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We establish in this paper a new two-stage supply chain with onemanufacturer and two retailers which have a fixedmarket share in
the mature and stable market with specific reference to consumer electronics industry.This paper offers insights into how the three
forecasting methods affect the bullwhip effect considering the market share under the ARMA(1, 1) demand process and the order-
up-to inventory policy. We also discuss the stability of the order with the theory of entropy. In particular, we derive the expressions
of bullwhip effect measure under theMMSE, MA, and ESmethods and compare them by numerical simulations. Results show that
the MA is always better in contrast to the ES for reducing the bullwhip effect in our supply chain model. When moving average
coefficient is lower than a certain value, the MMSE method is the best for reducing the bullwhip effect; otherwise, the MAmethod
is the best. Moreover, the larger the market share of the retailer with a long lead time is, the greater the bullwhip effect is, no matter
what the forecasting method is.

1. Introduction

There is a high-risk behavior occurring frequently in many
companies’ marketing activities, which is called bullwhip
effect, first coined by Lee et al. [1, 2]. It affects operational costs
and may lead to chaos in the system. Because of its impact on
the operation and management strategies of all the upstream
and downstream enterprises, it has become a focus in the
supply chainmanagement research. In this paper, we focus on
the consumer electronics supply chain management, which
is characterized by frequent channel competition. In the
Chinese consumer electronics offline retail market, GOME
and SUNING are two giant chain enterprises, which occupy
more than 45% of the market share. Most of the consumer
electronics manufacturers sell products through these two
home appliance retail chain stores. The market demand fore-
casting and replenishment strategies of the two retail giants
will undoubtedly affect order fluctuations and production
plan of the manufacturers. We assume that the demand is
independent because GOME is far apart from SUNING.

So, we use the ARMA(1, 1) demand process and aim to
investigate the effect of three forecasting methods on the
bullwhip effect considering the market share.

Bullwhip effect refers to a phenomenon where the order
variability tends to be amplified in a supply chain from the
downstream member to its (immediate) upstream member.
Forrester [3, 4] discovered bullwhip effect’s causes and pos-
sible remediation by industrial dynamics and became the
first scholar proving this phenomenon. This was the first
milestone in the academic research of bullwhip effect. Then,
many other researchers further proved the existence of the
bullwhip effect. A well-known classic “beer game” experi-
mented on by Sterman [5] is the second milestone which
has been utilized in business schools for decades to illustrate
the bullwhip effect. The third milestone, also very important,
is the statistical research stage which was started by Lee
et al. [1, 2]. He identified five main causes of the bullwhip
effect which are demand signal processing, supply shortage,
nonzero lead time, price fluctuation, and order batching in
supply chains. After that, more and more researchers studied
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the bullwhip effect by statistical methods. Based on the works
of Lee, different demand processes and forecasting methods
which directly affected the inventory system of supply chains
significantly are employed in a lot of papers.

Similar to Lee et al. [1, 2], many papers are published for
an AR(1) demand model in a two-stage supply chain with
one manufacturer and one retailer [6–10]. Chen et al. [6, 7]
studied the difference of bullwhip effects under two fore-
casting methods (MA and ES) in a simple, two-stage supply
chain. Zhang [8] investigated the impact of three different
forecasting methods (MA, ES, and MMSE) on the bullwhip
effect under AR(1) demand process. Lee et al. [9] also mea-
sured the benefit of information sharing on reducing the
bullwhip effect using AR(1) process and a simple order-up-
to inventory policy with the minimum mean square error
(MMSE) forecasting technique. Likewise, Luong [10] used the
same demand model as Lee et al. [9] to measure the bullwhip
effect on the base stock policy for their inventory under
the MMSE forecasting technique. Furthermore, Luong and
Phien [11] investigated AR(2) demand process and higher
order autoregressive models AR(𝑝) with the MMSE method.
By calculating the bullwhip effect, these papers investigated
effects of different parameters on the bullwhip effect, such as
autoregressive coefficients and order lead time. In addition,
Duc et al. [12] measured the impact of a third-party ware-
house on the bullwhip effect and inventory cost under AR(1)
process in a three-stage supply chain with one manufacturer,
one third-party warehouse, and two retailers considering
market share.

A pure autoregressive process has been supposed by a few
academics [1, 2, 6–12], and a puremoving average process has
also been used by Graves [13]. However, we can get that the
demandmodel has both characteristics of them. Pindyck and
Rubinfeld [14] assumed the mixed autoregressive-moving
average (ARMA) demand process which is more suitable for
themarket demand than AR(1) model.Then, the ARMApro-
cess is frequently applied. Under the base stock policy, Disney
et al. [15] used ARMA(1, 1) demand pattern to measure the
bullwhip effect by the ES forecasting method in a single
supply chain echelon. Duc et al. [16] focused on the impact of
some parameters on the bullwhip effect via an ARMA(1, 1)
model by the MMSE method. Likewise, Feng and Ma [17]
evaluated the difference of MA, ES, and MMSE forecasting
methods, with the ARMA(1, 1) model by using the dynamic
simulation. The ARMA(1, 1) demand model is applied in all
the above papers in a single supply chain with one manufac-
turer and one retailer. But, as an extension, a new supply chain
with onemanufacturer and two retailerswhoboth employ the
ARMA(1, 1) demand process is made, and emphasis is put on
the competition between the two retailers analyzed [18, 19].
This model also compared the impact of parameters on the
bullwhip effect under various forecastingmethods.Moreover,
Bandyopadhyay and Bhattacharya [20] primarily studied the
various replenishment policies to derive expressions of BWE
based on the generalized ARMA(𝑝, 𝑞) demand process in
order to get the appropriate replenishment policy for the
minimum BWE.

As a further expansion of the ARMA demand model,
Gilbert [21] conducted a new Autoregressive Integrated

Moving Average (ARIMA) time-series model to present the
causes of the bullwhip effect and managerial insights about
reducing the bullwhip effect in a multistage supply chain
model. Dhahri and Chabchoub (2007) also used an ARIMA
demand pattern to alleviate the bullwhip effect in two aspects
of increase of the stock level and reduction of the service
given back to customers. Nagaraja et al. [22] measured the
bullwhipmeasure for a two-stage supply chain with an order-
up-to inventory policy and derived a general, stationary
SARMA(𝑝, 𝑞) × (𝑃, 𝑄)𝑠 demand process.

Many scholars research the systematic problem combin-
ing the entropy theory. By using the tool of entropy, Han et
al. [23] built a duopoly game model and investigated how the
time delay influences the stability of the system. Ma and Si
[24] researched a Bertrand duopoly game model with two-
stage delay and discussed the stability of the economic sys-
tem.

This paper derives the expressions of the bullwhip effect
under various forecastingmethods in a two-stagemature and
stable supply chain with one manufacturer and two retailers
which have a fixed market share. With the development of
information technology, all electronic manufacturers take
strategies to shorten the length of supply chain and take
new information technologies to speed up the logistics. For
instance, Haier, one of the largest household electrical appli-
ances manufacturers all over the world, has been benefiting
from the application of ERP and BBP since the begin-
ning of the 21st century. The information management sys-
tem performs information synchronization and integration,
improves the real-time and accuracy of the information, and
speeds up the response speed of the supply chain. Therefore,
the flat supply chain is common in reality. Based on this,
we assume that both retailers face an ARMA(1, 1) demand
process and employ the order-up-to replenishment policy. In
the current research, we analyze the impact of parameters
on the BWE under the MMSE, MA, and ES forecasting
methods and compare the differences of the three methods
on dampening the bullwhip effect.

This paper differs from the previous research in the
following. First, the ARMA(1, 1) demandmodel of two retail-
ers with a certain market share which is not considered in
previous papers is established in a mature and stable product
market. Second, this paper evaluates the impact of themarket
share on the bullwhip effect and compares three forecasting
methods in this two-stage supply chain.

The remaining part of this paper is organized as follows.
In Section 2, we present the demand process with the market
share in a new supply chain with one manufacturer and
two retailers which both employ the order-up-to inventory
policy. In Section 3, we derive the bullwhip effect measure
under MMSE, MA, and ES forecasting methods. Under
different forecasting methods, the behavior of the bullwhip
effect is investigated and the effects of parameters on the
bullwhip effect are discussed in Section 4, and then we
compare the impact of the three forecasting methods on
the bullwhip effect by numerical simulations. Finally, a short
conclusion is stated for this paper in Section 5. Proofs of some
propositions in this paper are summarized in the Appen-
dix.
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Figure 1: Two-stage supply chain model.

