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Abstract

Creation of autonomously acting, learning artifacts has reached a point where humans cannot 

any more be justly held responsible for the actions of certain types of machines. Such 

machines learn during operation, thus continuously changing their original behaviour in 

uncontrollable (by the initial manufacturer) ways. They act without effective supervision and 

have an epistemic advantage over humans, in that their extended sensory apparatus, their 

superior processing speed and perfect memory render it impossible for humans to supervise 

the machine's decisions in real-time. We survey the techniques of artificial intelligence 

engineering, showing that there has been a shift in the role of the programmer of such 

machines from a coder (who has complete control over the program in the machine) to a mere 

creator of software organisms which evolve and develop by themselves. We then discuss the 

problem of responsibility ascription to such machines, trying to avoid the metaphysical 

pitfalls of the mind-body problem. We propose five criteria for purely legal responsibility, 

which are in accordance both with the findings of contemporary analytic philosophy and with 

legal practise. We suggest that Stahl's (2006) concept of "quasi-responsibility" might also be a 

way to handle the responsibility gap.
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Introduction

Since the dawn of civilization, man has lived together with artifacts: tools and machines he 

himself has called into existence. These artifacts he has used to extend the range and the 

quality of his senses, to increase or replace the power of his muscles, to store and transmit 

information to others, his contemporaries or those yet to be born. In all these cases, he himself 

had been the controlling force behind the artifacts' actions. He had been the one to wield the 

hammer, to handle the knife, to look through the microscope, to drive a car, to flip a switch to 

turn the radio on or off. Responsibility ascription for whatever the machines "did" was 

straightforward, because the machines could not act by themselves. It was not the machine 

which acted, it was the controlling human. This not only applied to the simple tools, like 

hammers and knives, but also to cars and airplanes, remotely controlled planetary exploration 

vehicles and, until recently, computers.

Any useful, traditional artifact can be seen as a finite state machine: its manufacturer can 

describe its range of expected actions as a set of transformations that occur as a reaction of the 

artifact to changes in its environment ("inputs"). The complete set of expected transformations 

is what comprises the operating manual of the machine. By documenting the reactions of the 

machine to various valid input patterns, the manufacturer renders the reader of the operating 

manual capable of effectively controlling the device. This transfer of control is usually seen as 

the legal and moral basis of the transfer of responsibility for the results of the machine's 

operation from the manufacturer to the operator (Fischer & Ravizza, 1998). If the operation of 

a machine causes damage, we will ascribe the responsibility for it according to who was in 

control of the machine at that point. If the machine operated correctly and predictably (that is, 

as documented in the operating manual), then we will deem its operator responsible. But if the 
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operator can show that the machine underwent a significant transformation in its state which 

was not documented in the operating manual (e.g. by exploding, or failing to stop when 

brakes were applied) then we would not hold the operator responsible any longer, and 

precisely for the reason that he did not have sufficient control over the device's behaviour to 

be able to assume full responsibility for the consequences of its operation.

With the advent of learning, autonomously acting machines, all this has changed more 

radically than it appears at first sight. Learning automata, as we will see, are not just another 

kind of machine, just another step in the evolution of artifacts from the spear to the 

automobile. Insofar as responsibility ascription is concerned, learning automata can be shown 

to be machines sui generis, in that the set of expected transformations they may undergo 

during operation cannot be determined in advance, which translates to the statement that the 

human operator cannot in principle have sufficient control over the machine to be rightly held 

responsible for the consequences of its operation.

Learning automata cause a paradigm shift in the creation, operation and evaluation of 

artifacts. In the progress of programming techniques from classic, imperative programming, 

to declarative languages, artificial neural networks, genetic algorithms and autonomous agent 

architectures, the manufacturer/programmer step by step gives up control over the machine's 

future behaviour, until he finds her role reduced to that of a creator of an autonomous 

organism rather than the powerful, controlling coder that she still is in popular imagination 

and (all too often) in unqualified moral debate.

In the course of this chapter, we will retrace the crucial points of this technological 

development. We will see how exactly the shift from coder to creator takes place and what 

this means for the problem of responsibility ascription for the actions of learning automata. It 

can be shown that the loss of control over the operation of such machines creates a 
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"responsibility gap" which must somehow be bridged. Since humans cannot have enough 

control over the machine's behaviour to rightly assume responsibility for it, we will examine 

the question whether learning, autonomous machines could possibly be ascribed themselves 

responsibility for their own actions. We will discuss the prerequisites to machine 

responsibility and see that it does not necessarily mean that we will need to consider machines 

to be moral agents or even quasi-personal entities. Instead, responsibility ascription to a 

machine can be done without a shift in the metaphysical status of the machine using a 

"functional" approach to responsibility ("quasi-responsibility," as put forth by Stahl, 2006): if 

we understand the concept of responsibility to be a social construct which serves particular 

social aims, then it seems feasible to apply it to machines, as long as those aims are served 

and the corresponding social goals fulfilled.



