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It’s demented to think that something  
that did not need man to its origin,  

needs man for its concretion.  

Séneca (4 BC–65 AD) 

Abstract: The controversy between Einstein and Bohr about quantum 
mechanics is a classic. On the one hand, Einstein rejected it because of its 
unpredictable essence, while Bohr had no trouble accepting the limits 
imposed by Nature on human knowledge, being happy with just a statistical 
description. Time has passed, and quantum mechanics works beyond any 
reasonable doubt. That possibly means that Bohr’s world vision was right 
and we should abandon Einstein’s idea of Nature working as a deterministic 
clock’s machinery. However, despite the success of the quantum theory, 
some of its implications still seem absurd, while the world shows a more and 
more mathematical essence, just as Einstein thought. In this paper, Einstein’s 
point is defended in the light of the resemblance between Mathematics and 
the natural world. 
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Introduction

The well-known controversy between Einstein and Bohr at the early stages of 
quantum mechanics can be summed up in the well-known phrases: “God does 
not play dice”1, (Einstein), and Bohr’s response: “We shouldn’t tell God what, or 
what not, to play”2. Both reveal a radically different vision of the mathematical 
nature of the world: while Einstein believed in a clockwork machinery, where 
Mathematics was the natural language to interpret the predictable physical 
behaviour, Bohr’s quantum theory opened the view to an uncertain world, where 
Mathematics was just a simple—despite efficient—tool of statistical description 
(Rae, 1986; Whitaker, 2006; Selleri, 1990). 

For Einstein, reality exists with independence and no need for us as observers, a 
perfect and exact machinery ruled by exact, beautiful and comprehensible laws. 
Bohr’s reality, instead, does not make sense till we observe it, just becoming 
concrete by chance in the act of measurement. 

The fundamental difference between both views is that Einstein’s world is 
comprehensible (if causes exist, we can track them, and eventually, understand 
them), so our historic scientific aspiration in search of the hidden logic3 beneath 
physical events turns out to be not a foolish endeavour. In Bohr’s world, on the 
other hand, there is a limit imposed by Nature that we cannot surpass—the 
black box of Planck dimensions, where the quantum particles behave in a totally 
unpredictable way—which inevitably marks a limit to our understanding.

The kind of determinism implied by Einstein’s view, where causes and effects 
are logically connected,4 is not compatible with the randomness implied by 
the Copenhagen interpretation of quantum mechanics led by Bohr, where 
the cause-effect link is broken at some point. Our understanding of Nature, 
however, is precisely based on the principle of causality, which, far from 
being applicable to specific scales, frames or limited ranges of validity, seems 
instead a deeper feature of physical reality, or at least, a feature needed by 
1	 “I, at any rate, am convinced that He does not throw dice” (Letter to Max Born, 4 December 1926 in Born, 

2005).
2	 The original phrase attributed to Bohr was “Einstein, stop telling God what to do,” apparently pronounced 

in the fifth Solvay meeting (Ashworth, 2011).
3	 Here, the term ‘logic’ is used as synonymous of something attainable through reason, i.e. something which 

can be reasoned and understood. 
4	 This identification can be found in Bunge (1959): “Determination and causation are, indeed, identical 

concepts. ‘A determines B’ and ‘A causes B’ are identical propositions”. The original reference is from The 
University of California Associates, 1938, p. 602. 
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the human intellect in order to be able to construct a consistent system of 
understanding. 

We call that system ‘Science’, which not only allows us to describe, but also 
to predict physical events. This prediction capacity distinguishes the scientific 
description from other types of description of Nature, such as Art, for instance. 
Furthermore, this description is performed at two levels: at a fundamental level, 
for each isolated, individual phenomenon, and at a higher level, where we see 
how different phenomena of, in appearance, very different kind converge in a 
single and consistent explanation. It is precisely this deeper level which makes it 
difficult to accept that the mathematical description of Nature is an exception, 
or a lucky coincidence of our imagination (Weinberg, 1992). 

The strange correlation between Mathematics and the natural law has been already 
reported by many authors—a survey can be found in Wigner (1960). It does not 
become apparent post-measurement: rather it shows its power pre-measurement, 
since the pure mathematical abstraction becomes, in that circumstance, the 
substitute of reality itself. 

The Copenhagen interpretation led by Bohr, though, is essentially undeterministic, 
or at least, in its softer version, supports that the quantum theory cannot prove or 
disprove the philosophy of determinism, only saying that there is no observational 
way ever to prove it. However, Science (including quantum mechanics), in its 
everyday activity in search of causes, is implicitly proving causality. If we assimilate 
determinism and causality, there is a deep philosophical incoherence in the fact 
that quantum mechanics, on the one hand, participates in a method of cause 
search-and-find, and on the other, states that there is no way to describe, to know, 
or even to decide whether or not causes exist at quantum level. 