2. Supply Chain Model

The two-level supply chain model shown in Figure 1, consist-
ing of one manufacturer with a distribution center and two
retailers in the same market, is common in the consumer
electronics industry. A hypothesis is that the supply chain
is in a stable market. So, we assume that our two retailers
are in a duopolistic competitive industry, who both have
fixed share of the market of customer demand, 𝛼 and 1 − 𝛼,
respectively. The two retailers both master the accurate
market information and their customer demands, which are
ARMA(1, 1) processes, and place orders to the manufacturer,
respectively. The manufacturer obtains the orders directly
from the retailers and arranges the delivery to the nearest
distribution center as soon as possible, and the retailers take
the products back immediately once what they ordered has
arrived. The new supply chain model is presented in this
section.

2.1.DemandProcess. Considerretailer 1 facinganARMA(1, 1)
demand of the form

𝑑1,𝑡 = 𝛼𝛿 + 𝜙𝑑1,𝑡−1 + 𝛼𝜀𝑡 − 𝛼𝜃𝜀𝑡−1. (1)

Here, 𝑑1,𝑡 represents unit demand in the period 𝑡. 𝜙 is the
autoregressive coefficient, and |𝜙| < 1. 𝜃 is the first-order
moving average coefficient, where −1 < 𝜃 < 1. 𝜀𝑡 is the
random error of the customer demand, and 𝜀𝑡 is independent
and identically distributed from a normal distribution with
mean 0 and variance 𝜎2. 𝛼 is the market share of retailer 1.

Since the demand process is stationary, there is

𝐸 (𝑑1,𝑡) = 𝐸 (𝑑1,𝑡−1) = 𝐸 (𝑑1) ,
Var (𝑑1,𝑡) = Var (𝑑1,𝑡−1) = Var (𝑑1) ,

∀𝑡.
(2)

Hence, a stationary condition can be given as

𝐸 (𝑑1) = 𝛼𝛿1 − 𝜙 .
Var (𝑑1) = 𝛼2 (1 + 𝜃2 − 2𝜙𝜃)

1 − 𝜙2 Var (𝜀𝑡) .
(3)

Similarly, retailer 2 also has an ARMA(1, 1) demand
model

𝑑2,𝑡 = (1 − 𝛼) 𝛿 + 𝜙𝑑2,𝑡−1 + (1 − 𝛼) 𝜀𝑡 − (1 − 𝛼) 𝜃𝜀𝑡−1. (4)

Here, 𝜙 and 𝜃 have the same property with retailer 1 accord-
ingly. 1 − 𝛼 is the market share of retailer 2.

For retailer 2, we also assume

𝐸 (𝑑2,𝑡) = 𝐸 (𝑑2,𝑡−1) = 𝐸 (𝑑2) ,
Var (𝑑2,𝑡) = Var (𝑑2,𝑡−1) = Var (𝑑2) ,

∀𝑡.
(5)

So, we can have

𝐸 (𝑑2) = (1 − 𝛼) 𝛿1 − 𝜙 .
Var (𝑑2) = (1 − 𝛼)2 (1 + 𝜃2 − 2𝜙𝜃)

1 − 𝜙2 Var (𝜀𝑡) .
(6)

In our research, based on the demand models of two
retailers, the total customer demand 𝑑𝑡 also faces an
ARMA(1, 1), as follows:

𝑑𝑡 = 𝛿 + 𝜙𝑑𝑡−1 + 𝜀𝑡 − 𝜃𝜀𝑡−1. (7)

Then, we have

𝑑1,𝑡 = 𝛼𝑑𝑡,
𝑑2,𝑡 = (1 − 𝛼) 𝑑𝑡. (8)

2.2. Inventory Policy. For supplying the demand, we assume
the order-up-to inventory policy during the replenishment
period, which is studied in the supply chain model by Chen
et al. [6]. This paper assumes that two retailers both employ
a simple order-up-to inventory policy in which the order-
up-to level is determined to achieve a desired service level.
Retailer 1 places an ordered quantity 𝑞1,𝑡 to the manufacturer
at the beginning of period 𝑡 to be delivered at the beginning
of period 𝑡 + 𝐿1, where 𝐿1 is the fixed lead time for the
manufacturer to fulfill an order of retailer 1. The order
quantity 𝑞1,𝑡 can be given as

𝑞1,𝑡 = 𝑆1,𝑡 − 𝑆1,𝑡−1 + 𝑑1,𝑡−1, (9)

where 𝑆1,𝑡 is the order-up-to inventory position at the begin-
ning of period 𝑡 of retailer 1 after placing the order in period 𝑡.
While the base stock policy [16] is employed, the order-up-to
level 𝑆1,𝑡 can be determined by the sum of forecasted lead-
time demand and the safety stock as

𝑆1,𝑡 = 𝐷𝐿11,𝑡 + 𝑧𝜎̂𝐿11,𝑡 , (10)

in which 𝐷𝐿11,𝑡 is the forecast for the lead-time demand of
retailer 1 which depends on the forecasting method and lead
time 𝐿1, 𝜎̂𝐿11,𝑡 is the standard deviation of lead-time demand
forecast error, and 𝑧 is the normal 𝑧 score determined based
on a desired service level (the optimal order-up-to level 𝑆𝑡
can be implicitly determined from inventory holding cost
and shortage cost for backorders (Heyman and Sobel, 1984
[8]); however, since it is usually not easy to estimate these
costs accurately in practice, the approach of using the service
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levels is often employed when the order-up-to level is to be
determined).

Similarly, for retailer 2, the order quantity 𝑞2,𝑡, which is
placed to the manufacturer in period 𝑡 to be delivered at the
beginning of period 𝑡 + 𝐿2, where 𝐿2 is the fixed lead time of
retailer 1, can be given as

𝑞2,𝑡 = 𝑆2,𝑡 − 𝑆2,𝑡−1 + 𝑑2,𝑡−1. (11)

The order-up-to level of retailer 2 at period 𝑡 is
𝑆2,𝑡 = 𝐷𝐿12,𝑡 + 𝑧𝜎̂𝐿12,𝑡 . (12)

Equations (11)-(12) have the same meaning as (9)-(10).

2.3. Forecasting Method. In this paper, we assume that two
retailers both use the same forecasting method to forecast
the lead-time demand.Commonly, there are three forecasting
techniques, MA, ES, and MMSE, for demand forecast. As
mentioned above, they have been used in most similar
researches. Here, in our paper, according to the demand
process, we choose appropriate forecasting methods.

In Section 3, the bullwhip effect will be measured, respec-
tively, under the MMSE, MA, and ES forecasting methods.
Those three forecasting methods will be introduced in this
section firstly.

2.3.1. TheMMSE Forecasting Method. In the minimummean
square error (MMSE) forecasting method, the lead-time
demand forecast𝐷𝐿𝑡 is given as

𝐷𝐿𝑡 = 𝑑𝑡 + 𝑑𝑡+1 + ⋅ ⋅ ⋅ + 𝑑𝑡+𝐿−1 = 𝐿−1∑
𝑖=0

𝑑𝑡+𝑖, (13)

where 𝑑𝑡 is the forecast of the demand in period 𝑡, which can
be determined as

𝑑𝑡+𝑖 = 𝐸 [𝑑𝑡+𝑖 | 𝑑𝑡−1, 𝑑𝑡−2, . . .] . (14)

Under the ARMA(1, 1) model, we can have the customer
demand in the period of 𝑡 + 𝑖 by the recursive iteration of 𝑑𝑡
based on (7):

𝑑𝑡+𝑖 = 1 − 𝜙𝑖+11 − 𝜙 𝛿 + 𝜙𝑖+1𝑑𝑡−1 − 𝜃 𝑖∑
𝑗=0

𝜙𝑗𝜀𝑡+𝑖−𝑗−1
+ 𝑖∑
𝑗=0

𝜙𝑗𝜀𝑡+𝑖−𝑗.
(15)

Then, the forecasting of the demand 𝑑𝑡+𝑖 by the MMSE
method is as follows:

𝑑𝑡+𝑖 = 1 − 𝜙𝑖+11 − 𝜙 𝛿 + 𝜙𝑖+1𝑑𝑡−1 − 𝜙𝑖𝜃𝜀𝑡−1. (16)

According to (13) and (16), the total forecasting demand
for future 𝐿-periods can be simplified as

𝐷𝐿𝑡 = 𝐿1 − 𝜙𝛿 −
𝜙 (1 − 𝜙𝐿)
(1 − 𝜙)2 𝛿 + 𝜙 (1 − 𝜙𝐿)

1 − 𝜙 𝑑𝑡−1
− 𝜃 (1 − 𝜙𝐿)

1 − 𝜙 𝜀𝑡−1.
(17)

2.3.2.TheMAForecastingMethod. Using themoving average
(MA) forecasting method, we first have the 𝜏-period-ahead
demand forecast given by

𝑑𝑡+𝜏 = 𝑑𝑡 = 1𝑘
𝑘∑
𝑖=1

𝑑𝑡−𝑖, 𝜏 ≥ 1, (18)

in which 𝑘 is the span (number of date points) for the MA
forecasting method. Then, the lead-time demand forecast is
given as

𝐷𝐿𝑡 = 𝐿𝑘
𝑘∑
𝑖=1

𝑑𝑡−𝑖. (19)

2.3.3.The ES Forecasting Method. TheES forecasting method
is an adaptive algorithm in which one-period-ahead forecast
is adjusted with a fraction of the forecasting error. The
demand forecast with ES can be written as

𝑑𝑡 = 𝜆𝑑𝑡−1 + (1 − 𝜆) 𝑑𝑡−1, (20)

where 𝜆 denotes the fraction used in this process, also called
the smoothing factor, and 0 < 𝜆 < 1.
3. Measure of Bullwhip Effect considering
Market Share

In this section, we derive the measure of the bullwhip effect
in a supply chain with one manufacturer and two retailers
which both have stable market share, under the MMSE, MA,
and ES forecasting methods mentioned above, respectively.
From an early start, the bullwhip effect is a phenomenon in
which the variance of demand information is amplified when
moving upstream in a supply chain. Thus, it is reasonable
to measure the bullwhip effect by the ratio of the variance
of order quantities experienced by the manufacturer to the
actual variance of demand quantities. This means has been
used in previous researches such as those of Chen et al. [6, 7]
and Duc et al. [12], and it is adopted in our research as
well.