  From Coder to Creator   6

Background

Learning machines

We are surrounded by machines which act on our behalf, more or less autonomously, and 

quite often we are not even aware of it. All around us are things like electronic noses for 

banana ripeness determination (Llobet, 1999), collision avoidance systems in automatic 

submarine navigation (Schultz, 1991a), autonomously flying (Stancliff & Nechyba, 2000), 

game playing (De Jong, 1988), and web document filtering (Zhang & Seo, 2001) machines 

and programs, while for a long time elevators in high-rise office towers are being controlled 

by adaptive, learning programs, which are able to predict and anticipate traffic patterns and to 

modify their own behaviour to better serve those patterns (Sasaki et al., 1996). 

  
Figure 1: Imperative programming in BASIC and Java. It can easily be seen that the programs consist of  

commands to the machine (INPUT, PRINT , setFont) which are executed from top to bottom or in loops (DO  

LOOP UNTIL). This is the common structure of all imperative programming, regardless of the language used.  

(BASIC code from Wikipedia)

In order to understand why some of these machines cannot be dealt with using traditional 

patterns of responsibility ascription, it will be necessary to have a look at how these machines 

are being constructed and programmed. Unfortunately, there is still widespread confusion 
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regarding this point, even in the philosophical literature discussing the status of machines and 

the ethics of man-machine interaction. Only by understanding the broad principles of the 

construction of learning automata, we will be able to see where they differ from traditional 

artifacts and why they are capable of inducing a paradigm shift in the role of the engineer as 

well as in the question of responsibility ascription for the consequences of their operation. 

In the present context, we can distinguish five main categories of computer software: 

traditional, procedural programs, declarative programming, connectionist architectures 

(including reinforcement learning systems), genetic algorithms (including genetic 

programming), and autonomous agents (mobile and immobile). As we will see, each one of 

these technologies represents one further step in the process of manufacturer and operator 

control loss.

Procedural programming

In this "classic" model of software development, the programmer writes down her program as 

a series of commands to the machine. Each command triggers a corresponding, well-defined 

action of the computer system: the transfer of data from one memory location to another, 

arithmetic operations, comparisons of the contents of variables, input or output of data from 

or to the operator of the program. Programs written in Basic, C, Cobol, Fortran, Pascal or Java 

all are built according to this principle (see figure 1). The reader of such a program can look at 

the code, "execute" it mentally step by step, and thus anticipate what the machine is supposed 

to do. The machine, too, does not do anything mysterious or incomprehensible: it just 

executes the commands one after the other in a well-defined order. An analogy for the process 

of programming in an imperative language would be to cook following a detailed recipe. The 

cook does not do anything except executing, step by step, the instructions in the recipe, until 
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he reaches the end of it, which should coincide with the completion of the meal that was 

described therein. 

In this programming model, the programmer still has the complete control over the machine's 

behaviour, and every action of the program is really an action of the programmer, as the 

program itself cannot deviate from the prescribed sequence of operations.

Declarative programming

Declarative programming was widely introduced in the 1970's. It aims to change the role of 

the programmer, in that she should not any more describe to the computer how to do things, 

but rather what the data are and what relations exist between them. A program in a 

declarative, logic-oriented programming language would look much like a series of 

statements in a predicate logic notation, which describes some part of the world. The 

interpreter of the programming language itself would then apply the facts and relations given 

in the program in order to find solutions to users' queries (see figure 2).

As an analogy we could imagine describing a family tree to a stranger, telling him how many 

sisters and brothers we have, their names and ages, and also the data of the parents and their 

siblings. After we have supplied the listener with this information, he is able to answer 

complex questions about the family tree (e.g. "how many sisters does Mary have, which are 

older than twenty-five?"), by using a process of inference from the known facts. He does this 

without the need for us to supply him with a step-by-step recipe for executing this process of 

inference, because he has "built-in" rules for doing logical operations of this kind. 
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Figure 2: A declarative program in PROLOG. Here, the programmer does not issue commands to the machine.  

Instead, she states a series of facts, from which the machine will derive a program. (PROLOG code from 

Wikipedia)

A typical application of the declarative programming paradigm are expert systems, which 

consist of a knowledge base about a particular domain and an inference engine, which is 

capable of drawing logical conclusions from the facts stored in the knowledge base. Expert 

systems are used in areas where the domain knowledge can be easily extracted from a human 

expert and converted into logical rules: so for example in medical diagnosis, or in the 

diagnosis of motor faults. One of the earliest expert systems was DENDRAL, developed at 

Stanford in the late 1960's. DENDRAL was designed to infer the structure of organic 

molecules based on their chemical formulas and mass spectrographic information about the 

molecule. It proved so successful that similar systems are still used in chemical laboratories 

today. Another famous system, MYCIN, also built at Stanford, was aimed at diagnosing 

bacterial infections of the blood. MYCIN could provide explanations for its reasoning and 

handle uncertain input data (Luger, 2005).

