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Abstract. It is known that the box dimension of any Martin-Löf random
closed set of {0, 1}N is log2( 4

3
). Barmpalias et al. [Journal of Logic and Com-

putation, Vol. 17, No. 6 (2007)] gave one method of producing such random
closed sets and then computed the box dimension, and posed several questions

regarding other methods of construction. We outline a method using random

recursive constructions for computing the Hausdorff dimension of almost ev-
ery random closed set of {0, 1}N, and propose a general method for random

closed sets in other spaces. We further find both the appropriate dimensional

Hausdorff measure and the exact Hausdorff dimension for such random closed
sets.

1. Introduction

In [1], a specific method of producing random closed sets of {0, 1}N is proposed
and the box dimension of every Martin-Löf random closed set is shown to be η =
log2( 4

3 ). Our goal will be to outline a method from [6] for computing Hausdorff
dimension and Hausdorff measure in that dimension, and moreover a method to
find the exact Hausdorff dimension functions for random recursions from [5], and
to show how this method can be used to compute the Hausdorff dimension and
exact Hausdorff dimension of almost every random closed set. More specifically,
our main goal will be to prove the following theorem:

Theorem 1. For almost every random closed set Q, dimH(Q) = η. Moreover,

Hη(Q) = 0 almost surely. Let h(t) = tη log(| log(t)|)2−
log(4)
log(3) . Then, for almost

every Q, 0 < Hh(Q) <∞.

First we will outline a definition for random closed sets. Note that this differs
from the definition given in [1], for two reasons. Firstly, Barmpalias et al. were
concerned primarily with Martin-Löf randomness, whereas we will construct our
closed sets based on probability. Secondly, we will not be concerned about coding
a construction which is not one-to-one (i.e. we may have multiple codes for a single
set). If S is a set, define S∗ as the set of all finite sequences from S, including
the empty sequence ∅. If α = (a1, . . . , an) ∈ S∗, and β = (b1, . . . , bm) ∈ S∗, then
let |α| = n and α ∗ β = (a1, . . . , an, b1, . . . , bm). The general setting for a random
closed set construction is {0, 1}N, with the ultrametric ρ(σ, τ) = 1

2|σ∧τ|+1 , where for
distinct σ, τ ∈ {0, 1}N, σ ∧ τ is the longest finite string which agrees with both of
τ and σ. We have a probability space (Ω,Σ, P ), and a collection of Qσ indexed by
σ ∈ {0, 1}∗, so that
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(1) each Qσ : Ω → K({0, 1}N), where K({0, 1}N) denotes the space of compact
subsets of {0, 1}N

(2) Q∅ = {0, 1}N with probability 1

(3) for each σ ∈ {0, 1}∗, P (Qσ∗0 = [σ ∗ 0], Qσ∗1 = [σ ∗ 1]|Qσ 6= ∅) = P (Qσ∗0 =
[σ ∗ 0], Qσ∗1 = ∅|Qσ 6= ∅) = P (Qσ∗0 = ∅, Qσ∗1 = [σ ∗ 1]|Qσ 6= ∅) = 1

3 , where [τ ] is
the set of words in {0, 1}N which agree with τ for the entire length of τ .

Define Q(ω) =
⋂
n≥0

⋃
|σ|=n

Qσ(ω). For each ω ∈ Ω, Q(ω) is called a random closed

set.

In comparison, the general model from [6] is as follows.

Fix a Euclidean space Rm, and a nonempty compact subset J ⊂ Rm, so that
cl(int(J)) = J . Assume that we have a probability space (Ω,Σ, P ) and a family of
random subsets of Rm,

J =
{
Jσ|σ ∈ N∗

}
,

satisfying three properties:

(1) J∅(ω) = J for almost all ω ∈ Ω. For every σ ∈ N∗ and for almost all ω, if
Jσ(ω) is nonempty, then Jσ(ω) is geometrically similar to J .

(2) For almost every ω and for every σ ∈ N∗, Jσ∗1(ω), Jσ∗2(ω), . . . is a sequence
of nonoverlapping subsets of Jσ(ω). (By ”A and B are nonoverlapping” we mean
that int A ∩ int B = ∅.)

(3) The random vectors τσ = 〈Tσ∗1, Tσ∗2, . . . 〉, σ ∈ N∗, are i.i.d., where Tσ∗n(ω) is
the ratio of the diameter of Jσ∗n(ω) to the diameter of Jσ(ω) if Jσ(ω) is nonempty.
(For convenience, let T∅(ω) = diameter of J .)