In our model, according to (7)-(8), the total demand of
retailers 𝑑𝑡 is distributed as the ARMA(1, 1) model. Take the
variance of 𝑑𝑡; we have

Var (𝑑𝑡) = (1 + 𝜃2 − 2𝜙𝜃)
1 − 𝜙2 Var (𝜀𝑡) . (21)
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3.1. Measure of the Bullwhip Effect under the MMSE Forecast-
ingMethod. As stated in Section 3.2, the order of retailer 1 𝑞1,𝑡
can be given as

𝑞1,𝑡 = 𝑆1,𝑡 − 𝑆1,𝑡−1 + 𝑑1,𝑡−1
= 𝐷𝐿11,𝑡 − 𝐷𝐿11,𝑡−1 + 𝑧 (𝜎̂𝐿11,𝑡 − 𝜎̂𝐿11,𝑡−1) + 𝑑1,𝑡−1. (22)

According to (17), the forecasting of the lead-time
demand for retailer 1 is

𝐷𝐿11,𝑡 = 𝐿11 − 𝜙𝛼𝛿 −
𝜙 (1 − 𝜙𝐿1)
(1 − 𝜙)2 𝛼𝛿 + 𝜙 (1 − 𝜙𝐿1)

1 − 𝜙 𝑑1,𝑡−1

− 𝛼𝜃 (1 − 𝜙𝐿1)
1 − 𝜙 𝜀𝑡−1.

(23)

And the variance of lead-time demand forecast error, 𝜎̂𝐿11,𝑡 ,
does not depend on 𝑡.

Thus, taking (23) into (22), 𝑞1,𝑡 can be determined as

𝑞1,𝑡 = 𝜙 (1 − 𝜙𝐿1)
1 − 𝜙 𝑑1,𝑡−1 − 𝛼𝜃 (1 − 𝜙𝐿1)

1 − 𝜙 𝜀𝑡−1
− (𝜙 (1 − 𝜙𝐿1)

1 − 𝜙 𝑑1,𝑡−2 − 𝛼𝜃 (1 − 𝜙𝐿1)
1 − 𝜙 𝜀𝑡−2)

+ 𝑑1,𝑡−1
= (𝜙𝐴1 + 1) 𝑑1,𝑡−1 − 𝜙𝐴1𝑑1,𝑡−2

− 𝛼𝜃𝐴1 (𝜀𝑡−1 − 𝜀𝑡−2) ,

(24)

where 𝐴1 = (1 − 𝜙𝐿1)/(1 − 𝜙).
Since 𝑑1,𝑡 = 𝛼𝑑𝑡, 𝑞1,𝑡 can be rewritten as

𝑞1,𝑡 = (𝜙𝐴1 + 1) 𝛼𝑑𝑡−1 − 𝜙𝐴1𝛼𝑑𝑡−2
− 𝛼𝜃𝐴1 (𝜀𝑡−1 − 𝜀𝑡−2) . (25)

Likewise, we also have 𝜎̂𝐿22,𝑡 = 𝜎̂𝐿22,𝑡−1, and based on (24)
and 𝑑2,𝑡 = (1 − 𝛼)𝑑𝑡, the order of retailer 2 in period 𝑡 can be
written as

𝑞2,𝑡 = (𝜙𝐴2 + 1) (1 − 𝛼) 𝑑𝑡−1 − 𝜙𝐴2 (1 − 𝛼) 𝑑𝑡−2
− (1 − 𝛼) 𝜃𝐴2 (𝜀𝑡−1 − 𝜀𝑡−2) , (26)

where 𝐴2 = (1 − 𝜙𝐿2)/(1 − 𝜙).

In this way, the order quantity of both retailers under the
MMSE forecasting method in the period of 𝑡 is

𝑞𝑡 = 𝑞1,𝑡 + 𝑞2,𝑡
= (𝜙𝐴1 + 1) 𝛼𝑑𝑡−1 − 𝜙𝐴1𝛼𝑑𝑡−2

− 𝛼𝜃𝐴1 (𝜀𝑡−1 − 𝜀𝑡−2) + (𝜙𝐴2 + 1) (1 − 𝛼) 𝑑𝑡−1
− 𝜙𝐴2 (1 − 𝛼) 𝑑𝑡−2 − (1 − 𝛼) 𝜃𝐴2 (𝜀𝑡−1 − 𝜀𝑡−2)

= (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) 𝑑𝑡−1
− (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) 𝑑𝑡−2
− (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) 𝜀𝑡−1
+ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) 𝜀𝑡−2.

(27)

Proposition 1. The variance of total order quantity of two
retailers under the MMSE forecasting method in the period of𝑡 can be determined as

Var (𝑞𝑡) = [(1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)2 + (𝛼𝜙𝐴1
+ (1 − 𝛼) 𝜙𝐴2)2 − 2 (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + 2
⋅ 1 − 𝜙21 + 𝜃2 − 2𝜙𝜃 ((𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)2
− (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
+ (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
⋅ (𝜙 − 𝜃) − (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2))]Var (𝑑𝑡) .

(28)

Proof. See Appendix A.

As the definition, the bullwhip effect in the supply
chain with two retailers by the MMSE method, denoted by
BWEmmse, is derived as

BWEmmse = Var (𝑞𝑡)
Var (𝑑𝑡) = (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)2

+ (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)2 − 2 (1 + 𝛼𝜙𝐴1 + (1 − 𝛼)
⋅ 𝜙𝐴2) (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + 2
⋅ 1 − 𝜙21 + 𝜃2 − 2𝜙𝜃 ((𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)2
+ (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
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⋅ (𝜙 − 𝜃 − 1) − (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)) .

(29)

Now, we have the exact measure of bullwhip effect under
the MMSE forecasting method.

3.2. Measure of the Bullwhip Effect under the MA Forecasting
Method. Under the MA forecasting method, according to
(9)-(10) and (19), the order of retailer 1 in period 𝑡 can be given
as

𝑞1,𝑡 = 𝐷𝐿11,𝑡 − 𝐷𝐿11,𝑡−1 + 𝑧 (𝜎̂𝐿11,𝑡 − 𝜎̂𝐿11,𝑡−1) + 𝑑1,𝑡−1
= 𝐿1𝑘

𝑘∑
𝑖=1

𝑑1,𝑡−𝑖 − 𝐿1𝑘
𝑘∑
𝑖=1

𝑑1,𝑡−𝑖−1 + 𝑑1,𝑡−1
+ 𝑧 (𝜎̂𝐿11,𝑡 − 𝜎̂𝐿11,𝑡−1) .

(30)

According to previous literature, 𝜎̂𝐿11,𝑡 has no influence on
the bullwhip effect. Similar to the minimum mean square
error forecasting method, we have

𝑞1,𝑡 = (1 + 𝐿1𝑘 ) 𝑑1,𝑡−1 − 𝐿1𝑘 𝑑1,𝑡−𝑘−1
= 𝛼(1 + 𝐿1𝑘 ) 𝑑𝑡−1 − 𝛼𝐿1𝑘 𝑑𝑡−𝑘−1.

(31)

According to the above calculation process, we can get the
order quantity of retailer 2 in period 𝑡 similarly as follows:

𝑞2,𝑡 = (1 + 𝐿2𝑘 ) 𝑑2,𝑡−1 − 𝐿2𝑘 𝑑2,𝑡−𝑘−1
= (1 − 𝛼) (1 + 𝐿2𝑘 ) 𝑑𝑡−1 − (1 − 𝛼) 𝐿2𝑘 𝑑𝑡−𝑘−1.

