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Abstract

In this paper we present a new noise filtering method, called soft decision tree noise filter (SDTNF), to identify and

remove mislabeled data items in a data set. In this method, a sequence of decision trees are built from a data set, in

which each data item is assigned a soft class label (in the form of a class probability vector). A modified decision tree

algorithm is applied to adjust the soft class labeling during the tree building process. After each decision tree is built, the

soft class label of each item in the data set is adjusted using the decision tree’s predictions as the learning targets. In the

next iteration, a new decision tree is built from a data set with the updated soft class labels. This tree building process

repeats iteratively until the data set labeling converges. This procedure provides a mechanism to gradually modify and

correct mislabeled items. It is applied in SDTNF as a filtering method by identifying data items whose classes have

been relabeled by decision trees as mislabeled data. The performance of SDTNF is evaluated using 16 data sets drawn

from the UCI data repository. The results show that it is capable of identifying a substantial amount of noise for most

of the tested data sets and significantly improving performance of nearest neighbor classifiers at a wide range of noise

levels. We also compare SDTNF to the consensus and majority voting methods proposed by Brodley and Friedl [1996,

1999] for noise filtering. The results show SDTNF has a more efficient and balanced filtering capability than these two

methods in terms of filtering mislabeled data and keeping non-mislabeled data. The results also show that the filtering

capability of SDTNF can significantly improve the performance of nearest neighbor classifiers, especially at high noise

levels. At a noise level of 40%, the improvement on the accuracy of nearest neighbor classifiers is 13.1% by the consensus

voting method and 18.7% by the majority voting method, while SDTNF is able to achieve an improvement by 31.3%.
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1. INTRODUCTION

The quality of data sets is an important issue in machine learning and pattern recognition. For instance, a data

set containing significant noise can lead to poor performance in a trained classifier. However, it is often difficult to

completely avoid noise in real-world data sets, which noise might occur during measurement, labeling, or recording. In

this paper we focus on dealing with mislabeled data.

This issue has been addressed previously by many researchers, especially in the field of Nearest Neighbor Classifiers

[Cover and Hart, 1967], whose performance is particularly sensitive to noise. One strategy is to apply a filtering

mechanism to detect and remove mislabeled samples. For example, Wilson [1972] applied a 3-NN (Nearest Neighbor)

classifier as a filter, which identifies noisy data as those items that are misclassified by the 3-NN. The filtered data was

then applied as the training set for a 1-NN classifier. Several researchers [Hart 1968; Gates, 1972; Dasarathy, 1980,

1991] proposed various edited versions of the nearest neighbor algorithm by removing a significant portion of the original

data. They not only reduced the storage requirement for the training data, but also removed a large portion of noise.

Aha et. al. [Aha and Kibler, 1989; Aha, Kibler and Albert, 1991] proposed an algorithm that identified noisy data as

those items with poor classification records. Wilson and Martinez [1997, 2000] applied several pruning techniques that

can reduce the size of training sets as well as remove potential noise.

This issue has also been addressed in other learning algorithms, such as the C4.5 decision tree algorithm [Quinlan,

1993]. John [1995] presented a method that first removed those instances pruned by C4.5 and then applied the filtered

data to build a new tree. Gamberger et. al. [1996] proposed a noise filtering mechanism that was based on the Minimum

Description Length principle and some compression measures. Brodley and Friedl [1996, 1999] applied an ensemble of

classifiers (C4.5, 1-NN and a linear machine) as a filter, which identifies mislabeled data based on consensus or majority

voting in the ensemble. Teng [1999, 2000] proposed a procedure to identify and correct noise based on predictions from

C4.5 decision trees. In previous work we proposed neural network based methods to identify and correct mislabeled

data [Zeng and Martinez, 2001], and to filter mislabeled data in data sets [Zeng and Martinez, 2003].

In this paper we present a new noise filtering method, called soft decision tree noise filter (SDTNF). In this method,

a soft class labeling scheme (in the form of a class probability vector), instead of fixed class labeling, is used for building a

sequence of C4.5 decision trees for noise filtering. Each component of a class probability vector represents the probability

of a given class. A sequence of C4.5 decision trees are recursively built from a data set with soft class labeling. In each
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iteration, class probability vectors are learned using predictions of the previous decision tree as the learning targets.

This tree building process is repeated recursively until class probability vectors for all instances converge. Noise is then

identified as those items whose final learned class labels are different from their original class labels.

SDTNF has the following distinct features compared to previous methods for similar tasks. (i). In previous work

[Brodley and Friedl, 1996, 1999; Teng, 1999, 2000], a data set was first divided into two disjoint subsets: a training set

and a test set. The training set was applied to construct a classifier (or an ensemble of classifiers), and the constructed

classifier was then applied to identify noise in the test set. However, because the training set consists of the same

percentage of noise as the test set, a classifier constructed in this way may not achieve high levels of accuracy (especially

for data sets with a high degree of noise). Thus it could make inaccurate predictions about the noise in the test set. In

contrast, SDTNF includes all instances in the process and allows every instance to change its class label, without relying

on a pre-constructed classifier. (ii). By utilizing a vector class label (instead of a binary class label), SDTNF allows a

large number of hypotheses about class labeling to interact and compete with each other simultaneously, enabling them

to smoothly and incrementally converge to an optimal or near-optimal labeling. This type of search strategy has been

shown efficient on large solution-spaces for NP-class optimization problems [Hopfield and Tank, 1985].

We test the performance of SDTNF on 16 data sets drawn from the UCI data repository, and also compare it to the

methods proposed by Brodley and Friedl [1996, 1999]. The performance of SDTNF is evaluated at different noise levels

(with mislabeled classes) by testing its capability to filter mislabeled data and its capability to keep non-mislabeled

data. To evaluate its impact on the quality of constructed classifiers, we compare the test set accuracies of two nearest

neighbor classifiers – one constructed using a training set that includes mislabeled instances and the other constructed

using the same training set that is filtered by SDTNF. Stratified 10-fold cross-validation is applied to estimate their

accuracies. The results show that for most data sets, SDTNF is capable of filtering a large fraction of noise and

significantly improving the performance of nearest neighbor classifiers at a wide range of noise levels. We also compare

SDTNF to the consensus and majority voting methods proposed by Brodley and Friedl [1996, 1999]. The results show

that on average SDTNF performs better than these two methods, especially at noise levels from 20% to 40%. SDTNF

has a more efficient and balanced filtering capability in terms of filtering mislabeled data and keeping non-mislabeled

data. SDTNF is also able to achieve a better improvement on the accuracy of nearest neighbor classifiers. At a noise

level of 40%, the improvement on the accuracy of nearest neighbor classifiers is 13.1% by the consensus voting method
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and 18.7% by the majority voting method, while SDTNF is able to achieve an improvement by 31.3%.