For the present discussion it is only important to note that declarative programming and 

expert system knowledge bases deprive the programmer from one aspect of control over his 

program: the control over the flow of execution. Unlike with imperative languages, the 

programmer of a declarative program does not know exactly how it will be executed, in what 

exact order the clauses and predicates are going to be applied by the machine in order for it to 

"prove" the users' queries. Also, like with any extensive system of formal logic statements, the 
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programmer cannot anticipate every possible production from the given axioms and rules of 

inference, just because of the sheer number of possible productions.

Connectionist systems

 

Figure 3: Basic structure of a single artificial neuron. The input values i1-i3 are multiplied by weights w1-w3  

and the result is used as the parameter of a trigger function f(i). If the function "fires", a signal is output along  

the axon. This signal can, in turn, be used as an input for other artificial neurons.

Connectionist architectures are increasingly used in all domains where the representation of 

the domain knowledge in the form of clear and distinct symbols and formal rules is not 

possible. Artificial neural networks consist of hundreds or thousands of artificial "neurons", 

which are often designed as shown in figure 3: The neuron, which is simulated in software, 

has a number of input channels (in the biological metaphor corresponding to its dendrites). 

The input signals are multiplied with adaptable weights (w1-w3) and the sum of them is then 

used as a parameter to a function, which maps the sum of the weighed inputs to an output 

signal. The output signal is in turn used as input to other artificial neurons. Most often such 

artificial neurons are arranged into layers (see figure 4).
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Figure 4: A three-layer artificial neural network.

By adapting the weights at its "synapses" the neural network can learn. It is important to see 

that neural networks don't contain a symbolic representation of knowledge anywhere inside 

them. In order to learn, they are presented with pairs of input/output patterns, and then they 

adapt the weights of their synapses so that the given input pattern leads to the desired output 

pattern. This is repeated for all pairs of input and output the system is supposed to learn. After 

training is completed, the artificial neural net is not only capable of mapping the learned input 

patterns to the desired output; it can also map previously unseen input patterns to the outputs 

of similar input patterns. This is an important feature: it enables the network to "recognize" 

and classify noisy and varying input correctly. Accordingly, artificial neural networks are 

mainly used for pattern recognition tasks: to recognize handwriting in palmtop computing 

devices, to identify faces of people in video images, to convert the scanned image of a page 

back to computer-readable text. 

In order to "program" a neural network to do such a task, we just present it with a great 

number of examples, along with the result we wish it to output for every example ("learning 

phase"). That is, if we wanted a neural network to learn to recognize hand-written input, we 

would present it with a few hundred examples of hand-written letters from different writers, 

and the network would automatically adjust its internal weights so that it is able to match the 
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supplied input patterns to the characters they are supposed to depict. After a few thousand 

training rounds for each pattern (which would not need more time than a few minutes to 

complete), the network would be able to recognize hand-written letters, although the 

programmer never told it how to achieve this result. The how is something the network 

figured out "by itself", by adjusting its internal weights so as to be able to match each input 

pattern to the desired output during the learning phase. 

The important thing here is to note that the behaviour of artificial neural networks is not 

programmed any more. Instead, it is taught by example. Inside the network there is no 

symbolic representation of any learned facts and rules, but only an ordered set of connection 

weights, which somehow encode the network's performance. But those weights cannot be 

examined by a human in order for her to predict its future behaviour. They have no symbolic 

interpretation. In fact, the teacher of an artificial neural network can never fully predict how 

the network will process a future input. She can only train the network with as many different 

sets of inputs as possible, in the hope that she will cover the whole range of significant 

variations in the input patterns. But, and in this she is much like a teacher of humans, she 

cannot look inside the network to see the stored knowledge. As we do with children in school, 

the teacher of a neural network can only apply tests to the network and evaluate its answers to 

the test input patterns.

Another often used technology is reinforcement learning (Moriarty, 1999). Here the 

distinction between the phases of training and production use of the neural net is lifted. The 

network learns and adapts its reactions inside its final operating environment, by exploring 

available action alternatives in a trial-and-error fashion and optimising its own parameters 

according to the results. Thus, the exploration phase is an integral part of the design of the 

working machine and cannot be separated from it. This is necessary in highly dynamic 

environments, where the system has to adapt to continuous change in order to achieve optimal 
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performance. Imagine, for example, a system which controls the flow of traffic on highways. 