(32)

Take the sum of orders for two retailers; the result can be
written as

𝑞𝑡 = 𝛼(1 + 𝐿1𝑘 ) 𝑑𝑡−1 − 𝛼𝐿1𝑘 𝑑𝑡−𝑘−1
+ (1 − 𝛼) (1 + 𝐿2𝑘 ) 𝑑𝑡−1 − (1 − 𝛼) 𝐿2𝑘 𝑑𝑡−𝑘−1

= (1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) 𝑑𝑡−1
− (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) 𝑑𝑡−𝑘−1.

(33)

Proposition 2. The variance of total order quantity of two
retailers under the MA forecasting method in the period of 𝑡
can be determined as

Var (𝑞𝑡) = [[[[
[

(1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2 + (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2

−2 (1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) 𝜙𝑘−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃
]]]]
]
Var (𝑑𝑡) . (34)

Proof. See Appendix B.

Take the variance of total order Var (𝑞𝑡) divided by
Var (𝑑𝑡); the bullwhip effect measure under the MA forecast-
ing method, called BWEMA, is given as

BWEMA = (1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2

+ (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2

− 2 (1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )
⋅ (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) 𝜙𝑘−1
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 .

(35)

3.3. Behavior of the Bullwhip Effect under the ES Forecasting
Method. In this section, we use the exponential smoothing
forecasting technique to perform demand forecast. Accord-
ing to Zhang [8], we know that the forecasting demand of
retailer 1 in period 𝑡 is

𝑑1,𝑡 = ∞∑
𝑖=0

𝜆1 (1 − 𝜆1)𝑖 𝑑1,𝑡−𝑖−1, (36)

in which 𝜆1is the smoothing exponent of retailer 1.
Therefore, 𝑑1,𝑡 can be interpreted as the weighted average

of all past demands of retailer 1 with exponentially declining
weights.Then, 𝜏-period-ahead forecasting demand of retailer
1 under ES method simply extends the one-period-ahead
forecast similar to the MA case where

𝑑1,𝑡+𝜏 = 𝑑1,𝑡. 𝜏 ≥ 1. (37)

Then, the forecast for the lead-time demand of retailer 1 can
be expressed as

𝐷𝐿11,𝑡 = 𝐿1𝑑1,𝑡. (38)
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Using (20) and (38), we can have

𝐷𝐿11,𝑡 − 𝐷𝐿11,𝑡−1 = 𝜆1𝐿1 (𝑑1,𝑡−1 − 𝑑1,𝑡−1) . (39)

Thus, in the condition of order-up-to policy, the order
quantity of retailer 1, 𝑞1,𝑡, is

𝑞1,𝑡 = 𝐷𝐿11,𝑡 − 𝐷𝐿11,𝑡−1 + 𝑧 (𝜎̂𝐿11,𝑡 − 𝜎̂𝐿11,𝑡−1) + 𝑑1,𝑡−1
= 𝜆1𝐿1 (𝑑1.𝑡−1 − 𝑑1,𝑡−1) + 𝑑1.𝑡−1
= 𝛼𝑑𝑡−1 + 𝜆1𝐿1 (𝛼𝑑𝑡−1 − 𝑑1,𝑡−1) .

(40)

Here, there is also 𝜎̂𝐿11,𝑡 = 𝜎̂𝐿11,𝑡−1 and 𝑑1,𝑡 = 𝛼𝑑𝑡.
Retailer 2 conducts a similar behavior to retailer 1, so we

can get

𝑞2,𝑡 = 𝜆2𝐿2 (𝑑2,𝑡−1 − 𝑑2,𝑡−1) + 𝑑2.𝑡−1
= (1 − 𝛼) 𝑑𝑡−1 + 𝜆2𝐿2 ((1 − 𝛼) 𝑑𝑡−1 − 𝑑2,𝑡−1) . (41)

Take the sum of (40) and (41); the total order quantity is

𝑞𝑡 = 𝛼𝑑𝑡−1 + 𝜆1𝐿1 (𝛼𝑑𝑡−1 − 𝑑1,𝑡−1) + (1 − 𝛼) 𝑑𝑡−1
+ 𝜆2𝐿2 ((1 − 𝛼) 𝑑𝑡−1 − 𝑑2,𝑡−1)

= (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) 𝑑𝑡−1 − 𝜆1𝐿1𝑑1,𝑡−1
− 𝜆2𝐿2𝑑2,𝑡−1.

(42)

Proposition 3. The variance of total order quantity with two
retailers under the ES forecasting method in the period of 𝑡 can
be given as

Var (𝑞𝑡) = Var (𝑑𝑡) [(1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2)2

+ 𝐿21𝜆31𝛼22 − 𝜆1 (1 + 2 (1 − 𝜆1)1 − (1 − 𝜆1) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) )

+ 𝐿22𝜆32 (1 − 𝛼)22 − 𝜆2 (1 + 2 (1 − 𝜆2)1 − (1 − 𝜆2) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) )

− 2 (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2)
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 𝛼𝐿1𝜆211 − (1 − 𝜆1) 𝜙 + (1 − 𝛼) 𝐿2𝜆221 − (1 − 𝜆2) 𝜙)
+ 2𝜆21𝜆22𝐿1𝐿2𝛼 (1 − 𝛼)((𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃
⋅ 1(𝜙 + 𝜆2 − 1) (1 − (1 − 𝜆1) 𝜙)
+ 11 − (1 − 𝜆1) (1 − 𝜆2) (1
+ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 1 − 𝜆21 − (1 − 𝜆2) 𝜙 − 1𝜙 + 𝜆2 − 1)))] .

(43)

Proof. See Appendix C.

According to the most widely used method, the expres-
sion of bullwhip effect under the ES forecasting technique
is as follows, named BWEES, which seems relatively compli-
cated:

BWEES = (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2)2 + 𝐿21𝜆31𝛼22 − 𝜆1 (1
+ 2 (1 − 𝜆1)1 − (1 − 𝜆1) 𝜙

(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) )
+ 𝐿22𝜆32 (1 − 𝛼)22 − 𝜆2 (1 + 2 (1 − 𝜆2)1 − (1 − 𝜆2) 𝜙
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ) − 2 (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼)
⋅ 𝜆2𝐿2) (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 𝛼𝐿1𝜆211 − (1 − 𝜆1) 𝜙
+ (1 − 𝛼) 𝐿2𝜆221 − (1 − 𝜆2) 𝜙) + 2𝜆21𝜆22𝐿1𝐿2𝛼 (1 − 𝛼)
⋅ [(𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 1(𝜙 + 𝜆2 − 1) (1 − (1 − 𝜆1) 𝜙)
+ 11 − (1 − 𝜆1) (1 − 𝜆2) (1
+ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 1 − 𝜆21 − (1 − 𝜆2) 𝜙
− 1𝜙 + 𝜆2 − 1))] .

(44)

4. Behavior and Comparison of Bullwhip
Effect by Three Forecasting Methods

4.1. Behavior of the Bullwhip Effect and Parameter Analysis
for the MMSE. We will explore and illustrate the impact
of various parameters on the bullwhip effect by using the
numerical experiments.

According to Duc et al. [12], we know that the bullwhip
effect occurs only if 0 < 𝜙 < 1 under the MMSE forecasting
method. So, next, we will study the behavior of the bullwhip
effect only when 0 < 𝜙 < 1.

There are three cases that we should consider.

Case 1 (𝛼 = 0 or 𝛼 = 1). In this case, the supply chain only
has one retailer and one manufacturer; thus, the behaviors of
the bullwhip effect have been studied by Duc et al. [16].

Case 2 (𝐿1 = 𝐿2 = 𝐿). When the lead times of the retailer are
the same, themarket share𝛼 has no influence on the bullwhip
effect. Therefore, the behavior of the bullwhip effect in the
supply chain of our paper is the same as that in the supply
chain with one retailer and one manufacturer. This result can
be shown in the next expression by BWEmmse.
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Figure 2: Effect of 𝜙 on BWEmmse in the case of 𝐿1 = 1, 𝛼 = 0.4 and 0.7.

