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Abstract

FOLDS, First Order Logic with Dependent Sorts, has been introduced by the
logician Michael Makkai as a foundational framework to capture the abstract
nature of contemporary mathematical concepts. In this paper, we present the
underlying philosophical motivation of FOLDS as well as some of the salient
technical features of the framework. We end by discussing what we take to be
philosophically meaningful aspects of FOLDS and the accompanying framework.



1 Introduction

One of the greatest intellectual accomplishments of the 20th century is the cre-
ation and the development of a science of the foundations of mathematics. The
roots of this development go back to the 19th century1. The development of first
order logic together with the development of set theory lead to the constitution
of a scientific foundational framework2. On the one hand, a precise formal sys-
tem with definite properties in which axioms for various mathematical systems
can be written was developed. On the other hand, a precise and mathematically
defined universe of entities, e.g. a universe of pure sets, in which these axiomatic
presentations can be interpreted and for which various results and theorems can
be proved was constructed. The latter was conceived as the ontological compo-
nent of the discipline, linked to the formal system by a rigorous semantic. These
precise formal developments constituted a science in the following sense. First,
both these components are taken as capturing significant properties of already
given components of mathematical knowledge, e.g. a systematic but informal
language and a system of informal mathematical concepts. Second, the precise
and rigorous framework and its accompanying theoretical means allow for the
rigorous and exact proofs of many important and significant results, e.g. com-
pleteness and compactness of first order logic, Gődel’s incompleteness results,
the consistency and the independence of the continuum hypothesis with the
usual axioms of set theory, to mention but the most obvious. One should also
keep in mind the creation and development of model theory and proof theory
which can be seen as specific articulations and emphasis of various components
of this picture.

The success of this intellectual enterprise should also be seen as giving us
a set of norms for any scientific foundational framework3. Thus, any scientific
foundational framework should be based on the following components:

1One could possibly go back to Leibniz to look for preliminary, informal ideas on the sub-
ject, but I believe that a reasonable demarcation point is the constitution of precise technical
tools and in this regard, it is hard to deny that the 19th century provided the first real, precise
and technical developments. However, the scientific character of the foundational enterprise
has to be underlined and that feature came about only in the course of the 20th century. For
a foundational framework to be considered scientific, it has to satisfy certain properties. I
believe that this is a crucial component of Makkai’s view on the subject.

2The history of the field is, as almost all histories are, quite convoluted. In particular, it is
important to understand that the status that first order logic acquired is directly linked to its
role in the development of axiomatic set theory. See, for instance, Moore (1980, 1987, 1988),
Ferreirós (1996, 2001, 2007), Mancosu et al. (2009), Schiemer & Reck (2013).

3I emphasize the scientific character of the enterprise once again, for some might argue that
the foundations must ultimately rest upon simple informal ideas or conceptions and that, for
that reason, formal set theory or formal category theory cannot provide “real” foundations. I
take it that this is or is sufficiently close to Mayberry’s view as expressed in ?. By underlining
the scientific character of the discipline, I want to emphasize the fact that the methods used
in the science of foundations are the same as in the other sciences. Thus, there is, as I have
said, an informal or intended collection of facts that the foundational system is supposed to
capture, reflect and illuminate. In that respect and as in the natural sciences, there may be a
chasm between the scientific image resulting from the theoretical work and the pretheoretical
ideas used and known.
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1. A precise and explicit mathematical syntax, also known as a formal sys-
tem or sometimes a language, L, given by recursive rules, together with
a deductive structure, also known as a logic; the latter can be given in-
dependently or it may be inherent to the formal system right from the
start4;

2. A mathematical construction or definition of a universe U of mathematical
objects;

3. A systematic interpretation of a theory written in the language in the con-
structed universe such that some of the propositions of the theory, usually
called “axioms”, become “obviously” true under that interpretation.

As we have said, in the present state of affairs, the formal system is first order
logic with the usual axioms or rules and the theory is given by the axioms of
Zermelo-Fraenkel set theory. The specific universe intended is provided by the
cumulative hierarchy, thus the universe of pure or regular sets5.

It should be clear from our opening sentence that we believe that the stan-
dard framework has much to commend. Our goal in this paper is to present a
different foundational framework which captures another, complementary aspect
of mathematical concepts that the logician Michael Makkai has been develop-
ing. It is not that the standard framework has to be rejected. It does what it
does very well. But it suffers from a conceptual limitation: it does not model an
aspect of mathematical knowledge that emerged concurrently with the develop-
ment of the foundational framework itself. As is often the case in the history
of ideas, it is only when an alternative theoretical framework is sufficiently de-
veloped that one can clearly see a “flaw”, “limitation” or an “anomaly” in the
accepted theory6.

The “anomaly” of the current set-theoretical picture has to do with the fact
that it fails to capture the abstract character of contemporary mathematical
concepts. With the advent of the abstract method and the resulting develop-
ment of conceptual mathematics, a large portion of contemporary mathematics
has become resolutely abstract. Of course, what the latter expression means is
debatable7. Be that as it may, the anomaly comes from the codification of the

4An instance of the latter case is now given by Homotopy Type Theory. The standard
presentation of first-order logic separates the purely linguistic component from the logical
system.

5Of course, there numerous, incompatible models of the universe of set theory and it is
part of the scientific foundational enterprise to build and investigate the properties of these
universes to adjudicate their values and merits.

6Thus, instead of seeing set theory and category theory as rivals, one could draw an analogy
with the case of newtonian physics and relativity theory or classical physics and quantum
physics.

7One thing is sure. It certainly does not have the usual ontological meaning. Mathe-
maticians certainly do not mean, when they talk about abstract algebra, that that kind of
mathematics has no spatio-temporal coordinates or that it is causally inert, etc. They do not
have in mind the traditional philosophical distinction between the abstract and the concrete.
I, for one, am convinced that they have an epistemological distinction in mind. See, for in-
stance, Marquis (2014). The underlying view of what it is to be abstract is here rooted in the
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abstract part of contemporary mathematics into the universe of pure sets. The
abstract nature of the concepts involved is simply lost by the codification into
pure sets. To see this, we need to delve into the nature of abstract mathematical
concepts and pure sets. Once this is done, we will sketch the basic components
of the alternative foundational framework that is emerging and present some of
its philosophical implications.

2 Some generalities about abstract mathemati-
cal concepts

2.1 Contrast and compare: pure sets

Let us start with a recapitulation of the universe of pure sets, for this will allow
us to exhibit the main conceptual differences between the latter and the picture
we are introducing. Informally, a pure set is a collection of pure sets. This ap-
parently circular characterization can be explained analytically or synthetically.
Analytically, it means that when one decomposes a pure set into its elements,
one again finds pure sets and this process repeats itself uniquely until at the
end of each branch of the decomposition one finds the empty set. Synthetically,
it means that one starts with the empty set, which is a pure set, and constructs
sets from there by various well-known (possibly infinitary) operations8.

There is no need to present and discuss the universe of pure sets in great
detail, for our point here is very simple9. I claim that pure sets do not encode
abstract mathematical concepts properly10. The introduction of pure sets in
the foundational landscape provides a clean and tidy house: every object has
a definite structure, a definite nature and can be identified uniquely by its
elements. If pure sets had physical properties, they would be prototypically
concrete entities. To clarify this latter statement, consider an arbitrary pure
set X and an element x ∈ X. The element x is itself a pure set and it is

way it is understood in the development of mathematics, particularly in the 20th century. It
is certainly close to some views defended in the philosophical literature, for instance ?. How-
ever, we refrain from using the term “structuralism” in this context and prefer to concentrate
on the abstract character of the concepts. The term “structuralism” as it is used by most
philosophers is appropriate to but a small fragment of the universe we have in mind here.