Such a system needs not only to adapt to changing traffic patterns in the course of a day, a 

week, and a month, but also to the varying availability of the roads themselves: floods, 

accidents, public works are only some of the causes for change in the infrastructure that is 

available to the system to work with. A statically trained program would not be able to adapt 

to such changing conditions while maintaining a good performance. Reinforcement learning, 

on the other side, introduces trial-and-error into the operating phase. It continuously tries out 

new alternative actions and evaluates the resulting performance of the system it controls. 

Good results "reinforce" the system's exploratory reactions, bad results trigger further 

exploration of other alternative actions. While reinforcement learning systems are able to 

control a wide range of highly dynamic situations well, they inevitably introduce erroneous 

decisions into the process of control. "This is quite contrary to the common, traditional 

understanding that technology, done correctly, must operate free of errors, and that errors are 

always the errors of the programmer, not of the programmed machine. Reinforcement 

learning presents us, for the first time, with the necessity of errors as we know it from living 

systems: as a system feature, the precondition for learning and adaptive behaviour, and not 

merely a product flaw" (Matthias, 2004a).

Genetic algorithms

In contrast to artificial neural networks, which model software after the general principles of 

operation of the nervous system, genetic algorithms (Holland, 1975) mimic the process of 

evolution through variation, genetic recombination and selection. The solution to a problem is 

represented as a chain of symbols, that together comprise the "genome" of a virtual organism. 

If, for example, the problem is to find a way through a maze, a successful solution would be a 

chain of symbols that denote direction changes: right, right, left, right, left, and so on, until the 

maze has been successfully traversed (see figure 5). The solution is arrived at by generating a 
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big initial population of virtual organisms, each one with its own, random genome of direction 

changes. These organisms are now put into the virtual maze, where some of them get 

immediately stuck at the walls, some take a few steps ahead, and some might even take a 

successful turn or two. The most successful organisms (the ones which take the greatest 

number of steps before they collide with a wall) "mate" with each other in such a way, that 

their "genetic information" is combined in their offspring, often by a simple cross-over of 

parental genes: the chains of direction statements of the parents is cut at some point, and the 

offspring receive parts of the genetic information of both parents. This process is repeated, 

often over hundreds or thousands of simulated generations, until some individuals contain in 

their genome a string of symbols which represents one solution to the problem. Since the 

generations can be simulated at high speed, such a genetic algorithm might even arrive at a 

solution faster than a conventional programmer, who would first need to solve the problem at 

hand himself, and then implement his algorithm in software. Genetic algorithms are robust: 

they can be run again and again when conditions change, and they will always evolve some 

solution to the problem at hand. Unfortunately, there is no guarantee that this would be an 

optimal solution. Like biological evolution, genetic algorithms can get stuck in relative 

optima: solutions that are relatively better than others, but not the globally best solutions.

Applications of genetic algorithms include the evolution of robot behaviours (Schultz, 1994), 

the classification of sensory input (Stolzmann et al., 2000), and the navigation of autonomous 

vehicles (Schultz, 1991b).

Genetic algorithms are, for the programmer, another step away from the role of the coder: she 

does never get to see the actual code that is going to be executed, because the code evolves by 

itself under the constraints defined by the environment. The programmer only sets up this 

environment and generates a big number of random individuals, which are then left to 

themselves, to breed and evolve as biological organisms would do. Here we have clearly 
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reached the stage where the programmer is but the creator of a simulated world, and not a 

coder anymore. She is no longer in the position to rightly assume responsibility for the code 

that is to evolve inside the organisms she has created.

 

 

Figure 5: Traversing a maze with a genetic algorithm. Left: the way through the maze. Right: two genomes  

recombine to produce an offspring which correctly represents the desired solution (a way through the maze). The  

individual genes denote directions: S: go straight, R: turn right, L: turn left.

Autonomous agents

Autonomous agents don't present any new features compared to the other technologies 

discussed, except that they are designed to act autonomously, out of the reach and 

supervision of the programmer. There are both embodied agents (like autonomous, mobile 

robots, which can physically move around in space and manipulate objects; see Adams, 2000) 

and pure information agents, which move in a virtual space created inside some computer 

infrastructure (e.g. Internet search engine crawlers). 

