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1. Introduction.  Many years ago now Nelson Goodman attempted to explain, in part, what accounts for our choice of predicates in our descriptions of the natural world.  He was animated by the realization that our explanations of the nature and legitimacy of causal relations, laws of nature, and counterfactuals all depend strongly on each other.  The solution, as he saw it, was to investigate why certain predicates like green and blue were widely considered to be appropriate and adequate to our attempts to characterize natural happenings, while others like grue and bleen were not.  This problem, as he presented it, was not one of logical definability and it could not be solved by identifying those predicates that are, in the case of grue/bleen versus green/blue for example, temporally indexed.  The point is this:  As a matter of mere description of the features of the world, there is very little constraint on the legitimate, completely general properties we can dream up while the true causal processes in nature, the true laws of nature, the true counterfactual dependencies in nature, all have to do with natural kinds; these kinds are picked out by what Goodman called projectible predicates.

Goodman’s particular solution to the question of how to identify proper projectible predicates for new domains of inquiry need not concern us.  It is enough that we keep in mind the general lesson:  finding adequate adjectives to describe possible predicates is trivial; finding proper kinds is hard.

What follows is an attempt to outline a general framework within which to carry out ongoing work in the intersection of cognitive modeling with agent-based simulation within distributed environments.  Our aim for what follows is simply to begin to think about some ways of finding projectible predicates for computer simulations that parallel a common technique in the physical sciences: analogue modeling.  Analogue modeling bears important resemblances to other kinds of modeling in physics, but has a unique flavor that may offer some insight for difficult conceptual problems in the simulation of human agency and decision making.

We begin by characterizing analogue systems.  We take these to be themselves a type of simulation.  We focus on cosmological analogues in Bose Einstein condensates.  These are interesting analogue systems, but are also nifty because they are about as extreme in scale and ontological separation as possible.  We note that the artifacts of the one system are features of the other.

We will then find it convenient to frame the discussion in terms of Patrick Suppes’ conception of models in science.  That framing will lead into a more general discussion of ontology: the ontology of the target system; the ontology of the analogue system.  We begin to ask here about the laws of nature of the analogue system itself, and the laws that the system is meant to represent.  In analogue systems the laws of nature are still the real laws, but the utility of the analogue comes from seeing it also as a different system embodying different laws.

Having investigated the general properties of analogue systems we move on to a discussion of some general problems of simulation human behavior and decision making.  These general problems point to two underlying questions:  What are the laws of nature of these simulations?  And how do we change only some of these laws in a way that stops short of encoding each and every feature of the simulation by hand?  The answer, we believe, involves finding and learning how to manipulate the projectible predicates of the simulation itself.  In the analogue systems we employ a blend of mathematical analysis and experiment.  We therefore call for a general program of experimental computer simulation.  (This is, perhaps, not unrelated to certain features of evolutionary design.)

Two major problems remain: How do we connect the projectible predicates of the simulation to those that are of interest to us?  Is it really possible to manipulate these predicates without changing the basic underlying code, and thus vitiating the whole project?  We conclude pessimistically.  We think the general approach we advocate, an experimental program for computer science, is worth pursuing, but we see little hope for immediate payoff.  The situation seems now like that confronting Bacon when he advocated simply performing all of the experiments there are, and thereby learning all of nature’s laws.  If we knew which kinds of experiment were really worth doing, it would be because we had a better handle on the plausible projectible properties and abstractions.

2. The idea of an analogue system.  We begin with an example.  Cosmologists are hampered by a significant obstacle: They cannot conduct experiments to test their models
.  To overcome this difficulty they have had recourse to prolonged observation, and intensive theoretical analyses.  But these do not completely overcome the necessity for actual experimental feedback in ruling out theories and suggesting new classes of theory.  

It has lately been realized that some classes of quasi-experiments, observing and manipulating systems that are analogous in appropriate ways to the universe as a whole, would, if they could be performed, provide important experimental data to cosmologists.  Unruh has shown, for example, that one can model black holes by sinks in classical fluids---the so-called dumb-holes. Moreover some features of Hawking radiation can be modeled---waves traveling out of the hole even though the fluid flow is faster than the speed of water waves.  But many such classes of quasi-experiment themselves suffer by being composed mostly of experiments that are themselves too difficult to perform---perhaps impossible even in principle.  However there are some that are clearly performable in principle and of those some appear to be performable with present levels of technology.

As a particular example we consider a Bose-Einstein condensate, which we describe shortly, as an analogue of the universe as a whole.  The point to the analogue is to test the predictions of a semiclassical theory of quantum gravity indirectly by giving experimental access to various parameters that are not fixed in the general theory.  Seeing how the analogue system changes in response to varying these parameters together with observation of the cosmos constitutes, effectively, a cosmological experiment.  Semiclassical gravity is a hybrid of quantum mechanics for matter and all other fields except gravity blended with classical general relativity for the gravitational field (and thereby the spacetime geometry).  This theory is the current de facto theory of quantum gravity and is widely used to guide theory construction in the quest for a more principled future quantum gravity.  For example, the behavior of black holes predicted by semiclassical gravity is a minimum standard for any candidate theory of quantum gravity and quantum cosmology.  If that candidate’s predictions differ in the wrong way from those of the semiclassical theory, then it’s off the table.  Thus an experimental test of semiclassical gravity theory will give empirical input into quantum gravity itself---input that is sorely lacking to date.

