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Abstract. This paper is part of a project that is based on the notion of dialectical system, intro-
duced by Magari as a way of capturing trial and error mathematics. In [2] and [3], we investigated
the expressive and computational power of dialectical systems, and we compared them to a new
class of systems, that of quasidialectical systems, that enrich Magari’s systems with a natural mech-
anism of revision. In the present paper we consider a third class of systems, that of p-dialectical
systems, that naturally combine features coming from the two other cases. We prove several results
about p-dialectical systems and the sets that they represent. Then we focus on the completions of
first-order theories. In doing so, we consider systems with connectives, i.e. systems that encode
the rules of classical logic. We show that any consistent system with connectives represents the
completion of a given theory. We prove that dialectical and q-dialectical systems coincide with
respect to the completions that they can represent. Yet, p-dialectical systems are more powerful:
we exhibit a p-dialectical system representing a completion of Peano Arithmetic which is neither
dialectical nor q-dialectical.

1. Introduction and background

Formal systems represent mathematical theories in a rather static way, in which axioms of the
represented theory have to be defined from the beginning, and no further modification is permit-
ted. It has often been argued that this representation is not comprehensive of all aspects of real
mathematical theories: see, for instance, the seminal work of Lakatos [13] for arguments against
any hastily correspondence between formal systems and the way in which mathematicians deal with
real theories. Our goal is to model cases in which a mathematician, when defining a new theory,
chooses axioms through some trial and error process, instead of fixing them, once for all, at the
initial stage. A possible way of characterizating such cases is provided by the so-called experimental
logics, firstly studied by Jeroslow in the 1970’s [10] (for a nice discussion about these logics and
their philosophical meaning the reader is referred to K̊asa [11]). Our approach is based on another
notion, that of dialectical systems, introduced by Magari [14] in the same period. In doing so, we
continue the investigations initiated in [2] and [3].

The basic ingredients of dialectical systems are a number c, encoding a contradiction; a deduction
operator H, that tells us how to derive consequences from a finite set of statements D; and a
proposing function f , that proposes statements to be accepted or rejected as provisional theses of
the system. In [2], we introduced a new class of systems, that of q-dialectical systems (there called
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“quasidialectical”), by enriching Magari’s systems with a natural mechanism of revision. This is
obtained by means of two additional ingredients: a replacement function f−, that provides for all
axioms a substituting axiom, and a symbol c−, that encodes any sort of problem, possibly weaker
than mathematical contradiction, that can justify the replacement of a certain axiom. In [2] and
[3], we drew an accurate comparison between the expressivness of these two systems. In particular,
we showed the following: dialectical sets and q-dialectical sets (i.e., the set of statements that are
eventually accepted by, respectively, dialectical and q-dialectical systems) are always ∆0

2; the two
systems have the same computational power, in the sense that the class of Turing degrees that
contains a dialectical set coincide with the class of Turing degrees that contains a q-dialectical
set (and in fact they are equivalent to the class of computably enumerable Turing degrees); yet,
q-dialectical sets form a class which is much larger than that of dialectical sets, since q-dialectical
sets inhabit each level of Ershov hierarchy, while dialectical sets are all ω-computably enumerable.

In this paper we consider a third class of systems, called p-dialectical systems. Their introduction is
motivated by two main reasons. First, p-dialectical systems naturally combines, in their behaviour,
features characterizing the other two classes: they have a mechanism of revision, as in the case of
q-dialectical systems, but they do not distinguish between c and c−, having only c in their syntax,
as in the case of dialectical systems. In fact, dialectical and q-dialectical systems can be defined
as modifications of p-dialectical systems, as we will do in the next section. The second important
reason for focusing on this new class is connected with the completions of first-order theories.

As is shown below, if we restrict to the case of systems with connectives, i.e. systems in which the
deduction operator H has to satisfy the rules of classical logic, then we do obtain the following: if
S is a system that does not derive the contradiction from the empty set of premises, then S is the
completion of a given theory. We make use of this fact to compare the expressiveness of our systems
regarded as machines to build, in the limit, completions. We show that dialectical and q-dialectical
completions coincide, all lying in the class of ω-c.e. sets. On the contrary, p-dialectical systems are
much more powerful: for every effectively indexed class of ∆0

2 sets we exhibit a concrete example
of a p-dialectical system representing a p-dialectical set which is a completion of Peano Arithmetic
not lying in that class. Each such p-dialectical system can be also looked at as an example of how
a p-dialectical system works in concrete, perhaps the first such examples even considering [2, 3],
more concerned with laying down the theoretical bases rather than examples and applications.

We would like to remark at this point that although dialectical systems may be viewed as a possible
approach to trial and error mathematics, the emphasis in this paper is of a rather abstract nature.
More than on the adequacy of these systems to formalize trial and error mathematics, we are
mainly interested in the computability theoretic properties of the dialectical sets (i.e. the sets
represented by these systems), and in the use of dialectical systems and our suggested variations
of the dialectical procedure as tools for producing more and more complicated ∆0

2 completions
of consistent formal theories having a strong enough expressive power. In Section 3 however we
sketch a brief comparison between dialectical systems and other approaches based on knowledge or
assumptions revision.

Although the exposition of this paper is rather self-contained, a certain familiarity with the def-
initions of dialectical and q-dialectical systems, as presented in [2], might help the reader that
aims at fully understanding the behaviour of the p-dialectical systems we will introduce next. Our
computable theoretic notions are standard and as in Soare [21].
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1.1. The p-dialectical systems. A p-dialectical system shall be thought as a machine for con-
structing a theory in stages, by adjusting the set of axioms whenever a contradiction is derived.
This is the same intuition that both dialectical and q-dialectical systems aim at modelling (see [2]).
What distinguishes the three cases is how they respond to the emergence of a contradiction, and
whether they are allowed to revise an axiom, when this is temporary rejected by system, instead of
being forced to fully dismiss it. We shall begin with the formal definition of p-dialectical systems.