"Two points concerning agents are interesting in the present context: First, that agents are per 

definitionem designed to act, and that, in the course of their operation, they must inevitably 

interact with other things, people, and social entities (laws, institutions, expectations). Second, 

that agents which have a physical presence constitute a new category of machines: such that 

can learn from the direct interaction with a real environment and that can in return directly 

manipulate this same environment. These machines have (contrary, for example, to desktop 
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computers) an unmediated access to sensory impressions, their symbolic representation, and 

subsequent actions that lead to new sensory impressions, and they act in the same 

environment as humans do" (Matthias, 2004a).
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The paradigm shift: from coder to creator

Loss of control 

In the previous sections we have seen how the subsequent stages of technological 

development lead to an increasing and inevitable loss of control of the programmer over the 

machine. Increasing, because first, with declarative programming, is lost the control over the 

program flow. Next, with artificial neural networks, the programmer loses the symbolic 

representation of her program. All that remains to be inspected are a multitude of synaptic 

weights, which cannot be interpreted symbolically any more. The only way to measure the 

performance of a neural network (artificial or otherwise) is to test its reactions. Reinforcement 

learning brings about the loss of the computer's infallibility. Where up to now we could 

distinguish "correct" and "erroneous" programs, the technique of trial-and-error employed in 

reinforcement learning irrevocably blurs this distinction. Even the correct program cannot 

avoid errors, because the errors are the price for its adaptability. Genetic algorithms and 

genetic programming bring about the final loss of the code as well as of the training situation: 

instead of programming, the software engineer deploys his program's seeds as randomized 

virtual organisms in a simulated primordial soup, from which he hopes, in time, to see 

solutions emerge. He has never seen the code of these virtual organisms which represent his 

solutions, he has never programmed them. And autonomous agents, finally, are designed to 

act without supervision, so that an erroneous behaviour will be detected by the programmer 

only long after it has occurred and its consequences have been established, if at all. 

Since it seems like the programmer is voluntarily giving away control over the machine, one 

might be tempted to talk of "abdication" instead of "loss" of control. But we should not 

overlook the fact that using advanced software design technologies is not an arbitrary decision 

of the programmer, but a necessity which is forced upon her by the constraints of the problem 
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domain she has to tackle. Some highly dynamic and complex problems cannot be handled 

otherwise but by the use of neural networks and genetic algorithms. If the programmer wants 

to stay in business, she has no choice but to adopt these technologies. Thus, it might be said 

that the responsibility for adopting them lies with the society, the decision of which it is to 

demand that problem domains like street traffic control or automated diagnoses of diseases be 

handled by computer programs. Since society demands of the programmer to provide an 

automated solution, the programmer is arguably forced into the situation of reduced control, 

thus justifying us talking about loss instead of voluntary abdication of control. 

The epistemic advantage of machines

Aside from the inevitability of error as part of the process of learning, modern computers 

often have another property that distinguishes them from the artifacts of the past: they have an 

epistemic advantage over their operator as well as their manufacturer, which renders effective 

supervision impossible.

Let's have a brief look at how supervision commonly works. If I supervise a child or a dog, I 

can do so effectively only if my faculties of understanding the world around me and my 

capability to predict the outcome of certain actions is more developed than that of the child or 

animal I am supervising. This epistemic advantage I have over the supervised makes me a 

suitable supervisor, and at the same time gives me a greater degree of control over the 

interactions of the supervised with his environment than he would have if left to his own 

devices. By knowing more than the child, I am in a position to foresee harm both to the child 

and to the environment, and thus to avert it. This higher degree of control also bestows on me 

a higher responsibility: commonly parents as well as dog owners are held responsible for the 

actions of their children and pets, as long as they have been supervising them at the moment 

the action occurred. This is the same pattern we have seen before: higher degree of control 
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leads to higher degree of responsibility. The child's reduced control over the environment 

leads to it having to carry less (or no) responsibility for its actions.

A common misconception in the discussion about learning machines shows itself in the 

demand that they should be supervised more effectively, so that negative consequences of the 

machine's operation can be seen in advance and averted. In fact, such a surveillance of the 

learning automaton is, in many cases, impossible, because it is the machine that as a rule has  

the epistemic advantage over the human operator. Control systems of air planes and nuclear 

power plants, robots which assemble electronic parts with micrometre precision, deep space 

exploration devices, military self-targeting missiles, even internet search engines: these are 

only a few of the machines that cannot be controlled effectively by a human, because he is in 

a position of epistemic disadvantage: his senses don't permit him to measure the level of 

radioactivity inside a nuclear reactor, his speed of reaction is insufficient to control a modern 

fighter air plane, the precision of his eyes and fingers does not extend to micrometre level, 

and he has no sense at all for deep space radiation. Even something as simple as searching the 

internet cannot be done by a human any more. If I enter a search string into my favourite 

search engine, I will possibly get thousands of hits, and I will never be able to systematically 

check whether these hits really are the best available, and whether I was presented with the 

full list of hits or a censored or suboptimal subset. The epistemic advantage of machines is in 

these cases rooted in their superior processing power, in their possession of additional sensory 

equipment humans don't have, and in their almost unlimited and unfailing memory. Because 

of this, there is no way a human could outperform the controlling computer of a fighter plane 

or a nuclear power plant: he is a slave to their decisions, because he is physically unable to 

control and supervise them in real-time. 