8Needless to say, this is very informal and one has to be careful. In the analytic description,
carelessness will lead to non-well founded sets, whereas in the synthetic description, one has
to make sure to have infinitary operations at hand, otherwise the universe will contain only
hereditarily finite sets. The latter are certainly important, but they clearly do not provide
the proper picture of the usual universe of sets.

9Category theorists have been critical of the underlying conception of sets provided by ZF
from the 1960s onwards. These criticisms are in fact pointing in the direction we are engaging
in, without emphasizing the abstract nature of the notion of sets defended. In fact, many
opponents to the views articulated then thought that category theorists were simply trying to
eliminate sets altogether, which lead to a profound misunderstanding between the two groups.
For some of the critical arguments and alternative theory presented, see, for instance, ???.

10In a sense, one could interpret Benacerraf’s well-known argument as saying just that. In
fact, as Makkai has already mentioned, FOLDS provides an elegant and direct solution to
that problem. See, for instance, Makkai (1998, 1999).
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therefore itself entirely determined by its own elements. In that sense, x has
an independent identity from X. In fact, x has its own unique identity in the
universe of pure sets. To illustrate this, consider a specific pure set, e.g. let
X be the pure set {{∅}, {∅, {∅}}} and let x be {∅}. Both x and X are pure
sets and x ∈ X. Although it cannot be said that pure sets are concrete in
the standard ontological sense of that expression — that is they do not possess
spatio-temporal coordinates nor are they causally efficacious, at least in the way
molecules are — they certainly are concrete in an epistemic/semantic sense. We
have a complete picture of the components and the composition of a pure set.
Furthermore, all this information is contained in the notation itself. When we
write down a specific pure set, e.g. {{∅}, {∅, {∅}}}, we can say exactly what
are its components and how these are put together to yield that particular,
unique pure set. Last, but not least, this also allows us to see why the axiom of
extensionality holds for pure sets. The latter only confirms the fact that pure
sets — in fact any system of sets satisfying the ZF axioms — should be thought
of as being particulars or individuals11. Indeed, the axiom of extensionality
constitutes the criterion of identity for ZF-sets: two sets X and Y are the same
if and only if they have the same elements. The beauty of pure sets is that the
criterion of identity is homogeneous or uniform: it works all the way down on
the elements of pure sets, that is to determine when two given elements of X
and Y are the same is still an internal matter. Let us now contrast this with
the way mathematicians talk about abstract mathematical concepts.

2.2 Compare and contrast: being abstract

“Let G be an abstract group.”
This is a common way of talking in contemporary mathematics, say in group

theory or in representation theory. If every mathematical object is a set, then
the abstract group G ought to be a set or have an underlying set. Can this
underlying set be a pure set? Suppose it is. Then, it should be a partic-
ular pure set XG with specific properties, e.g. having specific elements, e.g.
{{∅}, {∅, {∅}}} ∈ XG. But the specification that the group G is an abstract
group is given precisely to avoid this situation, that is, the elements and the
properties of the underlying set as a specific, concrete set are completely irrel-
evant. What mathematicians want to say in this context is that the abstract
group has an underlying abstract set and the properties of the latter that ought
to be considered are those that a set possesses as an abstract set and nothing
else.

The situation is even more strange when one considers operations on abstract

11I prefer this terminology to the term “concrete”. In fact, the term “abstract” should
perhaps be replaced by the term “universals” as the latter was used in philosophy. The problem
is not so much with the term “abstract”, but more with the term “concrete”. It is more difficult
to talk about concrete mathematical entities. The term “abstract” in mathematics is linked
to the abstract method or to a method of abstraction and, as such, should be opposed to
a method of representation. For more on the relevance of these distinctions in the present
context, see Ellerman (1988), Marquis (2000).
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groups12. Thus, letG andH be abstract groups. Now, suppose a mathematician
was to present the following construction: consider the underlying sets XG and
YH of G and H and take their intersection XG ∩ YH . And now suppose that
the mathematician suggests to work with the latter set-theoretical construction
to get some results about abstract groups. Now, if the underlying sets XG and
YH are pure sets, then they have a well-defined and unique intersection which
is a pure set. Clearly, the latter has nothing to do with the group structure of
G and H. The construction presented would certainly be judged awkward and
irrelevant.

When a mathematician says “let G be an abstract group”, she probably has
two features of G in mind: 1. The precise nature of the elements of G is left
unspecified and 2. the only properties that she is interested in are those that
are attributable to G as a group. More specifically, the first feature means that
the elements of G can be presented in various ways and be of various types,
the nature of which can vary considerably from one embodiment to the other
and the properties of these elements are irrelevant. The second feature means
that our mathematician knows what it is to be a group-theoretical property. A
mathematician certainly learns to identify the relevant group-theoretical prop-
erties and distinguish them from, say, set-theoretical properties. In the ver-
nacular language, a mathematician can identify a group-theoretical property
when she sees one. Is there a way to formally express what the latter means?
Structure-preserving maps, in this case group homomorphisms, preserve some
group-theoretical properties. As is well-known, this is not enough. Some impor-
tant algebraic properties are not preserved by homomorphisms13. The proper
answer is this: the relevant properties are those that are preserved under the
right criterion of identity for the entities considered. In the case of groups, this
means that the relevant properties are those that are invariant under group
isomorphisms14.

Our mathematician certainly thinks that the abstract group G has an un-
derlying abstract set15. An abstract set is basically a set whose elements have

12This example is given by Makkai at various places.
13For instance, an ideal of a ring is not necessarily preserved by an arbitrary ring homo-

morphism.
14This invariance property has also been associated with abstraction in modern mathematics

in the literature. The first person to explicitly make the connection is, to my knowledge,
Hermann Weyl in ?. It was discussed and developed by Stephen Pollard in two articles. See
??.

15The French mathematician Maurice Fréchet, who was one of the pionners of the abstract
method in mathematics, described abstract sets thus:

In modern times it has been recognized that it is possible to elaborate full math-
ematical theories dealing with elements of which the nature is not specified,
that is with abstract elements. A collection of these elements will be called an
abstract set. (...)

It is necessary to keep in mind that these notions are not of a metaphysical
nature; that when we speak of an abstract element we mean that the nature of
this element is indifferent, but we do not mean at all that this element is unreal.
Our theory will apply to all elements; in particular, applications of it may be
made to the natural sciences. ((?, p. 147))
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no structure. It is therefore made up of faceless, or in the words of Fréchet,
abstract individuals. The only information we have about such elements is that
it is possible to differentiate them somehow, that is, each set X comes equipped
with an identity relation that allows us to tell, for two elements x and y of X,
what is the truth value of the proposition “x =X y”. Since the elements x and y
are abstract, they have no independent existence outside of X. They are given
by X.

If an abstract set has abstract elements, to what extent do these elements
determine the identity of that set? There is no reason to believe that they
should. The identity of an abstract set should not depend on the identity of
its elements. One key observation leads us towards the solution. Abstract ele-
ments together with an identity relation allows us to take the notion of function
between abstract sets as primitive. Thus, abstract sets are taken to form a
system. After all, if these abstract sets have to capture the fact that certain
abstract mathematical concepts have underlying abstract sets and if these ab-
stract mathematical concepts are naturally connected to one another or exhibit
some form of conceptual dependence, then it seems reasonable to expect that
some of these dependences are already noticeable at the level of sets. However,
once the notion of function is available and given that there is a criterion of
identity for functions, then there is a natural criterion of identity that emerges
naturally, namely the notion of bijection between abstract sets. In fact, it makes
perfect sense to say that two abstract sets are identical if there is a bijection
between them. For, this is indeed a criterion of identity that applies to a set as
a unit, independently of the nature of its elements, as it should be.

The question naturally arises at this stage as to whether one can construct
a theory of abstract sets as a special case of a theory of abstract mathematical
concepts. Indeed, such a theory can be developed and has been developed. I
refer the reader to ? for details16.