Table 1: Values of bullwhip effect under MMSE in the case of 𝐿1 = 1 and 𝛼 = 0.4.
𝐿2 𝜙 𝜙max0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.5969 0.7805 1.0000 1.2493 1.5134 1.7637 1.9502 1.9899 1.7473 0.771
3 0.5951 0.7763 1.0000 1.2704 1.5837 1.9186 2.2191 2.3641 2.1120 0.800
4 0.5949 0.7754 1.0000 1.2789 1.6197 2.0159 2.4221 2.6982 2.4931 0.824

Table 2: Values of bullwhip effect under MMSE in the case of 𝐿1 = 1 and 𝛼 = 0.7.
𝐿2 𝜙 𝜙max0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.6062 0.7912 1.0000 1.2233 1.4454 1.6417 1.7732 1.7806 1.5714 0.757
3 0.6052 0.7891 1.0000 1.2336 1.4791 1.7141 1.8958 1.9465 1.7288 0.778
4 0.6051 0.7887 1.0000 1.2378 1.4962 1.7587 1.9852 2.0880 1.8837 0.797

Under the condition of 𝐿1 = 𝐿2 = 𝐿, we have 𝐴1 = 𝐴2 =𝐴 = (1 − 𝜙𝐿)/(1 − 𝜙); then, the bullwhip effect can be written
as

BWEmmse = (1 + 𝜙𝐴)2 + (𝜙𝐴)2 − 2𝜙𝐴 (1 + 𝜙𝐴)
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + 2 1 − 𝜙2(1 + 𝜃2 − 2𝜙𝜃) ((𝜃𝐴)2
+ (1 + 𝜙𝐴) (𝜃𝐴) (𝜙 − 𝜃 − 1) − 𝜙𝜃𝐴2) .

(45)

Case 3 (𝛼 ̸= 0, 𝛼 ̸= 1, and 𝐿1 ̸= 𝐿2). In this case, we take a
simulation for BWEmmse at the range of 𝜙 > 0 in order to see
the impact of different parameters on the BWE. We perform
a series of numerical experiments for different values of 𝐿1,𝐿2, 𝜙, 𝜃, and 𝛼, and the results are shown in the following.

Figure 2 depicts the impact of 𝜙 on the bullwhip effect
when the other parameters are fixed. The bullwhip effect
measure first increases and then decreases along with the
increasing of 𝜙.

From Tables 1 and 2, for given values of 𝐿1, 𝐿2, 𝜃, and 𝛼, it
can be seen that the bullwhip effect reaches the maximum at
a certain value of 𝜙, which is here denoted as 𝜙max. Moreover,
according to Tables 1–4, it is discovered that the bullwhip
effect exists if and only if 𝜙 > 0.3 for any values of 𝐿1, 𝐿2, 𝜃,
and 𝛼. The results show that as the value of 𝐿2 increases, the
bullwhip effect BWEmmse becomes larger when the bullwhip
effect BWEmmse > 1; that is, the value of𝜙 > 0.3, and𝜙max also
increases. When the 𝜙 value is smaller than 0.3, the bullwhip
effect has the opposite trend on the change of 𝐿2. In addition,
compared with data between Tables 1 and 2, it is shown that
as the market share 𝛼 increases, both the bullwhip effect and
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Table 3: Values of bullwhip effect under MMSE in the case of 𝐿2 = 1 and 𝛼 = 0.4.
𝐿1 𝜙 𝜙max0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.6031 0.7877 1.0000 1.2319 1.4678 1.6816 1.8308 1.8483 1.6279 0.762
3 0.6018 0.7848 1.0000 1.2458 1.5134 1.7804 1.9995 2.0789 1.8489 0.787
4 0.6017 0.7842 1.0000 1.2514 1.5366 1.8417 2.1241 2.2789 2.0713 0.808

Table 4: Values of bullwhip effect under MMSE in the case of 𝐿2 = 1 and 𝛼 = 0.7.
𝐿1 𝜙 𝜙max0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.5939 0.7770 1.0000 1.2580 1.5366 1.8058 2.0120 2.0639 1.8101 0.775
3 0.5917 0.7720 1.0000 1.2828 1.6197 1.9903 2.3350 2.5169 2.2550 0.805
4 0.5915 0.7711 1.0000 1.2928 1.6623 2.1071 2.5812 2.9266 2.7274 0.829

𝜙max decrease, at the fixed values of𝜙, 𝐿1, and𝐿2, whichmeets
the condition of 𝐿1 < 𝐿2.

Tables 3-4 andFigure 3 have a similar trend toTables 1 and
2 and Figure 2. We set 𝐿1 > 𝐿2 in this part of simulations.
Figure 3 illustrates the behavior of BWEmmse with respect
to 𝜙 for fixed 𝐿1, 𝐿2, 𝜃, and 𝛼. First, it is shown that the
bullwhip effect increases to amaximum and then drops as the
autoregressive coefficient increases from 0 to 1. The bullwhip
effect under theMMSE forecasting method is less than 1; that
is, there is no bullwhip effect in the supply chain while 𝜙 <0.3. Second, when 𝐿1 increases and 𝐿2, 𝜃, and 𝛼 are at certain
values, the bullwhip effect under MMSE method increases,
and 𝜙max also rises for 𝜙 > 0.3. Moreover, when 𝛼 increases
for fixed 𝐿1, 𝐿2, 𝜃, and 𝜙 under the condition of 𝐿1 >𝐿2, on the contrary, the bullwhip effect increases and 𝜙max
rises.

In a word, these results can be seen clearly from data of
Tables 1–4. In conclusion, the market share of the retailer
which has a longer lead time affects the bullwhip effect more
significantly. From our research, we discover that the larger
the market share of the retailer with a long lead time is, the
greater the bullwhip effect is.

Next, Figure 4 shows how the market share 𝛼 affects
bullwhip effect in two cases. Further, the bullwhip effect is the
linear correlation with 𝛼. When 𝛼 goes up, the bullwhip effect
drops in Figure 4(a) for the condition of 𝐿1 < 𝐿2. However,
when 𝛼 goes up, the bullwhip effect changes conversely in
Figure 4(b) for the case of 𝐿1 > 𝐿2. Both figures indicate that
larger lead time can result in a greater bullwhip effect. When𝐿1 > 𝐿2, the increasing of 𝛼means more demand needs to be
forecasted in longer lead time. Thus, the lead time is critical
to the bullwhip effect.

In the simulation, the first-order moving average coeffi-
cient 𝜃 affects the bullwhip effect in a way that, along with the
increase of 𝜃 from −1 to 1, the bullwhip effect first increases
slowly to themaximumwhere it corresponds to the value 𝜃max
and then decreases quickly in Figure 5. From the figure, it is
observed that when 𝜃 is almost larger than 0.6, the bullwhip
effect does not exist. Moreover, the increasing of 𝐿2 can lead
to the increasing of bullwhip effect as well as 𝜃max under
the existence of the bullwhip effect. So, Figure 8 shows that

we can enlarge 𝜃 to reduce the bullwhip effect appropriately
when other parameters are already determined.

4.2. Behavior of the Bullwhip Effect and Parameter Analysis
for the MA. Similar to Section 4.1, there are also three cases
that we should consider. However, there is one difference of
simulation: that we need to consider the whole range of 𝜙
from −1 to 1 in this part.

Case 1 (𝛼 = 0 or 𝛼 = 1). When the market share of retailer is
zero or one, it means there is only one retailer in the supply
chain. We do not study this case in our paper.

Case 2 (𝐿1 = 𝐿2 = 𝐿). In the case of 𝐿1 = 𝐿2 = 𝐿, (35) can be
written by simplification as

BWEMA = (1 + 𝐿𝑘)
2 + (𝐿𝑘)

2

− 2𝐿𝑘 (1 + 𝐿𝑘) 𝜙𝑘−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 .
(46)

The bullwhip effect has no effect with the market share 𝛼
from (46).

Case 3 (𝛼 ̸= 0, 𝛼 ̸= 1, and 𝐿1 ̸= 𝐿2). When we set 𝛼 ̸= 0,𝛼 ̸= 1, and 𝐿1 ̸= 𝐿2, we know the market share will affect
the bullwhip effect. Next, it is studied how the parameters
influence the bullwhip effect under the MA forecasting
technique by simulations on the base of the expression of (35).

As shown in Figure 6, the bullwhip effect varies differently
with respect to the first autoregressive coefficient under the
different value of 𝑘. In this figure, we fix the values of 𝐿1 = 1,𝜃 = 0.3, and 𝛼 = 0.4 and run a function of 𝜙 for 𝐿2 = 2, 3,
and 4, with 𝑘 = 4 and 5. The bullwhip effect first increases to
the maximum and then decreases quickly with the increasing
of 𝜙 for even 𝑘. When 𝜙 = −1 or 𝜙 = 1, the values of the
bullwhip effect are both one. Likewise, for odd 𝑘, the bullwhip
effect first quickly decreases to a stable value and then also
decreases with the continuous increase of 𝜙. When 𝜙 is near
negative one, the bullwhip effect is most pronounced.



10 Complexity

1

2

L2 = 1,  = 0.3,  = 0.4

L1 = 2

L1 = 3

L1 = 4

0.2 0.4 0.6 0.8 10
0.4

0.6

0.8

1.2

1.4

1.6

＂
７

％
－

－
３
％

1.8

2.2

2.4



(a)

L2 = 1,  = 0.3,  = 0.7

L1 = 2

L1 = 3

L1 = 4

0.2 0.4 0.6 0.8 10
0

0.5

1

1.5

＂
７

％
－

－
３
％

2

2.5

3



(b)

Figure 3: Effect of 𝜙 on BWEmmse in the case of 𝐿2 = 1, 𝛼 = 0.4 and 0.7.
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Figure 4: The bullwhip effect corresponding to 𝛼 under the MMSE in case of 𝐿1 < 𝐿2.

