order logic was
designed specifically to tackle set-based abstract structures. First-order
logic, set theory and Bourbaki’s structuralism co-evolved from the 1910s

39Thus, in this sense, being abstract is a relative property and is not opposed absolutely to
being concrete.
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until the 1950s. It allowed Bourbaki not only to specify what a structure
was, but more importantly what is meant to do mathematics ‘up to iso-
morphism’. Bourbaki required that the properties and relations used to
define structures be ‘transportable’, which is to say that they are invariant
under isomorphism. More precisely, Bourbaki required that any property
P (and relation) present in the axioms of a species of structure S, sat-
isfy the following structuralist principle: for all X of type S, if P (X) and
X ' Y , then P (Y ), where the relation X ' Y is the appropriate notion of
isomorphism for this species of structure. Nowadays, depending on one’s
needs and goal, one could use Makkai’s FOLDS or homotopy type theory.
The main point is that these logical frameworks also satisfy the structural-
ist principle. These two might also be the first steps towards a different
system that still has yet to be defined, but that would be designed as to
satisfy the structuralist principle.

4. A systematic framework to combine and compare these abstract struc-
tures. Again, the axiomatic method together with the notion of isomor-
phism played that part in Bourbaki’s case. It quickly turned out to be
inadequate, for the language of categories and functors was more effective
and systematic, although more abstract.

Many philosophers of mathematics have claimed that Bourbaki’s structural-
ism had nothing to do with what the philosophers call ‘mathematical struc-
turalism.’ We have, in a companion paper Marquis (2020), argued that those
philosophers have misunderstood Bourbaki’s structuralism. Bourbaki is unfor-
tunately responsible in part for this state of affairs. We will not rehearse our
arguments here. One of the reasons given is that Bourbaki’s technical notion
of (species of) structure was basically flawed and so was mathematically use-
less. We disagree with this evaluation, our current claim is clear: Bourbaki
exemplifies a mathematical style. And anyone interested in the epistemology
of mathematical practice should pay attention to its implications for how we
reason in mathematics.

References
Anacona, M., L. C. Arboleda, and F. J. Pérez-Fernández (2014). On Bourbaki’s
axiomatic system for set theory. Synthese 191 (17), 4069–4098.

Beaulieu, L. (1990). Bourbaki: une histoire du groupe de mathématiciens
français et de ses travaux (1934-1944). Ph. D. thesis, Université de Mon-
tréal.

Beaulieu, L. (1994). Dispelling a myth: questions and answers about Bourbaki’s
early work, 1934–1944. In The intersection of history and mathematics, Vol-
ume 15 of Sci. Networks Hist. Stud., pp. 241–252. Birkhäuser, Basel.

Bourbaki, N. (1949). Foundations of mathematics for the working mathemati-
cian. J. Symbolic Logic 14, 1–8.

31



Bourbaki, N. (1950). The architecture of mathematics. American Mathematical
Monthly 57 (221-232).

Bourbaki, N. (2004). Theory of sets. Elements of Mathematics (Berlin).
Springer-Verlag, Berlin. Reprint of the 1968 English translation [Hermann,
Paris; MR0237342].

Buchholtz, U., F. van Doorn, and E. Rijke (2018). Higher groups in homotopy
type theory. In LICS ’18—33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pp. [10 pp.]. ACM, New York.

Cartan, H. (1943). Sur le fondement logique des mathématiques. Revue scien-
tifique LXXXI, 3–11.

Cartan, H. (1979). Nicolas Bourbaki and contemporary mathematics. Math.
Intelligencer 2 (4), 175–180.

Cartier, P. (1998, April). Le structuralisme en mathématiques: mythes ou
réalité? Technical report, Bures-sur-Yvette.

Chevalley, C. Livre 1. Théorie des ensembles. Introduction (Cheval-
ley). http://archives-bourbaki.ahp-numerique.fr/items/show/475#
?c=0&m=0&s=0&cv=0.

Chevalley, C. (1935, July). Variations du style mathématique. Revue de Méta-
physique et de Morale 42 (3), 375–384.

Chevalley, C. (1956). Fundamental concepts of algebra. Academic Press Inc.,
New York.

Collective (2013). Homotopy type theory—univalent foundations of mathemat-
ics. The Univalent Foundations Program, Princeton, NJ; Institute for Ad-
vanced Study (IAS), Princeton, NJ.

Corry, L. (1992). Nicolas Bourbaki and the concept of mathematical structure.
Synthese 92 (3), 315–348.

Corry, L. (1996). Modern algebra and the rise of mathematical structures, Vol-
ume 17 of Science Networks. Historical Studies. Basel: Birkhäuser Verlag.

Corry, L. (2001). Mathematical structures from Hilbert to Bourbaki: the evo-
lution of an image of mathematics. In A. Bottazzini, U. & Dahan Dalmedico
(Ed.), Changing Images in Mathematics: From the French Revolution to the
New Millenium, Studies in the History of Science, Technology and Medicine,
pp. 167–186. New York: Routledge.