The foregoing discussion contrasting pure sets with abstract sets allows us to
postulates two basic principles about abstract mathematical concepts in general.
First, we posit that one of the specific properties of abstract concepts is that
they are known via their instances, that is something that is seen or conceived
as being an instance of that concept. It is important to understand that the
last claim means that the instance is given as an instance, not as something
that has an independent identity. It certainly can, but in the context where
the abstract concept is given, the instance is dependent on that concept and
is not and cannot be considered independently of the concept. Thus, abstract
concepts come together with and are inseparable from instances. They are not,
however, identified with these instances. We think about the abstract concepts
with the instances and never solely with the concepts. I believe that this is a
fundamental cognitive aspect of abstract mathematical thinking.

Second, abstract mathematical concepts are not given individually, inde-

This is a specific quote by a mathematician that specifies that the property of being abstract
is epistemological rather than ontological.

16The question as to which mathematical concepts ought to have underlying abstract sets
can also receive a precise mathematical answer.
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pendently of one another. There is a natural order, a natural organization
of concepts. In fact, some concepts depend upon others, previously given, con-
cepts. The easiest way to illustrate the idea is via the idea of dependent variable
in the natural sciences. When various concepts are linked to one another by a
functional relation, then certain concepts depend upon others. In these cases, a
function f represents a certain dependency between concepts and the function
is tied to the conceptual context. It might be mathematically simple and, in a
direct sense, detachable from that context as a mathematical operation, but it
appears in the conceptual framework and plays a role as such in that framework.
The surprising fact is that something similar occurs in mathematics and in such
a way that it ought to be captured by a foundational framework.

Although this is not quite a form of conceptual holism, it is certainly at
odds with a long standing tradition in analytical philosophy, namely logical
atomism17. It is not a form of holism simply because there is an organization
which allows one to separate some parts from the others and consider certain
components independently of others. However, the latter cannot be done arbi-
trarily nor can it be done completely, as if one would decompose a living cell
down to its atoms and thus believe to completely understand what life is. These
informal, general and imprecise remarks will hopefully become clearer once we
will have introduced the framework more formally.

2.3 Informal remarks about the syntax and the logic for
abstract concepts

Both of these basic epistemological tenets are reflected in the grammar of the
theory itself. The first tenet is encoded by adopting the following convention:
we write “x : X” to declare that x is an instance of the concept X. Since this
is a declaration, the expression “x : X” is not a proposition. It cannot be true
or false. We can immediately infer that the string of symbols “¬(x : X)” will
not be well-formed in the syntax of the system. The instance x comes with the
concept X18. The instance x cannot be considered by itself. It is only seen as
an instance of X, thus bringing to the front some of its features and pushing in
the background other features. In contrast with the case of set theory, we do
not have x on the one hand, and the concept X on the other and verify that
indeed x has the right properties associated to X. Thus, abstract mathematics
starts with concepts together with instances of the latter. This is an ontological

17It is certainly not a coincidence that the doctrine of logical atomism made its appearance
soon after the acceptance of the doctrine of atomism by physicists. One wonders how atomism
in general influenced the thinking about the foundations of mathematics and the establishment
of set theory as such a foundation.

18Some would say that it is constructed from X. For the time being, we want to stay away
from that terminology. The main point is simply that, to know X, one has to consider x
and x naturally comes with X by a certain, unspecified process. The latter process can be
clarified in the semantics. For instance, in a category C, an instance x : X can be given by a
morphism x : 1 → X, where 1 denotes the terminal object of the category, when it has one.
It can also be what is called a generalized element x : U → X from an arbitrary object U of
the category.
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shift with respect to the standard set-theoretical picture. In the latter, a set is
built up from its elements, whereas in the picture I am presenting, the instances
are always presented as such, that is as representations of a given abstract
concept19.

The second tenet is expressed by the fact that we are introducing a lan-
guage with dependent sorts20. These dependencies put strict constraints on the
grammar of the language, as we will see.

Let us now come back to the development of abstract mathematical concepts.
While a science of the foundations of mathematics was put on firm grounds,
mathematics itself was undergoing profound changes. The abstract method
played a key role in these changes. With its help, mathematicians started to
talk and theorize about monoids, groups, rings, fields, vector spaces, topological
spaces, differential manifolds, Banach spaces, Hilbert spaces, partially ordered
sets, lattices, categories, homology and cohomology theories, abelian categories,
triangulated categories, derived categories, monoidal categories, etc. Each one
of these abstract concepts comes with its own criterion of identity, different from
the criterion of identity for sets. In fact, the criterion of identity for these con-
cepts is extracted from the concepts. It is not given a priori. For example, the
criterion of identity for groups is the notion of group isomorphism, the criterion
of identity for topological spaces is given by the notion of homeomorphism and
the criterion of identity for categories is the notion of equivalence of categories.
We take it that this facet of abstract mathematical concepts ought to be re-
flected directly in the foundational framework. In particular, the framework
should not have a universal identity relation, usually denoted by the equality
sign “=”. The criterion of identity relevant for the entities at hand has to be de-
termined by the abstract concepts themselves. The criterion of identity should
be derived from the concept themselves.

Another key feature of abstract mathematical concepts is that although the
concept determines the notion of identity for its instances, there can be many
different identities between two given instances. Thus, there can be many differ-
ent identities, that is isomorphisms, between two given groups and even between
one and the same group. This might sound strange and surprising, but it is as
it should be for instances of abstract concepts. For, two instances of an ab-
stract concept are identical (or should we say “equivalent”) whenever they have
the same properties determined by the abstract concept they are instances of.
Since these properties are preserved by any isomorphism between them, each
and any one of these isomorphism constitute a way of being identical as in-

19Thus, in some sense, we are trying to reintroduce a certain aspect of the comprehension
principle. Of course, the principle itself is not introduced, but the constraints put on the
grammar are such that there are no independently given atoms from which the universe can
be built. To repeat what was already said in the previous section: concepts and their instances
are woven together right from the start.

20This is not new, nor is the previous grammatical convention with sorted variables. These
features have been used by logicians and computer scientists for more than forty years now.
In particular, the specific language with dependent sorts or types, as they are also known, was
introduced by Martin-Löf in 1970. There are new formal elements introduced by Makkai, as
we will see in the next sections.
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stances of the given abstract concept. In fact, knowing ways of being identical,
even self-identical, reveals a lot of information about the concept itself.

Furthermore, an instance of an abstract concept will have the properties
determined by the concept, but it will also have other properties inherent to the
mode of presentation used. Thus, in the context of pure sets, when groups are
presented, they not only have group theoretical properties as they should, but
they also have irrelevant set-theoretical properties. This may bring in a certain
confusion. An adequate language for an abstract concept should allow us to
write only properties that are relevant for the concept. The notion of relevance
is here determined by the criterion of identity. Only the properties invariant
under the given criterion of identity should be expressible in the language. More
precisely, given a language L, a signature S in L and a derived criterion of
identity x 'S y, then if P (x) and x 'S y, then we should have P (y). It should
be possible to prove this invariance principle in the foundational framework for
abstract mathematical concepts.

These remarks indicate that the language developed will have different prop-
erties from the standard syntax of the language for set theory.

2.4 Informal remarks about the universe of abstract math-
ematical concepts

The universe of abstract mathematical concepts will also differ considerably
from the universe of pure sets, e.g. the cumulative hierarchy. Let us empha-
size immediately one point they have in common: in both cases, we deal with
hierarchies. However, this common feature is in fact very superficial, for the hi-
erarchies are deeply different, both from an ontological point of view and from
an epistemological point of view. In the case of abstract mathematical con-
cepts, the hierarchy is based on the introduction of levels of abstraction, that
is systems of different kinds, irreducible to one another21. In the case of sets,
the universe is composed of a unique kind. The hierarchy in the cumulative
hierarchy is determined by the rank of a set, that is the least ordinal number
greater than the rank of any member of the set22.

