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Abstract

We investigate two-particle phase-space distributions in classical mechanics characterized by

a well-defined value of the total angular momentum. We construct phase-space averages of ob-

servables related to the projection of the particles’ angular momenta along axes with different

orientations. It is shown that for certain observables, the correlation function violates Bell’s in-

equality. The key to the violation resides in choosing observables impeding the realization of the

counterfactual event that plays a prominent role in the derivation of the inequalities. This situa-

tion can have statistical (detection related) or dynamical (interaction related) underpinnings, but

non-locality does not play any role.
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Bell’s theorem was originally introduced [1] to examine quantitatively the consequences

of the Einstein-Podolsky-Rosen arguments [2] on the incompleteness of quantum mechanics.

The core of the theorem takes the form of inequalities involving average values of two-particle

observables. Bell showed that these inequalities must be satisfied by any theory containing

additional local hidden variables. But as is well-known, quantum mechanical expectation

values can violate the inequalities, and this violation has been experimentally verified with

increasing precision in a high number of experiments [3]. Nowadays Bell’s inequalities are

generally taken (a few exceptions [4] aside) as revealing a fundamental contradiction be-

tween quantum mechanical predictions and locality [5], and the EPR setup is employed

in quantum information as an instance of steering [6]. It would thus appear that particle

classical mechanics – which only contains local dynamical variables – should trivially satisfy

Bell-type inequalities. In this work however, we show that averages of measurements involv-

ing classical dynamical variables taken over specific statistical distributions (the classical

analogs of quantum mechanical eigenstates) can lead to a violation of Bell’s inequalities.

This violation occurs in cases for which the term involving the simultaneous detection of

counterfactual events – the main ingredient in the derivation of the Bell inequalities – be-

comes undefined, a situation that can have statistical (related to the detection process) or

dynamical (interaction related) origins, as discussed in the two examples given in this work.

Before investigating the two-particle problem, we briefly expose the classical relation

between the distribution of the angular momenta (to be employed below) and the corre-

sponding particle distribution in configuration space (familiar from quantum-mechanics).

Consider first a single classical particle and assume the modulus J of its angular momentum

is fixed. The value of J then depends on the position of the particle in the phase-space

defined by Ω = {θ, φ, pθ, pφ}, where θ and φ refer to the polar and azimuthal angles in

spherical coordinates and pθ and pφ are the conjugate canonical momenta. Let ρz(Ω) be the

distribution in phase-space given by

ρz0(θ, φ, pθ, pφ) = Nδ(Jz(Ω)− Jz0)δ(J
2(Ω)− J2

0 ). (1)

ρz0 defines a distribution in which every particle has an angular momentum with the same

magnitude, namely J0, and the same projection on the z axis Jz0 . Hence ρz0 is the classical

analog of the quantum mechanical density matrix |jm〉 〈jm| since just like a quantum mea-

surement of the magnitude j and z axis projection m of the angular momentum in such a
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state will invariably yield the eigenvalues of the operators Ĵ2 and Ĵz, the classical measure-

ment of these quantities when the phase-space distribution is known to be ρz will give J2
0

and Jz0
1. Eq. (1) can be integrated over the conjugate momenta to yield the configuration

space distribution

ρ(θ, φ) = N

[
sin(θ)

√
J2

0 − J2
z0

/ sin2(θ)

]−1

(2)

where we have used the defining relations Jz(Ω) = pφ and J2(Ω) = p2
θ + p2

φ/ sin2 θ. Further

integrating over θ and φ and requiring the phase-space integration of ρ to be unity allows to

set the normalization constant N = J0/2π
2. There is of course nothing special about the z

axis and we can define a distribution by fixing the projection Ja of the angular momentum

on an arbitrary axis a to be constant (in this paper we will take all the axes to lie in the zy

plane). Computing the distribution ρa0 = δ(Ja − Ja0)δ(J − J2
0 ) is tantamount to rotating

the coordinates towards the a axis in Eq. (2). Fig. 1 shows examples of configuration space

particle distributions on the unit-sphere and gives for one plot the corresponding quantum

mechanical angular-momentum eigenstate (the similarity is not accidental, as Eq. (2) is

essentially the amplitude of the spherical harmonic in the semiclassical regime). We can

also determine the average projection Ja on the a axis for a distribution of the type (2)

corresponding to a well defined value of Jz:

〈Ja〉Jz0
=

∫
pφ cos θaδ(Jz(Ω)− Jz0)dΩ = Jz0 cos θa, (3)

where θa is the angle (ẑ, a) and the projection of the component of Ja on the y axis vanishes

given the axial symmetry of the distribution.