2.2 Bose-Einstein condensates.  Bose Einstein condensates are predicted by quantum mechanics.  In quantum mechanics the statistical distribution of matter is governed by two distinct theories of counting for two distinct types of matter.  Every material system possesses, according to the quantum theory, an intrinsic angular momentum.  That is, every material system possesses angular momentum that arises not from any mechanical movement of the system, but merely due to its composition.  This angular momentum can take on values that are either half-integer multiples of Planck’s constant or whole-integer multiples.  Systems with half-integer intrinsic momentum (fermions) are governed by Fermi-Dirac statistics; those with whole-integer intrinsic momentum (bosons) are governed by Bose-Einstein statistics.  These two different statistics turn out to have significant consequences for the behavior of large collections of the various type of entity.  The basic idea of each of the two classes of statistics is well-known.  Fermions cannot all be in the same quantum state; bosons may all be in the same state.  A Bose-Einstein condensate is the state of a collection of bosons that are all in the same state together.  Since they all share their quantum state, there is no difference between the elements composing the condensate---the condensate behaves in as though it were a single object.
Since 1995 and the production of a Bose-Einstein condensate in the gaseous state by Cornell and Wiemann (cf. Anderson et al. 1995), many physicists have become interested in these systems as possible experimental test-beds for studying quantum cosmology.  This is extraordinary on its face.  What could be less like the universe with its distribution of objects on every length scale and its curved spacetime geometry than a small container of gas (on the order of 109—10 atoms) with fluctuations in the phase velocity of sound propagating through it? And yet one can find analogous behaviors in these systems that make the one an appropriate experimental system for probing features of the other.  One feature of interest in cosmological models governed by semiclassical theories is pair-production caused by the expansion of the universe
.  Barceló, Liberati, and Visser (2003) have shown how to manipulate a Bose Einstein condensate in such a way that it will mimic certain features of an expanding universe exhibiting semiclassical particle production.  That is, they show how to mimic in a Bose Einstein condensate a semiclassical scalar field propagating in spacetime that produces particle pairs as the universe expands.

It is well known to theorists of Bose-Einstein condensates that all of their important features can be captured in the Gross-Pitaewskii equation:
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(1)

This is a non-linear approximation to the Schrödinger equation with the self-interaction term given by a function of the square of the modulo square of the wave function.  In their proposed setup, Barceló, Liberati, and Visser propose a series of generalizations to this equation.  By allowing arbitrary orders of the modulo square of the wave function, by allowing the non-linearity to be space and time dependent, by allowing the mass to be a tensor of third rank, by allowing that to be space and time dependent as well, and finally by allowing the external potential to be time dependent, they arrive at a new Schrödinger equation:
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We won’t comment on this equation in detail but will merely note that it has characteristics that allow it to be cast into a form that describes perturbations in the wave function propagating through an effective, dynamical Lorentzian metric.  With a suitable form for the potentials one can use this equation to replicate a general relativistic spacetime geometry.

It is also possible to show that, in the regimes of the experimental setup they identify, the Bose-Einstein condensate mimics very well the behavior as a whole of the expanding universe, and especially the behavior of scalar fields propagating in that universe.  As the interaction between the components of the condensate is modified, the effective scattering length changes, and these changes are equivalent in their effect to the expanding universe.  Under that “expansion” these scalar fields will exhibit pair production.  And Barceló, Liberati, Visser give good reason to suppose that actual experimental tests can be conducted, in the near future, in these regimes.  Thus the Bose-Einstein condensates are appropriate analogue models for the experimental study of important aspects of semiclassical cosmology.  We can therefore use the condensate to probe the details of cosmological features of the universe, even though the analogue system has very little qualitative similarity to the universe as a whole.

We now pull back for a moment and try to get a clearer picture of analogue systems.  The general idea of these systems is this.  We use actual physical systems to investigate the behavior of other physical systems.  Stated in this way, the point appears trivial.  Isn’t this no more than just plain old experimental physics?  What of significance is added when we call the experimental situation an analogue?  Aren’t all experiments analogues in this sense?  We can answer the question in the negative by being more precise about the nature of analogue models.  In a completely broad sense it is true that all experimental systems are themselves analogue systems---unless all we are interested in probing is the actual token system on which we are experimenting.  When we experiment we allow one system to stand in for another system that differs from the first in various ways.  If these two systems are not token identical then they merely analogous, being related by something other than strict identity.