We call such a system J a construction. Our constructions require only a ”sto-
chastic ratio self similarity”, and also allow for infinite branching. We now define
the random set K by

K(ω) =
⋂
n≥1

⋃
σ∈Nn

Jσ(ω).

For convenience, let 00 = 0. Then
∑
p≥1

T 0
σ∗p(ω) counts the number of nonempty

Jσ∗p(ω), if Jσ(ω) is itself nonempty. For β ≥ 0, define Φ : [0,∞) → [0,∞) by
Φ(β) = E

( ∑
n≥1

T βn
)

= E
( ∑
n≥1

T βσ∗n
)
. Note that the assumption ”Φ(0) > 1”, well

known from branching processes, as explained in [6], guarantees that with positive
probability, K 6= ∅.

The following theorems are some results from random recursive constructions
that we will use to examine random closed sets. In these theorems we use the
following notation: if (X, ρ) is a metric space, and E ⊂ X, then dimH,ρ(E) denotes
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the Hausdorff dimension of E with respect to the ρ metric (For a reference on
Hausdorff dimension/measure, try [7] or [3]. For a reference on exact Hausdorff
dimension/measure, try [8]). Similarly, Hα

ρ is the dimension α Hausdorff measure
with respect to ρ, and Hg

ρ is the Hausdorff measure with respect to the gauge
function g and metric ρ. In the case where ρ is understood, we omit the subscript
ρ.

Theorem 2. Suppose Φ(0) > 1. Then, with positive probability, K is nonempty.
Moreover, if α is the least β so that Φ(β) ≤ 1, then if K 6= ∅, α is almost surely
the Hausdorff dimension of K; i.e. P (dimH(K) = α|K 6= ∅) = 1.

The proof of this, just as the setup outlined above, is contained in [6].

In the case |S| = n < ∞, the construction is called an n-ary construction. In
this case, much more is known. We give two examples of what is known which can
be applied to the main model given in [1].

Theorem 3. With α defined as in Theorem 2, if P (
∑

1≤i≤n
Tαi 6= 1) > 0, then

Hα(K) = 0 almost surely.

This is Theorem 7.7 from [4].

Theorem 4. Suppose that J is an n-ary construction with Φ(0) > 1, and suppose
that each Ti takes only finitely many values P −a.e. and that P (

∑
1≤i≤n

Tαi 6= 1) > 0.

Then, for P − a.e. ω, if K(ω) 6= ∅, then
0 < Hh(K(ω)) <∞,

where h(t) = tα(log | log(t)|)1− α
m .

This is only a specific case using Theorems 5.1 - 5.4 from [5].

Next is a lemma which will be necessary to convert from random closed sets to
random recursions. It is primarily concerned with how Hausdorff dimension and
measure change under Hölder (and hence bi-Hölder) maps.

Lemma 5. Let (X, ρ), (Y, r) be metric spaces, and φ : X → Y , with φ Hölder of
order d. That is, for some m, r(φ(x), φ(y)) ≤ m · ρ(x, z)d for all x, y ∈ X. Then,
for β ≥ 0, Hβ

r (φ(E)) ≤ mβHdβ
ρ (E) for each E ⊂ X. Moreover, if E ⊂ X, then

dimH,ρ(E) ≥ d · dimH,r(φ(E)).

Proof. Let E ⊂ X. If G is a δ-mesh cover of E (meaning each set in G has diam-
eter ≤ δ), then if A ∈ G, diam(φ(A)) ≤ mδd, so φ(G) := {φ(A) : A ∈ G} is an
mδd-mesh cover of φ(E). Thus,

H
β
mδd,r

(φ(E)) = inf{
∑
I∈I

|I|β : I is an mδβ-mesh cover of φ(E)}

≤ inf{
∑
A∈G
|φ(A)|β : A ∈ G, G is a δ-mesh cover of E}

≤ inf{
∑
A∈G

mβ |A|dβ : A ∈ G, G is a δ-mesh cover of E}

= mβ · inf{
∑
A∈G
|A|dβ : A ∈ G, G is a δ-mesh cover of E}
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= mβH
dβ
δ,ρ(E).