In what follows, if f is the so-called proposing function, we will denote f(i) with fi.

Definition 1.1. A p-dialectical system is a quadruple p = 〈H, f, f−, c〉, where

(1) H is an enumeration operator such that H(∅) 6= ∅, H({c}) = ω, and H is an algebraic
closure operator, i.e., H satisfies, for every X ⊆ ω,
• X ⊆ H(X);
• H(X) ⊇ H(H(X)).

(2) f is a computable permutation of ω;
(3) f− is an acyclic computable function, i.e., for every x, the f−-orbit of x, i.e. the set

{x, f−(x), f−(f−(x)), . . . , (f−)n(x), . . .},

is infinite.

We call f the proposing function, f− the revising function, c the contradiction.

The p-dialectical procedure. Given such a p = 〈H, f, f−, c〉, and starting from a a computable
approximation α = {Hs}s∈ω (i.e. a computable sequence of finite sets, given by their canonical
indices, such that Hs ⊆ Hs+1 and H =

⋃
sHs), define by induction values for several computable

parameters, which depend on α: As (a finite set), rs (a function such that for every x, rs(x) is a
finite string of numbers, viewed as a vertical string, or stack), m(s) (the greatest number m such
that rs(m) 6= 〈 〉, where the symbol 〈 〉 denotes the empty string). In addition, there are the derived
parameters: ρs(x) is the top of the stack rs(x), Ls(x) = {ρs(y) : y < x and rs(y) 6= 〈 〉}, and, for
every i, χs(i) = Hs(Ls(i+ 1)).

Stage 0. Define m(0) = 0,

r0(x) =

{
〈f0〉 x = 0

〈 〉 x > 0,

and let A0 = ∅.

Stage s+ 1. Assume m(s) = m. We distinguish the following cases:

(1) there exists no k ≤ m such that {c} ∩ χs(k) 6= ∅: in this case, let m(s + 1) = m + 1, and
define

rs+1(x) =


rs(x) if x ≤ m
〈fm+1〉 if x = m+ 1

〈 〉 if x > m+ 1;
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(2) there exists k ≤ m such that c ∈ χs(k): in this case, let z be the least such k, letm(s+1) = z,
and define, where ρs(z) = fy,

rs+1(x) =


rs(x) x < z

rs(x)a〈f−(fy)〉 x = z

〈 〉 x > z + 1.

Finally let

As+1 =
⋃

i<m(s+1)

χs+1(i).

Notice that As+1 = Hs+1(Ls+1(m(s+ 1))) if m(s+ 1) > 0; otherwise As+1 = ∅.
Figures 1 and 2 illustrate how we go from stage s to stage s + 1, according to (1) and (2), respectively,
of the definition. The vertical strings above the various slots represent the various stacks r(x) at
the given stage. In each figure, only the relevant slots are depicted.
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Figure 1. From stage s to s+ 1 using (1).

We say that a p-dialectical system with enumeration operator H is consistent if c /∈ H(∅). We call
As the set of provisional theses of p with respect to α at stage s. The set Ap defined as

Ap = {fx : (∃t)(∀s ≥ t)[fx ∈ As]}
is called the set of final theses of p: notice that we write Ap and not Aαp because we are going to
show in next theorem that this set does not in fact depend on the approximation.

In the following theorem and its proof, relatively to any given approximation α we agree that
lims rs(u) exists finite if there exists t such that rs(u) = rt(u) for all s ≥ t; lims rs(u) exists infinite
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Figure 2. From stage s to s+ 1 using (2).

if there exists a stage t, such that for all s ≥ t rs(u) is an initial segment of rs+1(u) and
⋃
s≥t rs(u)

is an infinite string; finally we say that lims rs(u) does not exist if for infinitely many s we have
rs(v) = 〈 〉.

Lemma 1.2. The set of final theses of a p-dialectical system does not depend on the chosen ap-
proximation of the enumeration operator H, and, independently of the approximation, for every u,
either lims rs(u) exists finite, or lims rs(u) exists infinite and in this case for every v > u lims rs(v)
does not exist; or lims rs(u) does not exist, and in this case also for every v > u lims rs(v) does not
exist.

Proof. Let p = 〈H, f, f−, c〉 be a p-dialectical system and α = {Hs} an approximation to H.

First of all, if lims rs(u) exists infinite, the every time we redefine rs(u) we also set rs(v) = 〈 〉 for
every v > u; moreover it is easy to see that if lims rs(v) does not exist then there is some u < v
such that lims rs(u) exists infinite.

So the claim about lims rs(u) amounts to show that either lims rs(u) exists finite for every u or
there is a least u such that lims rs(u) exists infinite.

Now, L(0) = lims Ls(0) = ∅ and clearly this value does not depend on the approximation. Suppose
that L(u) reaches limit and the limit does not depend on the approximation, and let us consider
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u + 1: we show by induction on i that after L(u) has reached limit, the i-th bit r(u)i is the same
(whether defined or undefined) whatever approximation one considers. Now, r(u)0 = 〈fu〉 whatever
the approximation; and clearly, assuming the claim for i, we have that r(u)i+1 = f−(r(u)i) if and
only if c ∈ H(L(u) ∪ {r(u)i}), which shows independence from the approximation. In particular
lims rs(u) exists either finite or infinite, independently of the approximation. �

Theorem 1.3. As granted by the previous lemma, let u be the greatest number ≤ ω such that
the limit value L(u) exists finite, i.e. for every v < u lims rs(v) exists finite. If u > 0 then,
independently of the approximation, Ap = H(L(u)) (where L(ω) =

⋃
v∈ω L(v) if u = ω), and

Ap = L(ω) if u = ω. If u = 0 then, independently of the approximation, Ap = ∅.