That is correct as far as it goes, but in the vast majority of cases, the experimental system is related to the target system by something like a similarity transformation.  That is to say that generally we have to do with changes of scale, or with approximations, or suppressing certain parameters in constructing the experimental system.  So for example in precision tests of Newtonian particle physics we will attempt to find experimental systems for which the inevitable finite size of the bodies will not relevantly change the results of the test.  We see that taking the limit of smaller and smaller particles does not change the results to the precision under test.  In this case we have a system that approximates the target system by the continuous change in the value of a parameter as that value approaches zero.  This kind of thing is quite standard.  We attempt to suppress effects due to the idiosyncratic character of the actual systems with which we have to deal, character that tends to deviate from that of the target system in more or less regular ways.

Analogue systems in their full generality are not like that.  These systems are not necessarily similar to the target systems they are analogues for.  In the general case analogue systems are neither subsystems of the systems of interest, nor are they in any clear sense approximations to such subsystems (as billiard balls might be to Newtonian particles).  The laws that operate in these systems are not the laws operative in the target systems.  That final claim is too fast, of course.  Rather we should say that even though the laws of physics are the same for all physical systems, the phenomenal features in the analogue that are being taken as analogous to those of the target system arise from very different effects of the laws of nature than they do in the target system.

The proximate physical causes of the two systems differ markedly.  Consider the following example:  When speech causes a human body to perform some action---the kicking of a leg under a doctor’s orders for example---the relevant explanation is of a radically different character than when the cause is a direct physical manipulation---when the doctor strikes the patellar tendon with a hammer for example.  In both cases of course the ultimate causal agency is (overwhelmingly) the electromagnetic fields.  But the salient causes are quite different.

The appropriate description of the causes that are operative in an analogue system, even though merely artifactual features of that system, determines what we mean by projectible predicates in this context.  Even though we use suggestive terminology that mimics that used for the target system (mass for mass, momentum for momentum, etc.), the fact is that our normal predicates do not obviously apply in these cases.  We have merely identified sub-systems (that is, isolated regimes) of the analogue systems that support counterfactual, causal descriptions appropriate to our interests as modelers.  These sub-systems can provide useful insight into their target systems only if their behavior is stable in the right way.  And the right way is that they are independent of  the finer and grosser details of the underlying systems of which they are parts; the sub-systems, as proper analogues, must be protected from the effects of significant changes of the super-systems.  Such protection is what allows the identification of the predicates of the one system with those of the other.

Look again at the Bose-Einstein condensate.  That analogue system is a strange one.  The target of the simulation is a continuous classical spacetime metric that is coupled to the expectation value of a quantum field.  This is being simulated by the analogue system of a single, unified quantum state supporting classical sound waves.  As we saw, Barcelo, Liberati, and Visser generalize the governing equations for the Bose Einstein condensate by proposing new potentials, and then show that the new system is governed by equations of motion that are essentially non-relativistic but which encode a Lorentzian spacetime geometry. Their formal analysis allows one to treat the system encoded by these equations of motion as though it described a dynamical spacetime metric.

However the metric of the actual space they consider is non-dynamical across the span of the system.  The processes operative there are radically, qualitatively unlike those of the semiclassical Einstein equation.  Instead the “metric” is really a feature of the tensorial mass distribution.  So we have neither a similarity by approximation, not by suppression of parameters, but instead something other.  This is more like doing particle mechanics with standing waves in a river, than with billiard balls.  We could see “particle” creation there too---some dip and some hump might emerge from the same loction and move off scene.  Here the connection between the simulation and its target is as indirect as that of the leg kicking case.  The behavior is being caused in the one case by peculiar features of the condensate, and in the other by the interaction of the spacetime geometry with a quantum field
. We have a system with new “physical laws” that are merely artifacts of the analogue system.  And it is those artifactual laws that we hope will shed light on the target system, the universe as a whole. 

To emphasize the point:  Even the descriptive terminology we use to apply to the Bose-Einstein condensate is merely artifactual.  We have a “mass” term, and we talk about “particles”, and the “metric” but these are no more than names that we apply to certain projectible features of the condensate to indicate the analogical role they will play in our later analysis.  The key work is in finding the stable features of the condensate, identifying them with features of interest in the cosmos, and showing that the sub-system in which these features are the operant causes are independent of the vagaries of the super-system.

Before closing this section we point out one further, important conclusion to be drawn about this class of experiment:  The members of this class are much closer to what is normally called a simulation, than to more common model systems.  That is, we try to mimic the behavior of the target system by features of the simulation that arise from qualitatively dissimilar causes.  In the next section we consider these systems through the lens of Suppes’ account of models in the sciences.

3. Natural, analogue, and simulated laws.  Our basic orientation is that it is fruitful to view computer simulation as a kind of analogue experiment.  Returning to Goodman’s distinction between projectible and non-projectible predicates, we can make the following observation.  In general, in computer simulations, and in analogue simulation more broadly, we do not know the natural kinds and very often we do not have a good sense for what predicates of the simulation are projectible.  More seriously we do not know what the relation is between the projectible predicates of the one system and those of the other---especially since we are often trying to use the simulation to find those predicates that are the most fruitful for framing our hypotheses.