Moreover, BWEMA is a function of 𝐿2 and increases as the
lead time 𝐿2 increases. Equation (36) shows that the behavior
of 𝐿1 is the same as 𝐿1. So, the bullwhip effect increases
unconditionally with the increasing of the lead time.

Figure 7(a) mainly depicts the influence of market share
on the bullwhip effect. We set 𝐿1 < 𝐿2 in Figure 7(a) and𝐿1 > 𝐿2 in Figure 7(b) when other parameters are fixed.
Figure 7(a) shows that the bullwhip effect decreases as the
market share 𝛼 increases. And, however, Figure 7(b) shows

that the bullwhip effect increases as the market share 𝛼
increases. In a word, when the market share of the retailer
which has a longer lead time increases, the bullwhip effect
increases too.

From the two figures, we also observe that the bullwhip
effect under the MA forecasting method is approximately
symmetrical about 𝜙 when the span 𝑘 is even.

The first-order moving average coefficient 𝜃 has a simple
relationship with the bullwhip effect. In Figure 8, the larger
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the value of 𝜃 from −1 to 1, the greater the bullwhip effect. So,
in the supply chain, we can reduce 𝜃 to decrease the bullwhip
effect.The span 𝑘 is negative with the bullwhip effect, and the
increasing of 𝑘 can reduce BWEMA.

4.3. Behavior of the Bullwhip Effect and Parameter Analysis for
the ES. Based on the analytical expression of BWEES, there
are also three cases that we should consider similar to the
MMSE and MAmethods.
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Figure 7: Effect of 𝜙 on the bullwhip effect for different 𝛼 under𝐿1 < 𝐿2 and 𝐿1 > 𝐿2.

Case 1 (𝛼 = 0 or 𝛼 = 1). Here, the conclusion is identical to
the cases of MMSE and MAmethod.

Case 2 (𝐿1 = 𝐿2 = 𝐿, and 𝜆1 = 𝜆2 = 𝜆). We set two retailers
having the same smoothing exponent; then, when 𝐿1 = 𝐿2 =𝐿, the market share 𝛼 has no influence on the bullwhip effect.

Case 3 (𝛼 ̸= 0, 𝛼 ̸= 1, and 𝐿1 ̸= 𝐿2 or 𝜆1 ̸= 𝜆2). In order to
discuss the impact of market share 𝛼 on the bullwhip effect,
we make the specific rules as 𝐿1 ̸= 𝐿2 and 𝜆1 ̸= 𝜆2. By
numerical simulations, we will study the changes of BWEES.
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Figure 9: The impact of 𝜙 on BWEES by varying 𝐿2.

Figure 9 shows the trend of bullwhip effect along with
the varying of 𝜙 from −1 to 1 under different values of 𝐿2.
BWEES is decreased when 𝜙 increases and is increased when𝐿2 increases from 2 to 4. In the supply chain, the longer the
lead time is, the more difficult the forecast to the demand is.
So, the bullwhip effect is larger and larger when the lead time
of retailer 2 is increasing.

Figure 10 depicts how the bullwhip effect is affected by
the market share under the different conditions of the lead
time. A similar trend can be observed to Figure 10 where the
bullwhip effect decreases when 𝜙 increases while 𝐿1, 𝐿2, 𝜃, 𝛼,𝜆1, and 𝜆2 are fixed.
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Figure 10: The impact of 𝜙 and 𝛼 on the bullwhip effect on the
condition of 𝐿1 < 𝐿2 and 𝐿1 > 𝐿2.

Moreover, when the values of 𝜆1, 𝜆2, 𝜃, 𝐿1, and 𝐿2 are
fixed such that 𝐿1 < 𝐿2, the bullwhip effect decreases as 𝛼
increases. Under the fixed values of 𝜆1, 𝜆2, 𝜃, 𝐿1, and 𝐿2 such
that 𝐿1 > 𝐿2, yet, the bullwhip effect increases as 𝛼 increases.
This consequence can be observed from Figure 11(a) for the
case 𝐿1 < 𝐿2 and from Figure 10(b) for the case 𝐿1 > 𝐿2.

In conclusion, when all other parameters are fixed, the
bullwhip effect decreases as the market share of the retailer
with a shorter lead time increases.

Figure 11(a) studies the influence of 𝜆1 on the bullwhip
effect; it is indicated that BWEES has a positive correlation
with the smoothing coefficient of retailer 1. In addition, the
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Figure 11: The impact of the smoothing coefficient 𝜆1 and 𝜃 on BWEES for different 𝐿2.

trend of BWEES is roughly the same for different 𝐿2. That is,
the influence of the smoothing coefficient 𝜆1 on the bullwhip
effect is determinate regardless of the measurement of 𝐿1 and𝐿2.

Figure 11(b) indicates the behavior of the bullwhip effect
with regard to 𝜃 for fixed values of other parameters.The bull-
whip effect is increased slowly along with the increasing of 𝜃
from −1 to 0; however, it increases quickly when 𝜃 increases
from 0 to 1. Some other information can be discovered from
Figure 11(b). The larger the value of 𝐿2 is, the faster the
bullwhip effect increases as 𝜃 increases.
4.4. Comparison of the Bullwhip Effect by Three Forecasting
Methods. We study the bullwhip effect using three forecast-
ing methods in Sections of 4.1–4.3. Next, we will compare the
different influences of MMSE, MA, and ES on the bullwhip
effect. For the comparability of the MA and ES methods, we
set a constraint on the span 𝑘 of MA and the smoothing
factors 𝜆1 and 𝜆2. According to Zhang [8], we obtain that the
smoothing exponents are fixed as 𝜆1 = 𝜆2 = 2/(𝑘 + 1). This
means the average data ages are the same for the MA and ES
forecasting method. Further, we know 𝜙 + 𝜆2 − 1 ̸= 0 from
the expression of the bullwhip effect (see (46)) under the ES
forecasting method.

Figure 12 depicts the difference of the three forecasting
methods on measuring the bullwhip effect by varying 𝜙 for
different 𝑘 and 𝜆.We observe that the bullwhip effectmeasure
of MA is always smaller than that of ES nomatter what 𝜙 is as
long as 𝜆1 = 𝜆2 = 2/(𝑘 + 1). It can be seen that the bullwhip
effect under the MMSE forecasting method does not exist
when 𝜙 ≤ 0.3 from the two figures.The bullwhip effect for the
three forecasting methods converges to one as 𝜙 approaches
one.

Moreover, for fixed values of 𝛼, 𝜃, 𝐿1, and 𝐿2, BWEMMSE
is the least when 𝜙 is smaller than a certain value, called 𝜙1.
After 𝜙 becomes larger than 𝜙1 and smaller than another
certain value, called𝜙2, BWEMA is the smallest andBWEMMSE
is lower than BWEES. When 𝜙 is larger than 𝜙2, BWEMMSE is
the largest compared to the other two methods. In general,
while 𝜙 is lower than 𝜙1, the MMSE method is the best for
reducing the bullwhip effect, and while 𝜙 is higher than 𝜙1,
the MA method is the best.

However, comparing the two figures, we find that as the
span 𝑘 increases, the bullwhip effects for the three forecasting
methods overall decrease, and the values of 𝜙1 and 𝜙2 are
lessened. This phenomenon reveals that when we choose a
larger span 𝑘, the extent of 𝜙 is larger for the MAwhich is the
best method to predict the bullwhip effect.

In Figure 13, we set 𝜙 = 0.5, 𝜃 = 0.3, 𝐿1 = 1, 𝐿2 = 2, 𝜆1 =𝜆2 = 0.4, and 𝑘 = 4 and then study the bullwhip effect for
the three forecasting methods under the condition of various
market shares 𝛼. We observe that the bullwhip effect is the
smallest by theMMSE forecastingmethodwhatever𝛼 is. And
the bullwhip effect under the ESmethod is theworst whatever𝛼 is.This conclusion is related to the value of 𝜙whenwe select
a certain 𝑘.

Figure 14 shows the curved surface of the bullwhip effect
by varying 𝜙 and 𝜃 for the three forecasting methods. It is
observed that BWEES is always larger than BWEMA whatever𝜃 is as long as 𝜆1 = 𝜆2 = 2/(𝑘 + 1) for the fixed value of𝜙. When 𝜃 increases from −1 to 1, BWEMA is the smallest
while 𝜃 is less than a certain value, and BWEMMSE is the
best while 𝜃 is more than that certain value. In addition,
there is also a phenomenon where BWEMMSE is all along
the largest for any value of 𝜙 when 𝜃 approaches negative
one.
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Figure 12: Comparison of the three forecasting methods by varying 𝜙 in the case of 𝑘 = 4 or 𝑘 = 9.
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In summary, in order to reduce the bullwhip effect, we
will select a reasonable forecasting method according to the
values of various parameters.