Proof. Let u be as in the statement of the theorem. Let us show first that H(L(u)) ⊆ Ap. If u < ω
then cofinitely many times we have L(u) ⊆ Ls(m(s)), which implies Hs(L(u)) ⊆ Hs(Ls(m(s));
hence cofinitely many times we have Hs(L(u)) ⊆ As, which implies that H(L(u)) ⊆ Ap, indepen-
dently of the approximation. If u = ω then for every v an argument similar to the previous case
shows that L(v) ⊆ Hs(L(v)) ⊆ As for cofinitely many s, and thus L(ω) ⊆ Ap, independently of the
approximation.

We want now to show now that Ap ⊆ H(L(u))) and Ap ⊆ L(ω) if u = ω: in the latter case by
properties of H this implies also that Ap ⊆ H(L(ω)). We distinguish again the two possible cases:

• u < ω: for infinitely many s, we have that (whatever the approximation) As = Hs(L(u))
which shows that Ap ⊆ H(L(u)).
• u = ω: suppose now that fx /∈ L(ω). Then, whatever the approximation, c ∈ H(L(x) ∪
{fx}), and thus fx /∈ Hs(Ls(x)) for every big enough stage. Let t be a stage such that
starting from this stage L(x) has reached limit already and fx /∈ Hs(Ls(x)) for every s ≥ t.
Let t0 ≥ t be such that fx ∈ Ht0(Lt0(v)) (v = m(t0): notice that x < v); then there is a
stage s1 ≥ t0 such that c ∈ Hs1(Lt0(v)); it follows that there is a stage t1 ≥ t0 such that
L(v) changes value at t1, giving m(t1) < v. If fx /∈ At1 then we have found a stage ≥ t0 at
whichfx /∈ Ap has changed; otherwise we repeat the same argument, but taking v = m(t1).
By choice of t and properties of x, it is clear that proceeding in this way we end up with
some t′ ≥ t0 such that fx /∈ At′ . We have shown that for every t0 such that fx ∈ At0 there
is a later stage t′ such that fx /∈ At′ . As this works for whatever approximation we use, this
shows that fx /∈ Ap whatever the approximation. We have thus shown that Ap ⊆ L(ω).

Finally we consider the case u = 0. In this case m(s) = 0 infinitely many times, then Ap = ∅,
whatever the approximation. �

Definition 1.4. A pair (p, α) where p = 〈H, f, f−, c〉 is a p-dialectical system and α is an approx-
imation to H is called loopless if for every u, the set {ρs(u) : s ∈ ω} is finite.

Remark 1.5. In view of the previous theorem if there is a loopless approximation then all ap-
proximations are loopless, and we will be justified in talking about a loopless p-dialectical system,
and referring to the final theses Ap of p, without mentioning any special approximation α to the
enumeration operator H of p.

Corollary 1.6. If p is loopless then Ap = L(ω).

Proof. See the proof of Theorem 1.3. �



TRIAL AND ERROR MATHEMATICS: DIALECTICAL SYSTEMS AND COMPLETIONS OF THEORIES 7

A set A ⊆ ω is called p-dialectical if A = Ap for some p-dialectical system, and we say in this case
that A is represented by p.

1.2. Dialectical systems and q-dialectical systems. Dialectical systems and q-dialectical sys-
tems have been extensively studied in [2] and [3]; the reader is referred to these papers for both full
definitions of them and philosophical motivations for their study. For our present interests, let us
show where the definition of a p-dialectical system is to be modified in order to obtain these others
systems.

Definition 1.7. A dialectical system is a p-dialectical system with no revising function. That is
to say, a dialectical system is a triple d = 〈H, f, c〉, in which H, f, c satisfy the same conditions
formulated within Definition 1.1. All the others parameters we have introduced for p-dialectical
systems (As, rs,m(s), ρs(x), rs(x), Ls(x), and χs(i)) hold the same meaning for dialectical systems.

Dialectical procedure. The dialectical procedure is equal verbatim to the p-dialectical procedure
for stage 0, and for any application of Clause (1) of any given stage s+ 1. Thus the only difference
is with Clause (2), which in the case of dialectical systems has to be modified as follows:

(2) there exists k ≤ m such that c ∈ χs(k): in this case, let z be the least such k, and distinguish
two cases:

(2.1) if c ∈ Hs(∅), then let m(s+ 1) = 0, and define

rs+1(x) =

{
〈f0〉 if x = 0

〈 〉 if x > 0;

(2.2) otherwise, let m(s+ 1) = z + 1, and define

rs+1(x) =


rs(x) if x < z

〈fz+1〉 if x = z + 1

〈 〉 if x = z or x > z + 1.

We say that a dialectical system with enumeration operator H is consistent if c /∈ H(∅). The sets
of final theses of dialectical systems and dialectical sets are defined in a similar way to p-dialectical
systems.

Let us then move to q-dialectical system. A q-dialectical system, intuitively, incorporates both
distinguishing features of dialectical and p-dialectical systems, in the sense that some axiom fx
can be either discarded, as in the case of a dialectical system, or revised by f−, as in the case
of a dialectical system. Since the formal defintion of a q-dialectical system (that can be found in
[2]) for the most part is identical to that of a p-dialectical system, we limit ourselves to point the
differences between the two.