2. SOFT DECISION TREE NOISE FILTERING ALGORITHM

Let S be an input data set in which some instances have been mislabeled. The task of SDTNF is to identify and

remove those mislabeled instances and then output a filtered data set Ŝ. Let α be the correctly labeled fraction and β

(= 1 − α) the mislabeled fraction of input data set S. Let Sc be the correctly labeled subset and Sm the mislabeled

subset (Sc ∪ Sm = S). The instances in Sc have a tendency of strengthening the regularities possessed in S, while

those in Sm have a tendency of weakening the regularities due to the random nature of mislabeling. However, if the

mislabeled fraction is small (i.e., β << α), the trend of maintaining the regularities due to Sc will be more dominant

than that due to Sm (because of significantly larger number of instances in Sc that tend to maintain the regularities in

S). The strategy of SDTNF is to apply the regularities discovered by a sequence of decision trees in Sc to correct those

mislabeled instances in Sm.

The format for representing data in our procedure is different from a typical one. In a typical presentation, each

instance w in S has the following format:

w = (x, y) (1)

where x = (x1, x2, ..., xf ) is the feature vector of w, f is the number of features, and y is the class (category) label of w.

In SDTNF, a class probability vector is attached to each instance w in S:

w = (x, y,p) (2)

where p = (p1, p2, ..., p|C|) is the class probability vector of w and |C| is the number of class labels. In addition, there is

an input ui assigned for each component pi (i = 1, 2, ..., |C|) of the probability vector p. pi is determined by ui through

the sigmoid activation function:

pi =
1

2
(1 + tanh(

ui

b
)) (3)

where b = 0.02 is the amplification parameter that reflects the steepness of the activation function. The reason for

using the sigmoid function as the mapping between ui and pi is that it is able to provide a smooth transition during

the learning process. Its effectiveness has been demonstrated in the Hopfield network for solving optimization problems

[Hopfield and Tank, 1985].
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For each instance the class probability vector p is initially set to characterize the original class label. A learning

procedure is applied to learn and update p during the building of a sequence of decision trees. After building each

decision tree, the outputs of the decision tree are applied as learning targets for the class probability vector p. The

input ui is first updated based on the difference between pi and the output of the decision tree, which is controlled by

a learning rate for a smooth learning process. pi is then updated from ui according to Eq. (3) and then normalizing

to 1. After each update, p gets closer to the outputs of the most recent decision tree which reflects the regularities in

the data set. In the next iteration, a new decision tree is built based on a data set with the updated class probability

vector p. This tree building and learning process repeats until the class probability vectors in the data set converge.

We make the following modifications to the standard C4.5 decision tree learning algorithm [Quinlan, 1993] to take

into account the probabilistic labeling format of Eq. (2). The procedure for building a decision tree is similar to that

described in [Quinlan, 1993]. However, the method for calculating the class frequency at each tree node (which is used to

calculate the information gain) is different. In [Quinlan, 1993] class frequency freq(Ci, S) at a given node t is calculated

by counting the number of instances in data set S that belong to class Ci (where S is the data set that reaches the

node t during the building of a decision tree). We modify the calculation of class frequency to account for information

represented in the class probability vector. In our calculation, the class frequency freq(Ci, S) is the sum of probabilities

that belong to class Ci for all items in the data set S:

freq(Ci, S) =

|S|∑

j=1

p
j
i (4)

where p
j
i is the probability of instance j belonging to class i. A corresponding modification is also made for the class

distribution that is recorded at each node t.

The following explains the basic steps of SDTNF. The related parameters are set empirically based on our ex-

periments. Our experiments show that the performance of SDTNF is quite robust over a wide range of parameter

settings.

• For each instance w = (x, y,p) (where y is the initial class label), its probability vector p is initially set as follows.

py (the probability for class y) is set to be a large fraction d (= 0.95), and then (1-d) is divided equally among

the other (|C| − 1) probability components. The input ui is then determined from pi using the inverse sigmoid

function.
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• Build a decision tree using the modified version (as described above). Each tree is pruned using the standard

pruning procedure as described in [Quinlan, 1993].

• After building a decision tree, each training item w updates its probability vector p using the following procedure:

(i). Feed w into the decision tree (start at the root node) and then follow branches (according to the value of the

tested attribute at each tree node) until a leaf node is reached. If w has an unknown attribute at a given node

t, the path is divided and each branch is followed. In this case one branch is propagated into multiple branches

with different weights. The weight for a given branch is proportional to the size of data set that passes through

the branch when this decision tree was built (which is the same algorithm for handling unknown attributes as in

[Quinlan, 1993]). Thus if w has an unknown attribute, the propagation of w may reach multiple leaf nodes in the

tree.

(ii). Obtain a target probability vector q = (q1, q2, ...q|C|) for w by using the formula:

qi =

L∑

j=1

(wj × e
j
i ) (5)

where L is the number of leaf nodes that are reached by w, wj is the weight when the propagation of w reaches leaf

node j (note that wj is in the range [0, 1] when there is an unknown attribute), and e
j
i is the fraction of those items

that belong to class i among all data items that reach the leaf node j when the tree was built (note that a leaf

node may contain data items with different classes, depending on pruning criteria and other parameter settings, to

avoid over-fitting). The probability estimation method applied here is based on simple frequency counting. There

are several other probability estimation methods (for decision trees) that apply different probability smoothing

procedures [Zadrozny and Elkan, 2001; Foster and Domingos 2003].

(iii). Learning for probability vector p is based on its difference from the target probability vector q. For each

class i, the first step is to update the input ui from iteration k to k + 1 using the formula:

ui(k + 1) = ui(k) + lp × (qi(k) − pi(k)) (6)

where lp (set to 0.02 in our experiment) is the learning rate for the probability vector. The next step is to update

pi from ui using Eq. (3), and then normalize it:

|C|∑

i=1

pi = 1 (7)
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(iv). The class label y for instance w (= (x, y,p)) is also updated using the following formula:

y = argmaxi{pi|(i = 1, 2, ...|C|)} (8)

For some data items, the updated labels may differ from the original labels. In this case, they are relabeled to the

different classes. This provides a mechanism to identify mislabeled data items.

• After building each tree, check if any of following three stoppage criteria is reached: (i). The error of the decision

tree is 0. (ii). The total number of iterations of building trees reaches the maximum limit (set to 50 in our

experiment). (iii). If the average change ∆p(k) in the probability vector at the current tree iteration k (compared

to last tree k-1) is smaller than a threshold (set to 0.03 in our experiment). ∆p(k) is defined as:

∆p(k) =

∑|T |
i=1

∑|C|
j=1

|pi
j(k) − pi

j(k − 1)|

|T | × |C|
(9)

where pi
j(k) is component j of the class probability vector for item i at iteration k, and |T | is the size of the

training set T . If ∆p(k) is very small, it means that the probability vectors are stable and therefore no further

iteration is needed.