Letting δ → 0, Hβ
r (φ(E)) ≤ mβHdβ

ρ (E). Also, note that if Hβ
r (φ(E)) =∞, then

Hdβ
ρ (E) =∞, and hence dimH,ρ(E) ≥ d · dimH,r(φ(E)). �

Note that in the case φ is bi-Hölder of order d, i.e. m1 ·ρ(x, z)d ≤ r(φ(x), φ(z)) ≤
m2 · ρ(x, z)d, for some m1,m2 > 0, then there is equality in the last statement of
Lemma 5.

2. Random Closed Sets Without Dying

We say the construction outlined from [1] is ”without dying”, since there is 0
probability that a node in the tree has no children. In order to compute the almost-
sure Hausdorff dimension of these random closed sets, we will transfer the problem
to a random recursive construction and then use Lemma 5 to relate the two. In
order to do this, we will map each Q to a random subset of Cantor’s middle third
set (call it C), and we will find the Hausdorff dimension with respect to the stan-
dard Euclidean metric. If φ : {0, 1}N → C is defined by φ(σ) =

∑
i≥1

2σ(i)
3i , then

φ is a bijection. Translating (1)-(3) from the above description of random closed
sets, define J∅(ω) = [0, 1], then for each σ ∈ {0, 1}∗, if Jσ(ω) 6= ∅, define Jσ∗0(ω)
as the left third of the interval Jσ(ω) if Qσ∗0(ω) 6= ∅ and Jσ∗0(ω) = ∅ otherwise.
Similarly define Jσ∗1(ω) as the right third. This is simply a random recursive con-
struction, where the reduction ratios are, with equal probability, one of three things:
Tσ∗0 = Tσ∗1 = 1

3 , Tσ∗0 = 0 and Tσ∗1 = 1
3 , or Tσ∗0 = 1

3 and Tσ∗1 = 0. Also, by
construction, φ(Q(ω)) = K(ω) almost surely.

Then, if β ≥ 0, Φ(β) = E(T β0 +T β1 ) = 22
3 ( 1

3 )β , which is 1 only for β = log(4)
log(3) − 1,

so by Theorem 2, the Hausdorff dimension of K is almost surely α = log(4)
log(3) − 1.

Also notice that if σ, τ ∈ {0, 1}N, then
ρ(σ, τ)d ≤ |φ(σ)− φ(τ)| ≤ 3ρ(σ, τ)d,

where d = log 3
log 2 , since

|φ(σ)− φ(τ)| = |
∑
i≥1

2(σ(i)−τ(i))
3i | = |

∑
i>|σ∧τ |

2(σ(i)−τ(i))
3i |

≤
∑

i>|σ∧τ |

2
3i = 1

3|σ∧τ|
= 3ρ(σ, τ)d

and
|φ(σ)− φ(τ)| = |

∑
i>|σ∧τ |

2(σ(i)−τ(i))
3i | ≥

2
3|σ∧τ|+1 −

∑
i>|σ∧τ |+1

2
3i = 2

3|σ∧τ|+1 − 1
3|σ∧τ|+1 = ρ(σ, τ)d.

By 5 and the remarks that follow it, this bi-Hölder inequality implies that, with
regard to the ρ metric, the Hausdorff dimension of Q is almost surely d · α =
( ln 4
ln 3 − 1)( ln 3

ln 2 ) = log2( 4
3 ) = η. Moreover, Theorem 3 gives us that Hα(K) = 0

almost surely, and so Lemma 5 implies that Hη(Q) = 0 almost surely.
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Note that similar results can be found for packing dimension and upper box
dimension by the results contained in [2]. Specifically, one could use Theorem 3.1,
which says that if K 6= ∅, dimP (K) = dimB(K) = dimH(K) = α almost surely.

Moreover, we can find the almost-sure exact Hausdorff dimension for Q, but first
we need the following extension of Lemma 5.

Lemma 6. Let (X, ρ), (Y, r) be metric spaces, and φ : X → Y , with φ bi-Hölder of
order d. That is, there are constants m1,m2 > 0 so that m1ρ(x, z)d ≤ r(φ(x), φ(z)) ≤
m2ρ(x, z)d. Let g(t) = tα log(| log(t)|)p, and h(t) = tαd log(| log(t)|)p, where p > 0.
Then, if E ⊂ X so that 0 < Hg

r(φ(E)) <∞, then 0 < Hh
ρ (E) <∞.

The proof of this is similar to the proof of Lemma 5, using the small additional
fact that lim

δ→0+

log(| log(mδd)|)p
log(| log(δ)|)p = 1.