Definition 1.8. A q-dialectical system is a quintuple q = 〈H, f, f−, c, c−〉, such that 〈H, f, c〉 is
a dialectical system, f− satisfies the condition expressed for a p-dialectical system, and finally
c− ∈ ω r range(f−).

We call c− the counterexample.
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q-dialectical procedure. Stage 0 of the q-dialectical procedure is identical to the same stage of
both the p-dialectical and the dialectical procedure. Concerning stage s + 1, we have now three
different clauses instead of two (the additional one being introduced since we deal with both c and
c−):

(1) there exists no k ≤ m such that {c, c−}∩χs(k) 6= ∅: in this case, let m(s+ 1) = m+ 1, and
define

rs+1(x) =


rs(x) if x ≤ m
〈fm+1〉 if x = m+ 1

〈 〉 if x > m+ 1;

(2) there exists k ≤ m such that c ∈ χs(k), and for all k′ < k, c− /∈ χs(k′): in this case, let z
be the least such km and distinguish two cases:

(2.1) if c ∈ Hs(∅), then let m(s+ 1) = 0, and define

rs+1(x) =

{
〈f0〉 if x = 0

〈 〉 if x > 0;

(2.2) otherwise, let m(s+ 1) = z + 1, and define

rs+1(x) =


rs(x) if x < z

〈fz+1〉 if x = z + 1

〈 〉 if x = z or x > z + 1.

(3) there exists k ≤ m such that c− ∈ χs(k), and for all k′ ≤ k, c /∈ χs(k′): in this case, let z
be the least such k, let m(s+ 1) = z, and define, where ρs(z) = fy,

rs+1(x) =


rs(x) x < z

rs(x)a〈f−(fy)〉 x = z

〈 〉 x > z + 1.

Finally define

As+1 =
⋃

i<m(s+1)

χs+1(i).

Thus As+1 = ∅ if m(s+ 1) = 0, and As+1 = Hs+1(Ls+1(m(s+ 1))) otherwise.

As is clear, Clause (1) is almost identical to the Clause (1) of the p-dialectical procedure; Clause
(2) is essentially the same of Clause (2) of the dialectical procedure; Clause (3) is essentially the
same of Clause (2) of the p-dialectical procedure.

We say that a q-dialectical system, with enumeration operator H, is consistent if {c, c−}∩H(∅) = ∅.
We call As the set of provisional theses of q with respect to α at stage s. The set Aαq defined as

Aαq = {fx : (∃t)(∀s ≥ t)[fx ∈ As]}

is called the set of final theses of q with respect to α. We often write As = Aαq,s when we want to
specify the q–dialectical system q and the chosen approximation to the enumeration operator. A
pair (q, α) as above is called an approximated q-dialectical system. A set A ⊆ ω is called q-dialectical
if A = Aαq for some approximated q-dialectical system, and we say in this case that A is represented
by the pair (q, α).
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We summarize some of the main properties of Ad and Aαq . As in the case of p-dialectical systems,
we say that an approximated q-dialectical system is loopless if the set {ρs(u) : s ∈ ω} is finite, for
all u. For more information and properties about loopless approximated q-dialectical system, and
in particular for a complete characterization of approximated q-dialectical system with loops, the
reader is referred to [2].

Theorem 1.9 ([2, 14]). If d and (q, α) are respectively a dialectical system or a loopless approxi-
mated q-dialectical system then the following hold:

(1) Ad and Aαq are ∆0
2 sets;

(2) for every x, lims rs(x) = r(x) and lims Ls(x) = L(x) exist finite (whether the functions
rs(x), Ls(x) refer to d, or (q, α)) and

Ad = {fx : r(x) = {fx}}
Aαq = {fx : r(x) = 〈fx〉},

and

fx ∈ Ad ⇔ c /∈ H(L(x) ∪ {fx})
fx ∈ Aαq ⇔ {c, c−} ∩H(L(x) ∪ {fx}) = ∅.

(For q-dialectical systems, the values of r and L depend in general on the chosen approximation
α).

Proof. The claim that Ad is a ∆0
2 set comes from [14]. The other claims come from [2, Lemma 3.8,

Lemma 3.18] (to show that Aαq is ∆0
2 see also the proof of [3, Lemma 3.4] which amends a previous

bug in [2]). �

Notice that for a p-dialectical system, being loopless implies being consistent.

Most of the results proved for q-dialectical sets extend to p-dialectical sets. In particular,

Theorem 1.10. If p is a loopless p-dialectical system then lims Ls(x) exists for every x and

fx ∈ Ap ⇔ c /∈ H(L(x) ∪ {fx}).

Proof. The proof follows from Theorem 1.3, and an easy induction. Following the last stage at
which L(x) ceases to change, we propose rs(x) = 〈fx〉, and it is easy to see that

r(x) = 〈fx〉 ⇔ c /∈ H(L(x) ∪ {fx}).

�

Notwithstanding the independence of L from the chosen approximation to H established in Lemma
1.2 and Theorem 1.3 nothing guarantees that the sequence {As}s∈ω of sets of provisional theses
is independent of the approximation, or does even give a ∆0

2 approximation to Ap. The following
lemma shows however that from any given H one can find an approximation for which the sequence
{As}s∈ω is in fact a ∆0

2 approximation to Ap.

Lemma 1.11. If H is an algebraic closure operator then from any computable approximation to H
we can effectively find an approximation {Ĥs : s ∈ ω} to an enumeration operator Ĥ such that for

every s, the enumeration operator given by Ĥs is an algebraic closure operator (more precisely it
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satisfies X ⊆ Ĥs(X) if maxX ≤ s, and Ĥs(Ĥs(X)) ⊆ Ĥs(X)) for all X), and H and Ĥ coincide

as enumeration operators, i.e. for every X, Ĥ(X) = H(X).