The original derivation of the inequalities by Bell [1] involved the measurement of the

angular momentum of 2 spin-1/2 particles along different axes. Here we will consider the

fragmentation of an initial particle with a total angular momentum JT = 0 into 2 particles

carrying angular momenta J1 and J2 (we will assume to be dealing with orbital angular

momenta). Conservation of the total angular momentum imposes J1 = −J2 and J1 = J2 ≡
J. Quantum mechanically, this situation would correspond to the system being in the singlet

1 In the general case, the classical analog of the eigenstate of a set of quantum mechanical operators
{Â1, Â2...} can be defined by finding the phase-space distribution invariant relative to the infinitesimal
canonical transformations generated by the classical quantities A1(q, p), A2(q, p), ....; see A. Matzkin, in
preparation.
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FIG. 1: Normalized angular distribution for a single particle in configuration space. (a) Quantum

distribution (spherical harmonic |YJM (θ, φ)|2). (b) Classical distribution ρz0(θ, φ) of Eq. (2).

(c) Classical distribution ρa0 corresponding to a fixed value of Ja (here θa = π/4). The angular

momentum and the projection on the z [(a)-(b)] or a [(c)] axis is the same for the 3 plots (J/η = 40,

with η = ~, and M/J = 5/8).

state arising from the composition of the angular momenta (jT = 0, m1 = −m2). Classically

the system is represented by the 2-particle phase space distribution

ρ(Ω1, Ω2) = Nδ(J1 + J2), (4)

where N is again a normalization constant. This distribution will be employed for deter-

mining averages of observables related to the angular momenta of the two particles. Two

examples will be studied.

In the first example, two types of detectors are employed: the first type gives a ’sharp’

(S) measurement of J1a only if J1a is an integer multiple of some elementary gauge η, and

gives 0 elsewhere. This detection can be represented by the phase-space quantity

Sa(Ω1) = J1a(Ω1) if Ω1 ∈ Ω1k, (5)

Sa(Ω1) = 0 elsewhere, (6)

where Ω1k are the parts of phase space where J1a = kη compatible with a detection (see Fig.

2(a)). The second detector gives a ’direct’ (D) measurement of J2b (the projection of J2 on

an axis b). The corresponding phase-space function is

Db(Ω2) = J2 · b. (7)

In classical mechanics there is no natural unit for quantities having the dimension of an

action, so J and η can be expressed in terms of arbitrary units, and any physical result will

depend only on the ratio J/η. We will assume for definiteness that η is chosen so that the

4



extremal values ±J can be reached. J/η must hence be either an integer or a half-integer,

the extremal values in dimensionless units being given by ±L ≡ ±J/η. For example if

η = 2J , the measurement can only yield the extremal values L = ±1/2 (η = J allows to

measure ±L = ±1 and 0, η = 2J/3 allows ±L = ±3/2 and ±(L − 1) = ±1/2 etc.). Note

that the particle label 1 or 2 can be attached to the detectors: indeed, we will call ’1’ the

particle detected by S and ’2’ the particle detected by D.

The classical average E(a, b) = 〈SaDb〉 for joint measurements over the statistical distri-

bution ρ can be computed from

E(a, b) =

∫
Sa(Ω1)Db(Ω2)ρ(Ω1, Ω2)dΩ1dΩ2 (8)

with Eqs. (4), (5) and (7). Given the characteristics (5)-(6) of the S detection, Eq. (8) is

actually a discrete sum (over the parts of phase-space Ω1k leading to the detection of kη)

which can be written under the integral by introducing a delta function. Eq. (4) imposes

θ2 = π − θ1 and φ2 = π + φ1, and Eq. (8) becomes

E(a, b) =
1

2

k=L∑

k=−L

∫
[L cos θ1] δ (L cos θ1 − k) [−L cos θ1 cos(θb − θa)] sin θ1dθ1, (9)

where we have chosen the z axis to coincide with a to take advantage of the axial symmetry

imposed by Sa; the 1
2

prefactor is the only nontrivial normalisation factor (coming from the

integration over θ1). We obtain the average as

E(a, b) = −1

6
(L + 1)(2L + 1) cos(θb − θa), (10)

which as expected depends solely on the ratio J/η ≡ L. The correlation function employed

in Bell’s inequality can be obtained in the standard (or CHSH) form [7]. We choose 4 axes

a, b, a′, b′ (we can assume an S detector is placed along a and a′, and a D detector along b

and b′) and determine the average values for each of the 4 possible combinations involving

an S and a D detector. The correlation function C relating the average values obtained for

different orientation of the detectors’ axes is

C(a, b, a′, b′) = (|E(a, b)− E(a, b′)|+ |E(a′, b) + E(a′, b′)|) (L)−2 (11)

where we have divided by L2 to obtain the CHSH correlation function in the standard

form characterized by observed values bounded by ±1. Here the detected values obey the
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FIG. 2: Setups for the first (a) and second (b) examples investigated in this work. In (a) an S

detector is placed along the a axis and a D detector along b. The angular momenta, originally

distributed on the sphere, are constrained to move on the rings (red dotted) corresponding to fixed

values of the projection on a. (b) shows the (ẑ, y) plane for the L = 1 case (hence J = 3/2); the