• If any of the above conditions is met, then stop; otherwise build a new tree using the data set with the updated

probability vector p and repeat the above procedure.

The above describes the basic steps that build a sequence of decision trees. After convergence of the SDTNF

algorithm, we compare the final class label to the initial label for each item. Those items whose class has been relabeled

are identified as noise and removed from the data set.

The reason to use pruned trees instead of the original trees (without pruning) is that original trees can over-fit

mislabeled data while pruned trees can provide a mechanism to correct mislabeled data by modifying probability vectors.

Our experiments show that the performance of SDTNF varies slightly with two C4.5 parameters: the confidence level

(a parameter that controls the amount of tree pruning) and minimum objects (a parameter that sets a lower bound for

tree branching: once a node contains the minimum objects it will not be further branched to avoid over-fitting). In

C4.5, the default value is 0.25 for the confidence level and is 2 for minimum objects. In our experiment, we set the same

confidence level but set 4 for minimum objects (which gave slightly better overall performance than other parameter

settings).
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The complexity of this algorithm is

O(SDTNF ) = M × (O(C4.5Build) + |T | × O(C4.5Run) + |T | × |C|) (10)

where M is the number of iterations for SDTNF to converge, O(C4.5Build) is the complexity of building a decision tree

for training set T, and O(C4.5Run) is the complexity of running a decision tree to classify one item. |T |×O(C4.5Run)

is the complexity to classify all items in T . |T | × |C| is an extra term required by SDTNF to update the probability

vector p (with |C| components) for each item in T . O(C4.5Run) depends on the depth of the tree and it usually has a

same order of magnitude as the number of class |C| (usually in the order of 10). So |T |×O(C4.5Run) and |T |× |C| have

a same order of complexity. Since the term O(C4.5Build) is dominant as compared to the other terms, the complexity

of SDTNF is about M times that of building a C4.5 tree. From our experiments (shown in the next section), the number

of iterations M to converge is usually smaller than 10 (the average number of iterations over 16 data sets is 7.4 ). C4.5

has been demonstrated to be a fast and scalable algorithm in various applications. These features allow SDTNF to

achieve a fast convergence and to scale to large-size data sets.

3. EXPERIMENTS

We test the performance of SDTNF on 16 data sets drawn from the UCI machine learning data repository [Merz and

Murphy, 1996]. Table 1 shows the properties of the 16 tested data sets. In the table, size is the number of instances,

#attr is the number of attributes, #num is the number of numerical (continuous) attributes, #symb is the number

of symbolic (nominal) attributes, and #class is the number of output classes.

Table 1: Description of 16 UCI data sets

Data Set size #attr #num #symb #class

Anneal 898 38 6 32 6

Australian 690 14 6 8 2

Balance 625 4 0 4 3

Car 1728 6 0 6 4

Ecoli 336 7 7 0 8

Glass 214 9 9 0 7

HeartC 303 13 5 8 2

HeartH 294 13 5 8 2

Horse 366 26 12 14 3

Iono 351 34 34 0 2

Iris 150 4 4 0 3

Pima 768 8 8 0 2

Soybean 683 35 0 35 19

Vehicle 846 18 18 0 4

Voting 435 16 0 16 2

Vowel 990 10 10 0 11
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We apply a stratified 10-fold cross-validation to estimate the performance for each parameter setting. In a 10-fold

cross-validation, a data set is randomly divided into 10 folds with an equal number of items. Each cross-validation

consists of 10 runs. In each run, 9 folds of data are used as the training set S and the other fold as the test set T . In the

next run, the folds are rotated such that each of 10 runs uses a different test set. The result of a 10-fold cross-validation

is the average of the 10 runs. A stratified version [Breiman et. al. 1984; Kohavi, 1995] of 10-fold cross-validation (in

which 10 folds are divided on per-class bases so that each fold has a class distribution similar to that in the original

data set) is applied to achieve a more reliable evaluation, especially for small data sets.

To quantitatively estimate how the performance of SDTNF varies with the noise level, we artificially mislabel a part

of the original training data. We obtain a mislabeled training set Sm by mislabeling a fraction β of data instances in

S using the following process. For each class i (i = 1, 2, ..., |C|), βNi instances (Ni is the total number of instances of

class i) are randomly mislabeled to one of the other (|C|-1) classes (i.e., classes 1, 2,...,i-1, i+1,...,|C|). Among the βNi

instances, the number of instances labeled to class j is proportional to the population of class j. SDTNF is then applied

to filter noise in Sm.

Two error terms E1 and E2 are applied to measure the performance of SDTNF. E1 is defined by

E1 =
M1

(1 − β)|T |
(11)

where M1 is the number of items that are not mislabeled but are mistakenly identified by SDTNF as mislabeled data.

(1 − β)|T | is the total number of items that are not mislabeled (|T | is total number of items in a data set). Thus E1

represents the probability of mistakenly identifying data items that are actually not mislabeled.

A second error term E2 is defined as

E2 =
M2

β|T |
(12)

where M2 is the number of items that are mislabeled but are not identified by SDTNF. β|T | is the total number of items

that are mislabeled. Thus E2 represents the probability of not being able to identify mislabeled data.

The performance of SDTNF is also evaluated by comparing the test-set accuracies of two classifiers using the nearest

neighbor rule [Cover and Hart, 1967]. One classifier is based on a training set that has been filtered by SDTNF, while

the other classifier is based on the original training set without using SDTNF as a filter (both using 1-nearest neighbor).

Both classifiers use the same T as the test set. The reason to choose the nearest neighbor classifier for our experiment

is that its performance is particularly sensitive to noise.
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We also compare SDTNF to the methods proposed by Brodley and Friedl [1996, 1999]. In their methods, the training

set is divided into n parts. An ensemble of classifiers (C4.5, 1-NN and a linear machine) is trained on n-1 parts and

is applied for filtering noise on the other part (with n rotations of the training data). One method they proposed is

consensus voting: if all three classifiers in the ensemble classify an item to a class that is different from its original label,

then the item is identified as noise and is removed from the training set. Another proposed method is majority voting

(requiring at least two votes). We implement their algorithms based on their description in [Brodley and Friedl, 1996;

1999].

Tables 2 and 3 show the results (averaged over 10 runs of stratified 10-fold cross-validation) for the data set Ecoli

and Vowel. The first row (NoiseLevel) is the targeted noise level (percentage of mislabeled data in the training set).