Proof. Given any enumeration operator G, we can effectively find a closure operator Gω which
extends G: the details of this construction can be found for instance in [2]. Moreover if G ⊆ K
then Gω ⊆ Kω; G is a closure operator if and only if (as enumeration operators, not as c.e. sets)
G = Gω; if G is finite then Gω is finite and the canonical index of Gω can be effectively computed
from that of G. Suppose now that {Hs : s ∈ ω} be a computable approximation to a closure
operator H: we may assume that the approximation satisfies

(1) if 〈x,D〉 ∈ Hs then x,maxD < s;
(2) for every i < s, 〈i, {i}〉 ∈ Hs.

For every s define Ĥs = (Hs)
ω. By the above remarks, this is a full-fledged computable approxima-

tion to Hω, still satisfying (1) and (2). But (as enumeration operators, not as c.e. sets) H = Hω,

as H is a closure operator. So {Ĥs : s ∈ ω} is the desired approximation, effectively found from

{Hs : s ∈ ω}, to a suitable closure operator Ĥ (namely Ĥ = Hω) which coincides as an operator
with H. �

The next definition summarizes the properties of the approximation built in the proof of the previous
theorem.

Definition 1.12. If H is an algebraic closure operator and {Hs} is a computable approximation to
it, we say that the approximation is good if for every s the following hold: X ⊆ Hs(X) if maxX ≤ s,
and Hs(Hs(X)) ⊆ Hs(X)) for all X.

Corollary 1.13. If p = 〈H, f, f−, c〉 is a p-dialectical system, and {Hs} is a good approximation
to H then the corresponding p-dialectical approximation {As : s ∈ ω}, given by the p-dialectical
procedure, is a ∆0

2 approximation.

Proof. If p is not consistent then the claim follows from the fact that starting from the stage at
which c ∈ H(∅) we have that ms(0) = 0 and thus As = ∅.
If p is consistent then we can use Theorem 1.10. Let fu = x, and assume that x /∈ Ap. Let t0 be a
stage such that L(u) has already reached limit L(u). As x /∈ Ap, we have that c ∈ H(L(u) ∪ {x}):
let t1 ≥ t0 be such that L(u) ⊆ Ls(m(s)) for every s ≥ t1 and c ∈ Ht1(L(u)∪{x}), and suppose that
s > t1 is a stage such that x ∈ As, i.e. x ∈ Ls(m(s)) and s > x,max(Lu). It follows that L(u) ⊆
Hs(L(u)) ⊆ Hs(Ls(m(s))) and {x} ⊆ Hs(Ls(m(s))), hence L(u) ∪ {x} ⊆ Hs(Ls(m(s))), hence by
goodness of the approximation, Hs(L(u) ∪ {x}) ⊆ Hs(Ls(m(s))), giving that c ∈ Hs(Ls(m(s))),
contradicting the definition of m(s). �

2. Comparing dialectical sets, p-dialectical sets, and q-dialectical sets

In this section we compare under inclusion the notions of p-dialectical system, dialectical system,
and q-dialectical system. Throughout the section we will use superscripts appended to the param-
eters L, r, ρ etc. (for instance Lp, Ld, Lq or rp, rd, rq) to distinguish whether the parameters refer
to the p-dialectical system, or the dialectical system, or the q-dialectical system we will happen to
be talking about.
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Theorem 2.1. Given any dialectical system d = 〈H, f, c, 〉 such that H(∅) is infinite, we can build
a p-dialectical system p such that Ad = Ap.

Proof. Let d = 〈H, f, c〉, and being H(∅) an infinite c.e. set, let Z = {z0 < z1 < . . . < zi < . . .} ⊆
H(∅) be a computable set. Then, let p be the p-dialectical system p = 〈H, f, f−, c〉 where

f−(x) =

{
z0 x /∈ Z,
zi+1 x = zi ∈ Z.

This definitions obeys the requirement that the orbits of f− be infinite. Now, we know that
lims r

d
s(u) exists for every u. Notice that for every X and for every z ∈ H(∅), from H being a

closure operator it follows that

c ∈ H(X ∪ {z})⇔ c ∈ H(X).

Using this, it is easy to show by induction on u that

• if rd(u) = 〈fu〉 then rp(u) = 〈fu〉, and if rd(u) = 〈 〉 then rp(u) = 〈fu, z0〉.

It follows that ⋃
u

Lp(u) =
⋃
u

Ld(u) ∪ {z0}.

Ad = H(
⋃
u L

p(u)) (see [2], but the proof is similar to the proof of Theorem 1.3). On the other
hand, by Theorem 1.3

Ap = H(
⋃
u

Lp(u)) = H(
⋃
u

Ld(u) ∪ {z0}) = H(
⋃
u

Ld(u))

because z0 ∈ H(∅) and H is an algebraic closure operator. �

Theorem 2.2. Any p-dialectical set is a q-dialectical set. In fact, given a p-dialectical system p
we can effectively build a q-dialectical system q such that Ap = Aαq for any approximation α to the
operator of q.

Proof. Let p = 〈H, f, f−, c〉. We first observe that the claim is trivial if Ap = ω r {c}, and if p has
loops.

If not, let u0 be the least number such that z0 = fu0 6= c and z0 /∈ Ap, and denote ρp(u0) with z1.
Consider the q-dialectical system q = 〈H∗, f∗, f−, z0, c−〉, where c− = c, f∗ is defined as follows

f∗(x) =

{
z1 if x = 0,

f(x− 1) if x > 0,

and

H∗ = (H r {〈z0, D〉 : z0 /∈ D}) ∪ {〈x, {z0}〉 : x ∈ ω}.
Notice that for every set X, if z0 ∈ H∗(X) then z0 ∈ X.