The basic structure of the universe can be given informally as follows23. The
first level is made up of abstract sets24. As we have said, each abstract set X
comes with an identity relation =X for its elements. The identity criterion for
sets is given by the notion of bijection between sets. The totality of sets is not
a set, it is a category. Most of the abstract mathematical concepts introduced
in the last quarter of the 19th century and the first half of the 20th century
can be described and studied at this level. Thus, the category of monoids,

21Contemporary mathematicians commonly talk about levels of abstraction. See, for in-
stance, ?, for a preliminary exploration of the idea. Introducing such a hierarchy seems to be
a key idea in contemporary artificial intelligence. See, for instance, ?.

22Assuming the axiom of foundation, of course.
23A more technical description will be given in section 4.
24There is some fluctuation still. One could start with a different first level. But we won’t

get into these options here.
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groups, rings, fields, topological spaces, vector spaces, etc., form categories in
this sense25.

Let us be a little bit more precise: abstract sets are connected by functions.
The latter compose and satisfy the expected equalities and each abstract set
has an identity function whose composition satisfies obvious equalities. Thus,
the system of abstract sets is a category. Identities between sets is given by
the notion of isomorphism or bijection between sets. Recall how one defines
the notion of isomorphism between sets: an isomorphism between sets X and
Y is a function f : X → Y such that there is a function g : Y → X satisfying
f ◦ g = 1Y and g ◦ f = 1X . Notice the presence of the identity symbol be-
tween functions. The identity symbol is in fact coherent, since we have assumed
that every abstract set X possesses an internal identity relation =X and it is
these relations that are at work here. In fact, we should write f ◦ g =Y 1Y
and g ◦ f =X 1X to be exact. This notion of isomorphism within a category
works perfectly well for the usual set-based notions: isomorphism for groups,
homeomorphism for topological spaces, diffeomorphism for manifolds, etc. are
the criteria of identity for these concepts. So far so good.

We now have categories. Since there is no identity relation between the
objects of a category – isomorphisms as defined in a given category play that
role –, an abstract category is not an abstract set. Hence a category is a new kind
of object or system. Whereas sets are connected by functions, categories are
connected by functors. When categories are defined as sets, a functor F : C→ D
is given by two functions, a function FO : Ob(C)→ Ob(D) that sends objects of
C to objects of D and a function FM : Mor(C)→Mor(D) sending morphisms
of C to morphisms of D such that FM (1X) = 1FO(X) for all objects X of C and
FM (f ◦ g) = FM (f) ◦ FM (g)26. This seems innocuous: it simply says that a
functor preserves the structure of composition of morphisms of a category. Thus
a functor is a structure preserving morphism between categories. However, the
definition is inconsistent with the facts – I am tempted to say “the reality” – of
category theory27. The inconsistency can be seen from different angles. Here is

25Ironically, these categories, the category of monoids, groups, rings, fields, posets, lattices,
topological spaces, manifolds, vector spaces, etc., that is categories of structured sets, are
called “concrete categories” in the literature! The latter term has a precise technical meaning:
a category C is said to be concrete whenever there is a faithful functor to the category of sets.
It can be shown that there are non-concrete categories in this sense. See, for instance, ??.

26For a covariant functor.
27I should emphasize that this fact was not and could not be obvious to Eilenberg and

Mac Lane. The reason for this is simple: one could argue that although Eilenberg and Mac
Lane introduced the concepts of category, functor and natural transformation, they did not
develop category theory in their original paper. For some of the core concepts of the theory
were introduced 10 years later by Kan and Grothendieck. (For more on this, see, for instance
??.) The inconsistency as it is presented here was observed already in the 1960s and was
made explicitly by Jean Bénabou and by G. Maxwell Kelly and probably many others. In
Bénabou’s mind, it gave rise to the development of an idea introduced by Lawvere, namely
what are called distributors and it can be shown that a locally representable distributor is an
anafunctor. Kelly introduced what essentially became the notion of anafunctor in Makkai’s
writings, but did not develop the theory. See ??. For the sake of completeness, I should
mention that these notions are linked to the notions of profuntors and pseudofunctors in the
literature. These remarks do not do justice to the history of the subject, but we will leave it
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a simple one. Within a category and from the perspective of category theory,
any object isomorphic to a given one does the same categorical work. In other
words, in a category, mathematics is done up to isomorphism. Now, when a
functor F is defined as in the foregoing definition, it assigns to a given object X
of C a unique object FO(X) of D. But, and this is the inconsistency introduced
by the usual set theoretical definition, any object isomorphic to FO(X) would
do and should do. A functor cannot identify, in the usual sense of that word,
two objects X1 and X2 of C, i.e. one cannot write FO(X1) = FO(X2), since
there are no identities between objects in a category.

Consider now the effect this fact has on the identity of categories them-
selves. In their original paper on categories, Eilenberg and Mac Lane treated
the question of the identity of categories in a standard algebraic fashion for the
period: they stipulated that two categories are identical whenever there is an
isomorphism between them. An isomorphism between categories is defined in
the expected way: a functor F : C→ D is an isomorphism if there is a functor
G : D → C such that G ◦ F = 1C and F ◦ G = 1D. These equalities hold also
for the objects of the categories involved, e.g. G(F (X)) = 1C(X) for all objects
X of C. Since there are no equalities between objects, the notion of isomorphism
of categories is inadequate. Ironically, Eilenberg and Mac Lane’s motivation for
the introduction of categories was to provide the proper mathematical setting to
express the notion of natural transformation, that is the appropriate notion of
morphism between functors, and the latter is the key to the concept of identity
for categories.

Indeed, to obtain the right notion of identity for categories, one has to replace
the identities between the compositions and the identity functors by natural
transformations that are isomorphisms, i.e. the foregoing equations are replaced
by the existence of two natural isomorphisms η : G ◦ F ' 1C and µ : F ◦ G '
1D, satisfying certain obvious conditions. Thus, when one starts with an object
X, coming back in the category via the composition of the functors G and
F yields an object isomorphic to X. Whenever these functors and natural
isomorphisms exist, the categories involved are said to be equivalent. This is
the correct notion of identity for categories.

Thus, a system of categories is a new kind of system. It consists of cate-
gories, functors and natural transformations. In other words, such a system is
composed of objects, morphisms between objects, called 1-morphisms, and mor-
phisms between morphisms, called 2-morphisms. Informally, it seems to be sim-
ple enough, but the complexity of the notion follows from the various ways these
morphisms compose. There is an operation of composition for 1-morphisms and
another one for 2-morphisms and these two operations necessarily interact and
these interactions have to be coherent with one another. It is tempting to say
that a system of categories has to be a set and has to be a category. From the
point of view we are trying to develop, both claims are false. That is, from a
specific theoretical point of view, a system of categories does not have an under-
lying abstract set. Furthermore, since a category only has (1-)morphisms and

at that.
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since a system of categories has 2-morphisms that play a key role in the struc-
ture of the system, a system of categories cannot be merely a category. Thus,
a system of categories is an entity of a new kind, usually called a bicategory or
a weak 2-category28. It takes more than one page to give the formal definition
of a weak 2-category. The difficulty is not conceptual, but combinatorial, so to
speak. We have now introduced a new kind of entity: a weak 2-category. One
can easily convince oneself that there are many weak 2-categories and that there
are morphisms between them. Thus, given the latter, we have that a system of
weak 2-categories is made up of objects, 1-morphisms, 2-morphisms and, these
are now new, 3-morphisms between 2-morphisms. All these morphisms compose
and these compositions have to respect certain “laws”. Once again, they form a
system and one has to find a proper criterion of identity for weak 2-categories.
At this stage, the reader will not be surprised by the claim that a system of
weak 2-categories cannot be a set, a category or a weak 2-category. It is a weak
3-category.