The second row (ActualNoise) is the actual noise level, which is slightly different from the targeted level due to limited

data set sizes and the difference in class distributions. Iterations is the number of iterations for convergence. TreeSize

is the number of nodes in the decision trees. In the table, SDTNF represents the proposed filtering algorithm, while

CF and MF are the consensus and majority filtering methods proposed by Brodley and Friedl [1996, 1999]. E1 and

E2 are the error terms defined in Eq.(11) and Eq.(12). For a noise level of 0%, E2 is not applicable (as denoted by

”*”). 1-NN(Acc) is the accuracy of a 1-nearest neighbor classifier (1-NN) using the original training set without any

noise filtering. SDTNF(Acc) is the accuracy of 1-NN using a training set that is filtered by SDTNF. CF(Acc) and

MF(Acc) are the accuracies of 1-NN using a training set that is filtered by the consensus and majority filtering methods

respectively. Each reported accuracy is in percentage, along with the confidence interval of 95%. The last column is the

average over all noise levels.

Table 2: Result for the data set Ecoli.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 4.7 10.1 19.8 30.2 40.2 Avg.

Iterations 3.9 5.6 8.0 10.1 10.2 11.7 8.3

Tree Size 23.4 22.6 21.8 21.0 22.4 29.6 23.5

SDTNF(E1) 0.063 0.088 0.097 0.113 0.116 0.142 0.103

CF(E1) 0.071 0.065 0.054 0.041 0.045 0.043 0.053

MF(E1) 0.145 0.138 0.154 0.165 0.195 0.289 0.181

SDTNF(E2) ∗ 0.147 0.105 0.130 0.185 0.228 0.159

CF(E2) ∗ 0.281 0.292 0.443 0.621 0.750 0.477

MF(E2) ∗ 0.105 0.066 0.105 0.191 0.271 0.148

1-NN(Acc) 80.7 ± 4.5 78.0 ± 5.0 76.5 ± 6.1 67.9 ± 8.1 61.6 ± 5.3 53.0 ± 6.3 69.6

SDTNF(Acc) 85.4 ± 2.5 85.1 ± 4.1 84.8 ± 4.1 82.1 ± 3.6 81.2 ± 3.1 72.9 ± 4.0 81.9

CF(Acc) 86.9 ± 3.7 86.0 ± 4.0 82.7 ± 5.3 79.5 ± 5.3 70.2 ± 6.3 57.4 ± 5.6 77.1

MF(Acc) 84.5 ± 3.1 85.1 ± 4.3 83.6 ± 6.4 81.0 ± 4.9 73.8 ± 4.8 61.9 ± 5.1 78.3
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Table 3: Result for the data set Vowel.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 4.9 9.9 19.8 29.6 39.5 Avg.

Iterations 1.0 4.5 7.0 9.3 11.5 12.3 7.6

Tree Size 146.8 151.4 144.2 153.2 163.4 178.6 156.3

SDTNF(E1) 0.000 0.041 0.066 0.078 0.088 0.104 0.063

CF(E1) 0.002 0.002 0.004 0.008 0.008 0.014 0.006

MF(E1) 0.065 0.072 0.091 0.111 0.136 0.178 0.109

SDTNF(E2) ∗ 0.291 0.170 0.168 0.219 0.280 0.226

CF(E2) ∗ 0.541 0.623 0.695 0.778 0.853 0.698

MF(E2) ∗ 0.111 0.140 0.195 0.283 0.333 0.212

1-NN(Acc) 98.9 ± 0.8 93.7 ± 2.2 90.1 ± 2.5 79.3 ± 3.3 69.6 ± 3.1 59.1 ± 2.6 81.8

SDTNF(Acc) 98.9 ± 0.8 94.5 ± 2.4 94.4 ± 2.6 91.5 ± 2.4 84.9 ± 3.3 79.2 ± 2.5 90.6

CF(Acc) 98.1 ± 0.5 96.2 ± 1.6 92.1 ± 3.0 82.2 ± 2.5 75.1 ± 3.3 63.3 ± 2.7 84.5

MF(Acc) 89.7 ± 2.5 89.1 ± 2.2 86.9 ± 3.6 83.2 ± 2.2 75.2 ± 3.3 66.7 ± 4.7 81.8

The results for the other 14 data sets are shown in Appendix A. Table 4 shows the average result over the 16 data

sets. The results show that all the three noise filtering algorithms (SDTNF, CF, MF) are able to identify a large amount

of mislabeled data and improve the nearest neighbor classifiers for most data sets at various noise levels. But they

behave differently in terms of error terms and accuracy.

From the last column (average over all 16 data sets and over all noise levels) in Table 4, we can see the following

patterns in terms of errors E1 (probability of mistakenly identifying data that is not mislabeled) and E2 (probability of

not identifying data that is mislabeled). (i). The consensus voting algorithm CF has a small E1 (0.054) but a large E2

(0.525). It tends to be conservative in identifying mislabeled data because of its consensus nature. (ii). In contrast, the

majority voting algorithm MF has a larger E1 (0.179) but a smaller E2 (0.196). It has a stronger tendency to identify

a data item as mislabeled than CF since it only needs majority votes (instead of consensus votes). (iii). SDTNF has

errors E1 (0.130) and E2 (0.271) that are between those for CF and MF.

In terms of improvement on accuracy of the nearest neighbor classifiers, SDTNF performs slightly better than CF

and MF at noise levels of 0%, 5% and 10%, as shown in Table 4. At noise levels of 20%, 30%, and 40%, SDTNF performs

significantly better than CF and MF. This difference in performance is correlated to errors E1 and E2. For example, at

a noise level of 40%, CF has a very large E2 (0.716) although it has a very small E1 (0.071). A large value of 0.716 for E2

means that CF only filters out 28.4% of all mislabeled data (40% of the whole data set). The large amount of unfiltered

mislabeled data significantly limits its ability to improve the nearest neighbor classifiers. Although MF has a smaller

E2 (0.302) as compared to E2 (0.622) from CF at the noise level 40%, it has a large E1 (0.302). This means that MF

mistakenly filters out 23.5% of all non-mislabeled data (60% of the whole data set), which significantly affects its ability

to improve the nearest neighbor classifiers. In comparison, SDTNF has a more balanced E1 (0.184) and E2 (0.326) that
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enable SDTNF to achieve better performance than CF and MF in terms of improving 1-NN. At the noise level 40%,

SDTNF is able to achieve an improvement on the accuracy of 1-NN by 31.3% (70.9% vs. 54.0%), in comparison to an

improvement of 13.1% (61.1% vs. 54.0%) by CF and an improvement of 18.7% (64.1% vs. 50.0%) by MF.

Table 4: Average result over 16 data sets.

Noise Level 0 5 10 20 30 40 Avg.