3.1 Theories of Experiment.  To get clear on the issues that face us, it will be worthwhile to introduce some categories that will allow us to relate the general aspects of analogue physical systems to those of computer simulations.  We will characterize the relation between the physical analogue system and the target system in Suppes’ framework from “Models of Data” (1962).  What we are trying to do is relate one system to another by some mathematical relation between them.  Generally we have a theory of some experimental set-up, including a method for turning our finite data into mathematical models involving perhaps continuous values of various parameters.  To investigate some system type by conducting an experiment we abstract away irrelevant features of the experimental setup using our theory of the experiment and construct this data model.  We can then compare that model to the various mathematical models that arise in our theoretical descriptions of the target system.

In the more general case of analogue systems there is the added complication of restricting the parts of the experimental system we allow to be relevant despite being just as significant in magnitude and scope as other parts.  For example in the Bose-Einstein condensate we pay attention only to certain vibrational modes even though other modes are present and impact the state of the system---we do not identify those modes with particle anti-particle pairs, we do identify these modes with them.

Even with these complications however the basic framework is the same.  We have two systems, the target and the experiment.  To bring the results of our experiment to bear on the target we need a more or less explicit theory of that experiment---less in cases where the similarity between the experiment and the target is obvious, more in cases where the connection is more tenuous.  An experiment in Newtonian particle mechanics using a billiard table needs a much less explicit theory of the experiment than an experiment in quantum cosmology using a Bose-Einstein condensate.

We have seen that even in the case of the Bose-Einstein condensate it is possible to provide a very general analysis of the causal artifacts of the system and their complicated interactions with each other.  We did not discuss the breakdown of the model, but it turns out that the system can be made stable and that the analogy itself can be made stable across a wide range of parameter values---and most importantly, that range is known.

We can see that our theory of the experiment in this case functions as it should despite the fact that the underlying features of the experimental system are so far removed from the salient, artifactual, causal agents of the experiment as a model of the target system.  So artifactual physical causes can be straight forwardly brought under the general framework of Suppes’ model for experiments in the science (and thus can be easily incorporated into a broadly semantic conception of theories).

We will see however that things are not so clear in the case of interacting systems modeled by large scale computer simulations.  While there is a tight qualitative similarity between the classes of artifact that arise there, we have very little control over the higher level artifacts of the simulation, and what control we do have requires tedious case by case attention.  For there we are lacking appropriate theories of the experiment---and the prospects for meeting that need by pure analysis are dim.  We will advocate an experimental program for finding appropriate theories of experiments employing the artifacts arising out of the underlying code in computer simulations.  We suggest that only in this way can we insulate our experimental setup from peculiarities of the interaction of the bits of code themselves, and isolate the interactions of the artifacts that comprise the experiment.  And only by so doing can we find the projectible predicates in terms of which we can develop the operant laws of the simulation.

4. Application to computer simulation.  Like any other large software application, computer simulations often produce unexpected behaviors.  Sometimes these behaviors are the result of software bugs that are bad enough to cause spurious behavior—e.g., a simulated agent stops moving or interacting with its environment—but not so bad to cause the entire simulation program to crash.  Although unexpected, such behaviors are not so much artifacts of the simulation as they are products of the inevitably imperfect software development process.  But the same behavior, from a phenomenological perspective, might also be caused by software functioning exactly as it was designed to.  Whether we consider a given behavior to be a bug or an artifact depends as much on the cause of the behavior---and indeed on our attitude toward it---as it does on the nature of the behavior itself.  Indeed, it is one thing for an entity to freeze in a simulation because, say, of a missing semi-colon or because an array index was improperly initialized and quite another when that behavior follows from the interaction of software components that are functioning exactly according to specification

It might be tempting here to think about the difference between a “programming error” and a “logic error;” a bug results from a programming error while an artifact is the result of a logic error.  But that distinction exists only because we all agree where the programming stops and the logic starts, so to speak.  To abuse some of our earlier terminology, both programming error and logic error are projectible predicates in the context of computer simulation—they are robust classes of problems that support counterfactual reasoning (e.g., “If I initialize the array index to zero, I’ll avoid the overflow error”; “Incrementing the resource count before advancing the simulation clock led to some entities having a extra resources during the simulation”).  The more interesting problems are a subset of the logic errors, those that arise when we’re forced to rethink representational issues after the fact, when it turns out that what we took to be a projectible predicate in our simulation isn’t, or worse, can’t be given our representational assumptions.  They also happen to be those problems that occur because we have no good theory of the computational simulation as an experiment.
Each of the following three examples reveals a representational disconnect, each more problematic than the last.  In each case we’re confronted with a simulation artifact—an interaction gone awry between a simulated entity and its simulated environment—with no easy solutions in sight.  The first two examples follow from work we’ve done to improve “tactical movements” of soldiers in the US Army’s OneSAF Test Bed, v.2 simulation environment (OTB).  The last example comes from more straightforward cognitive modeling work we’ve done to extend the fidelity of a suite of task network modeling tools for simulating human performance.