The world, for Science, must be comprehensible. I call the principle of 
comprehensibility that premise about the essence of the world which justifies 
the aim of Science in search of understanding and guarantees its coherence: 
The world, for Science, must be comprehensible—otherwise, what would we be 
doing, trying to understand? The Copenhagen interpretation of the quantum 
theory breaks that principle at a non-special point, (the measurement), collapsing 
our whole system of understanding (Science) at the very moment of the collapse 
of the wave function. 

In this paper Einstein’s view is defended, based on the strong correlation between 
Mathematics and the natural law (Weinberg, 1992; Wigner, 1960; Zahar, 1980), 
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and on the comprehensibility principle needed for maintaining the coherence 
of Science. This includes the human being, as a part of the natural world, fitting 
into the mathematical puzzle of Nature. 

Is the world mathematical?

That was the main reason why Einstein rejected quantum mechanics and its 
implication about the uncertainty of the world: his belief that the world is 
mathematical in essence. Like Galileo or Wigner among others, he believed that 
Mathematics was the alphabet of Nature. But were they right?

The world would be essentially mathematical if it would allow for the exact 
prediction of any physical event, that is, if the causes would be suitable to being 
formulated by means of known mathematical structures that inevitably would 
lead to the result beforehand. This is different from being ‘mathematic-able’, that 
is, the world could still allow for a mathematical description, but where causes 
were substituted by randomness. In that case, the mathematical treatment for 
any event becomes just a statistical estimation of the probability of the result. 

Which of both alternatives, (i) mathematical (exact, deterministic) or (ii) 
mathematic-able (random, statistical), would be the correct one, the real essence 
of Nature, is in question. Probably we will never get a conclusive answer, but at 
least we can check the degree of universality of each alternative, since the essence 
of Nature should be universal, in two ways: (a) it should be independent of 
any particular point of view (subjectively universal: independent of the eventual 
description of a single observer), and (b) it should be independent of any 
particular physical event (objectively universal: all natural events would show the 
same potential to be treated mathematically). 

Both alternatives (mathematical and mathematic-able) fulfil the first condition. 
Their subjective universality is guaranteed by the universality of their formulation, 
both based on Mathematics: Maths is a universal language, and the connection 
between Maths and Nature is not reached by one particular man, as a result of one 
individual state of mind, liking or taste. On the contrary, it is the achievement 
of human kind as a whole, since it is not the individual, but humankind as a 
species, which possesses the mathematical criteria to detect mistakes and errors, 
and to develop and consolidate mathematical theories or to reject them, through 
the ages. 
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It is regarding to their degree of objective universality where both alternatives (i) 
and (ii) differ: The essence of Nature would be fully deterministic if every physical 
event would allow an exact (non-statistical) mathematical treatment. This is the 
case, with the only suspicious exception of the quantum measurement event (at least, 
that is what is accepted so far: Nature shows a deterministic behaviour before and 
after measurement, i.e., a specific mathematical treatment is guaranteed either for 
observed and unobserved reality, only being undeterministic at the very moment 
of the measurement act (Penrose, 1990)). This leads us to a dilemma: Either to 
consider the essence of Nature given by the generality (deterministic) or by the 
exception (undeterministic). The reader should decide which is more convincing. 
Einstein inclined for the first one, convinced that the act of measurement was 
not an exceptional physical event as to deserve a different essential status. 

As a résumé, let us compile the hints of the supposed deterministic essence of 
Nature: 

1. 	 The two independent levels at which Nature admits a deterministic 
description: a fundamental level, for describing individual, apparently 
unconnected phenomena, (let us call it “infra-logic”), and a higher level, 
which allows to make causal connections between unconnected events 
(”supra”-logic, independent from the former)5. 

2. 	 Nature shows a deterministic behaviour both pre- and post-measurement, 
only being random in the measurement act. 

3. 	 If the descriptive power of Mathematics is important post-measurement, 
it is essential pre-measurement. Mathematics stops being a descriptive tool 
to become the substitute for reality itself: the only possible “reality” of the 
unobserved turns out to be the pure mathematical abstraction. 