3 zones correspond to the regions yielding one of the three possible measurement outcomes of J1a:

−1, 0, 1.

conditions |S/L| ≤ 1 and |D/L| ≤ 1, so that the usual derivation of the Bell inequalities

would lead to

C(a, b, a′, b′) ≤ 2. (12)

The violation of this inequality by quantum-mechanical expectation values is generally taken

as the main argument against the existence of local hidden-variables. By replacing Eq. (10)

in Eq. (11), it can be seen that for L = 1
2
, 1 and 3

2
, there are several choices of the axes

that lead to C(a, b, a′, b′) > 2. The maximal value of the correlation function corresponds to

C(0, π
4
, π

2
, 3π

4
) = 4

√
2 and 2

√
2 for L = 1

2
and 1 respectively 2.

The violation of the Bell inequality in this first example is due to the fact that we

are only including in the statistics the joint measurements (for which both detectors click).

However making an S-measurement along different orientations a and a′ amounts to selecting

different parts of phase-space. This can be seen by including the delta function accounting

for the S measurement so as to define an effective phase-space density by ρ̃(Ω1, Ω2) =
∑

k δ (J1a − kη) ρ(Ω1, Ω2). ρ̃ obviously depends on the orientation of the detectors, and the

2 The reader familiar with the Bell inequalities for the quantum measurement of J1a and J2b will recognize
the similarity of Eq. (10) with the quantum expectation value; the only difference is that the quantum
expectation value is normalized respective to the number of possible outcomes (2L + 1) whereas here the
normalization is relative to classical phase-space (namely the length 2L of the measurement axis).

6



quantity ∫
Sa(Ω1)Db(Ω1)Sa′(Ω1)Db′(Ω1)ρ(Ω1,Ω2)dΩ1dΩ2 (13)

describing the average of counterfactual simultaneous measurements along the 4 axis can

then vanish or become undefined. But this quantity is precisely the one that plays the

central role in the derivation of the Bell inequality: in particular, the equivalence between

the non-existence of the distribution function (13) and the violation of the inequality (12)

is well-known [8]. It is noteworthy that if one includes the whole phase-space in the average

(8), then it can be shown that E(a, b) and C(a, b, a′, b′) should be multiplied by the fraction

of phase-space yielding joint measurements, and as a result Bell’s inequality would not be

violated (this is better seen if the delta function modeling the S-detector is replaced by a

narrow ring having a finite surface [11]). Physically this objection makes sense provided one

can envisage a particle analyzer able to detect the particles that have not been included in

the statistics. This problem is well-known in quantum-mechanical contexts as an instance [9]

of the so-called detection loophole pending on the experimental tests of Bell’s inequalities.

Our second example goes further into the violation of Bell’s inequalities by postulating

a local interaction between the detector and the particle being measured: we then obtain

a violation of the inequality for the entire ensemble of particles. Let us take two identical

detectors T1 and T2 that give as only output the integer or half-integer values k = L,L −
1, ... − L of the projection J1a and J2b of the angular momenta of the particles. We now

choose L = J/η − 1/2, from which it follows that the maximal readout L is smaller than

J ; for notational simplicity we put η = 1 (so J , rather than J/η takes integer or half

integer values). We further assume that there is an interaction between T1 and particle 1

(and between T2 and particle 2) affecting the angular momentum of the particle so that the

transition J1a → k is a physical process due to the measurement. We impose the following

constraint on this process: given a statistical distribution ρ1 for particle 1, the average

〈J1a〉ρ1
over phase-space is the one given by averaging over the results obtained from the

interaction-mediated measurement readouts. This constraint takes the form

〈T1a〉 =
L∑

k=−L

kP (k, ρ1) = 〈J1a〉ρ1
(14)

where P (k, ρ1) is the probability of obtaining the reading k on the detector given the statis-

tical distribution ρ1. We will not be interested here in the details of the interaction yielding
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such probabilities; it will suffice for our purpose that a set of numbers P (k, ρ1) verifying