Iterations 5.4 6.2 7.0 8.0 8.6 8.8 7.4

Tree Size 45.1 45.0 42.8 42.3 42.9 46.7 44.1

SDTNF(E1) 0.101 0.108 0.115 0.127 0.145 0.184 0.130

CF(E1) 0.047 0.048 0.049 0.053 0.056 0.071 0.054

MF(E1) 0.142 0.150 0.163 0.191 0.235 0.302 0.197

SDTNF(E2) ∗ 0.273 0.269 0.225 0.260 0.326 0.271

CF(E2) ∗ 0.364 0.416 0.509 0.622 0.716 0.525

MF(E2) ∗ 0.128 0.147 0.174 0.228 0.302 0.196

1-NN(Acc) 80.7 77.9 74.2 67.0 59.1 54.0 68.8

SDTNF(Acc) 82.3 81.2 80.3 79.0 75.9 70.9 78.3

CF(Acc) 81.3 81.1 79.4 75.6 68.6 61.1 74.5

MF(Acc) 79.9 80.0 78.5 76.5 71.5 64.1 75.1

From the results of 16 tested data sets, we can also see that the three filtering methods perform differently on different

data sets in terms of the improvement on the accuracy of 1-NN. For eight data sets (Anneal, HeartC, HeartH , Horse,

Pima, Soybean, V ehicle, V oting) SDTNF has similar performance as CF and MF in terms of the average accuracy

(over different noise levels), as shown in the last column of the table for each data set. In these data sets, the accuracy

difference between SDTNF and the best of CF and MF is less than 3.0%. On the other eight data sets (Australian,

Balance, Car, Ecoli, Glass, Iono, Iris, V owel), SDTNF performs significantly better (more than 3.0%) than the best

of CF and MF.

One explanation for the performance difference in filtering capabilities among the three methods is as follows. In

CF and MF, a data set is divided into two subsets: S1 and S2. S1 is applied for constructing an ensemble of classifiers

(which is then utilized for predicting noise in S2). Because the training data S1 contains the same level of noise as

in S2, it can generate a trained classifier with degraded capacity for making accurate noise predictions (especially at

a high level of noise). In contrast, SDTNF includes all instances (in both S1 and S2) in the process and allows every

instance to change its class label, without relying on a pre-constructed classifier. Another factor that may contribute

to the performance difference is that SDTNF uses a soft class label (class probability vector) instead of a hard (binary)

class label. This allows a large number of hypotheses about class labeling to interact and compete with each other

simultaneously. SDTNF can provide smoother convergence and increase the opportunity for accurate labeling.

Another observation is that SDTNF can significantly improve the accuracy of the nearest neighbor classifiers for

12



some data sets even at a noise level of 0%. For example, SDTNF is able to improve the accuracy of 1-NN significantly

(by more than 3%) on several data sets (Australian, Balance, Ecoli, HeartH , Pima) at a noise level of 0%. This

shows that, even without artificially adding mislabeled data, SDTNF still has capability to filter potential mislabeled

data in some data sets and improve the performance of the nearest neighbor classifiers.

From table 2, we can see that SDTNF needs only an average of 7.4 iterations to converge. Because SDTNF is based

on C4.5 (which is a relatively fast and scalable algorithm), it has the ability to achieve a reasonably fast convergence

with a good scalability to large-size data sets.

4. SUMMARY

In summary, we have presented a decision tree based approach – SDTNF – to filter noise in data sets. In this approach,

a sequence of decision trees are built whose outputs are applied as the learning targets for identifying mislabeled data.

In SDTNF, a soft class label (class probability vector) is applied to each instance and its values are learned during

the process of building decision trees. The learning is based on the difference between the class probability vector and

outputs of decision trees, and is controlled by a learning rate. This learning procedure provides a mechanism for aligning

the class probability vector with the decision tree outputs, which can be applied for identifying and filtering mislabeled

data.

We have tested the performance of SDTNF on 16 data sets drawn from the UCI data repository by evaluating its

ability to filter mislabeled data as well as its ability to keep non-mislabeled data. We also evaluate its performance by

evaluating and comparing the accuracies of two versions of nearest neighbor classifiers, one using the training set filtered

by SDTNF and the other using the training set without filtering. The results show that SDTNF is able to filter a large

portion of mislabeled data and significantly improve the performance of a nearest neighbor classifier over a wide range

of noise levels.

We also compared SDTNF to the consensus and majority voting methods proposed by Brodley and Friedl [1996;

1999]. The results show that SDTNF compared favorably to these methods, especially at high noise levels.
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APPENDIX A. ADDITIONAL RESULTS

Table 5: Result for the data set Anneal.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.0 10.1 19.9 30.1 40.0 Avg.

Iterations 4.5 7.7 8.4 9.5 8.4 6.5 7.5

Tree Size 66.4 51.3 48.0 45.3 19.0 6.8 39.5

SDTNF(E1) 0.045 0.065 0.075 0.096 0.158 0.192 0.105

CF(E1) 0.004 0.005 0.012 0.018 0.033 0.052 0.021

MF(E1) 0.035 0.041 0.055 0.079 0.121 0.173 0.084

SDTNF(E2) ∗ 0.072 0.111 0.109 0.156 0.175 0.125

CF(E2) ∗ 0.175 0.237 0.333 0.457 0.563 0.353

MF(E2) ∗ 0.030 0.050 0.063 0.118 0.161 0.084

1-NN(Acc) 95.7 ± 1.7 91.1 ± 1.9 85.1 ± 3.4 78.2 ± 3.4 66.8 ± 1.8 59.9 ± 3.6 79.5

SDTNF(Acc) 93.8 ± 1.6 92.3 ± 1.8 91.1 ± 0.9 89.8 ± 1.6 81.5 ± 2.0 79.4 ± 1.1 88.0

CF(Acc) 95.1 ± 1.8 94.7 ± 1.6 92.1 ± 1.9 89.6 ± 2.8 81.4 ± 2.8 74.2 ± 3.6 87.9

MF(Acc) 94.0 ± 1.7 93.7 ± 1.6 91.4 ± 1.8 89.8 ± 1.3 85.4 ± 1.7 79.2 ± 1.9 88.9

Table 6: Result for the data set Australian.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.0 10.1 20.0 30.1 40.0 Avg.