Corry, L. (2004). Modern algebra and the rise of mathematical structures (Sec-
ond ed.). Birkhäuser Verlag, Basel.

32

http://archives-bourbaki.ahp-numerique.fr/items/show/475#?c=0&m=0&s=0&cv=0
http://archives-bourbaki.ahp-numerique.fr/items/show/475#?c=0&m=0&s=0&cv=0


Corry, L. (2009). Writing the ultimate mathematical textbook: Nicolas Bour-
baki’s éléments de mathématique. In E. Robson and J. Stedall (Eds.), The
Oxford Handbook of the History of Mathematics, pp. 565–588. Oxford: Oxford
University Press.

Dieudonné, J. A. (1939). Les méthodes axiomatiques modernes et les fondements
des mathématiques. Revue scientifique LXXVII, 224–232.

Dieudonné, J. A. (1970, February). The Work of Nicholas Bourbaki. The
American Mathematical Monthly 77 (2), 134.

Granger, G. G. (1968). Essai d’une philosophie du style. Philosophies pour l’âge
de la science. Paris: Colin.

Grothendieck, A. (1957). Sur quelques points d’algèbre homologique. Tôhoku
Math. J. (2) 9, 119–221.

Guedj, D. (1985, Jun). Nicholas Bourbaki, collective mathematician: an inter-
view with Claude Chevalley. The Mathematical Intelligencer 7 (2), 18–22.

Halmos, P. R. (1957). Nicolas Bourbaki. Scientific American 196 (5), 88–102.

Houzel, C. (2004). Le rôle de Bourbaki dans les mathématiques du vingtième
siècle. Gazette des mathématiciens 100, 53–63.

Jackson, A. (1999). Interview with Henri Cartan. Notices of the AMS 46 (7),
782–788.

Krömer, R. (2006). La “machine de Grothendieck” se fonde-t-elle seulement sur
des vocables métamathématiques? Bourbaki et les catégories au cours des
années cinquante. Revue d’histoire des mathématiques 12, 119–162.

Krömer, R. (2007). Tool and object, Volume 32 of Science Networks. Historical
Studies. Birkhäuser Verlag, Basel. A history and philosophy of category
theory.

Kuhn, T. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago:
University of Chicago Press.

Kvasz, L. (2008). Patterns of change, Volume 36 of Science Networks. Historical
Studies. Birkhäuser Verlag, Basel.

Lautman, A. (2006). Mathématiques et réalité. In Les mathématiques, les idées
et le réel physique, pp. 47–50. Paris: J. Vrin.

Licata, D. R. and E. Finster (2014). Eilenberg-MacLane spaces in homotopy
type theory. In Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
Article No. 66, 10. ACM, New York.

33



Makkai, M. (1998). Towards a categorical foundation of mathematics. In
J. Makowsky and E. Ravve (Eds.), Logic Colloquium ’95 (Haifa), Volume 11
of Lecture Notes in Logic, pp. 153–190. Berlin: Springer Verlag.

Mancosu, P. (2017). Mathematical style. In E. N. Zalta (Ed.), The Stanford En-
cyclopedia of Philosophy (Fall 2017 ed.). Metaphysics Research Lab, Stanford
University.

Manders, K. (2008). The Euclidean Diagram. In P. Mancosu (Ed.), The Philos-
ophy of Mathematical Practice, pp. 80–133. Oxford: Oxford University Press.

Marquis, J.-P. (2020). Forms of structuralism: Bourbaki and the philosophers.
In A. P. . S. Zipoli (Ed.), Structures Mères, Semantics, Mathematics, and
Cognitive Science. Springer.

Mashaal, M. (2000). Bourbaki : une société secrète de mathématiciens. Pour la
science. Les génies de la science no 2. Paris: Pour la science.

Mathias, A. R. D. (1992). The ignorance of Bourbaki. Math. Intelligencer 14 (3),
4–13.

Mattuck, A. (1957, 11). Review: Claude Chevalley, Fundamental concepts of
algebra. Bull. Amer. Math. Soc. 63 (6), 412–417.

Patras, F. (2001). La pensée mathématique contemporaine. PUF.

Rabouin, D. (2017). Styles in mathematical practice. In Cultures without cul-
turalism, pp. 196–223. Duke Univ. Press, Durham, NC.

Rijke, E. and B. Spitters (2015). Sets in homotopy type theory. Math. Structures
Comput. Sci. 25 (5), 1172–1202.

Zariski, O. (1948). Review: André Weil, Foundations of Algebraic Geometry,
ams, new york, 1946. Bull. Amer. Math. Soc. 54 (7), 671–675.

34


	Introduction
	The Notion of Mathematical Style
	Bourbaki's Style
	Bourbaki: a very short description of the group and the project
	Bourbaki's method of work
	Bourbaki's writings
	Bourbaki's style
	Chevalley on mathematical style
	Bourbaki's epistemic mathematical style
	Bourbaki's definition of abstract mathematical structures and isomorphisms
	Doing mathematics up to isomorphism: Bourbaki's legacy


	The Structuralist Style