We now show that H∗ is an algebraic closure operator.

• We first show that X ⊆ H∗(X) for every set X. Let X be given. If z0 ∈ X, we have that
X ⊆ ω ⊆ H∗(X). If z0 /∈ X and x ∈ X then (as H is an algebraic closure operator) there is
an axiom 〈x,D〉 ∈ H with D ⊆ X, but then then 〈x,D〉 ∈ H∗ as well and thus x ∈ H∗(X).
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• Next we show thatH∗(H∗(X)) ⊆ H∗(X). LetX be given, and assume that x ∈ H∗(H∗(X)).
We may also assume that z0 /∈ H∗(H∗(X)) ∪H∗(X) ∪X, otherwise in any case z0 ∈ X by
definition of H∗ and thus H∗(H∗(X)) ⊆ ω ⊆ H∗(X).

So assume that x 6= z0 and let 〈x,D〉 ∈ H∗ be an axiom with D ⊆ H∗(X): to this axiom
by our assumptions (which imply z0 /∈ D) must correspond an axiom 〈x,D〉 ∈ H. For every
y ∈ D there is an axiom 〈y,Ey〉 ∈ H∗ with Ee ⊆ X and by our assumptions again, each
such axiom must correspond to an axiom 〈y,Ey〉 ∈ H. We thus obtain x ∈ H(H(X)), and
since H is an algebraic closure operator, this gives x ∈ H(X) via an axiom, say, 〈x,E〉 ∈ H:
but this is also an axiom of H∗, thus x ∈ H∗(X).

Let us now work with any approximation α to H∗. We want now to prove that Ap = Aαq . In
particular, we show by induction on u that, for all u, we have that

rq(u) =


〈z1〉, if u = 0,

rp(u− 1), if u > 0 and z0 /∈ range(rp(u− 1)),

∈ {〈 〉, rp(u− 1)}, otherwise,

where the third clause means that rq(u) = 〈 〉 or rq(u) = rp(u−1) depending on which one between
z0 and c appears first, enumerated in H∗(Lq(u) ∪ {z0}), at the relevant stage of the q-dialectical
procedure. Moreover, we show by induction on u > 0 that

rq(u) = 〈 〉 ⇒ ρp(u− 1) = z1,

so that Lq(u) = Lp(u− 1) ∪ {z1}.
Since f∗0 = z1, it is immediate to notice that that rq(0) = z1. Indeed, we can not have z0 ∈ H∗({z1})
by definition of H∗, but we cannot have c ∈ H∗({z1}) either, otherwise c ∈ H({z1}) against the
fact that z1 ∈ Ap.
Then consider the case u > 0, and assume by induction that Lq(u) = Lp(u − 1). It is easy to see
that if z0 ∈ range(rp(u − 1)) then ρp(u − 1) = z1. Suppose that rp(u − 1) has length n: we claim
that for every i < n, (rq(u))i = (rp(u− 1))i, and ρq(u) = ρp(u− 1). This is clearly true when i = 0
by definition of f∗. Assume the claim is true of i < n − 1. If (rp(u − 1))i = (rq(u))i 6= z0, then
(as z0 /∈ Lq(u) ∪ {(rq(u))i} by induction), we have that z0 /∈ H∗(Lq(u) ∪ {(rq(u))i}); but (since
i < n − 1) c ∈ H(Lp(u − 1) ∪ {(rp(u − 1))i}), thus c ∈ H∗(Lq(u) ∪ {(rq(u))i}) (by the way H∗ is
defined), hence

rq(u)i+1 = f−((rq(u)))i = f−((rpu− 1)i) = rp(u− 1)i+1.

On the other hand, when we reach the top, c /∈ H(Lp(u− 1) ∪ {ρp(u− 1)} ∪ {z1}), and thus again
{z0, c} ∩H∗(Lq(u) ∪ {ρp(u− 1)}) = ∅, giving that ρq(u) = ρp(u− 1).

Let us consider now the case (rp(u − 1))i = (rq(u))i = z0. Now both {z0, c} ⊆ H∗(Lq(u) ∪
{(rq(u))i}). If at the relevant stage of the q-dialectical procedure, α shows z0 derivable from
H∗(Lq(u) ∪ {(rq(u))i}) no later than c is so derivable, then rq(u) = 〈 〉 and ρp(u − 1) = z1; if α
shows c derivable first, then by an argument similar to the one for the case when (rp(u− 1))i 6= z0,
we conclude that rq(u)i+1 = rp(u−1)i+1. Since f− is not cyclic, we now have that z0 6= (rp(u−1))j
for all i < j < n, thus again as in the case seen above when (rp(u− 1))i 6= z0, we conclude that for
all i < j < n, rq(u)j = rp(u− 1)j , and eventually ρq(u) = ρp(u− 1).

It follows that Lp(ω) = Lq(ω), and thus Ap = Aαq for every approximation α to H∗. �

The next problem is left open.
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Problem 2.3. Are there q-dialectical sets that are not p-dialectical?

3. A brief comparison with other approaches to trial and error mathematics

Having set the formal definitions of the three systems (dialectical, q-dialectical, and p-dialectical
systems) and laid down the theoretical bases, before moving to a detailed investigation of the
computability theoretic properties of the sets they represent, including certain completions of formal
theories, it is perhaps time to pause and briefly compare these systems with other popular models
of trial and error mathematics.

