Skip to main content
Log in

Bohmian Mechanics, the Quantum-Classical Correspondence and the Classical Limit: The Case of the Square Billiard

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Square billiards are quantum systems complying with the dynamical quantum-classical correspondence. Hence an initially localized wavefunction launched along a classical periodic orbit evolves along that orbit, the spreading of the quantum amplitude being controlled by the spread of the corresponding classical statistical distribution. We investigate wavepacket dynamics and compute the corresponding de Broglie-Bohm trajectories in the quantum square billiard. We also determine the trajectories and statistical distribution dynamics for the equivalent classical billiard. Individual Bohmian trajectories follow the streamlines of the probability flow and are generically non-classical. This can also hold even for short times, when the wavepacket is still localized along a classical trajectory. This generic feature of Bohmian trajectories is expected to hold in the classical limit. We further argue that in this context decoherence cannot constitute a viable solution in order to recover classicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  2. Cushing, J.T.: The causal quantum theory program. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal. Boston Studies in the Philosophy of Science, vol. 184, pp. 1–19. Kluwer, Dordrecht (1996)

    Google Scholar 

  3. Bohm, D., Hiley, B.J.: Unbroken quantum realism from microscopic to macroscopic levels. Phys. Rev. Lett. 55, 2511–2514 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Home, D.: Conceptual Foundations of Quantum Physics: An Overview from Modern Perspectives. Plenum, London (1997)

    Google Scholar 

  5. Einstein, A.: Elementare Uberlegungen zur Interpretation der Grundlagen der Quanten-Mechanik. In: Scientific Papers Presented to Max Born, pp. 33–40. Hafner, New York (1953)

    Google Scholar 

  6. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  7. Doncheski, M.A., Heppelmann, S., Robinett, R.W., Tussey, D.C.: Wave packet construction in two-dimensional quantum billiards: Blueprints for the square, equilateral triangle, and circular cases. Am. J. Phys. 71, 541 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  9. Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  10. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    MATH  Google Scholar 

  11. Alcantara-Bonfim, O.F., de Florencio, J., Sa Barreto, F.C.: Chaotic dynamics in billiards using Bohm’s quantum dynamics. Phys. Rev. E 58, R2693–R2696 (1998)

    Article  ADS  Google Scholar 

  12. de Sales, X., Florencio, J.: Bohmian quantum trajectories in a square billiard in the bouncing ball regime. Physica A 290, 101–106 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Sanz, A.S., Miret-Artes, S.: A trajectory-based understanding of quantum interference. J. Phys. A, Math. Theor. 41, 435303 (2008)

    Article  MathSciNet  Google Scholar 

  14. Alhassid, Y.: The statistical theory of quantum dots. Rev. Mod. Phys. 70, 895–968 (2000)

    Article  ADS  Google Scholar 

  15. Noordam, L.D., Jones, R.R.: Probing Rydberg electron dynamics. J. Mod. Opt. 44, 2515–2532 (1997)

    ADS  Google Scholar 

  16. Haake, F.: Quantum Signatures of Chaos. Springer, Berlin (2001)

    MATH  Google Scholar 

  17. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, Berlin (1990)

    MATH  Google Scholar 

  18. Holland, P.R.: Is quantum mechanics universal. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal. Boston Studies in the Philosophy of Science, vol. 184, pp. 99–110. Kluwer, Dordrecht (1996)

    Google Scholar 

  19. Appleby, D.M.: Generic Bohmian trajectories of an isolated particle. Found. Phys. 29, 1863–1883 (1999)

    Article  MathSciNet  Google Scholar 

  20. Appleby, D.M.: Bohmian trajectories post-decoherence. Found. Phys. 29, 1885–1916 (1999)

    Article  MathSciNet  Google Scholar 

  21. Bowman, G.: On the classical limit in Bohm’s theory. Found. Phys. 35, 605–625 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Ban, B.L.: Violation of the correspondence principle: breakdown of the Bohm-Newton trajectory correspondence in a macroscopic system. Phys. Rev. A 61, 032105 (2000)

    Article  ADS  Google Scholar 

  23. Matzkin, A., Nurock, V.: Classical and Bohmian trajectories in semiclassical systems: Mismatch in dynamics, mismatch in reality? Stud. Hist. Philos. Sci. B 39, 17–40 (2008)

    Article  MathSciNet  Google Scholar 

  24. Matzkin, A.: Rydberg wavepackets in terms of hidden-variables: de Broglie-Bohm trajectories. Phys. Lett. A 345, 31–37 (2005)

    Article  MATH  ADS  Google Scholar 

  25. Matzkin, A.: Can Bohmian trajectories account for quantum recurrences having classical periodicities? Phys. Lett. A 361, 294–300 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Leggett, A.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys., Condens. Matter 14, R415–R451 (2002)

    Article  ADS  Google Scholar 

  27. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Westview Press, Reading (1999)

    Google Scholar 

  28. Zeh, H.D.: Measurement in Bohm’s versus Everett’s quantum theory. Found. Phys. 18, 723–730 (1988)

    Article  ADS  Google Scholar 

  29. Wiebe, N., Ballentine, L.E.: Quantum mechanics of Hyperion. Phys. Rev. A 72, 022109 (2005)

    Article  ADS  Google Scholar 

  30. Ballentine, L.E.: Classicality without decoherence. Found. Phys. 38, 916–922 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Matzkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzkin, A. Bohmian Mechanics, the Quantum-Classical Correspondence and the Classical Limit: The Case of the Square Billiard. Found Phys 39, 903–920 (2009). https://doi.org/10.1007/s10701-009-9304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9304-y

Keywords

Navigation