4.1. Stuck in the floor.  The US Amy has sponsored the development of OTB, a large-scale, distributed simulation environment designed to address a wide range of simulation needs (e.g., simulation-based analysis, simulation-based training, simulation-based acquisition, etc.).  The code base comprises literally hundreds of libraries and over a million lines of software code.  OTB simulates entity-level interactions (e.g., two opposing soldiers shooting at each other) using a number of behavior models together with a wide variety of physics-based models to represent features of the environment (e.g., weather and terrain features, vehicle characteristics, ballistics etc).  Suffice it to say, the simulated world of OTB is both rich and complex.  At the same time, behaviors in OTB can be quite brittle.  For instance, the movement of simulated soldiers within simulated buildings breaks down in several interesting ways.

As an entity-level simulation, each simulated soldier is imbued with its own (i.e., a local instance of) basic route-finding and movement routines.  Given a goal-location to move to, these routines operate over a representation of both the terrain and the objects in it to plan a route through space and time to the location.  Given the constraints present in the simulated world—speed of movement, distance to target, possibility of terrain—not every target location will be reachable, which one would expect.  But there are other instances when locations turn out to be unreachable because the soldier gets stuck within a wall, or the ground, and simply cannot move or because upon arriving at the target location the solider would essentially be left hovering in the air.  The problem here isn’t one of avoiding simulated obstructions but rather of representing the obvious physics—two objects can’t occupy the same space, and soldiers can’t fly.  Of course, some of the relevant physics have been represented, but it comes into play at exactly the wrong time, only after the entity has moved into but not out of an impossible position.
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Figure 1.  A screen shot of pathological entity behavior in OTB.  Here the highlighted entity has moved into the room only to become “stuck” in the wall.  The simulation continues despite the fact that one entity has moved into a physically impossible location.
Although such breakdowns are treated within the OTB development community as software “defects” and remedied with various workarounds (e.g., by opening up an entity editor by hand and adjusting the x-y-z location of the soldier), the fundamental problem is one of a mixed fidelity representation where some, but not all of the relevant detail has been represented.  So what’s the heuristic we should apply for what gets represented and what doesn’t?  Obviously, we don’t want different objects occupying the same space, unless, of course, it’s the simulated gas cloud through which a simulated solider must pass.  We might treat the cloud as an object extended in space, but not the sort that prevents other objects from occupying the same space.  And even for other hard bodies, we might want some of them to be squeezable—like clowns into a car—and others to be not-so-squeezable—like 70-ton M1A1 tanks crossing between concrete barricades.  A good deal of detail starts to stand out as we think more and more about the seemingly obvious physics of object interactions.  At the same time, we cannot simply add more and more detail to our simulation model without running the risk of making the whole enterprise intractable.

The conventional wisdom in the simulation community holds that the fidelity of the simulation should be driven by the questions the simulation is intended to address.  This is trivially related to Suppes’ injunctions to the experimenter.  For example, there is no need to represent the color of a driver’s socks if the simulation is intended to answer questions about traffic flow on an interstate highway.  As an admonition to the over-eager model developer, there is something right about the conventional wisdom; there is no reason to add extraneous detail to model.  But how is one to know a-prior which detail will be extraneous?  The examples above demonstrate how a seemingly level-headed approach to the representation of bodies interacting in a simulated world goes wrong.  In fact, the situations above betray a pair of competing orientations.  The view from the top holds that we should model only enough detail to get the phenomenology of the simulation right—that is, we simulate just enough of the “physics” to engender only those interactions that reflect the salient features of the situations we’re simulating.  Thus we model humans as hard objects.  The view from the bottom, however, starts with a small handful of computational techniques that can be used to manifest various simulated behaviors and hopes that these will in fact produce all and only those interactions needed to get the phenomenology right.  Hard objects can’t occupy the same spaces, unless they happen to, and then they are stuck.  What is needed here are some principled connections between the two views—how do we ensure that our simulated interactions will behave in the right way without recapitulating all the actual physics in our simulated world?

4.2.  Stuck in the etiquette.  But even if we could identify and supplement the OTB environment with the right amount of physical detail, problems still remain at the behavioral level—that is, the level at which the simulated humans are intended to think and act like people.  The problem here isn’t behavior qua physics but, rather, a question of balancing the behavior of simulated people as both objects and agents.  Consider for example what happens when a group of simulated soldiers must move in a coordinated manner.