3.1. Belief revision. The central problems facing the theory of belief revision are how to revise a
knowledge system in the light of new information that turns out to be inconsistent with the old one.
The AGM axiomatic theory [1] is the most famous theory of belief revision: in this model, beliefs
are represented as sentences held by an agent. Such sentences form a deductive closed set: a belief
set. To formalize how agents revise their beliefs, AGM describes various actions by which a belief
set can be modified in response to new information. If this new information does not contradict
the set of acquired knowledge, it is simply added to the belief set and we have the expansion. On
the contrary, revision takes place when a new sentence turns out to be inconsistent with the belief
set to which it is added. In order to maintain consistency, some of the old sentences are deleted
by an action called contraction. What is kept of the old beliefs is the consequence of some guiding
rules. Two dogmas, in particular, have been singled out (see [18] for more details): first, one’s
prior beliefs should be changed as little as possible; second, whenever there is a choice about which
sentence should be deleted, the agent should abandon the least one with respect to some ordering of
epistemic entrenchment, where “q is more entrenched than p” intuitively means that the sentence
q has more epistemic value than the sentence p. So, the overall goal of these dogmas is to keep the
loss of information minimal when a belief set is updated.

Dialectical systems, and the variations considered in this paper, aim at modeling similar actions,
but they implement them in a rather different way. In this context, expansion is not limited to
the addition of a new sentence (or axiom, in our terminology) but it consists also in increasing the
deductive power of the deduction operator H (whereas in AGM each action leads to an already
deductively closed set of beliefs).

More importantly, the dialectical model lacks an explicit entrenchment ordering: when a conflict
emerges, i.e., c or c− is derived, we reject/revise the last proposed axiom of the minimal inconsistent
set, instead of evaluating the epistemic value of the axioms contained in it. Nevertheless, the
behavior of the proposing function f and that of the revising function f− to some extent surrogate
the entrenchment: f encodes a certain priority to the axioms to be proposed, and f− (in the case
of p- and q- dialectical systems) can dynamically change this priority by swapping the ordering of
two given axioms and thus modifying their mutual priority. One might go further and develop a
dialectical model where to each axiom is assigned a certain weight: whenever a conflict arises, the
system keeps as provisional theses the consistent subset X of the old knowledge that realizes the
maximum weight. A similar line of research has been explored in [15], where the authors investigate
generalized dialectical systems embodied with probability weights. Yet, also this approach differs
from the AGM proposal, since entrenchment is more concerned with the explanatory power of the
sentences. In Gärdenfors’ and Makinson’s words [7]:
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Rather than being connected with probability, the epistemic entrenchment of a sen-
tence is tied to its explanatory power and its overall informational value within
the belief set. For example, lawlike sentences generally have greater epistemic en-
trenchment than accidental generalizations. This is not because lawlike sentences
are better supported by the available evidence (normally they are not) but because
giving up lawlike sentences means that the theory loses more of its explanatory
power than giving up accidental generalizations.

Studying dialectical systems that incorporate some measures of explanatory power (as the ones
discussed for instance in [19]) is a topic for future work.

3.2. Lakatos’ philosophy of mathematics. It would be incorrect to assert that dialectical sys-
tems attempt to formalize Lakatos’ philosophy of mathematics: the dialectical model is way too
abstract to offer a convincing rendering of the dynamic of mathematical discovery characterized,
e.g., in [13]. Yet, Lakatos’ intuition that mathematical knowledge is subject to constant refinement
motivates Magari’s original proposal. Indeed, according to Magari [14], a dialectical system is best
understood as modeling a mathematician (or even, a mathematical community) that in develop-
ing a mathematical theory proceeds by trial and errors, instead of merely accumulating more and
more deductions (as classical formal systems prescribe). Moreover, the main conceptual reason for
moving from dialectical to q-dialectical systems in [2] was precisely that of including in our systems
a revision mechanism more adherent to that of mathematical practice, rather than just limiting
ourselves to logical contradiction.

To sketch a more precise parallel between our systems and Lakatos’ approach, it is worth to briefly
contrast the dialectical model with the way in which Lakatos’ theory has been computationally
represented: in [16], the authors make use of abstract argumentation systems (in Dung-style, see
[6]) to offer an automated realization of Lakatos’ view. In the field of structured argumentation
(the interested reader is referred to [5]), an abstract argumentation framework is a directed graph,
where the nodes are arguments and the arcs are attacks, and a set of arguments is conflict-free if
no pair of argument belongs to the set of attacks. An argument system is then given by a logical
language, a set of rules (that can be either strict or defeasible), and a partial function from rules to
formulas. In a nutshell, Lakatos’ account is represented in [16] as a formal dialogue game between
a Proponent and an Opponent (roles that are possibly embodied by many speakers) and proofs
are carefully represented as arguments that correspond to the artifacts collaboratively created by
the participants in a Lakatosian dialogue, such as the one famously exemplified by the classroom
debate about Euler’s conjecture on polyhedra in [13]. This dialogue game is a rather complex game,
in which players can perform different types of moves (such as raising counterexamples, piecemeal
exclusion, monster barring, monster adjusting, etc.), corresponding to crucial ingredients of Lakatos’
informal logic.

The dialectical model is of course way less adherent to Lakatos’ perspective. A game-theoretic
formulation of it can however be readily obtained: the Proponent makes a proposal via the function
f and, and at each step of the computation, the Opponent tries to reject by either proving its
inconsistency or its implausibility with acquired knowledge. So, the game can be roughly intended
as a debate between the Proponent and the Opponent about whether any given sentence is to be
accepted or not. However, such a game is much more rigid than the one formulated in [16]. For
instance, unlike Lakatos’ game where the roles are interchangeable, in our models the Opponent
always attacks and the Proponent always proposes new hypotheses. Another major difference is
that Lakatos’ game does not contain strict rules (i.e, rules of the form “B is is always a consequence
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of A”), but only defeasible rules (i.e, rules of the form “typically B is a consequence of A”). On
the contrary, no defeasible reasoning is allowed in the dialectical game: in fact, an argument can
be attacked only by showing some undesirable deductive consequences, and this depends only on
the set of premises and the deduction operator.

