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The Uncertainty Principle Revisited
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For bound states governed by power-law potentials V r r sb g ~ , the Heisenberg position-momentum
(r,p) inequality ∆ ∆r pr ≥ 2 is replaced by the equality r pr

2 2 =

E E s sk p + =2 22 2b g b gω  En
2 2ω  with En  and ω πν≡ 2  the total energy and frequency of

the nth state. The lack of properly definable operators casts serious doubts on the physical contents of
uncertainty relations originating from operator formalism. For “spreading solutions” (wave packets),
approximate equalities ∆ ∆x k ≅ 1 and ∆ ∆E t h≅  hold. Planck’s quantum hypothesis E h= ν  and
the concept of the wave packet seem to be incompatible.
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1. The Operator-Commutator Approach

Together with the quantization of energy, Heisen-
berg’s uncertainty principle (UP) is generally considered
one of the pillars of quantum mechanics. Bush (1982)
even declared: “...since Heisenberg’s uncertainty princi-
ple guarantees the quantization of energy on an atomic
scale, which in turn permits life as we know it, it can,
perhaps, be considered the most important principle of
physics.”

The contention that principles of uncertainty (like in
quantum physics), of impossibility (like in thermodynam-
ics), or of impotence (like in special relativity) could play a
constructive rôle in science is worth considering from an
epistemological point of view. Here we limit the discus-
sion to the derivation, the meaning, and the practical
relevance of the UP, as well as to its connection with
models of extended particles.

The genuine quantum mechanical derivation of the
UP is based on the general commutation relation

F H FG GF i A, = − = (1)

where F, G, and A are Hermitian operators.
Then, for the mean-square deviations from the aver-

age, or “variances” ∆F and ∆G:
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it follows that

∆ ∆ Ψ ΨF G Ab g b g2 2
2 2

4
≥ (3a)

or, less rigorously:

∆ ∆ Ψ ΨF G A⋅ ≥
2

(3b)

where F and G are termed “the uncertainty” in F and G,
respectively. For the special choice F px=  (linear mo-
mentum) and G = x (“position”), eq. (1) reduces to:

p x xp i Ix x− = − (4)

with I the identity operator. The inequality :

∆ ∆p xx ≥
2

(5)

is the most frequently quoted form of the UP.
The joint measurement of the x and y spin compo-

nents bears a formal analogy with the position-
momentum case. Indeed, the commutation relation for
the spin numbers:

S S
iS

x y
z, =

2
(6)

together with the matrix elements:

µ µ µδ µµSz ′ = ′ (7)

where µ µ, ′ = ± 1
2 , lead to the inequality

∆ ∆S Sx y ≥
1
2

(8)

This result is (rightly) questioned by Sanchez-Ruiz
(1993) since Sx  and Sy  are discrete observables in a finite
dimensional Hilbert space so that ∆Sx , ∆Sy , and

S Sx y,  vanish in eigenstates of Sx  or Sy , and therefore

no restriction is imposed by the inequalities (3a) and
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(3b). In both examples the operators and their associated
“variances” are time-independent; therefore the ine-
qualities (5) and (8) are said to refer to “simultaneous”
values.

The “commutator approach” does not work for angu-
lar momentum Lz  and (polar) angle ϕ  since the Poisson
bracket is always zero

Lz , ϕl q = 0 (9)

For the quantum phase—heuristically understood as
complementary to a well-defined photon number—the
quantum mechanical approach is not applicable at all,
since “the phase operator” does not exist (Carruthers and
Nieto 1968). Although D. T. Pegg and S. M. Barnett
(1988) succeeded in constructing a unitary phase opera-
tor, we agree with J. M. Lévy-Leblond (1976) that this
requires us “to break one of the sacred dogmas of the
current exposition of quantum theory, namely, the rule
which assigns a Hermitian operator to every physical
property”. As a matter of fact, this dogma is part of the
axiomatic basis of the (one and only) quantum mechan-
ics in use.

The search for a position-momentum type inequality
applying to time and energy was prompted by the special
theory of relativity where the four parameters x, y, z, t are
on equal footing. Although no Hermitian time operator
can be associated with the parameter t, the application of
Heisenberg’s “equation of motion” for the “observable”
A:

i
t

A A H i
A
t

d
d

= +,
∂
∂

(10)

leads formally to the following inequality:

τ a E∆ ≥
2

(11)

Here it is assumed that A has no explicit time depend-
ence (i.e., ∂ ∂A t = 0) and that τ a  is defined (Messiah
1976) as:

τ α ≡
−

d dA t A
1
∆ (12)