The responsibility gap
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In the face of these developments, it doesn't seem meaningful (or just) to insist that a 

programmer should be responsible for an autonomous, learning program's actions in the same 

way that a car driver is responsible for the consequences of driving his car. If technological 

development leads to an inevitable loss of control, and if, as we have seen, such control is a 

prerequisite of just responsibility ascription, then we must either accept that nobody is 

responsible for the actions of some classes of learning automata; or we must, alternatively, 

find some other target to ascribe responsibility to. Or we must, and this would be the ultima 

ratio, dispense with modern technology, of the kind described above, altogether.

If we accept the existence of such a responsibility gap (Matthias, 2004a), we might ask 

whether the machines themselves might be suitable targets for responsibility ascription. 

Unfortunately, the philosophical discussion that has evolved around this topic has often been 

laden with confusion: confusion about the technical background of learning automata (and its 

implications) as described above, as well as confusion about what conditions are to be 

attached to the case of machine responsibility. Could a machine be legally liable? Under 

which conditions? Is the eligibility for moral agency a prerequisite to responsibility? Are the 

conditions for moral responsibility the same as for legal responsibility or different? Is 

personhood necessary for responsibility? Or even the plain and indispensable fact of being 

biologically human?
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Can automata be ascribed responsibility?

The ladder to personhood

As long as we talk about humans, it is safe to use the concepts of responsibility, culpability, 

rehabilitation, punishment, intentionality and personhood which are based on anthropocentric 

views of what constitutes a (legal, moral, or social) person. It is only when we embark on the 

analysis of the non-human agent that we need to clarify these concepts and to point out the 

implicit anthropocentrisms contained in them. In Matthias (2004b) we proposed that common 

conditions and phenomena of both the legal and the moral spheres of interaction can each be 

ascribed to a specific type of agent for which they make sense. We distinguished the "legal 

person", the "moral person" (both of which should, in retrospect, have been named "agents" 

instead of "persons"), the "social person" and, finally, the biological human being, each with 

its own set of conditions that are to be met.

In the present context of responsibility ascription, what we really mean when we talk about 

machine responsibility is legal responsibility, or the ability to be legally liable for damages 

caused by the operation of the machine itself.

For our purpose of clarifying the legal liability of machine actions, it is not necessary to talk 

about moral agency or the possible metaphysical personhood of machines (for the difficulties 

of such an undertaking see, for example, Johnson, 2006). Our aim in the context of the present 

discussion is to solve the arising problems of responsibility ascription to machines inside the 

framework of civil law, and not to discuss retribution, resentment or punishment in relation to 

nonhumans. This would be a completely different field of inquiry, and one which is not likely 

to lead to usable, practical results any time soon. What concerns us are damages caused by the 
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machine's operation: and these fall squarely into the realm of civil law, which operates mostly 

without metaphysical assumptions about the actors involved. 

Now, to be legally responsible, one does not have to be human. Many legal systems have a 

concept of corporate entities (associations, companies, states) which can act and carry 

responsibility for their actions independently of the human beings that take part in the 

corporate structure. In international relations, for example, countries have rights and 

obligations that are different from those of the humans who represent them at any particular 

moment. It is crucial to see that the volition of the corporate entity, and thus the responsibility 

for its actions, is not at all derived from the volitions or the individual human-ness of its 

members. Often the members of a corporate entity (e.g. a stock corporation) are themselves 

not individual humans at all, but other corporate entities: companies or even governments. 

The volition of a corporate entity (for example of the government of a democratic country) 

cannot be derived from any mental states of any individual human agent (e.g. its prime 

minister); instead it is the product of a complex, rule-controlled process, which involves a 

majority of the individuals participating in the corporate entity (for example in the form of 

voting), and thus can only be attributed to the corporate system as a whole.

Still, every system which is to be ascribed a legally responsible status has to exhibit certain 

properties. Which exactly these are is not clear, since national laws differ significantly on this 

point, and, additionally, as a rule they don't bother to specify explicit conditions for legal 

responsibility. Instead, the borders between full, partial and absent responsibility are often 

deliberately left unspecified in order to be drawn individually for each case by the courts. A 

few points are, nevertheless, clear: a person under heavy drug influence is less responsible for 

his actions, as is someone who is, for medical reasons, unable to understand the complexity of 

a situation or its implications. In German law, persons can be conditionally able to assume 

responsibility for their actions: for example, compulsive gamblers can have reduced 
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responsibility for their actions where gambling is concerned, but be fully responsible 

otherwise. If we try to locate specific conditions for (legal) responsibility inside the 

framework of contemporary analytical philosophy, we find five main points, which seem to 

be necessary as well as sufficient for it (Matthias, 2004b):

- Intentionality (Dennett, 1987), the requirement that an agent must be capable of intentional 

action, is clearly a prerequisite for responsibility. Thus a person is not held responsible for the 

consequences of involuntary movements, be it a reflex or an action undertaken while 

sleepwalking.