Many authors have already reported that surprising connection: Mathematics—
an abstract creation of the human being—works unreasonably well for describing 
the physical world where s/he lives (Wigner, 1960). Like a virtuous circle, the 
human being creates an abstract world (Mathematics), which strangely fits into 
the physical world where s/he comes from (see Fig. 1).
5	 The supra-logic is supposedly behind the Theory of Everything, where each individual theory should fit, 

as a piece of a puzzle. The solution of that puzzle, though, does not suggest room for uncertainty or 
randomness, as if an individual theory could fit or unfit in it, depending of some sort of circumstance. 
Quantum mechanics, somehow, introduces a break between both levels: between the laxity arising from 
the uncertainty accepted for the individual piece, and the rigour with which the different pieces should fit 
in the common frame.
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We could possibly explain it by saying that Maths is a product of our minds, 
which we have unconsciously adapted to what we see. Thus, the world would 
fit into our mental constructions, because we have forced it to fit, just as the 
painter uses the brush made by himself to reproduce what he sees. However, 
this argument may be valid for the match between theoretical Physics and 
Maths, both products of the abstract mind, despite the empirical base of the 
former.6 But it does not work for the direct match between Maths and empirical 
Physics, or more precisely, between Maths and empirical facts. We may accept 
that theoretical Physics and Maths match because both are mental constructions 
forced to fit into each other, but empirical data cannot be adjusted. For instance, 
the negative energy solutions of Dirac’s equations predicted the existence of the 
positron. There is no need to say that the positron was not forced in any way 
by Dirac’s maths to exist. We find another beautiful example in Science Daily 
(2003), reporting exotic structures first envisioned by mathematicians, and 
afterwards discovered in the physical world. Even for theoretical physics, this is 
still hard to explain.7 

Figure 1. Man, fitting into the natural puzzle: Nature produces man, man produces 
Mathematics, Mathematics strangely fits into Nature, Nature fits into Mathematics, 
closing the circle. 

6	 For instance, Einstein embedded Physics into the Riemmann’s mould (Zahar, 1980). 
7	 Other spectacular predictions of theoretical physics are, for instance, the prediction about the perihelion of 

Mercury by General Relativity, or the discovery of the particle, Ω− by Murray Gell-Mann. 
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If specific cases like these amaze us, there is something even deeper about the 
structure of Science itself, and the arrows connecting phenomena which are 
very different in appearance (Weinberg, 1992). It is that structure of Science, 
a resemblance of a deeper order of Nature, which somehow constitutes the 
everyday work of any scientist. We could not justify the efforts made in theoretical 
Physics in search of that hidden logic, and the scientific research on unifying 
theories—encouraged by the success in unifying the electromagnetic and the 
weak forces—without a deep conviction (faith?) behind every researcher that 
that logic really exists. We just have to track the development of our theories: 
compare Relativity to Newton, and Newton to Kepler, for instance. The results 
are practically the same, but the procedure shows more about the result than the 
result itself, completing the whole picture in an unexpected view. That would not 
be possible with any other creative ability of the mind. 

Could we adapt the world to our mental constructions? Could all our system 
of understanding be just an artifice, and the knowledge gained, an illusion of a 
man or a society? Perhaps. But it would be difficult to explain the success of our 
civilization, if so. If knowledge was an illusion, an approach to Nature such as 
Mythology or Art, we could never decide whether or not we know today more 
or less than yesterday, or in other words, whether or not we progress. And we 
can objectively identify the progress. The indicator of progress is Technology. 
Technology is the sequel of Science, which constitutes a good proof that our 
comprehension of Nature, despite poor and partial, is real, because we can 
quantitatively measure its impact on the raise of our living standards. No other 
description of Nature has such sequel. The human being, small at the beginning, 
progressively grows in the physical world, thanks to the feedback coming from 
the abstract world. Our position in Nature could not be reinforced in such a way, 
if our scientific theories would not represent an essential approach to Nature. 

Why the Copenhagen interpretation  
makes the world incoherent

Macroscopically, the world is determined: gravity is perfectly shaped and 
defined, electromagnetic laws as well. Also microscopically, within the quantum 
frame, the world is determined (Penrose, 1990): the charges behave under strict 
laws, the same inverse square dependence of gravity affects an apple and an 
electron, and a single photon follows the shortest time path. It is just at the time 
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of the measurement when all this beauty seems to break, (things occur for no 
apparent cause) and all the perfect order suddenly vanishes. Several things seem 
very strange at this point: one is how all the rigorous order of Nature, such as 
Maxwell’s equations or Relativity, to name two, can be supported by a world 
which is random in essence. How can order and exact and predictable laws arise 
from a natural system which is essentially unpredictable, and moreover: why 
does a system exhibiting such a selective inconsistency—only random at the 
very specific moment of measurement—keep order before and after that very 
moment. This peculiar behaviour is not reasonable, not consistent with the 
system itself (in addition to not being consistent with our way of thinking). Of 
course, Nature does not need to care about what we think, you can respond: it 
can be inconsistent whenever it likes, and does not need to worry about fitting 
into our reasonable pattern.8 True. But aside from the fact that the world is, or 
is not, logic, our Science, made for us to understand, needs to be so. This is by 
principle, by basis, by aim. We cannot aspire to have a reasonable consistent 
system of understanding, with an inconsistency inwards. 

