Skip to main content
Log in

What Demonstrative Induction Can Do Against the Threat of Underdetermination: Bohr, Heisenberg, and Pauli on Spectroscopic Anomalies (1921–24)

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

In this paper I argue that demonstrative induction can deal with the problem ofthe underdetermination of theory by evidence. I present the historical case studyof spectroscopy in the early 1920s, where the choice among different theorieswas apparently underdetermined by spectroscopic evidence concerning the alkalidoublets and their anomalous Zeeman effect. By casting this historical episodewithin the methodological framework of demonstrative induction, the localunderdetermination among Bohr's, Heisenberg's, and Pauli's rival theories isresolved in favour of Pauli's theory of the electron's spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bohr, N.: 1923, ‘Linienspektren und Atombau’, Ann. Phys. 71, 228–288; Eng. trans. ‘Line Spectra and Atomic Structure’, in L. Rosenfeld, J. Rud Nielsen et al. (eds.), Niels Bohr Collected Works, vol. 4, North-Holland Publishing Company, Amsterdam, 1977, pp. 611–656

    Google Scholar 

  • Bonk, T.: 1997,’ Newtonian Gravity, Quantum Discontinuity and the Determination of Theory by Evidence’, Synthese 112, 53–73.

    Google Scholar 

  • Cassidy, D. C.: 1979, ‘Heisenberg’s First Core Model of the Atom: The Formation of a Professional Style’, Historical Studies in the Physical Sciences 10, 187–224.

    Google Scholar 

  • de Broglie, L. and A. Dauvillier: 1922, ‘Sur les Analogies de Structure Entre les Séries Optiques et les Séries de Röntgen’, Comptes Rendus de l’Académie des Sciences, Paris 175, 755–756.

    Google Scholar 

  • Dorling, J.: 1973, ‘Demonstrative Induction: Its Significant Role in the History of Physics’, Philosophy of Science 49, 360–372.

    Google Scholar 

  • Dorling, J.: 1974, ‘Henry Cavendish’s Deduction of the Electrostatic Inverse Square Law from the Result of a Single Experiment’, Studies in the History and Philosophy of Science 4, 327–348.

    Google Scholar 

  • Dorling, J.: 1991, ‘Reasoning from Phenomena: Lessons from Newton’, PSA 1990, vol. 2, pp. 197–208.

    Google Scholar 

  • Forman, P.: 1968, ‘The Doublet Riddle and Atomic Physics circa 1924’, Isis 59, 156–174.

    Google Scholar 

  • Glymour, C.: 1980, Theory and Evidence, Princeton University Press, Princeton.

    Google Scholar 

  • Glymour, C.: 1984, ‘Explanation and Realism’, in J. Leplin (ed.), Scientific Realism, University of California Press, Berkeley, pp. 173–192.

    Google Scholar 

  • Harper, W.: 1990, ‘Newton’s Classic Deductions from Phenomena’, PSA 1990, vol. 2, 1991, 183–196.

    Google Scholar 

  • Harper, W. and G. E. Smith: 1995, ‘Newton’s New Way of Inquiry’, in J. Leplin (ed.), The Creation of Ideas in Physics, Kluwer, Dordrecht, pp. 113–166.

    Google Scholar 

  • Heilbron, J. L.: 1982, ‘The Origins of the Exclusion Principle’, Historical Studies in the Physical Sciences 13, 261–310.

    Google Scholar 

  • Heisenberg, W.: 1922, ‘Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneffekte’, Zeitschrift für Physik 8, 273–297.

    Google Scholar 

  • Heisenberg, W.: 1924, ‘Ñber eine Abänderung der formalen Regeln der Quantentheorie beim Problem der anomalen Zeemaneffekte’, Zeitschrift für Physik 26, 291–307.

    Google Scholar 

  • Hoefer, C. and A. Rosenberg: 1994, ‘Empirical Equivalence, Underdetermination, and Systems of the World’, Philosophy of science 61, 592–607.

    Google Scholar 

  • Kukla, A.: 1993, ‘Laudan, Leplin, Empirical Equivalence and Underdetermination’, Analysis 53, 1–7.

    Google Scholar 

  • Kukla, A.: 1996, ‘Does Every Theory Have Empirically Equivalent Rivals?’, Erkenntnis 44, 137–166.

    Google Scholar 

  • Landé, A.: 1921, ‘Ñber den Anomalen Zeemaneffekt, Teil I’, Zeitschrift für Physik 5, 231–241.