There is a clear pattern emerging. Informally, one expects this organization
to go on and to consider weak n-categories which would constitute a totality of
weak (n− 1)-categories. The totality of all these would then be an ω-category
and at this stage, it is possible that the latter would itself be an ω-category29.

One of the reasons motivating the formulation of FOLDS is precisely to
provide an appropriate formal language to describe this hierarchy directly and
properly. As we will briefly indicate, one of its central notions can be used to
give the fundamental components of the universe we are trying to grasp.

The informal picture of the universe of abstract mathematical concepts is
clear enough. The precise, technical mathematical picture is also becoming
clear. We now have the barebones of a formal system, a universe of mathematical
objects in which the language can be interpreted systematically. Let us now put
some flesh on these bones.

3 The Formal System: FOLDS

We now come to the first component of the extended science of foundations:
the formal system. We will not present the system of FOLDS in all its details.
We will sketch some of the main features of the language30.

28There is also a notion of strict 2-category, but we will ignore the subtle differences between
these notions.

29I should underline that there is no a priori necessity involved here. It could be that at
some level, these notions stabilize into a unique notion. For instance, it is possible to show that
every weak 2-category is biequivalent to a 2-category. This latter result can be interpreted as
saying that the notion of weak 2-category is reducible to the notion of 2-category. However,
this result does not hold for the notions of weak 3-categories and 3-categories. I will not give
the definitions of all these mathematical concepts here. In fact, there are various different
definitions in the literature, but their study is evolving rapidly. See ??, for instance. I will
sketch the formal approach for one of these concepts in section 4.

30FOLDS is a type theory and like all type theories, it tries to avoid the paradoxes not by
stipulating certain axioms, but by constraining the linguistic resources right from the start.
One of the underlying ideas is that the linguistic constraints should reflect a certain ontology.
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3.1 FOLDS-signatures

FOLDS is an extension of first-order logic (FOL). Thus, it has the usual quan-
tifiers and propositional logical connectives, to which we add two propositional
constants >,⊥. The language comes with dependent sorts (or types) and vari-
ables are sorted. Thus, the quantifiers are always bounded since the variables
are sorted.

All textbooks in model theory start by defining what is called a language.
The latter is not arbitrary: a language L is designed to describe what is called a
mathematical structure. Sometimes, an author specifies a signature for a given
type of structure, but most of the time the notions of language and signature
are identified.

Recall that a first-order language L or a L-signature is given by:

1. a set of function symbols F and positive integers nf for each f ∈ F ;

2. a set of relation symbols R and positive integers nR for each R ∈ R;

3. a set of constant symbols C;

where nf and nR are the usual functions giving the arities of the function
symbols and relation symbols in both sets. Any of these sets can be empty and,
it is enough, although in many cases unnatural, to work with a set of relation
symbols only. This latter remark is important since this is how one can show
that FOLDS is an extension of FOL.

FOLDS departs from FOL by introducing a different notion of L-signature.
This is as it should be given that the “structures” we are interested in are of
different kinds than the usual structures based on abstract sets. As we have just
remarked, this new notion of signature still covers the usual notion of signature.
To understand the notion of FOLDS signature, observe that an n-ary relation
symbol sorted as R ⊂ X1 × ... ×Xn can be replaced by a new sort R together

with operations R
pi−→ Xi. The latter symbol with the (sorted) operations

is a one-way graph, that is a graph whose arrows are all going in the same
direction. Thus, in the language of FOLDS, an n-ary relational symbol becomes
a one-way graph with two levels and n operations. A FOLDS-signature is a
generalization of that situation, that is, there can be (usually finitely) many
levels and the morphisms between the levels compose. Instead of considering
(one-way) graphs, it turns out to be simpler to use the notion of (one-way)
category directly. Let us fix the terminology for the remaining sections of the
paper: a proper morphism is a morphism different from an identity morphism.

For a short history of type theory, see ??. When Makkai introduced FOLDS twenty years
ago, Bart Jacobs’ book on categorical logic had not been published. Dependent type theories
were well-known to computer scientists and logicians working in theoretical computer science.
Jacobs gives a presentation of first-order dependent type theory in chapter 10 of his book.
His presentation and development of the framework is completely different from Makkai’s
development. Makkai’s motivation is closer to Martin-Löf’s motivation, although the latter
was trying to provide a foundational framework for constructive mathematics, whereas I
hope it is clear by now, Makkai is trying to articulate a foundational framework for abstract
mathematics. See ? for Jacobs presentation. For Martin-Löf’s work, see ?, ?.
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Before we give the definition of a FOLDS-signature, we need the following formal
definition.

Definition 1 A category L is said to be one-way if it satisfies the following
conditions:

1. L is small;

2. L has the finite fan-out property: for any object K of L, there are only
finitely many morphisms with domain K;

3. L is reversed well-founded: there is no infinite ascending chain 〈Kn
fn−→

Kn+1〉n∈N of composable proper morphisms (fn 6= 1Kn
).

It follows from the definition that in any one-way category, the only morphism
from an object K to itself is the identity morphism 1K . The last condition of
the definition implies that there are no cycles in a one-way category, that is
there are no cycles K0 → K1 → ...→ Kn of proper morphisms with K0 = Kn.

Definition 2 An L-signature for FOLDS is a one-way category.

The standard example of a FOLDS signature is the LCat-signature for the
concept of abstract category. Here is a representation of the one-way category
with all the non-composite morphisms displayed and the identity morphisms
omitted.

T I E

A

O

t1
t0

t2
i

e0

e1

d c

Since the signature is a category, the morphisms compose and there are identities
between some of them. In fact, we must have the following identities:

d ◦ t0 = d ◦ t2 d ◦ i = c ◦ i d ◦ e0 = d ◦ e1
c ◦ t0 = d ◦ t1 c ◦ e0 = c ◦ e1
c ◦ t1 = c ◦ t2

There is a natural informal interpretation of this signature. The symbol ‘O’
stands for the sort of objects, ‘A’ for the sort of arrows, ‘I’ for the sort of
identity arrows, ‘E’ for the equalities between arrows and ‘T ’ for the commu-
tative triangles of a category. Given this informal interpretation, the identities
between the composites become obvious. The morphisms between the sorts de-
note the dependencies involved. Reading from bottom to top, we understand
that the morphisms depend upon the objects, more precisely a morphism must
be given with a domain and a codomain. Thus, in order to write down that
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the symbol ‘f ’ is an arrow, we must first give ‘x : O’, ‘y : O’ and then write
‘f : A(x, y)’. The notation indicates that the symbol ‘f ’ is of type ‘A’, for ar-
row, but the latter depends on the type ‘O’ of objects with two parameters, ‘x’
denoting the domain of ‘f ’ and ‘y’ denoting its codomain. In fact the number of
morphisms, including the composites, from a sort to another sort gives us the
arity of the former sort and its dependence structure. Thus, the dependency
structure yields constraints on the grammar of the language.

The definition of an L-signature for FOLDS is deceptively simple, but the
example illustrates some of the complexities that arise. There are clearly levels
in a FOLDS-signature. The objects in the bottom level, which we call L0, are
not the domain of any proper morphism. When we go up, that is for levels
i > 0, the sorts are made up of objects x for which all proper morphisms have
a codomain in lower levels, e.g. in Lj , for j < i, and for which there is at least
one proper morphism with codomain in the next lower level Li−1. Thus, all
proper morphisms go from a level to a lower level. We will call the objects of a
L-signature, its kinds and, clearly, each kind K has a level. For any morphism
p, Kp will denote the codomain of p. For any kind K, the (finite) set of all
proper morphisms p : K → Kp will be denoted by K|L.