That inconsistency in the act of measurement releases all kinds of doubts in 
our scientific endeavour to find the comprehensibility of the world. This 
comprehensibility, even if it is not necessary for Nature, is necessary for us, 
for Science, our system of understanding. And it is a very restricted constraint: 
We cannot reason up to that point—the measurement—then stop at it, and 
continue reasoning as if nothing had happened. The single admission that there 
is no understandable cause at that point, makes the whole endeavour of searching 
understandable causes absurd thereafter.9  

The key question is why Nature should be undetermined at that very point, 
and determined in the rest of circumstances. This strange indetermination, at a 
singular point within the general deterministic behaviour, does not fit into the 
reasonability pattern that Nature generally exhibits. 

Maybe we should abandon the comprehensibility of the world as a fundamental 
principle? (If so, we should abandon the endeavour of Science!) I will not enter 
into the problem of measurement, already exhaustively discussed (Rae, 1986; 
Whitaker, 2006; Selleri, 1990; Herbert, 1987), but I would like to recall that the 
measurement is just an interaction of one physical object with another, and there 
8	 So why should She care about when or what we measure? 
9	 This is beautifully expressed in a phrase which describes the collapse of the wave function in the measurement 

act: “And then, a miracle occurs” (Herbert, 1987). But if, in Science, we admitted a miracle, what would 
Science be afterwards?
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is nothing special in it, no warning “this-is-a-measurement-process-be-careful”, 
to alert Nature that it is being watched. 

Maybe what the quantum theory implies is not that the world is not undetermined, 
but just that it is undeterminable for us (there are causes, but beyond our reach—
the hidden variables). But if that was the case, would not that mean that the 
world is determined, as Einstein thought? Would quantum mechanics not be 
incomplete, as he claimed (Einstein, Podolsky & Rosen, 1935)? 

The problem of measurement has not been solved yet simply because it has no 
solution. It cannot be solved, not because of our limited understanding, but 
because it is essentially absurd, a dead end to the theory. Of course, the world 
can be unreasonable—not have to fit into what we regard as reasonable—but 
Science—our system of understanding, made for us to understand—needs to 
be. This necessity rules out the possibility of the Copenhagen interpretation. Its 
statement that “there is no possible explanation” as an explanation of the quantum 
behaviour is absurd: Science, by definition, by principle, is precisely about 
explanation—even if the world is non-explicable. It is the first time that Science 
has tried to explain something by means of stating that it cannot be explained 
or even questioned. Many other times Science has admitted its limitations and 
its lack of answers, but it is the first time that it has dared to establish as an 
orthodox theory “there is no answer”, as the answer. The acceptance of the non-
explanation as an explanation not only represents the resignation of Science, as 
Feynman said10: it is furthermore the acceptance of its own negation, and that is 
why it is absurd. Science may be right or wrong, but not absurd. Something that 
is wrong can be amended, but something absurd obliges us either to abandon the 
reasonability of the world, or abandon the reasonability of Science. 

In contrast, Einstein’s world is comprehensible,11 and that is why his vision 
collapses with the quantum theory, or to be more precise, with the original 
Copenhagen interpretation. That interpretation, raised by Bohr, founding father 
of the quantum theory, had a heavy specific weight on the scientific community 
for many years. Afterwards there have been other attempts to interpret the 
quantum theory, and there is one in particular which is deterministic, and 
“shares with the classical paradigm […] that the individuality of experience is 
comprehensible” (Holland, 1993). This interpretation is known as de Broglie-
Bohm approach (Bohm, 1957). Unfortunately—and surprisingly—Einstein 
10	 “This would mean, if it were true, that Physics has given up on the problem of trying to predict what will 

happen in a definite circumstance. Yes! Physics has given up.” (Feynman, 1995) 
11	 “The most incomprehensible thing about the world is that it is comprehensible” (Vallentin, 1954, p. 24). 
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despised it.12 Why? Why did he despise that interpretation, despite fitting into 
his line of thought? In my view, it had nothing to do with the Bohm’s theory 
itself, but with the opportunity of that theory. Bohm’s interpretation came after 
the original Copenhagen’s. It was too late, Einstein had made his mind up already, 
his position towards the quantum theory quite well established, as to easily accept 
the newcomer, which just seemed an emergency solution, a desperate attempt to 
rescue Copenhagen from the absurd. 