Eq. (14) and obeying
∑

k P (k, ρ1) = 1 can be obtained. We give explicit examples for 3

classical 1-particle distributions. (i) If ρ1 is spherically symmetric, detection of a given k is

equiprobable and we impose P = 1/(2L + 1). In this case, the simplest realization yielding

these probabilities is to set

T1a = k if k − 1/2 < J1a < k + 1/2. (15)

One then cuts the sphere into 2L + 1 equal zones Ωk centered on k (see Fig. 2(b)), and a

direct calculation shows that Eq. (14) holds within each zone,

〈T1a〉Ω1k
= 〈J1a〉Ω1k

= k. (16)

(ii) If ρ1 is of the type given by Eqs. (1)-(3) (axial symmetry with a given value of J1z),

we will take the P (k, ρ1) to be linked to the probability density χ(J1a, J1z0 , θa) of finding a

given value of J1a if it is known that the projection of J1 on the z axis is J1z0 . We set

P (k, ρ1) = k−1

∫ k+ 1
2

k− 1
2

k′χ(k′, J1z0 , θa)dk′ (17)

for |k| > 1 (the bounds become 0 and ±3
2

for |k| = 1 since k = 0 does not contribute). The

normalized classical probability density

χ(k, J1z0 , θa) = (πJ)−1
[(

1− J2
1z0

/J2
) (

1− k2/J2
)− (cos θa − kJ1z0/J

2)2
]−1/2

(18)

is obtained from trigonometrical considerations [10]. χ verifies
∫

kχdk = Jz0 cos θa, ensuring

that P (k, ρ1) and 〈J1a〉 obey Eqs. (14) and (3) respectively. (iii) If ρ1 is defined by a

uniform density between 2 values of J1z( rather than the single value J1z0 of (ii)), say

J1z0 − 1/2 < J1z < J1z0 + 1/2, we can take P (k, ρ1) to be given again by Eq. (17) (meaning

that the probability of obtaining the outcome k depends on the projection of J1 on the a

axis if it is known that the mean projection of J1 when the particles belong to ρ1 is J1z0).

The expectation value E(a, b) = 〈T1aT2b〉 for the 2 particle problem with the phase-space

density ρ given by Eq. (4) is computed in the following way. The initial density ρ has

spherical symmetry (case (i) in the preceding paragraph). We cut the sphere into 2L + 1

zones Ω1k defined by Eq. (16). Within each zone, we have T1a = k, and from the conservation

of the total angular momentum we infer for the other particle that k−1/2 < −J2a < k+1/2
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(this falls in case (iii)). Hence,

E(a, b) =
L∑

k=−L

∫

Ω1k

T1a(Ω1)T2b(Ω2)ρ(Ω1, Ω2)dΩ1dΩ2, (19)

becomes with the constraint (14)

L∑

k=−L

k

∫ cos−1 k−1/2
J

cos−1 k+1/2
J

[−J cos θ1 cos(θb − θa)] sin θ1dθ1 =
−L(L + 1)

3
cos(θb − θa) (20)

where we have used J = L + 1/2. The correlation function is again given by Eq. (11),

since the maximum value detected by a T measurement is L, not J . The result given by

Eq. (20) is familiar from quantum mechanics – it violates Bell’s inequality for L = 1/2

with a maximal violation for C(0, π
4
, π

2
, 3π

4
) = 2

√
2. As in the first example, violation occurs

because the counterfactual term Eq. (13) is devoid of any meaning: a single particle’s angular

momentum cannot be measured simultaneously along different axes (since the interaction

changes the phase-space distribution). Two characteristics of this interaction are worth

mentioning: (i) the expectation values are independent from the form of the interaction:

the derivation of E(a, b) does not depend in any way on the P (k, ρ)’s. This ensures in

particular that the total angular momentum is conserved on average. (ii) the interaction is

local (T1 affects only particle 1, T2 affects particle 2), and the correlation between the two

particles allowing to infer the distribution of one particle as a function of the measurement

on the other is solely due to the conservation of the angular momentum.

The present results show that average values obtained from a specific classical phase-

space distribution of particles can lead to a violation of Bell’s inequalities. The necessary

requirement is that the term accounting for the simultaneous measurement of two particles

along four different axes does not exist, i.e. there is no ’element of reality’ (in the EPR

[2] sense) corresponding to this simultaneous event. In the first example reported in this

work, conditioning the statistics to include only joint detections results in the sampling of

incompatible regions of phase-space. More interestingly, in the second example the measure-

ment process causes a local interaction that has no effect on the average values but affects

the measurement outcome of the particles (and hence the correlation function). Our main

conclusion, valid in both cases, is that the violation of the Bell inequalities can occur in

classical mechanics without appealing to any nonlocal effects. Possible implications on the

issue of local realism and non-locality in a quantum-mechanical context will be examined
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elsewhere [11].
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