It is not obvious to see how, given a FOLDS signature L, one writes formu-
las and propositions in L. When we are given a FOL-signature, we understand
how terms are constructed, how atomic formulas are constructed and how ar-
bitrary formulas are constructed. As we have already said, the introduction of
dependent sorts modifies how the grammar of the language works. Although the
ensuing discussion is more technical, it is important to understand the impact
this new notion of signature has on the structure of the syntax.

Let us now fix an arbitrary FOLDS-signature L. The sorts and variables
are defined recursively as follows. Let n ∈ N be a natural number and suppose
that sorts of kinds of level less than n have been defined, as well as variables of
such sorts.

Definition 3 Let K be a kind of level n. A sort of kind K is a formal set31

〈1,K, 〈xp〉p∈K|L〉, which we will denote by K(〈xp〉p∈K|L), such that:

1. For every p ∈ K|L, xp is a variable of sort Kp(〈xp,q〉q∈Kp|L);

2. For every q ∈ Kp|L, xp,q = xqp.

Roughly, a sort is obtained by filling the pth place of a kind K, for any p in the
arity of K|L of K, by an appropriate variable xp.

Definition 4 Given a sort X = K(〈xp〉p∈K|L), a variable x of sort X is a
formal set 〈2, X, α〉, where α is a formal set called the parameter of x. We
write x : X to indicate that x is a variable of sort X.

We see how, even at the formal, syntactical level, a variable “comes” from a
sort. A variable is not merely a symbol having a specific syntactical status and
function. A variable in FOLDS always carries its origin upfront.

31A formal set is a syntactic entity. Sets are here used to codify syntactic entities.
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Definition 5 For a sort X = K(〈xp〉p∈K|L), the variables of X, Var(X) is
defined as {xp : p ∈ K|L}. If x : X, we write Dep(x) for Var(X).

Looking at the signature LCat given above and the foregoing definitions,
the reader can easily convince herself that O|L = ∅, A|L = {d, c}, and, for
instance, T |L = {d ◦ t0, d ◦ t1, c ◦ t2, t0, t1, t2}. Thus, O(∗), where ∗ denotes the
empty sequence of variables, is a sort. So is A(xd, xc), whenever xd : O, xc : O.
Similarly, given x : O, y : O, z : O and f : A(x, y), g : A(y, z), h : A(x, z), then
T (x, y, z, f, g, h) is a sort of kind T .

The reader will have noticed that sorts and variables of a given sorts are, in
fact, formal sets determined by the given signature. The strategy is extended
to cover the notions of a free variable and of a formula for a FOLDS signature.

Definition 6 The free variables of φ, Var(φ), is defined as follows:

1. Base case, already defined: for a kind K, Var(K(〈xp〉p∈K|L)) = {xp : p ∈
K|L};

2. Var(>) =def Var(⊥) =def ∅;

3. If Var(φ) and Var(ψ)are defined, then:

(a) Var(¬φ) =def Var(φ), where ¬φ is the abbreviation of the formal set
〈3,¬, φ〉;

(b) Var(φ→ ψ) =def Var(φ) ∪ Var(ψ), where φ→ ψ is the abbreviation
of the formal set 〈3,→, φ, ψ〉;

(c) Var(φ∧ψ) =def Var(φ∨ψ) =def Var(φ) ∪ Var(ψ), where φ∧ψ is the
abbreviation of the formal set 〈3,∧, φ, ψ〉 and φ∨ψ is the abbreviation
of 〈3,∨, φ, ψ〉32;

4. If Var(φ) is defined, x : X, and there is no y : Y ∈ Var(φ) such that
x ∈ Dep(y), then

Var(∀x : X.φ) =def Var(∃x : X.φ) =def (Var(φ) ∪Var(ψ))− {x},

where ∀x : X.φ and ∃x : X.φ stand for 〈3,∀, {x}, φ〉 and 〈3,∃, {x}, φ〉.

The formulas of the language Lω,ω is the least class of formal sets containing
>,⊥ and such that Var(φ) is defined according to definition 6, for every φ in
the language33. Not surprisingly, a sentence in L is a formula φ with no free
variables, that is, such that Var(φ) = ∅.

It is extremely important to give examples of formulas and sentences in
FOLDS, for the grammar that is obtained from the foregoing definition is not
immediate. Here is a formula in LCat:

∃τ : T (x, y, z, f, g, h).>
32Of course, the definition can be adapted for infinitary conjunctions and disjunctions in

the obvious way.
33Once again, it is easy to give the definition for infinitary first-order languages.
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with free variables {x, y, z, f, g, h}. Here is a sentence in LCat:

∀x : O.∀y : O.∀z : O.∀f : A(x, y).∀g : A(y, z).∃h : A(x, z).∃τ : T (x, y, z, f, g, h).>

This sentence says that, whenever two arrows are composable, then there is a
composite arrow.

What is striking about formulas and sentences in FOLDS is the role played
by the dependencies themselves. It constrains the grammar considerably. The
following expression, for instance, is not a formula of the language LCat:

∀x : O.∃τ : T (x, y, z, f, g, h).>

for to assert the existence of a triangle τ , one would have to quantify on the vari-
ables for arrows before quantifying on objects. In a sense, a FOLDS-signature
provides an underlying ontology built in the language itself and such that certain
expressions are excluded from the language34. FOLDS incorporates the idea in
the syntax that the universe of mathematics is not ontologically homogeneous,
uniform and isotropic. It reflects in the syntax itself the fact that mathematics
is build up of entities of different kinds and that the mathematical universe
is heterogenous. Of course, one quickly introduces abbreviations so that the
grammar of formulas and sentences resemble more the usual grammar.

At this stage, in textbooks on model theory, authors introduce the notion of
an interpretation for a language in the usual way: a domain of interpretation
is fixed, constant symbols become elements of a set, functional symbols become
functions and relational symbols become relations. The system used to interpret
a language is called a structure. The same can be done for FOLDS, with the
required adjustments.

Definition 7 Given a FOLDS-signature L, an L-structure is a functor

M : L → Set.

This is once more deceptively simple, although one of the reasons is precisely
because a FOLDS-signature is a category. Of course, this is a semantics valued
in the category of sets. It is possible to replace the latter with a category C,
say a category with finite limits. Note that the totality of L-structures, denoted
by StrSet(L), form a category. Its objects are the Set-valued L-structures and
the morphisms, the natural transformations between them.

We will not give the complete, general description of FOLDS semantics. It
would be unnecessarily technical. We do have to add a few additional ingredients
nonetheless. In particular, we need to describe more explicitly how valuations
are defined in FOLDS, for some of the elements involved will be referred to later.

A context (of variables) is a finite set Y of variables such that, for all y ∈
Y, Dep(y) ⊂ Y. Note that for any formula φ, V ar(φ) is a context. Recall

34I am using the word “ontology” in the same way as it is used in information science. As
we will see, a FOLDS-signature is intimately related to a criterion of identity, thus specifying
when two objects should be seen as being the same. The signature therefore provides a clear
and strong ontological constraint.
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that from definition 3 above, for a variable y ∈ Y, the sort of y is written
y : Ky(〈xp,q〉p∈Ky|L). The next definition connects, so to speak, the relations
of dependence correctly, thus giving the legitimate valuations of a context of
variables Y in M .

Definition 8 Let M be a L-structure and K be a kind of L.

1.

M [Y] =

〈ay〉y∈Y ∈ ∏
y∈Y

M(Ky) : (Mp)(ay) = axy,p for all y ∈ Y, p ∈ Ky|L

 .

2. The set M [K] of valuations of K in M is defined similarly:

M [K] =

〈ap〉p∈K|L ∈ ∏
p∈K|L

M(Kp) : (Mq)(ap) = aqp for all q ∈ Kp|L

 .