Iterations 5.3 6.6 7.0 5.8 8.0 7.7 6.7

Tree Size 20.3 20.2 21.8 14.9 40.3 69.1 31.1

SDTNF(E1) 0.109 0.117 0.110 0.126 0.124 0.165 0.125

CF(E1) 0.072 0.072 0.069 0.074 0.076 0.120 0.081

MF(E1) 0.143 0.145 0.149 0.184 0.280 0.377 0.213

SDTNF(E2) ∗ 0.158 0.185 0.190 0.275 0.469 0.255

CF(E2) ∗ 0.294 0.367 0.466 0.615 0.741 0.497

MF(E2) ∗ 0.094 0.144 0.186 0.260 0.385 0.214

1-NN(Acc) 81.7 ± 3.1 76.5 ± 3.3 74.9 ± 4.5 69.9 ± 2.9 64.5 ± 3.5 55.2 ± 3.3 70.5

SDTNF(Acc) 86.4 ± 1.8 84.5 ± 3.8 85.2 ± 3.7 84.9 ± 3.4 79.9 ± 4.0 69.9 ± 8.7 81.8

CF(Acc) 84.6 ± 3.1 85.4 ± 2.6 84.3 ± 3.3 80.6 ± 4.4 73.9 ± 3.0 59.4 ± 4.4 78.0

MF(Acc) 84.3 ± 3.0 82.8 ± 3.3 85.1 ± 3.7 81.9 ± 2.9 74.8 ± 4.0 61.7 ± 3.7 78.4

Table 7: Result for the data set Balance.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.0 10.0 20.1 30.1 40.2 Avg.

Iterations 9.3 9.7 9.4 8.7 8.5 8.8 9.1

Tree Size 41.0 43.5 36.0 30.5 28.0 33.0 35.3

SDTNF(E1) 0.238 0.233 0.243 0.266 0.276 0.279 0.256

CF(E1) 0.004 0.019 0.038 0.065 0.069 0.070 0.044

MF(E1) 0.145 0.185 0.216 0.263 0.317 0.373 0.250

SDTNF(E2) ∗ 0.379 0.353 0.357 0.355 0.396 0.368

CF(E2) ∗ 0.575 0.579 0.619 0.700 0.777 0.650

MF(E2) ∗ 0.146 0.182 0.218 0.270 0.334 0.230

1-NN(Acc) 63.8 ± 5.6 62.1 ± 4.0 58.2 ± 5.8 56.8 ± 2.9 49.9 ± 5.5 48.2 ± 6.2 56.5

SDTNF(Acc) 68.2 ± 5.4 69.4 ± 4.5 66.4 ± 4.4 63.2 ± 2.8 60.6 ± 6.0 59.7 ± 5.4 64.6

CF(Acc) 60.3 ± 3.0 61.8 ± 2.5 61.6 ± 3.8 57.3 ± 2.0 51.5 ± 2.3 47.4 ± 2.9 56.6

MF(Acc) 60.0 ± 3.3 61.6 ± 3.4 63.2 ± 4.8 63.2 ± 3.3 59.2 ± 6.2 58.7 ± 3.7 61.0
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Table 8: Result for the data set Car.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.0 10.0 20.0 30.1 40.0 Avg.

Iterations 6.0 5.8 7.7 9.0 9.0 9.0 7.8

Tree Size 147.4 139.4 133.4 123.6 115.9 103.1 127.1

SDTNF(E1) 0.039 0.045 0.051 0.063 0.082 0.140 0.070

CF(E1) 0.007 0.011 0.022 0.035 0.049 0.085 0.035

MF(E1) 0.069 0.094 0.144 0.188 0.207 0.257 0.160

SDTNF(E2) ∗ 0.097 0.112 0.136 0.169 0.245 0.152

CF(E2) ∗ 0.322 0.340 0.375 0.450 0.535 0.404

MF(E2) ∗ 0.094 0.155 0.180 0.190 0.240 0.172

1-NN(Acc) 78.9 ± 1.7 74.2 ± 1.4 70.9 ± 2.1 63.4 ± 3.0 57.2 ± 3.6 53.9 ± 3.4 66.4

SDTNF(Acc) 78.5 ± 1.7 77.2 ± 1.2 77.3 ± 2.3 76.0 ± 2.1 75.3 ± 2.6 72.7 ± 1.9 76.2

CF(Acc) 75.5 ± 1.0 76.0 ± 1.8 74.4 ± 1.7 74.0 ± 1.0 72.0 ± 1.5 70.4 ± 2.0 73.7

MF(Acc) 74.1 ± 0.6 74.7 ± 2.3 73.4 ± 1.8 72.3 ± 0.6 70.7 ± 1.6 70.6 ± 1.5 72.6

Table 9: Result for the data set Glass.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 4.7 10.4 20.2 30.2 39.6 Avg.

Iterations 7.7 7.8 9.9 9.8 12.0 12.0 9.9

Tree Size 28.0 29.2 29.0 30.6 27.8 32.4 29.5

SDTNF(E1) 0.149 0.151 0.148 0.155 0.163 0.206 0.162

CF(E1) 0.070 0.072 0.075 0.073 0.071 0.069 0.072

MF(E1) 0.264 0.273 0.272 0.313 0.332 0.371 0.304

SDTNF(E2) ∗ 0.400 0.345 0.354 0.357 0.407 0.373

CF(E2) ∗ 0.589 0.595 0.687 0.758 0.816 0.689

MF(E2) ∗ 0.222 0.215 0.226 0.275 0.334 0.254

1-NN(Acc) 67.8 ± 7.3 67.8 ± 10.7 65.4 ± 6.9 55.6 ± 8.3 49.5 ± 10.1 40.7 ± 5.8 57.8

SDTNF(Acc) 67.3 ± 6.4 66.4 ± 10.1 67.3 ± 6.3 64.5 ± 8.5 62.1 ± 9.2 53.3 ± 5.8 63.5

CF(Acc) 65.0 ± 7.8 65.9 ± 10.7 67.8 ± 6.1 57.9 ± 7.5 54.7 ± 8.7 44.9 ± 8.7 59.4

MF(Acc) 62.6 ± 4.2 67.8 ± 7.7 64.5 ± 6.8 61.2 ± 6.0 57.0 ± 5.4 45.8 ± 9.3 59.8

Table 10: Result for the data set HeartC.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 4.8 10.3 20.0 30.1 40.0 Avg.

Iterations 6.7 7.0 7.0 7.0 8.0 8.2 7.3

Tree Size 32.1 28.9 27.9 31.7 34.9 35.8 31.9

SDTNF(E1) 0.133 0.147 0.150 0.143 0.146 0.210 0.155

CF(E1) 0.084 0.088 0.075 0.088 0.113 0.133 0.097

MF(E1) 0.198 0.219 0.217 0.257 0.317 0.416 0.271

SDTNF(E2) ∗ 0.377 0.407 0.468 0.459 0.569 0.456

CF(E2) ∗ 0.362 0.471 0.601 0.663 0.750 0.569

MF(E2) ∗ 0.185 0.246 0.288 0.290 0.414 0.285

1-NN(Acc) 77.2 ± 6.7 74.9 ± 5.5 75.6 ± 4.7 67.0 ± 6.8 55.1 ± 7.9 58.7 ± 5.2 68.1

SDTNF(Acc) 79.2 ± 4.2 78.5 ± 4.9 77.9 ± 3.3 74.3 ± 4.1 68.3 ± 5.4 65.7 ± 6.5 74.0

CF(Acc) 79.5 ± 5.5 78.9 ± 4.6 74.6 ± 3.9 75.2 ± 5.0 60.1 ± 7.7 61.4 ± 7.0 71.6

MF(Acc) 78.5 ± 3.7 77.9 ± 4.6 70.0 ± 5.4 73.3 ± 3.4 66.0 ± 5.9 56.4 ± 6.6 70.3
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Table 11: Result for the data set HeartH.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.0 10.2 20.0 30.2 40.1 Avg.