The meaning of τ a  is that of a characteristic time of
the evolution of the statistical distribution of A, for ex-
ample the time needed for the center A  of this distri-
bution to be shifted by ∆A (i.e., its own width). The rea-
soning implies a non-stationary (or metastable) state,
otherwise d A dt = 0 and τ a = ∞ . However, the diffi-
culty connected with (11) is still with us, since t is a pa-
rameter—rather than a dynamic variable of the one-
particle system under study—and there is no way to re-
place A by t in equation (10). This fact is in line with an
earlier contention that we do not know anything about
the particle under study by choosing the coordinate of an
“instant”. Strangely, it was never openly realized that the same
difficulty occurs with respect to “position” in free space.  What in-

formation do we gain, indeed, about an extended particle
whose “center of mass” coordinate is fixed? If the particle
were placed in a potential V(r), we have some estimate
about its potential energy; but in a potential that varies
considerably along a particle diameter, this knowledge is
certainly not what we want. If, on the other hand, the
potential does not vary sensibly, then it comes close to
being constant, and we are left with the dilemma of
“position in free space”. This sort of enquiry inevitably
brings interpretational problems into the discussion. Ac-
cording to Born, particles are material points, and the
square of the absolute value of the wave function

Ψ x t,b g 2
 is the probability density for finding a particle at

a given point in space and in time. According to
Schrödinger’s interpretation of 1926 (Schrödinger 1926),
the electrons are not “small” and their charge fills the
whole volume of the atom. Schrödinger devised his
equation mainly for studying the electron charge and
current distributions in quantum systems (atoms, mole-
cules, crystals, etc.) characterized by a potential well. In
external problems, where particles move through macro-
scopic regions of free space, “non-spreading solutions” of
the wave equation are required.

In de Broglie’s original theory (de Broglie 1925), the

wave function Ψ x t,b g 2
 associated with a point-like par-

ticle, moving with velocity v in the laboratory

Ψ Ψx t i t
xv
co, expb g = −FHG IKJ

L
NM

O
QPω 2 (13)

was obtained from the “periodic phenomenon”
Ψ Ψ0, expt i to o o ob g b g= ω (14)

by applying the Lorentz transformation for the time pa-
rameter t o

t t
xv
c

v
co = −FHG IKJ −

F
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I
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−

2

2

21
1

2

(15)

The frequency of “the internal periodic phenome-
non”—called later “Zitterbewegung”—was related to the
rest mass mo  of the particle by:

ν o
om c
h

=
2

(16)

while the frequency of the external de Broglie wave was
given by:

ν ν= −
F
HG

I
KJo

v
c

1
2

2

1
2

(17)

Because of its reliance upon special relativity—a local
point-event theory par excellence—there was no trace and
no principle of “uncertainty” in de Broglie’s original
theory. One unpleasant feature of the theory was the su-
perluminal velocity c2/v of the wave associated with the
particle and describing its behavior. Strangely, this wave
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should have run away from the particle with a velocity
inversely proportional to v!

2. The Wave Packet

In order to overcome the difficulty of superluminal
wave velocities, Schrödinger and de Broglie replaced the
monochromatic plane wave (13) by a “wave-packet”—a
linear superposition of monochromatic waves with fre-
quencies between ν ν* − ∆ 2  and ν ν* + ∆ 2  centered
around ν *  having a group velocity equal to the particle
velocity v. No physical mechanism accounting for wave
dispersion in an vacuum was ever suggested. Apparently,
the very way of constructing the “wave-packet” implies an
energy distribution of width ∆E, with a corresponding
width ∆t in the Fourier transformed time-domain.

The approximate equality:
∆ ∆ν t ≅ 1 or ∆ ∆E t h≅ (18)

—a well-known property of Fourier transforms—has to
be contrasted with the inequality (11). There is no mys-
tery behind (18) and there is no need for a new principle.
The concept of the “wave-packet” has a built-in width ∆
E, which is inversely correlated with ∆t. This picture, of
course, loses its validity for bound states with a discrete
energy spectrum. For photons—the “free particles” par
excellence—the concept of the wave packets and Planck’s
quantum hypothesis E h= ν  seem to be mutually ex-
clusive.

Since free particles are basically thought as localizable
(or even point-like), the initial spread ∆xo  in the position
of a particle at t = 0 is actually ascribed to the wave packet
associated with it. Assuming that the free particle has a
real Gaussian wave function at t = 0 and solving the
time-dependent Schrödinger equation, one obtains that
after time T has elapsed the wave function is a complex
Gaussian (Messiah 1976) with a width ∆x given by:

∆ ∆
∆

x x
T

m x
o

o o

b g b g b g
2 2

2 2

2 24
= + (19)

Due to the Gaussian character of the wave function, the
Fourier transform of Ψ x t,b g will provide a spread ∆px  in
momentum such that:

∆ ∆x px =
2

(20)

This equality—within the standard formalism—is a
unique property of coherent states (Carruthers and
Nieto 1968). These states are called the “closest to classi-
cal” states, in contrast with the kq representation of Zak
(1972), which corresponds to the “most quantum me-
chanical” ones. For non-Gaussian wave-packets with a
pronounced maximum and a finite spread ∆k around the
center wave vector k*, the Fourier transformation pre-
dicts qualitatively:

∆
∆

x
k

≅
1 (21)

Besides the missing factor1
2 , there is a world of dif-

ference between the inequality (5) and the approximate
equality (21). The former relationship (5) is derived
within the statistical interpretation of the quantum me-
chanics (QM) of one particle, while (21) is a property of
the Fourier transformation. The statistical interpretation
of QM, on the other hand, implies the academic
“preparation” of a very large number of identical one-
particle systems on which “measurements” have to be
performed. On top of this, the practically impossible re-
quirement of simultaneous measurements on conjugated,
non-commutative “observables” is imposed. Nobody has
ever performed such measurements! In general, a thor-
ough measurement of the first observable will so disrupt
phase relations that it will serve no physical purpose to
subsequently (nay simultaneously!) measure a second
observable on the resulting mixture. As remarked by
Willis E. Lamb, Jr. (1969), to measure two non-
commutative observables F and G simultaneously, one
would have to find a potential V(r,t) that was determined
by both F and G. This cannot be done in such a way that
the desired information emerges from the measurement.