And yet, there are quantum jumps

“Eppur si muove” (‘And yet, it moves’), said Galileo to his fellows when they 
tried to force him to accept that the Earth was immobile. At that time it 
was hard to accept that the Earth could not be the centre of the Universe. 
Nowadays, some of us suffer a similar identity crisis, not being able to accept 
that Nature can be random. Like Galileo, we need to admit: “And yet, there 
are quantum jumps”. 

Quantum jumps were discovered when technology allowed us to watch single 
microscopic objects, like atoms or particles, in a continuous way. Until that 
moment, measurement was an instantaneous action on the object, and the 
result of a quantum measurement was the statistical average of repeated ones, 
accepting—according to the Copenhagen school—that the act of measurement 
provoked the collapse of the wave function each time in an unpredictable way. 
However, there was some hope that this randomness driven by the measurement 
could be attributable just to our inability to describe the interaction between the 
measurement apparatus and the object properly. 

Recently, the feasibility to watch the evolution of a single atom, not abruptly, 
but continuously throughout time, showed that actually the atom jumped 
between the different possible states, with no apparent cause attributable to the 
measurement (Bell, 1987). These results showed that the wave function collapse 
is not irreversible and definite, but evolves discontinuously throughout time 
during the measurement. And unfortunately, these jumps are random, and this 
is what perturbs us, as well as Schrödinger.13

12	 “Have you heard that Bohm believes […] that he is able to interpret the quantum theory in deterministic 
terms? […] [T]hat way seems too cheap to me.” (Born, 2005) 

13	 “If I we have to go on with these damned quantum jumps, then I’m sorry that I ever got involved” (Bell, 
1987).
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Let me retake the parallelism with the time of Galileo. The conviction that the 
Earth could not move that now seems arrogant and unreasonable, was rooted in 
the belief that we, humans, were unique in the Universe, and that there could not 
be any other living beings apart from us. In a similar way, our actual resistance 
to the belief that Nature can be random arises from the long route towards 
comprehension we have already followed, too long as to finally end up facing an 
abyss of uncertainty. Maybe we are wrong and arrogant again? Maybe we should 
accept that the world is more unattainable than we would like, just like in the 
time of Galileo? 

Somehow, both historic points have something in common: In Galileo’s time, 
we refused to believe that we were not unique, now we refuse to believe that 
we cannot understand. Both reveal a world that is more inconceivable and 
unattainable than what human beings expected. However, there is a difference: in 
the first revolution, when man realized his own smallness, a whole Universe was 
revealed, where man may not be the only living being who might understand. In 
this quantum revolution, though, a very different Universe is revealed: a Universe 
where no one (human or not human) can understand, because it is essentially 
incomprehensible.14  

Conclusion 

Due to its experimental success, Einstein’s battle against the quantum theory 
is seemingly lost. However, the acceptance that Nature can be random at the 
moment of measurement brings a strange implication to the character of Nature, 
being undetermined at the act of measurement, while keeping determined before 
and after it. If real, this selective indetermination would represent either an 
inconsistency of Nature, or the inconsistency of our system of understanding 
it (Science). In both cases, the consequence is fatal for our endeavour to search 
reasonable causes in a world which is essentially random.  

The job of Science is to try to understand the physical world, and that is why, for 
Science, the world needs to be comprehensible (otherwise, the scientific endeavour 
would be meaningless). This comprehensibility principle, as we could call it, 
collapses with the randomness which is inherent to the quantum behaviour.  
14	 This statement may seem a bit extreme, but I am just extending the thought attributed to Feynman, “I 

think I can safely say that nobody understands quantum mechanics” (Feynman, 1965), to the universal 
frame.
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In this paper, Einstein’s deterministic view has been reviewed, for the sake of the 
comprehensibility principle. As a consequence, the Copenhagen interpretation 
is questioned, and de Broglie–Bohm’s is taken as an alternative, for being 
deterministic and not collapsing with that principle.

Recent experimental results, though, have confirmed the existence of pure 
random atomic jumps induced by measurement, revealing a Universe more 
unattainable of what we expected. Bohm’s deterministic approach will be put to 
the test of explaining those quantum jumps, whose random character represents 
a real challenge for our system of understanding.  
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