Iterations 4.9 6.1 5.0 5.7 6.5 6.5 5.8

Tree Size 7.8 10.8 7.8 12.6 11.9 12.7 10.6

SDTNF(E1) 0.164 0.155 0.163 0.159 0.185 0.224 0.175

CF(E1) 0.095 0.085 0.083 0.090 0.103 0.086 0.090

MF(E1) 0.188 0.186 0.193 0.235 0.296 0.348 0.241

SDTNF(E2) ∗ 0.265 0.296 0.292 0.310 0.443 0.321

CF(E2) ∗ 0.364 0.430 0.523 0.620 0.715 0.530

MF(E2) ∗ 0.214 0.222 0.208 0.270 0.375 0.258

1-NN(Acc) 76.5 ± 6.8 75.2 ± 5.1 74.1 ± 3.1 64.6 ± 5.5 63.9 ± 5.8 55.4 ± 8.6 68.3

SDTNF(Acc) 81.6 ± 7.4 80.6 ± 5.0 80.6 ± 4.5 77.9 ± 6.1 75.2 ± 5.4 69.0 ± 9.6 77.5

CF(Acc) 80.3 ± 7.2 80.6 ± 5.4 78.6 ± 3.2 75.5 ± 5.8 73.1 ± 6.6 63.9 ± 7.9 75.3

MF(Acc) 81.3 ± 7.7 80.6 ± 5.9 77.2 ± 4.4 78.2 ± 6.0 68.7 ± 4.7 68.0 ± 4.8 75.7

Table 12: Result for the data set Horse.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 4.9 10.0 19.9 30.1 40.0 Avg.

Iterations 8.8 8.7 9.8 10.1 8.6 8.6 9.1

Tree Size 24.7 24.0 22.4 24.7 18.7 11.3 21.0

SDTNF(E1) 0.216 0.231 0.238 0.249 0.280 0.333 0.258

CF(E1) 0.090 0.091 0.089 0.096 0.081 0.104 0.092

MF(E1) 0.294 0.292 0.307 0.343 0.358 0.383 0.329

SDTNF(E2) ∗ 0.312 0.306 0.328 0.332 0.334 0.322

CF(E2) ∗ 0.575 0.615 0.658 0.742 0.763 0.671

MF(E2) ∗ 0.250 0.252 0.273 0.312 0.343 0.286

1-NN(Acc) 64.5 ± 6.2 63.4 ± 6.8 59.6 ± 3.5 57.9 ± 6.3 48.6 ± 5.6 47.0 ± 6.2 56.8

SDTNF(Acc) 66.1 ± 3.5 64.8 ± 3.8 65.0 ± 5.4 62.3 ± 3.9 61.2 ± 5.5 61.7 ± 3.8 63.5

CF(Acc) 64.8 ± 6.0 64.5 ± 5.7 61.5 ± 2.8 62.3 ± 6.5 56.3 ± 8.0 53.8 ± 7.1 60.5

MF(Acc) 65.3 ± 5.2 64.5 ± 5.0 63.4 ± 3.8 57.9 ± 4.7 56.3 ± 5.2 54.9 ± 5.0 60.4

Table 13: Result for the data set Iono.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.1 9.8 20.1 30.1 40.0 Avg.

Iterations 4.4 4.9 4.5 6.5 5.7 6.4 5.4

Tree Size 14.0 14.2 11.6 11.0 15.0 9.0 12.5

SDTNF(E1) 0.053 0.052 0.068 0.076 0.119 0.242 0.102

CF(E1) 0.039 0.040 0.038 0.048 0.063 0.093 0.053

MF(E1) 0.098 0.113 0.123 0.158 0.231 0.321 0.174

SDTNF(E2) ∗ 0.237 0.216 0.239 0.317 0.340 0.270

CF(E2) ∗ 0.262 0.332 0.446 0.561 0.681 0.456

MF(E2) ∗ 0.138 0.126 0.164 0.219 0.297 0.189

1-NN(Acc) 86.9 ± 2.0 84.9 ± 5.0 80.1 ± 4.0 69.2 ± 7.3 63.5 ± 4.6 55.6 ± 3.2 73.4

SDTNF(Acc) 87.2 ± 3.1 86.0 ± 4.1 84.0 ± 3.5 84.0 ± 3.2 82.3 ± 5.4 70.4 ± 3.9 82.3

CF(Acc) 86.9 ± 2.2 86.3 ± 3.4 85.2 ± 3.2 83.2 ± 4.6 73.5 ± 3.7 59.0 ± 5.8 79.0

MF(Acc) 85.5 ± 2.6 84.6 ± 2.6 82.6 ± 4.8 78.3 ± 5.2 75.5 ± 3.4 66.7 ± 5.7 78.9
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Table 14: Result for the data set Iris.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 4.4 11.1 20.0 31.1 40.0 Avg.

Iterations 4.4 3.9 4.6 6.1 6.4 6.2 5.3

Tree Size 6.6 6.6 6.2 6.0 8.2 9.0 7.1

SDTNF(E1) 0.024 0.024 0.037 0.029 0.032 0.064 0.035

CF(E1) 0.016 0.022 0.022 0.022 0.019 0.043 0.024

MF(E1) 0.049 0.050 0.065 0.093 0.147 0.258 0.110

SDTNF(E2) ∗ 0.017 0.087 0.085 0.117 0.181 0.097

CF(E2) ∗ 0.050 0.200 0.381 0.583 0.654 0.374

MF(E2) ∗ 0.000 0.013 0.056 0.140 0.206 0.083

1-NN(Acc) 95.3 ± 3.9 92.7 ± 2.7 83.3 ± 5.6 79.3 ± 6.1 55.3 ± 6.0 62.0 ± 7.1 78.0

SDTNF(Acc) 96.0 ± 3.3 95.3 ± 2.3 94.0 ± 4.2 92.7 ± 6.1 91.3 ± 5.5 88.7 ± 6.8 93.0

CF(Acc) 97.3 ± 3.3 95.3 ± 2.3 95.3 ± 3.9 88.7 ± 6.0 75.3 ± 6.4 69.3 ± 5.1 86.9

MF(Acc) 97.3 ± 3.3 94.7 ± 4.4 93.3 ± 5.9 90.7 ± 5.6 84.0 ± 5.1 68.7 ± 13.1 88.1

Table 15: Result for the data set Pima.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.1 10.0 20.0 30.0 40.0 Avg.