5. Conclusions

In this paper, we mainly study the impact of three forecasting
methods on the bullwhip effectmeasure considering themar-
ket share in a stable mature supply chain with two retailers.
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Figure 14: Comparison of the three forecasting methods by varying𝜙 and 𝜃 in the case of 𝑘 = 8.

We first quantify the bullwhip effect in a two-level supply
chain with two retailers considering the market share. In
the ARMA(1, 1) demand model, we use the three forecasting
methods to establish the expressions of the bullwhip effect.
By simulations, some results are obtained. (1) The larger
the market share of the retailer with long lead time is, the
greater the bullwhip effect is, no matter what the forecasting
method is. (2)The bullwhip effect is increased along with the
increasing of 𝜃 for the MA and ES method and, however, it is
dampened for theMMSEmethod. (3)The bullwhip effect has
a positive correlation with the lead time and the smoothing
factors 𝜆 and has a negative correlationwith the span 𝑘. (4) By
comparison, theMA is always better than the ES for reducing
the bullwhip effect in our supply chain model. When 𝜙 is
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lower than a certain value, the MMSE method is the best for
reducing the bullwhip effect; otherwise, the MA method is
the best.

Our findings give some useful insights for supply chain
managers in the consumer electronics industry. Firstly, the
retailers shouldmake it clearwhat kind of pattern the demand
process follows and choose a suitable forecasting method
to dampen the bullwhip effect. Secondly, the manufacturer
should paymore attention to the retailer who occupies a large
market share on purpose and reduce its lead time to dampen
the bullwhip effect.

From the view of entropy, we see that the autocorrelation
coefficient can impact the uncertainty of the order. The
minimum of the entropy is around 𝜙 = 0.672, and the
maximum of the entropy is around 𝜙 = 1.

The research presented in this paper proposes several
future directions for improvement of our understanding of
market share. First, we can further study the effect of unfixed
market share on the bullwhip effect in an unstable supply
chain. Second, we only consider the order-up-to inventory
policy and three traditional demand forecasting methods.
Therefore, other new forecast methods and complex inven-
tory policies can be studied in future research. Furthermore,
price is the key factor on the bullwhip effect. So, introducing
the retailer’s price into the demand model to analyze the
complexity and stability of the supply chain system is another
future direction.

Appendix

A. A Proof of Proposition 1

Var (𝜀𝑡−1) = Var (𝜀𝑡−2) = Var (𝜀𝑡)
= 1 − 𝜙21 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) . (A.1)

According to Feng and Ma [17], there is

Cov (𝑑𝑡−1, 𝑑𝑡−𝑘−1) = 𝜙𝑘−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) . (A.2)

According to Duc et al. [16], we have

Cov (𝑑𝑡−1, 𝜀𝑡−1) = Var (𝜀𝑡−1) ,
Cov (𝑑𝑡−1, 𝜀𝑡−2) = (𝜙 − 𝜃)Var (𝜀𝑡−1) . (A.3)

Take the variance of (27); we get

Var (𝑞𝑡) = Var ((1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) 𝑑𝑡−1
− (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) 𝑑𝑡−2
− (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) 𝜀𝑡−1
+ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) 𝜀𝑡−2)
= Var ((1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) 𝑑𝑡−1)

+ Var ((1 − 𝛼) (𝜙𝐴2 + 1) 𝑑𝑡−2)
+ Var ((𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) 𝜀𝑡−1)
+ Var ((𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) 𝜀𝑡−2) − 2 (1 + 𝛼𝜙𝐴1
+ (1 − 𝛼) 𝜙𝐴2) (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ Cov (𝑑𝑡−1, 𝑑𝑡−2) − 2 (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)Cov (𝑑𝑡−1, 𝜀𝑡−1) + 2 (1
+ 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
⋅ Cov (𝑑𝑡−1, 𝜀𝑡−2) + 2 (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)Cov (𝑑𝑡−2, 𝜀𝑡−1)
− 2 (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
⋅ Cov (𝑑𝑡−2, 𝜀𝑡−2) − 2 (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)2
⋅ Cov (𝜀𝑡−1, 𝜀𝑡−2) .

(A.4)

Bring (A.1)–(A.3) into (A.4) and simplify the original
equation; we can get the variance of the order quantity under
the MMSE forecasting method as follows:

Var (𝑞𝑡) = ((1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)2 + (𝛼𝜙𝐴1
+ (1 − 𝛼) 𝜙𝐴2)2)Var (𝑑𝑡) + 2 (𝛼𝜃𝐴1 + (1 − 𝛼)
⋅ 𝜃𝐴2)2 Var (𝜀𝑡) − 2 (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡)
− 2 (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼)
⋅ 𝜃𝐴2)Var (𝜀𝑡−1) + 2 (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) (𝜙 − 𝜃)Var (𝜀𝑡−1)
− 2 (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
⋅ Var (𝜀𝑡−2) = [(1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)2
+ (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)2 − 2 (1 + 𝛼𝜙𝐴1
+ (1 − 𝛼) 𝜙𝐴2) (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + 2
⋅ 1 − 𝜙21 + 𝜃2 − 2𝜙𝜃 ((𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)2
− (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2)
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+ (1 + 𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2)
⋅ (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2) (𝜙 − 𝜃)
− (𝛼𝜙𝐴1 + (1 − 𝛼) 𝜙𝐴2) (𝛼𝜃𝐴1 + (1 − 𝛼) 𝜃𝐴2))]
⋅ Var (𝑑𝑡) .

(A.5)

This completes the proof of Proposition 1.

B. A Proof of Proposition 2

The variance of the total order quantity under the MA
forecasting method can be derived from (33) as follows:

Var (𝑞𝑡) = Var ((1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) 𝑑𝑡−1
− (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) 𝑑𝑡−𝑘−1) = (1 + 𝛼𝐿1𝑘
+ (1 − 𝛼) 𝐿2𝑘 )2 Var (𝑑𝑡−1) + (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2

⋅ Var (𝑑𝑡−𝑘−1) − 2 (1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) (𝛼𝐿1𝑘
+ (1 − 𝛼) 𝐿2𝑘 )Cov (𝑑𝑡−1, 𝑑𝑡−𝑘−1) .

(B.1)

According to (A.2), the variance can be simplified as

Var (𝑞𝑡) = [(1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2

+ (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )2

− 2 (1 + 𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 ) (𝛼𝐿1𝑘 + (1 − 𝛼) 𝐿2𝑘 )
⋅ 𝜙𝑘−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ]Var (𝑑𝑡) .

(B.2)

This completes the proof of Proposition 2.

C. A Proof of Proposition 3

The variance of the total order quantity under the ES
forecasting method can be derived from (42) as follows:

Var (𝑞𝑡) = Var ((1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) 𝑑𝑡−1
− 𝜆1𝐿1𝑑1,𝑡−1 − 𝜆2𝐿2𝑑2,𝑡−1) = (1 + 𝛼𝜆1𝐿1
+ (1 − 𝛼) 𝜆2𝐿2)2 Var (𝑑𝑡−1) + (𝜆1𝐿1)2 Var (𝑑1,𝑡−1)

+ (𝜆2𝐿2)2 Var (𝑑2,𝑡−1) − 2 (1 + 𝛼𝜆1𝐿1
+ (1 − 𝛼) 𝜆2𝐿2) 𝜆1𝐿1Cov (𝑑𝑡−1, 𝑑1,𝑡−1) − 2 (1
+ 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) 𝜆2𝐿2Cov (𝑑𝑡−1, 𝑑2,𝑡−1)
+ 2𝜆1𝐿1𝜆2𝐿2Cov (𝑑1,𝑡−1, 𝑑2,𝑡−1) ,