Such behaviors are especially brittle in and around buildings.  For instance, a group of simulated soldiers that march into an obstructed hallway will often get stuck—permanently—because the first soldier in the line can’t clear the obstruction and can’t back out and the soldier behind him is still trying to move forward, and so on down the line.  In this case the “physics” is fine insofar as the soldiers can’t pass around each other in the constrained interior space, but agent behavior is lacking.  There is no representation of “excuse me” built into the simulated soldier.  Similarly, there are cases when simulated soldiers should move in formation and for whatever reason one soldier in the formation will find his route obstructed.  This immediately spawns a route re-planning task for that agent, which will often get the agent back to his original place in the formation, but only after a long, seemingly inexplicable detour through enemy territory.  Sometimes a single will soldier will fail to move at all if it happens that constraints imposed by moving in formation cannot be satisfied given a particular configuration of geography and inter soldier spacing.  Rather than tighten the spacing to his buddy the soldier simply stays put. 
In these cases, the richness of the physical representation actually comes at the cost of the agent-level representation.  Indeed, the route-planning behaviors of the agents are quite sophisticated, using ground-truth information (i.e., variables used in the simulation that represent the physics of the simulated world—locations, sizes, velocities etc) about stationary and moving obstacles to plan and dynamically adjust routes through both time and space.  And yet, despite this sophistication, or perhaps because of it, there’s little code written in to determine when a plan needs to be adjusted (e.g., tighten formation rather halt movement) or how it might be communicated (e.g., “excuse me”).

The point here is that getting the physics right enough, as hard as that is, still isn’t enough to capture the right kinds of agent interactions.  And in the case of military simulations, these so-called tactical movements are a highly salient feature of the actual performance of human soldiers and, hence, should be a central feature of soldier simulations.  Thus, the problem of identifying useful abstraction recurs at a new level and our efforts must be redoubled.  Just as there is a question of how much physics to include, there is also a question of how much agent-based behavior to include, keeping in mind, again, that we can’t nor would we want to include every imaginable agent behavior.
4.3 Stuck in the head. The two previous examples demonstrate breakdowns in the representations of the simulated physics and in the interactions at the agent level.  In both cases, the problem is to identify all and only the salient interactions, without resorting to an endless post-hoc (and ad-hoc) repair strategy—augmenting representations and augmenting behaviors as problems are identified.  What is needed is a principled method for determining what should be represented to achieve a given level of fidelity in a simulation.  As we have argued, looking to independence results in analogue modeling suggests how this might be achieved for the simulated physics.  Likewise, Warwick and Napravnik (2004) have outlined a method for standardizing the agent behaviors in OTB by fixing a “catalog” of perceptions and actions that a simulated agent has access to.  This effort circumscribes agent behaviors more explicitly than is currently done within OTB (where, the joke goes, everything is a tank)  While some prefer to think about such standardization as fixing an ontology for the simulation, we point to the more prosaic function supported by the GameBot modification to the Unreal Tournament game environment.  Although the question will always remain whether a given “catalog” will support the representation of the right kind of agent interaction, having an explicit representation of the inputs to and outputs from an agent model bound makes easier to localize shortcomings in behaviors when they occur. 

While there is promise on both fronts, there is yet another level in simulation where questions about what to represent (and what not to represent) are pressing. To illustrate these concerns, we switch gears from discussion of a large-scale, distributed simulation, to that of the small self-contained representations of cognitive modeling.  In this context, questions about the physics of a simulated world are largely absent, while questions about agent interactions with that world or other agents are often tightly constrained (cf. Anderson and Lebiere (1998)).  In most cases, the goal of a cognitive model is to develop a computational representation of whatever it is the researcher believes is going on “inside the head” of  human agents as they perform various tasks—often those drawn from the experimental psychology literature—and to compare the performance of that model against human performance.  While there are a host of serious debates within the field about the nature of cognition (e.g., symbolic versus connectionist views), there is a surprising unanimity when it comes to the decidedly hypothetico-deductive face cognitive modelers present when discussing their enterprise in general: computational models implement theories of cognition, simulations generate predictions which either confirm or disconfirm theories and thereby support explanations of cognition.  Unfortunately, for all its homespun appeal, this view of the cognitive modeling enterprise is undercut to the extent that decisions about what gets represented in a cognitive model are largely up for grabs.

To see this we briefly describe the efforts of Best (2006) and Warwick and Fleetwood (2006) to compare performance of three very different cognitive modeling approaches to a well-known categorization task in experimental psychology.

4.3.1. The task.

The 5-4 category structure task is a familiar experimental psychology paradigm used to study categorization.  (Smith & Minda, 2000, Gluck et al., 2001).  The Brunswik faces are a set of stimuli typically used for this paradigm.  Each face stimulus is defined by four features, each with two possible values:  eye height (high or low), eye spacing (wide or narrow), nose length (long or short), and mouth height (high or low).  All the possible combinations of these features yield 16 possible faces (please see Figure 2).
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Figure 2.  From R.J. Peters et al. / Vision Research 43 (2003) 2265–2280, depicting the features and examples of three different faces.

The faces are divided into two groups, A and B, where the division is made by adjusting (in various combinations) the features of two prototypical faces that themselves have no features in common.  For example one often lets prototype A = (EH = high, ES = wide, NL = long, MH = high) and prototype B = (EH = low, ES = narrow, NL = short, MH = low).  Participants are trained on nine of these faces (5 of A and 4 of B), and once participants meet a performance criterion (perfect performance categorizing the nine training faces into A or B in a single training epoch), they are then tested on the full set of 16 faces, including the seven faces that they have not seen before.  This is to test their ability to generalize the categorization strategies that the participants have learned.