The elements of the set M [K] are called the contexts for K in M .
It is now possible to define the notion of an interpretation of a formula φ in

a structure M in the context Y. We will not give the complete definition here,
for it is done as usual by recursion on the complexity of the formula φ. Here
are some of the simplest cases. Let φ be a formula in a given L-signature, M
an L-structure and Y a context such that V ar(φ) ⊂ Y. The interpretation of φ
in M in the context Y, M [Y : φ] is defined thus:

M [Y : >] =df M [Y];

M [Y : ⊥] =df ∅;
〈ay〉y∈Y ∈M [Y : ψ ∧ θ] =df 〈ay〉y∈Y ∈M [Y : ψ] and 〈ay〉y∈Y ∈M [Y : θ].

And the other connectives are defined in a similar manner.
We refer the reader to Makkai’s papers for the complete description of the

semantics for FOLDS.
We have to describe and explain the notion of equivalence in FOLDS, since it

is, after the notion of signature, the original element of the theory and arguably
the most important.

3.2 Equivalences in FOLDS

FOLDS was designed by Makkai for the following purpose: to define languages
such that all statements in such a language are invariant under the equivalence
appropriate for the kind of structures described by the given language. This
is feasible only if it is possible to capture basic facts about the different kinds
of equivalences involved in the universe of abstract mathematical concepts. We
have here a crucial and significant departure from the traditional logical anal-
ysis in which the identity relation is presented as an a priori and universal or
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global notion. In FOLDS, an adequate notion of identity is derived from an
L-signature. Thus, the identity relation comes a posteriori or, in a slightly
different vocabulary, it is a local relation. This order of presentation reflects
the historical order of introduction of abstract mathematical concepts. Indeed,
if abstract mathematical concepts are abstracted from various mathematical
contexts, then the identity criterion should also be abstracted from the basic
properties that define these new abstract concepts and this is indeed how it
happened historically35. What is surprising is that it is possible to find a way
to extract a criterion of identity from a given signature. Here is roughly how it
works.

Let L be a given FOLDS-signature and let M and P be L-structures and
h : P → M be a natural transformation between L-structures. For each kind
K ∈ L and each x ∈ P [K], there is an induced map

hK,x : PK(x)→MK(hx),

where hx is an abbreviation for 〈hKp
xp〉p∈K|L. The natural transformation is

said to be fiberwise surjective whenever hK,x is surjective for all kinds K ∈ L
and all x ∈ P [K].

Definition 9 Let L be a given FOLDS-signature and let M and N be L-
structures. M and N are said to be L-equivalent, written M ∼L N , if there
is an L-structure P together with natural transformations m : P → M and
n : P → N such that m and n are fiberwise surjective.

This is certainly a surprising way of introducing an equivalence. It is not
even clear that it is an equivalence relation. Let us try to unpack it. First, in
any category C, given objects X and Y of C, a span on X and Y is an object
S of C together with morphisms

S

X Y

f g

Spans can be thought of as being generalizations of relations between X and
Y . Indeed, a relation R ⊂ X × Y of X and Y is a span, with the projections
πX : R → X and πY : R → Y . Thus, the L-structure P together with the
natural transformations m and n is a span on M and N . It is not a new notion.
When the category C has a minimum of structure, for instance pullbacks, then

35This is interesting in itself and, historically, the situation is more complex than one might
expect from how we learn these notions. Contemporary mathematicians are usually convinced
that the criterion of identity for various abstract concepts came simultaneously with the
concepts themselves. For instance, category theorists are often surprised to learn that the
notion of categorical equivalence was not in Eilenberg and Mac Lane’s original paper in
category theory published in 1945. Eilenberg and Mac Lane defined the notion of isomorphism
of categories. The correct criterion of identity for categories was introduced by Grothendieck
in his paper on homological algebra published in 1957.
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it is easy to show that spans compose in the obvious way. Given the latter fact,
it is easy to verify that the foregoing relation is indeed an equivalence relation.

It is a remarkable fact that this definition, together with the definition of
FOLDS-signature, yields the appropriate notion of identity for the concepts
captured by the signature. Thus, for a signature corresponding to a classical
first-order signature, the definition yields the usual notion of isomorphism of
structure36. In the case of the signature for categories given above, one gets
the notion of equivalence of categories. It is also possible to use the simplex
category ∆ to define a FOLDS-signature L such that for Kan complexes X,Y ,
X and Y are homotopy equivalent if and only if they are equivalent as L-
structures37. In other words, it is possible to give a FOLDS-signature such
that the notion of equivalence for that language is equivalent to the notion of
homotopy equivalence.

Moreover, it can then be proved that the derived notion of equivalence sat-
isfies the following invariance principle38: given a FOLDS-signature L, M and
N L-structures, for any FOLDS-formula φ of L39,

M |= φ ∧M 'L N =⇒ N |= φ.

Again, I want to emphasize that the notion of equivalence is not given a priori.
The theorem has to be proved for each particular case. It basically says that,
in FOLDS, it is not possible to make irrelevant claims about the entities talked
about in a given language.

4 The Universe: Higher-dimensional categories

We can now move to the universe U of mathematical objects in which the lan-
guage can be interpreted systematically. It is the universe of higher-dimensional
categories. The informal target is clearly identified. Historically, bicategories
or, equivalently, weak 2-categories came on the mathematical scene rather early
in the development of category theory (?), although they appeared as a con-
ceptual curiosity at first. It became progressively clear, mostly in the 1980s,
that bicategories (weak 2-categories) and tricategories (weak 3-categories) had
to be used in various contexts. Thus, the necessity of having a clear picture of
the universe of higher-dimensional categories (HDC) imposed itself to the com-

36This is not trivial and requires some care in the statement of the theorem and its proof.
37The simplex category ∆ can be described thus: its objects are the ordinals [n] =

{0, 1, ..., n}, for all n ∈ N and the morphisms [m] → [n] are the order preserving functions. To
construct the FOLDS-signature, define the category ∆↑ with the same objects as the simplex
category but restrict the morphisms to the injective functions of ∆. The FOLDS-signature is
then (∆↑)op, the opposite of the previous category. It can be shown that given this notion of
FOLDS-signature, an L-structure is, in that case, a simplicial set and, in particular, a Kan
complex.

38We give a loose and imprecise formulation of the theorem. The precise formulation would
not yield more insight at this stage.

39The proof is by induction on the complexity of φ.
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munity40. Thus, in the 1990s, category theorists started to articulate a formal,
theoretical analysis of the universe and, interestingly enough, various and dif-
ferent formalizations appeared quickly on the scene. It brought to the fore the
mathematical question of proving that these various mathematical frameworks
were equivalent, a problem still evolving today. From a philosophical point of
view, the question as to how the mathematical community will determine which
formal framework is the most appropriate is interesting. It is a philosophical
case study of the development of mathematical knowledge41.

I will give some of the key ideas underlying the definitions of the universe
of HDC. The next step is to give one precise, rigorous, technical definition of
the universe, the universe U of section 1, simply to illustrate how it is done and
what it looks like.

The basic ingredients of category theory are simple: there are categories,
functors and natural transformations between functors. These are the building
blocks of the theory. Thus, at first sight, one might conclude that the universe of
categories is and cannot be anything else than a category, that is, the category
of categories. However, as we have already said in section 2.4, it turns out that
new kinds of entities are required and show up naturally in certain contexts.
When categories are put up together, something else emerges and when these
entities are put up together, then, again, something else emerges and so on and
so forth.

At the heart of the description of higher-dimensional categories one finds cer-
tain geometric shapes which are introduced to capture how various morphisms
compose. Thus, in the formal definitions, one finds a collection of basic abstract
shapes that determine the underlying structure of the universe. The universe in
then given by specifying certain properties of these shapes. It should be noted
that Makkai has used FOLDS and the concept of FOLDS-signature to present
these shapes and the universe. See ?. We will merely sketch one way of thinking
about the constructions involved.