(C.1)

where

Var (𝑑1,𝑡−1) = Var(∞∑
𝑖=0

𝜆1 (1 − 𝜆1)𝑖 𝑑1,𝑡−𝑖−2)
= 𝜆21 ∞∑
𝑖=0

(1 − 𝜆1)2𝑖 Var (𝑑1,𝑡−𝑖−2)
+ 2𝜆21 ∞∑

𝑖=0

∞∑
𝑗>𝑖

(1 − 𝜆1)𝑖 (1 − 𝜆1)𝑗

⋅ Cov (𝑑1,𝑡−𝑖−2, 𝑑1,𝑡−𝑗−2) = 𝜆21 ∞∑
𝑖=0

(1 − 𝜆1)2𝑖

⋅ 𝛼2Var (𝑑𝑡−𝑖−2) + 2𝜆21𝛼2 ∞∑
𝑖=0

∞∑
𝑗>𝑖

(1 − 𝜆1)𝑖+𝑗

⋅ Cov (𝑑𝑡−𝑖−2, 𝑑𝑡−𝑗−2) = 𝛼2𝜆21 1𝜆1 (2 − 𝜆1)Var (𝑑𝑡)
+ 2𝜆21𝛼2 ∞∑

𝑖=0

∞∑
𝑗>𝑖

(1 − 𝜆1)𝑖+𝑗 𝜙𝑗−𝑖−1

⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) = 𝛼2𝜆21Var (𝑑𝑡)
⋅ [ 1𝜆1 (2 − 𝜆1) + 2(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃)
⋅ (1 − 𝜆1)𝜆1 (2 − 𝜆1) (1 − (1 − 𝜆1) 𝜙)] = 𝜆1𝛼22 − 𝜆1 [1
+ 2 (1 − 𝜆1)1 − (1 − 𝜆1) 𝜙

(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ]Var (𝑑𝑡) ,

(C.2)

and, similarly, we have

Var (𝑑2,𝑡−1) = Var(∞∑
𝑖=0

𝜆2 (1 − 𝜆2)𝑖 𝑑2,𝑡−𝑖−2)
= 𝜆22 ∞∑
𝑖=0

(1 − 𝜆2)2𝑖 (1 − 𝛼)2 Var (𝑑𝑡−𝑖−2) + 2𝜆22 (1
− 𝛼)2 ∞∑

𝑖=0

∞∑
𝑗>𝑖

(1 − 𝜆2)𝑖+𝑗 Cov (𝑑𝑡−𝑖−2, 𝑑𝑡−𝑗−2) = (1
− 𝛼)2 𝜆22Var (𝑑𝑡) [ 1𝜆2 (2 − 𝜆2) + 2
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⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) (1 − 𝜆2)𝜆2 (2 − 𝜆2) (1 − (1 − 𝜆2) 𝜙)]
= 𝜆2 (1 − 𝛼)22 − 𝜆2 [1 + 2 (1 − 𝜆2)1 − (1 − 𝜆2) 𝜙
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ]Var (𝑑𝑡) ,

Cov (𝑑𝑡−1, 𝑑1,𝑡−1) = Cov(𝑑𝑡−1,
∞∑
𝑖=0

𝜆1 (1 − 𝜆1)𝑖 𝑑1,𝑡−𝑖−2) = 𝛼𝜆1 ∞∑
𝑖=0

(1 − 𝜆1)𝑖

⋅ Cov (𝑑𝑡−1, 𝑑𝑡−𝑖−2) = 𝛼𝜆1 ∞∑
𝑖=0

(1 − 𝜆1)𝑖 𝜙𝑖

⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) = 𝛼𝜆11 − (1 − 𝜆1) 𝜙
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) ,

Cov (𝑑𝑡−1, 𝑑2,𝑡−1) = Cov(𝑑𝑡−1,
∞∑
𝑖=0

𝜆2 (1 − 𝜆2)𝑖 𝑑2,𝑡−𝑖−2) = (1 − 𝛼) 𝜆2 ∞∑
𝑖=0

(1
− 𝜆2)𝑖 Cov (𝑑𝑡−1, 𝑑𝑡−𝑖−2) = (1 − 𝛼) 𝜆21 − (1 − 𝜆2) 𝜙
⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) ,

Cov (𝑑1,𝑡−1, 𝑑2,𝑡−1) = Cov(∞∑
𝑖=0

𝜆1 (1 − 𝜆1)𝑖 𝑑1,𝑡−𝑖−2,
∞∑
𝑗=0

𝜆2 (1 − 𝜆2)𝑗 𝑑2,𝑡−𝑗−2) = 𝜆1𝜆2𝛼 (1 − 𝛼)

⋅ ∞∑
𝑖=0

(1 − 𝜆1)𝑖 Cov(𝑑𝑡−𝑖−2, ∞∑
𝑗=0

(1 − 𝜆2)𝑗 𝑑2,𝑡−𝑗−2)
= 𝜆1𝜆2𝛼 (1 − 𝛼) ∞∑

𝑖=0

(1 − 𝜆1)𝑖

⋅ ∞∑
𝑗=0

(1 − 𝜆2)𝑗 Cov (𝑑𝑡−𝑖−2, 𝑑𝑡−𝑗−2) = 𝜆1𝜆2𝛼 (1
− 𝛼)Var (𝑑𝑡) ∞∑

𝑖=0

(1 − 𝜆1)𝑖

⋅ (𝑖−1∑
𝑗=0

(1 − 𝜆2)𝑗 𝜙𝑖−𝑗−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃
+ ∞∑
𝑗>𝑖

(1 − 𝜆2)𝑗 𝜙𝑗−𝑖−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃
+ (1 − 𝜆2)𝑖) .

(C.3)

Substituting (C.2)-(C.3) into (C.1) and simplifying the
equation, we can derive the expression of the variance of
the order quantity of two retailers under the ES forecasting
method as follows:

Var (𝑞𝑡) = (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2)2 Var (𝑑𝑡) + 𝐿21𝜆31𝛼22 − 𝜆1 [1 + 2 (1 − 𝜆1)1 − (1 − 𝜆1) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ]Var (𝑑𝑡)

+ 𝐿22𝜆32 (1 − 𝛼)22 − 𝜆2 [1 + 2 (1 − 𝜆2)1 − (1 − 𝜆2) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ]Var (𝑑𝑡) − 2 (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) 𝛼𝐿1𝜆211 − (1 − 𝜆1) 𝜙

⋅ (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡) − 2 (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) (1 − 𝛼) 𝐿2𝜆221 − (1 − 𝜆2) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 Var (𝑑𝑡)

+ 2𝜆21𝜆22𝐿1𝐿2𝛼 (1 − 𝛼)Var (𝑑𝑡) ∞∑
𝑖=0

(1 − 𝜆1)𝑖

⋅ (𝑖−1∑
𝑗=0

(1 − 𝜆2)𝑗 𝜙𝑖−𝑗−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + ∞∑
𝑗>𝑖

(1 − 𝜆2)𝑗 𝜙𝑗−𝑖−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + (1 − 𝜆2)𝑖) = Var (𝑑𝑡) [[(1 + 𝛼𝜆1𝐿1

+ (1 − 𝛼) 𝜆2𝐿2)2 + 𝐿21𝜆31𝛼22 − 𝜆1 (1 + 2 (1 − 𝜆1)1 − (1 − 𝜆1) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ) + 𝐿22𝜆32 (1 − 𝛼)22 − 𝜆2 (1
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+ 2 (1 − 𝜆2)1 − (1 − 𝜆2) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ) − 2 (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 𝛼𝐿1𝜆211 − (1 − 𝜆1) 𝜙

+ (1 − 𝛼) 𝐿2𝜆221 − (1 − 𝜆2) 𝜙) + 2𝜆21𝜆22𝐿1𝐿2𝛼 (1 − 𝛼)
⋅ ∞∑
𝑖=0

(1 − 𝜆1)𝑖(𝑖−1∑
𝑗=0

(1 − 𝜆2)𝑗 𝜙𝑖−𝑗−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + ∞∑
𝑗>𝑖

(1 − 𝜆2)𝑗 𝜙𝑗−𝑖−1 (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 + (1 − 𝜆2)𝑖)]
]

= Var (𝑑𝑡) [(1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2)2 + 𝐿21𝜆31𝛼22 − 𝜆1 (1 + 2 (1 − 𝜆1)1 − (1 − 𝜆1) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ) + 𝐿22𝜆32 (1 − 𝛼)22 − 𝜆2 (1

+ 2 (1 − 𝜆2)1 − (1 − 𝜆2) 𝜙
(𝜙 − 𝜃) (1 − 𝜙𝜃)(1 + 𝜃2 − 2𝜙𝜃) ) − 2 (1 + 𝛼𝜆1𝐿1 + (1 − 𝛼) 𝜆2𝐿2) (𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 𝛼𝐿1𝜆211 − (1 − 𝜆1) 𝜙

+ (1 − 𝛼) 𝐿2𝜆221 − (1 − 𝜆2) 𝜙) + 2𝜆21𝜆22𝐿1𝐿2𝛼 (1 − 𝛼)((𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 1(𝜙 + 𝜆2 − 1) (1 − (1 − 𝜆1) 𝜙)
+ 11 − (1 − 𝜆1) (1 − 𝜆2) (1 +

(𝜙 − 𝜃) (1 − 𝜙𝜃)1 + 𝜃2 − 2𝜙𝜃 ( 1 − 𝜆21 − (1 − 𝜆2) 𝜙 − 1𝜙 + 𝜆2 − 1)))] .
(C.4)

This completes the proof of Proposition 3.
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