Even with this small set of stimuli and only two categories, the rules used to categorize the stimuli can be quite complex.  The 5-4 category structure is intended to make categorization difficult: no one feature is diagnostic and it is widely reported that human participants have a hard time with the task.  Note however that purpose of the task is not to test whether humans “correctly” generalize the category.  Rather what is being studied is how humans do in fact generalize it, and then how to model their performance properly.
4.3.2. Three different approaches

There are several different approaches that could be taken to model human performance on this task.  A strict behaviorist might flatly deny that there is any way to understand what’s inside the head of the human and instead simply model the observed relations between stimulus and response by regressing over the human data.  Best (2006) takes the opposite approach and argues that performance on this task calls for a detailed representation of the human’s ability to learn and internalize the diagnostic structure of the stimulus.  Warwick and Fleetwood (2006) split the difference and develop an “RPD” model that learns by experience (i.e., by reinforcing performance on a trial by trail basis) how to categorize the instances, without representing any stimulus structure internally.  These three approaches run the gamut in terms of the cognitive detail they represent and yet quantitative and, for that matter, qualitative fits are quite similar (please see Figure 3).  Using the meta-data from Smith and Minda, the linear regression has an R2 of .89, Best reports an R2 of .89 while Warwick and Fleetwood report an R2 of .84.
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Figure 3.  Comparisons between three different cognitive models and human performance data on the Brunswik faces categorization task.  Each model generates good quantitative fits to the data,  deviations from the data notwithstanding, particularly over the last seven transfer stimuli.  Which is correct cognitive model?
So, what does this say about the process-level representations of a cognitive model when three qualitatively different approaches yield quantitatively similar results?  One might respond along the lines drawn by Smith and Minda  (2000) who questioned whether this particular categorization task is sufficiently rich to discriminate among models .(Smith and Minda themselves developed additional models of the Brunswik faces task with even better overall fits to the data, but still despair at the prospects of learning anything about cognition from them.)  Or, in a similar vein, one might revisit Roberts and Pashler’s (2000) concerns that human performance data is so squirrelly that drawing any conclusion about cognition is unwarranted.  Alternatively, one might take a pragmatic angle and argue that having different models producing equally good predictions is a boon to simulation; so long as the phenomenology is right within the simulation, who cares how the behaviors were generated.

Unfortunately, for our purposes none of these responses hits the mark.  The problem here is not necessarily with the task being modeled or the data used to evaluate the model’s fit or whether the human behavior modeler has enough tools at his disposal.  Rather, the problem here is rooted in the flexible levels of representation that are so readily supported within computational models of cognition.  Without some principled means for identifying what should and shouldn’t be represented in the model, we cannot use the models for generating predictions or explanations.  Nor do we have any guarantee that a particular model that happens to produce reasonable predictions in one case will generalize to a new case.  The ability to predict, explain and generalize all follow from our ability to identify what’s doing the work in generating the model’s behavior.  As far as we’re concerned, artifactual behavior might as well be accidental behavior if we can’t point to the specific mechanisms that generate the behavior.  In fact, this points to one of the dirty secrets of cognitive modeling, namely, that the goodness of the model is often not so much a reflection of the theory being implemented but rather of the skill of the modeler in representing the task given a particular modeling architecture.  Worse, this problem is not limited to the examples we cite here, but has been identified in other cases where model “bake-offs” had been pursued (cf., Gluck and Pew 2001) and have led to similarly confounding results.

5. Conclusion.
Computer simulation is essentially analogical in a strong sense.  The laws of the simulation are never those of the simulated system.  They are always the laws of the actual computer we use.  Moving from Newtonian mechanics and the process of human cognition, through our equations of motion for the mechanics conjoined with a going theory of the mind, and on to the 2-d image being observed and manipulated by a user of one of these large modular platforms requires covering a lot of very rough conceptual terrain.

We saw in the case of simulation by means of analogue physical systems how important it is to have a theory of the experiment, and concomitantly, a theory showing that and how the relevant parts of that analogue operate independently of the other parts of the system within well-specified limits.  All of this amounts to having a good theory of what predicates (“mass” say, or “metric”) we may successfully project in the analogue system itself.

We are far from having such theories in the case of many of the large-scale distributed environments used for the simulation of human/environment interaction.  But these theories and their attendant battery of projectible predicates are sorely needed for these environments.  We have suggested that a first step in that direction is to explicitly contrast the work done in computer simulation with that done in physics simulation by means of analogue systems.  In particular, since generally we lack the theoretical tools needed to analyze the connection between the user level output simulation and the input at the level of code, we advocate an experimental program that will try to chart and catalogue some of these connections empirically.