Iterations 6.0 6.5 5.8 5.2 6.9 6.7 6.2

Tree Size 14.4 13.2 13.4 6.0 9.2 2.0 9.7

SDTNF(E1) 0.203 0.218 0.211 0.237 0.272 0.325 0.244

CF(E1) 0.108 0.109 0.109 0.103 0.081 0.107 0.103

MF(E1) 0.245 0.253 0.265 0.275 0.331 0.393 0.294

SDTNF(E2) ∗ 0.340 0.317 0.296 0.379 0.362 0.339

CF(E2) ∗ 0.483 0.516 0.588 0.696 0.781 0.613

MF(E2) ∗ 0.237 0.259 0.280 0.329 0.384 0.298

1-NN(Acc) 70.6 ± 4.0 68.4 ± 3.5 64.8 ± 3.4 60.7 ± 3.1 55.5 ± 2.5 50.8 ± 4.2 61.8

SDTNF(Acc) 74.5 ± 2.9 75.3 ± 3.1 74.7 ± 2.8 74.5 ± 3.2 67.6 ± 4.5 64.7 ± 5.5 71.9

CF(Acc) 74.7 ± 2.7 73.2 ± 2.9 72.9 ± 3.1 67.1 ± 4.4 63.2 ± 3.1 57.4 ± 5.3 68.1

MF(Acc) 72.7 ± 2.5 73.6 ± 3.0 72.5 ± 4.8 71.5 ± 3.6 67.6 ± 2.5 60.7 ± 6.7 69.8

Table 16: Result for the data set Soybean.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.2 10.2 20.6 29.6 39.9 Avg.

Iterations 1.0 1.0 1.0 5.7 7.2 9.1 4.2

Tree Size 66.4 71.8 74.3 70.7 72.3 74.3 71.6

SDTNF(E1) 0.000 0.000 0.000 0.033 0.048 0.057 0.023

CF(E1) 0.021 0.019 0.015 0.018 0.015 0.015 0.017

MF(E1) 0.062 0.077 0.074 0.093 0.105 0.126 0.090

SDTNF(E2) ∗ 1.000 1.000 0.096 0.089 0.092 0.455

CF(E2) ∗ 0.181 0.255 0.407 0.504 0.616 0.393

MF(E2) ∗ 0.038 0.043 0.093 0.126 0.186 0.097

1-NN(Acc) 90.0 ± 2.1 85.9 ± 2.5 81.3 ± 3.0 71.0 ± 4.6 61.6 ± 3.1 53.1 ± 4.3 73.8

SDTNF(Acc) 90.0 ± 2.1 85.9 ± 2.5 81.3 ± 3.0 89.2 ± 3.4 88.0 ± 3.2 87.0 ± 3.0 86.9

CF(Acc) 89.2 ± 2.9 90.2 ± 1.7 89.0 ± 2.5 84.0 ± 2.1 75.5 ± 4.0 68.5 ± 4.5 82.7

MF(Acc) 88.0 ± 2.6 88.4 ± 2.1 88.0 ± 3.6 86.1 ± 2.0 81.7 ± 3.0 74.7 ± 5.3 84.5

17



Table 17: Result for the data set Vehicle.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.1 10.1 20.0 30.1 40.0 Avg.

Iterations 8.0 8.6 10.6 12.7 13.9 14.0 11.3

Tree Size 74.2 84.6 81.0 88.2 89.2 117.0 89.0

SDTNF(E1) 0.143 0.131 0.149 0.163 0.180 0.180 0.158

CF(E1) 0.050 0.047 0.047 0.043 0.041 0.040 0.045

MF(E1) 0.227 0.221 0.222 0.234 0.251 0.297 0.242

SDTNF(E2) ∗ 0.213 0.222 0.281 0.313 0.412 0.288

CF(E2) ∗ 0.569 0.577 0.638 0.735 0.795 0.663

MF(E2) ∗ 0.123 0.174 0.184 0.242 0.297 0.204

1-NN(Acc) 70.6 ± 4.1 67.8 ± 3.1 64.7 ± 3.0 56.0 ± 4.1 53.4 ± 2.9 48.7 ± 3.4 60.2

SDTNF(Acc) 70.7 ± 3.6 70.4 ± 3.5 69.3 ± 3.0 65.4 ± 4.5 63.1 ± 3.3 58.0 ± 4.9 66.2

CF(Acc) 70.0 ± 3.7 68.9 ± 2.8 66.8 ± 3.3 62.2 ± 4.6 58.9 ± 2.5 54.4 ± 2.8 63.5

MF(Acc) 68.6 ± 4.2 67.7 ± 3.3 67.8 ± 3.8 64.4 ± 4.6 61.6 ± 2.7 57.2 ± 3.6 64.5

Table 18: Result for the data set Voting.

Noise Level 0 5 10 20 30 40
Actual Noise 0.0 5.1 10.0 19.9 29.9 39.9 Avg.

Iterations 5.2 5.0 5.9 6.2 7.2 7.8 6.2

Tree Size 8.8 7.8 6.4 6.2 11.0 22.8 10.5

SDTNF(E1) 0.032 0.034 0.037 0.043 0.043 0.088 0.046

CF(E1) 0.022 0.023 0.026 0.026 0.024 0.057 0.030

MF(E1) 0.045 0.048 0.053 0.072 0.138 0.273 0.105

SDTNF(E2) ∗ 0.065 0.067 0.073 0.130 0.280 0.123

CF(E2) ∗ 0.200 0.231 0.286 0.472 0.662 0.370

MF(E2) ∗ 0.065 0.062 0.064 0.140 0.266 0.119

1-NN(Acc) 92.6 ± 2.8 89.0 ± 3.4 83.0 ± 4.2 74.9 ± 7.2 70.3 ± 5.0 62.5 ± 4.2 78.7

SDTNF(Acc) 92.4 ± 2.5 92.6 ± 3.0 91.5 ± 3.2 91.5 ± 2.9 91.5 ± 2.3 81.6 ± 7.5 90.2

CF(Acc) 92.2 ± 2.5 92.9 ± 3.0 92.2 ± 3.0 90.6 ± 3.7 83.2 ± 5.9 72.4 ± 5.2 87.3

MF(Acc) 91.3 ± 3.1 93.3 ± 2.7 92.6 ± 3.1 91.7 ± 3.6 85.7 ± 2.6 74.3 ± 6.6 88.1
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