3. Bound Systems

Already in the early years of quantum mechanics it
was shown that for the nth state of the harmonic oscilla-
tor the following equalities hold:

x x
n
m

E
m

n2 2 1
2

2= =
+

=∆b g b g
ω ω

(22a)

p p
n
m

E mx x n
2 2

1
2= =

+
=∆d i b g

ω
(22b)

∆ ∆x p n
E

x
n= + =1

2b g
ω

(22c)

As suggested by Fock (1978), relation (22c) is a very
general result. If one introduces a quantum number n in
the proper way, the formula will be valid not only for an oscill a-
tor but for any system in its n th state. This is qualitatively dif-
ferent from the inequality (5) expressing the UP.

For 3-dimensional problems with central potentials
of the power-law type:

V r r sb g~ (23)

the conjugated operators r and p i r rr = − +∂ ∂ 1b g  obey
the same commutation relation as x and px :

p r ir , = (24)

Therefore (22c) is expected to hold :

r p r p
E

r r
n2 2 2

2

= = FHG IKJ∆ ∆b g
ω

(25)
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For arbitrary s, the virial theorem (Fock 1978) pro-
vides the following relationships between the average
potential, kinetic, and total energies of the nth state:

E
s E

kin
pot=

2
(26a)

E E
spot

n=
+

2
2

(26b)

and (25) takes the form:

r p E E
s

s
E

r pot kin
n2 2

2

2

22
2

=
+

= FHG IKJ
b g

ω ω
(27)

Equality (27), valid for bound states governed by
power law central potentials provides a rigorous constraint
on the average kinetic and potential energies of a quan-
tum state. This is a very far cry from the “inaccuracy”,
“indeterminacy”, or “uncertainty” labels attached to ine-
quality (5) (Born et al. 1925). The actual meaning of (25)
is that of a constraint imposed on average energy values
rather than on variances of r and pr. The equipartition of
average kinetic and potential energies is characteristic of
the harmonic oscillator. Remarkably, the equipartition
between electric (= potential) and magnetic(= kinetic)
parts of the electron self-energy in the torus model of
Iida (1974) and Bergman and Wesley (1991) provides the
key for the understanding of 1

2  spin, too. In this model,
the electron has a purely electromagnetic nature and (in
the first approximation) a radius equal to the Compton
length h m co . The frequency of the mysterious
“Zitterbewegung” is replaced here by the angular veloc-
ity of the rotating ring divided by 2π .

Finally, although (27) was derived in the context of
Schrödinger’s time-independent theory, it could be seen
as a dynamic interplay between potential and kinetic energy.
This appeals to our intuition, since even in a time-
independent formalism, motion is hidden behind the
symbol Iz designating angular momentum. The con-
nection between the energy eigenvalues En and the
quantum action variable

J nh J En n n= = b g (28)

exploited in the extended Hamilton-Jacoby theory by
Leacock and Padgett (1983a,b; Kim and Choi 1993)
compels us to envisage a limiting energy conversion , charac-
teristic of every quantized system. Although quantization
is a feature of bound systems, it is postulated for free
electromagnetic fields, too. The equipartition between
electric and magnetic energies in an electromagnetic
wave, interpreted as a flux of photons, is, however, not
amenable to intuitive modeling. It appears that electro-
magnetic waves, propagating independent of a potential
gradient, constitute the singular case of pure kinetic en-
ergy in physics. This external view is in accordance with

their vanishing rest mass and one and only allowed
propagation speed.

4. Conclusion
Summing up, there is no need to work with an ine-

quality within the framework of “quantum uncertainty”.
(In fact, it is always the equality that is used in estimates
and more rigorous calculations). This concept invokes
the idea to relate Planck’s “quantum of action” to the
concept of minimal action which we will treat in a sub-
sequent paper. Any “uncertainty” connected with wave
packets is constructed by the very model itself and is in
contrast with a quantum hypothesis. The equipartition
between kinetic and potential energies in bound systems
governed by a central power-law potential is a feature
based on the virial theorem and finds its correspondence
if quantum uncertainties are interpreted as mean values
of the involved contributions to the total energy. The
“derivation” of the UP via the operator formalism is
subject to the severe criticism that the formal definition
of position, time, and phase operators is physically
meaningless. The physical mechanism behind the his-
torical UP is the ubiquitous conversion of different
forms of energy into each other.
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