Our global representational trouble arises from how far removed computer simulation is from the world it is intended to represent.  Even in the case of mathematical modeling we are closer to the physical world than we are here.  Every bit of “physics” in a simulation is the product of some computational artifact we have harnessed for this purpose.  But if this is so, then rather than trying to force our simulations to manifest only those “physical” laws that interest us, why not begin trying to harvest the “physical” laws they produce naturally?

We are trying to develop a method of finding out what the invariants, and objects, and laws are for a given class of simulation.  In the case of SAFBot interface to OTB alluded to above, for example, if we load some set of libraries into the simulator we can then ask how the world looks to a “medium-sized slow-moving dry-good” in the simulation.  How does it look to a “small fast-moving lump of lead”?  How does it look to a “person”?  How do these look to each other?  And so on.  We are not interested in physics done itself in simulation in these instances, rather we are asking about the physics of the actual simulation itself.  In the worlds of climate modeling for example, the basic structure of the world is very different from the represented world:  the geometry is discrete, the temperature differences are rational numbers, and time is also discrete. Even so we have good reason to expect in those cases that our simulated world is good enough---the physics of the model, and the connection between the model and the world are sufficiently independent of these unphysical features that we can ignore the differences. However in the case of weather simulation in particular, much of our confidence seems to come from empirical studies of the necessary fineness needed in the simulation so that we can have such independence.  But we don't have that kind of confidence with our current simulation platforms for agents---the agents get stuck, they walk on air, etc.  The physics of the simulation is opaque, and worse the relation between small changes at the code level and changes in the physics of the simulation is similarly opaque and beyond our control.  At this point, empirical (experimental) study would come in very handy.
On the other hand, we do know of the Brunswik faces program that the empty psychological world of “black-box behaviorism” is equivalent to Best’s explicit attempts to represent human learning and internalizing of the diagnostic structure of the stimulus is equivalent to Warwick and Fleetwood’s simulation that learns by reinforcing performance on a trial by trial basis is equivalent to the real world psychology of our test subjects (at least as far as facial recognition tasks are concerned).  We recommend extending the observational techniques that shows these equivalences to the more complicated case of distributed environments, and producing experimental analyses of this kind of simulation. In the case of the Brunswik faces we don’t need to care much about the underlying psychology model because we have independence results showing that this model is irrelevant for our purposes
.  Similarly we don't really care about the exact model of the physics that is to be simulated in the OTB world.  We have the advantage there of knowing the exact physics; that is to say, we already know the physics, we just don't have the resources to simulate it fast enough.   But what we don’t have are independence results.  If we had those we could just black box the hard stuff while still making it “seem” to our agents that there are walls, and floors, and flying bullets.

Problems beset us from the other end as well. Even though we saw in the Brunswik faces test that there were several approaches that were all adequate to the data, none were particularly good at extending their predictions into larger domains.  We have, in this class of human decision-making models no tools for and no insight into how to extend our successful simulations.  Even if we appeal to the invariance of the underlying “cognitive architecture” as reason to believe that our results could generalize, the truth of the matter is that the skill of the modeler has far more to do with successful modeling of new domains than whatever robustness we’d like to ascribe to the architecture itself.  More often than not, all we can do is capture known empirical features of a situation in a multitude of ways.  Until we develop the tools needed to extend confidently our predictions that derive from these various models we will gain insight neither into predicting human behavior nor into understanding the real process by which such decisions are made.

The problem here, as elsewhere in computer simulations, is that we simply cannot theorize from the ground up how our simulations will behave under various small modifications of their underlying code, and neither can we see from the descriptive accuracy of given simulations how much confirmation is conveyed downward from the simulation to the proposed theory.  This, in some sense, is necessarily the case.  We turn to computer simulation when the route from the theory to prediction is too messy and complicated to traverse with theoretical tools alone.

Our conclusions are necessarily modest.  We do not have strong results to point to that justify our experimental approach to the analysis of computer simulation, nor indeed do we have much more than the Baconian injunction “start experimenting”.  Instead we have given some sketchy and preliminary, but, we think, substantial indications that such an approach is likely to bear fruit.  By analogy with the analysis of analogue models in the physical sciences, themselves a kind of simulation, we see potential in experiment for gaining understanding of and control over those projectible predicates that arise out of the artifacts of large-scale computer simulations.
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� This problem has been addressed in a preliminary way by one of our (JM) students.  Zac Meyers (unpublished dissertation) has attempted to apply to cosmological processes Woodward’s concept of natural intervention (discussed for example in his entry for the Stanford online encyclopedia of philosophy, “Causation and Manipulability”).


� This is discussed in Birrell and Davies (1982) for example.  Many interesting features of semiclassical models have to do with particle production under various circumstances.  One reason for their interest is that these are features we can imagine actually observing in the cosmos.


� The simulation is even farther removed from the target system of course because we need also to identify the caused behavior by analogy as well.  We don’t address that issue here.


� Of course we do care about finding the proper model of human learning behavior as we saw above.  It’s just that it's not relevant to this particular case.
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