- Being receptive and responsive to reasons (Fischer&Ravizza 1993 and 1998) is another 

prerequisite for legal responsibility. Legally responsible agents must be receptive to reasons 

for or against a possible action, and they must respond to sufficient reasons against an 

intended action with a change in their plans and their subsequent behaviour. Rational 

understanding of causal relationships between actions and results, as well as the capability of 

the agent to act according to his understanding are basic requirements for legal responsibility 

in law.

- Having second-order volitions (Frankfurt 1971 and 1993). For example, in German law a 

person can be legally incapacitated "because he is in a pathological way controlled by the will 

of others" (Diederichsen 1984, 150). It is not only freedom to act which the law requires of a 

legally responsible agent, but the freedom of the will, the ability to choose the goals she 

desires to pursue. Only an agent who has the freedom to act according to her desires and the 

freedom to choose those desires freely, has all the freedom "that it is possible to desire or to 

conceive." (Frankfurt 1971, 16)

- Being (legally) sane (Wolf, 1987) means that the agent's second-order volitions must be 

"sane," that is, they must be compatible with the kinds of second-order volitions other agents 
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in the same social context have. Effectively this requirement puts a third-order instance above 

the level of second-order volitions, thus exercising a social control over the choice of an 

agent's second-order volitions. Most legal systems recognize this requirement: an agent can be 

perfectly intentional and reasons-responsive and still be insane; in that his basic values 

system, which underlies all his individual choices, is not compatible with the basic values of 

the surrounding social context. Such an agent would generally not be held fully responsible 

for his actions.

- Being able to distinguish between intended and merely foreseen consequences of actions 

(Dworkin, 1987). Legal systems often distinguish "intended" from merely "foreseen" 

consequences of actions, and they presuppose the agent also to be able to do so; see, for 

example, the common as well as important distinction made between negligent and wilful 

homicide in most legal systems.

Though some of these properties have been proposed as being by themselves sufficient for 

(moral or legal) responsibility, we maintain that this is due to the implicit understanding that 

we are talking about humans, or at least systems that are partially similar or functionally 

analogous to humans. But now we are (in principle, at least, or as a thought experiment) able 

to construct artificial systems which exhibit some of those properties without the others. And 

thus we see, that they are each one of them necessary for full responsibility; but none of them 

is, in itself, sufficient.

Now, do machines satisfy these five criteria? Intentionality and reasons-responsiveness are 

exhibited (at least for limited domains of action) by every chess computer. Dennett (1987) has 

shown how the concept of intentionality can be separated from obscure metaphysical 

requirements (e.g. involving mental states, an approach that we find in Johnson (2006) and 

which is doomed to fail because of the complexity of the underlying mind-body discussion, 
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which cannot be dismissed en passant). Expert systems have a long tradition of stating their 

reasons for particular choices. Also the concept of foreseen vs. intended consequences is one 

every planning component in an artificial intelligence system exhibits. More difficult to grasp 

technologically is the concept of sanity, because it presupposes a huge amount of knowledge 

about what kinds of volitions are commonly in use in a particular social context. Such 

knowledge will probably not be available before the problem of common-sense and everyday-

knowledge for computers is successfully solved (for first steps in this direction see various 

publications of the CYC project, e.g. Lenat, 1995).

Social responsibility without personhood

In a very promising approach, Stahl (2006) tries to further simplify the problem of 

responsibility ascription to sub-personal agents, e.g. computers. He argues that the concept of 

responsibility needs not necessary be coupled with questions of agency or personhood, but 

can be seen as fulfilling a social role:

"An analysis of the concept of responsibility shows that it is a social construct of ascription 

which is only viable in certain social contexts and which serves particular social aims. If this 

is the main aspect of responsibility then the question whether computers can be responsible no 

longer hinges on the difficult problem of agency but on the possibly simpler question whether 

responsibility ascriptions to computers can fulfil social goals." (Stahl, 2006, 205).