Consider the following common situations in basic category theory. First, a
functor F from a category C to a category D is represented by an arrow:

F : C→ D.

The situation that more or less gave rise to category theory is given by two
parallel functors F,G : C→ D with a natural transformation η : F → G. This

40I should add that many people still doubt the necessity of introducing these levels of
abstraction. It is interesting to note that Lawvere introduced a universe of category as a
foundations of mathematics in the early 1960s. See ?. However, this universe is simply a
category: it is the category of categories. The picture that is now emerging is considerably
more intricate and radically different from the category of categories. As we have said and as
Makkai has emphasized in many occasions, the bicategory of categories is not a category with
additional structure. It does not even have an underlying category. It is a genuinely new kind
of entity.

41A parallel with the development of set theory and its formalization might be interesting
also, as well as a parallel with Maddy’s work on the choice of axioms in set theory. See
??. Quasicategories are now fashionable, but there are not the only concepts used. For the
definition of quasicategories, see ?. For its role in the development of higher dimensional
algebra, see ??.
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situation is sometimes depicted as follows:

C D

Abstracting from the specific elements, we have a geometric form composed of
points, directed lines and the double line can be thought of as representing a sur-
face that is stretched from the upper arrow to the lower one. The representation
becomes:

• •

Geometrically, this can be thought of as a disk. But, the image is dynamic –
stretching a surface from one directed line to the other directed line – and this
aspect is crucial and has to be kept in mind when reading it and similar cases.
Since functors compose and natural transformations compose, this basic geomet-
ric form can be pasted with other basic forms, yielding new complex forms. For
instance, the composition of two functors with natural transformations between
them yields the form:

• • •

Of course, the composition of the natural transformations together with the
functors is not entirely clear from the diagram itself. Similarly, the composition
of two natural transformations between three functors, the so-called vertical
composition, yields another form:

• •

It is now easy to see that these basic forms can be pasted together in various
ways and the question as to how to determine which ones can be transformed
into one another immediately arises42. And as should be clear from informal
geometric knowledge, these forms are 2-dimensional. The basic 3-dimensional
case can be depicted thus:

• •
��
DD

�& x�
*4

Thus, the informal description of the universe of higher-dimensional cat-
egories is understood, in the same way that the informal universe of sets is

42Of course, I did not write “equal” in the last sentence. This is the key element of the
situation. Composing various transformations does not yield, in the general case, equalities
between the morphisms. At best, there is a equivalence between them.
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understood or was understood by Cantor and others before the introduction
of a formal axiomatic framework with a rigorous and precise description of the
cumulative hierarchy. As we have said, but should perhaps be repeated at this
point, the move to FOLDS and the universe of higher dimensional categories
corresponds to the move to first order logic and the universe of sets. In the
latter case, the universe of sets was crystallized in the definition of the cumula-
tive hierarchy. There are now various definitions that can be used to define a
universe of higher dimensional categories, the universe U.

To describe the universe of higher-dimensional categories, one therefore needs
a language in which the basic geometric forms, also called the k-cells, are given.
Once these have been described, the theory has to specify how these compose
and which ones are equivalent. In the end, that is after many pages of formal
definitions and clarifications, the definition of the universe itself holds in a short
paragraph. To wit, here is Makkai’s definition.

Definition 10 A multitopic ω-category is a multitopic set S such that: For
every multitope σ and every σ-shaped pasting diagram α in S, there is at least
one cell a parallel to α such that, for θ = cσ, the Mlt〈θ〉-structures S〈a〉 and
S〈α〉 are Mlt〈θ〉-equivalent by an equivalence span that extends the identity on
Mlt.

Without the appropriate definitions and results, the definition is incomprehen-
sible. Many notions involved have to be explained and defined. For instance,
the multitopes are here the basic forms used. (See ? for the definition of mul-
titopes.) Makkai gives a FOLDS-signature for the multitopic ω-category. Two
elements have to be mentioned. First, the required properties for a multitopic
set to be a multitopic ω-category are all of the form that certain composites,
defined by universal properties, are to exist. Second, the notion of FOLDS-
equivalence plays a key role in the definition.

All these technicalities are neither surprising nor a problem. After all, the
definition of the cumulative hierarchy underlying the set theoretical foundational
framework is also technical and requires the certain sophisticated set-theoretical
notions, e.g. transfinite ordinals, are understood.

5 Conclusion

Once the community will have a good grasp of the various parts constituting
the new foundational space, logicians will be able to extend and develop the
science of the foundations of mathematics. This is clearly Makkai’s goal. Thus
the point here is not to defend an ideological position regarding the nature
of mathematical knowledge, for the whole project starts from the observation
that abstract mathematical concepts are now part and parcel of contemporary
mathematics. Nor is it to develop a formal system that will lead to automated
proof checking or automated theorem proving. The goal is to extend in a specific
direction the science of the foundations of mathematics, thus to obtain results
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about certain structures, results with an intrinsic conceptual value and that can
be relevant for mathematics and for philosophy.

Why should philosophers care about FOLDS or, more generally, about a
science of the foundations of mathematics43? Why should they care about a
foundational framework for abstract mathematics? Most philosophers nowadays
probably think that the time when they had to know and understand technical
issues related to the foundations of mathematics is now behind them. Issues
related to the foundations of mathematics were philosophically relevant, so the
argument goes, in as much as they were related to the fact that mathematical
knowledge could no longer be rationally justified. Once a reasonable solution to
the paradoxes of set theory had been found, the technical developments leading
to the creation of model theory and proof theory seemed to be of interest only
to a handful of technically sensitive philosophers of logic and mathematics.

I will not try to argue for the importance of a science of the foundations of
mathematics for philosophy in general. This is a topic for a whole book. I will
here concentrate on a few aspects that are inherent to FOLDS.

The first element that is worth underlining is the fact that FOLDS is aimed
at abstract mathematical concepts. This in itself is central to epistemology and
ontology in general. Indeed, a better understanding of what is, how we know
and how we understand abstract mathematical concepts is bound to open the
way to a better understanding of abstractness in general. The latter notion is
omnipresent, from aesthetic to ethics. Specific results about FOLDS could be
read as exhibiting singular aspects of abstract mathematical concepts.

Second, philosophers should be interested in a language that can only ex-
press invariant properties of abstract objects. This is in itself a remarkable
original feature. There is no need to underline the importance of what is called
Benacerraf’s problem in philosophy of mathematics and how FOLDS leads to a
direct and simple solution to this problem, as Makkai has already seen himself.

Third, FOLDS and the universe of HDC force us to think differently about
the notion of structure and various kinds of structuralism in mathematics and
the sciences in general. For, in most cases, the debate surrounding structuralism
is based on a set-theoretical notion of structure44.

Finally, specific technical results of FOLDS will also have a philosophical
impact. Certain model theoretical properties, e.g. existential closure or model
completeness, have a direct philosophical interpretation which shed an impor-
tant light on the nature of mathematical knowledge and mathematical under-
standing45. Similar results for theories written in FOLDS will allow a better
analysis of certain aspects of the development of contemporary mathematics
and its peculiar features, e.g. the use of abstract concepts.

43We take it for granted here that we do not have to convince logicians about the importance
of FOLDS. We may be wrong about this and, if we are, it is an interesting and intriguing fact.

44I should hasten to add: on a concrete notion of set. Bourbaki, in his notion of structure,
included the isomorphisms and thus, one could argue, on an abstract notion of set as it
should. Indeed, one could use Makkai’s notion of abstract set to reconstruct Bourbaki’s
notion of structure. But again, as I have already indicated, this is but one small fragment of
the universe we are discussing here.

45See ?.

24



In the end, FOLDS is a starting point for anyone who wants to develop a
foundation for abstract mathematical concepts and, perhaps, for any abstract
concepts.
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