Now, to complete the proof of Theorem 1, we set h(t) = tη log(| log(t)|)1−α =

tlog2(
4
3 ) log(| log(t)|)2−

log(4)
log(3) and combine Lemmas 4 and 6, to show that if Q is a

random closed set in the above construction, then P (0 < Hh
ρ (Q) <∞) = 1. �

3. Random Closed Sets of {0, 1}N With Dying

In [1], a question is proposed, where, instead of a random closed set being defined
by taking equal probabilities for each node to have both a left and right child, just
a left child, or just a right child, we also allow them to have no children. Moreover,
we might allow different probabilities for each of ”splitting”, ”keeping the left”,
”keeping the right”, or ”dying”. That is, when (3) from above is changed to

(3) for each σ ∈ {0, 1}∗, P (Qσ∗0 = [σ ∗ 0], Qσ∗1 = [σ ∗ 1]|Qσ 6= ∅) = pboth,
P (Qσ∗0 = [σ ∗ 0], Qσ∗1 = ∅|Qσ 6= ∅) = pleft, P (Qσ∗0 = ∅, Qσ∗1 = [σ ∗ 1]|Qσ 6= ∅) =
pright, and P (Qσ∗0 = ∅, Qσ∗1 = ∅|Qσ 6= ∅) = pdie.

Theorem 7. For the model of constructing random closed sets of {0, 1}N just de-
scribed, the following hold, if pboth > pdie:

(i) P (Q 6= ∅) > 0

(ii) P (dimH(Q) = log2(1 + pboth − pdie)|Q 6= ∅) = 1

(iii) Hlog2(1+pboth−pdie)(Q) = 0 almost surely

(iv) If Q 6= ∅, then 0 < Hh(Q) <∞ almost surely, where
h(t) = tlog2(1+pboth−pdie)(log(| log(t)|)1−log3(1+pboth−pdie)

Proof. In this case, we again view this as a random subset of C, in the following
manner: J∅(ω) = [0, 1], and for each σ ∈ {0, 1}∗, if Jσ(ω) 6= ∅, define Jσ∗0(ω) as the
left third of the interval Jσ(ω) if Qσ∗0(ω) 6= ∅ and Jσ∗0(ω) = ∅ otherwise. Similarly
define Jσ∗1(ω) as the right third. In this case, the reductions ratios are, one of
four things: Tσ∗0 = Tσ∗1 = 1

3 , Tσ∗0 = 0 and Tσ∗1 = 1
3 , Tσ∗0 = 1

3 and Tσ∗1 = 0,
or Tσ∗0 = Tσ∗1 = 0. Then, if β ≥ 0, Φ(β) = E(T β0 + T β1 ) = pboth · 2 · ( 1

3 )β +
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pleft · ( 1
3 )β + pright · ( 1

3 ) = (2pboth + pleft + pright)( 1
3 )β = (1 + pboth − pdie)( 1

3 )β ,
so Φ(0) > 1 ⇐⇒ pboth > pdie, hence we can assured that K, and hence
Q, is nonempty with positive probability. Also, by Theorem 2 we know that
P (dimH(K) = log3(1 + pboth − pdie)|K 6= ∅) = 1 and hence by Lemma 5, we know
that P (dimH(Q) = log3(1 + pboth− pdie) · d = log2(1 + pboth− pdie)|Q 6= ∅) = 1, i.e.
if Q is nonempty, dimH(Q) = log2(1+pboth−pdie) almost surely. Also by Theorem
3 and Lemma 5, we know that Hlog2(1+pboth−pdie)(Q) = 0 almost surely.

Theorem 4 implies that if g(t) = tlog3(1+pboth−pdie)(log(| log(t)|)1−log3(1+pboth−pdie),
P (0 < Hg(K) < ∞|K 6= ∅) = 1, and hence by Lemma 6, P (0 < Hh(Q) < ∞|Q 6=
∅) = 1.

�

4. An Additional General Model

One can analyze the following general model. Let P be a probability distribution
on the sets of all finite trees, S∗. The process begins by choosing a tree according
to P , and then for each end node of the tree, independently choose trees according
to P and append it to those nodes. This is the specific model outlined in [1], and it
could be viewed as a random recursive construction by using

∏
i∈N

(S∗, P ). Because

random recursive fractal constructions can use words from N∗, one could view the
process of appending a random tree from S∗ as simply another random recursion,
one could define the Js in a way so that the number of children produced is not
done node-by-node, but instead is done tree-by-tree.
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