He then goes on to propose a concept of "quasi-responsibility," which is analogous to (full, 

metaphysical) responsibility in its social function, but not confined to humans or persons 

alone. Of course, such a concept would be useless if it would not interface at some points to 

our real social environment, and thus be part of causal chains which involve "non-quasi" 

entities, and here lies one of the points that have still to be clarified: If I assign "quasi-

responsibility" to a machine, and it causes harm or damage, this damage is obviously not a 
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"quasi-damage". Accordingly, I cannot expect the machine to undertake only a "quasi-

compensation" for the damage caused, or the legal system to provide me with "quasi-laws" to 

apply to the machine. But if we drop the prefix "quasi" from the consequences, then we must 

ask ourselves, how much exactly does "quasi-responsibility" actually differ from the "real" 

thing?
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Future trends

Increasing use of learning automata in all areas of life will lead to a further widening of the 

responsibility gap. At the same time, increasing computing power widens the epistemic gap, 

thus rendering effective supervision of the machine even more unrealistic. Already, one 

particular internet search engine is responsible for much of the world's knowledge and 

information filtering, while at the same time, due to the amount of information processed, it 

cannot be effectively controlled by a human any more. Faster processing speed, coupled with 

increasing amounts of information, makes human evaluation of a machine's decisions (at least 

in real-time) impossible. At the same time, increasing computing power will enable us to 

deploy more and more products based on artificial neural net technology, which, by its very 

architecture, defies effective (symbolic) evaluation of the information stored within.

Already we are surrounded by autonomously deciding and acting technology. In areas like 

traffic control, automated disease diagnosis, automated control of flying vessels and 

submarines, as well as numerous others, we cannot but employ self-learning technology in 

ever increasing amounts, thus always giving away more and more of human control over the 

machines' decisions and actions.

As machines act autonomously and without effective supervision, we will observe an increase 

in cases where responsibility for the consequences of such actions cannot be justly assigned to 

a human. Up to a point, the resulting damage can be distributed to a broad base of a social 

group's members (for example, through unspecific insurance compensations or government 

intervention). But as such cases become more numerous, eventually a solution will have to be 

found which permits us to deal with them inside the regular conceptual framework of civil 

law (as opposed to ad-hoc compensations after the damage has occurred). It must be seen 

whether ascribing a limited kind of (quasi-) responsibility to the acting automaton itself may 
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provide a solution to the problem which is both just and practical to handle in everyday legal 

transactions.
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Conclusion

Some classes of learning, autonomous machines are artifacts sui generis, and they cannot be 

compared to conventional machines where the responsibility ascription for the consequences 

of their operation is concerned. There are various ways to deal with the resulting 

responsibility gap. If we want to avoid embarking on metaphysical discussions of machine 

personhood (which tend to involve aspects of the notoriously difficult philosophy of the mind-

body-problem), we can limit the question at hand to legal issues (where non-human 

responsible entities are already present: corporations, states) and ask whether machines could 

be ascribed legal responsibility for their actions, leaving the moral issue aside. We find that 

legal responsibility requires at least intentionality, reasons responsiveness, second-order 

volitions, sanity and the ability to distinguish between foreseen and intended consequences of 

one's actions. All of those requirements seem not to be in principle out of the reach of future 

machines, but they are certainly not fulfilled at present. Another approach would be to assign 

"quasi-responsibility" to machines, a subset of "true" responsibility, as proposed by Stahl. It 

must be examined further what the exact merits of such a solution would be.
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Key terms and definitions

Artificial neural network: A networked structure, modelled after a biological neural network, 

and implemented in software on a computer. Artificial neural networks enable computers to 

handle imperfect (noisy) data sets, which is essential for robust performance in advanced 

recognition and classification tasks (handwriting recognition, weather prediction, control of 

complex movements in robotic bodies). 

Autonomous agents: Programs or programmed devices which act autonomously, without 

supervision of a human, often in a remote location (e.g. on a remote server or another planet). 

Since such agents are per definition required to operate without supervision, responsibility 

attribution for their actions to a human is especially difficult. 

Declarative programming: A programming paradigm where the programmer does not specify 

the machine's behaviour in detail. Instead, she describes the problem to be solved in a kind of 

predicate logic calculus, leaving the details of the inference process to the machine. 

Epistemic advantage: In general, the fact that an agent has by design better access to 

information about the world than another agent. In particular, the fact that some machines are 

in the privileged position to access data about the environment that humans cannot access (for 

example due to a lack of suitable sensor equipment, e.g. for gamma radiation or ultraviolet 

light); or that they are able to process information at a speed which transcends the speed of 

human thought, thus enabling them to handle situations in real-time, which humans cannot 

handle without machine aid (e.g. controlling a nuclear power plant, a low-flying fighter 

airplane, or a subtle orbital manoeuvre in space.) 

Genetic programming: A programming paradigm where the program "evolves" as a string of 

symbols out of other strings of symbols. The "evolution" process mimics the mechanics of 
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biological evolution, including operations like genetic cross-over, mutations, and selection of 

the "fittest" program variants. 

Imperative programming: A programming paradigm where the programmer describes the 

machine's actions step by step, thus keeping full control over the machine's behaviour when 

executing the program. 

Learning machine: A machine which modifies its behaviour after deployment, through 

adaptation to the environment in which it operates. Since its final behaviour at any moment 

depends not only on the initial programming, but also on the environment's inputs, it is in 

principle not predictable in advance. 
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