    Google Scholar 

  • Landé, A.: 1923, ‘Termstruktur und Zeemaneffekt der Multipletts’, Zeitschrift für Physik 15, 189–205; ‘Termstruktur und Zeemaneffekt der Multipletts. Zweite Mitteilung’, Zeitschrift für Physik 19, 112–123.

    Google Scholar 

  • Landé, A. and W. Heisenberg: 1924, ‘Termstruktur der Multipletts höherer Stufe’, Zeitschrift für Physik 25, 279–286.

    Google Scholar 

  • Laudan, L.: 1990, ‘Demistifying Underdetermination’, in C. Wade Savage (ed.), Scientific Theories, Minnesota Studies in the Philosophy of Science XIV, University of Minnesota Press, Minneapolis, pp. 267–297.

    Google Scholar 

  • Laudan, L. and J. Leplin: 1991, ‘Empirical Equivalence and Underdetermination’, Journal of Philosophy 88(9), 449–472.

    Google Scholar 

  • Laudan L. and J. Leplin: 1993, ‘Determination Underdeterred: Reply to Kukla’, Analysis 53, 8–16.

    Google Scholar 

  • Laymon, R.: 1994, ‘Demonstrative Induction, Old and New Evidence and the Accuracy of the Electrostatic Inverse Square Law’, Synthese 99, 23–58.

    Google Scholar 

  • Newton, I.: 1687, Philosophiae Naturalis Principia Mathematica; Engl. translation (1803), The Mathematical Principles of Natural Philosophy, by Andrew Motte, edited by W. Davis and H. D. Symonds, London.

  • Norton, J. D.: 1993, ‘The Determination of Theory by Evidence: The Case for Quantum Discontinuity’, Synthese 97, 1–31.

    Google Scholar 

  • Norton, J. D.: 1994, ‘Science and Certainty’, Synthese 99, 3–22.

    Google Scholar 

  • Norton, J. D.: 1995, ‘Eliminative Induction as a Method of Discovery: How Einstein Discovered General Relativity’, in J. Leplin (ed.), The Creation of Ideas in Physics, Kluwer, Dordrecht.

    Google Scholar 

  • Pauli, W.: 1924, ‘Zur Frage der Zuordnung der Komplexstrukturterme in starken und in schwachen äußeren Feldern’, Zeitschrift für Physik 20, 371–387.

    Google Scholar 

  • Pauli, W.: 1979, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Vol. I, A. Hermann, K. von Meyenn, and V. F. Weisskopf (eds), Springer-Verlag, Berlin–Heidelberg.

    Google Scholar 

  • Quine, W. V. O.: 1975, ‘On Empirically Equivalent Systems of the World’, Erkenntnis 9, 313–328.

    Google Scholar 

  • Serwer, D.: 1977, ‘Unmechanischer Zwang: Pauli, Heisenberg, and the Rejection of the Mechanical Atom 1923–1925’, Historical Studies in the Physical Sciences 8, 189–256.

    Google Scholar 

  • Sommerfeld, A.: 1916, ‘Zur Quantentheorie der Spektrallinien’, Ann. Phys. 51, 1–94; 125–167.

    Google Scholar 

  • Stoner, E. C.: 1924, ‘The Distribution of Electrons Among Atomic Levels’, Philosophical Magazine 48, 719–736.

    Google Scholar 

  • Uhlenbeck, G. E. and S. Goudsmit: 1925, ‘Ersetzung der Hypothese vom unmechanischer Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons’, Naturwissenschaften 13, 953–954.

    Google Scholar 

  • Uhlenbeck, G. E. and S. Goudsmit: 1926, ‘Spinning Electrons and the Structure of Spectra’, Nature 117, 264–265.

    Google Scholar 

  • Van Fraassen, Bas: 1980, The Scientific Image, Oxford University Press, Oxford.

    Google Scholar 

  • Worrall, J.: 2000, ‘Some Lessons from Newton’s “Demonstrations” in Optics’, Brit. J. Phil. Sc. 51, 45–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massimi, M. What Demonstrative Induction Can Do Against the Threat of Underdetermination: Bohr, Heisenberg, and Pauli on Spectroscopic Anomalies (1921–24). Synthese 140, 243–277 (2004). https://doi.org/10.1023/B:SYNT.0000031319.64615.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SYNT.0000031319.64615.49

Keywords

Navigation