Finally, the strategy of the Proponent and the Opponent are completely deterministic, being defined
once for all at the beginning of the computation and eventually producing a unique set of final theses
(modulo the approximation to H in the case of the q-dialectical systems). This is why our analysis
is centered on the class of sets represented by the p- or q- dialectical systems, rather than focusing
on the behavior of a particular system.

3.3. Algorithmic learning theory. Algorithmic learning theory (ALT) is a vast research pro-
gram, initiated by Gold [8] and Putnam [17] in the 60s that comprises different models of learning
in the limit. It deals with the question of how a learner, provided with more and more data about
some environment, is eventually able to achieve systematic knowledge about it. For instance, a
classic paradigm in ALT concerns the learning of total computable functions: the learner receives
as input the stream of values of a function g to be learned and, at any stage, outputs a conjecture
of a program that computes the function. The learning is successful if the learner eventually infer
a correct program for g. Different formalizations of this and similar intuitions gave rise to a vast
research area (for an introduction to the field see for instance [9]).

In analogy with the learning criteria explored in ALT, a dialectical system also embeds a stabi-
lization process, by which we eventually converge to a set of final theses (and in fact, by Theorem
1.9 and Theorem 1.10 we have that, if a set is represented by our system, then it is computable in
the limit, i.e., ∆0

2). More importantly, the existence of a similar stabilization mechanism hints at a
deeper similarity between the two models: they both display and manage information essentially by
stages, in a way that is naturally apt to be analyzed by computable theoretic tools. The significance
of this common trait is well described by the following remark of Van Benthem in [23]:

Perhaps the key activity tied up with theory change is learning, whether by in-
dividuals or whole communities. Modern learning theory (...) describes learning
procedures over time, as an account of scientific methods in the face of steadily
growing evidence, including surprises contradicting one’s current conjecture. In this
perspective, update, revision, and contraction are single steps in a larger process,
whose temporal structure needs to be brought out explicitly (...). Learning the-
ory is itself a child of recursion theory, and hence it is one more illustration of a
computational influence entering philosophy.

Dialectical systems, and our related models, are children of recursion theory as well. They do
not offer a logic of trial and error mathematics, nor do they aim at spelling out a variety of
principles by which we might want to change or preserve a given axiom. This can be seen as a
limitation of dialectical systems. But note that no logic of learning (or of inductive inference) is
provided in ALT, and no axiomatization of computability is contained in Turing’s 1936 paper [22].
This is because the emphasis of a computable theoretic investigation (such as the present one) is
typically more process-oriented and focuses on exploring the computational costs of such processes.
Dialectical, p-dialectical, and q-dialectical systems are attempts at characterizing the evolution of
abstract mathematical theories by defining highly idealized agents that follow few mechanic rules
– by which, nonetheless, a rich class of theories can be produced. One might insist that such an
idealization is too extreme; in fact, in this section we offered enough evidence that other frameworks
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might give a better understanding of, e.g., what belief change is. Yet, a measure of the fruitfulness
of a given idealization also comes from whether it sheds new light on some well-established notion.
The goal of the second half of this paper is to show that, for the dialectical model, this is exactly
the case: our systems turn out to be a remarkably good machinery for dealing with a key-concept
of classical logic, i.e., completions of first-order theories.

4. Systems with connectives and completions

By a system we will mean in general a p-dialectical system or a dialectical system, or a q-dialectical
system. From now on we will restrict attention to systems in which, via identification of numbers
with the sentences of some formal language, H is ragarded as a logical deduction operator, i.e. H(X)
is the set of sentences which can be logically derived from the premises X. In this identification
sentential connectives can be viewed as just computable functions.

The following definition is taken from [14].

Definition 4.1. A system with connectives is a system with an enumeration operator H, a contra-
diction c, and injective computable functions ¬,→,∧,∨ such that for every X ⊆ ω and x, y ∈ ω,

(1) c ∈ H({x,¬x});
(2) H({¬¬x}) = H({x});
(3) x ∨ ¬x ∈ H(∅);
(4) H(X ∪ {x ∨ y}) = H(X ∪ {x}) ∩H(X ∪ {y});
(5) if c ∈ H(X ∪ {x}) then ¬x ∈ H(X);
(6) x ∈ H(X ∪ {y}) if and only if y → x ∈ H(X).

Definition 4.2. Given a system with connectives and finale theses A, we say that the system is a
completion, if for every x, A ∩ {x,¬x} has exactly one element.

4.1. q-dialectical completions. It is known from [3] that there are (loopless) q-dialectical sets
that are not dialectical. Unfortunately if we consider connectives, nothing is gained from passing
from dialectical systems to q-dialectical systems.

We first show that if a loopless q-dialectical system with connective is consistent (i.e. {c, c−} ∩
H(∅) = ∅, where H is the operator of q), then Aq is a completion.

Theorem 4.3. If q = 〈H, f, f−, c, c−〉 is a consistent loopless q-dialectical system with connectives,
α an approximation to H such that (q, α) is loopless, then Aαq is a completion.

Proof. Let q, α be as in the statement of the theorem; for simplicity, let us write Aq = Aαq

Assume now that x is the least number such that fx /∈ Aq, and ¬fx /∈ Aq: let fy = ¬fx, and assume
without loss of generality that y < x, the other case x < y being similar. By Theorem 1.9 this is
the consequence of one of the following circumstances:

(1) c ∈ H(L(x) ∪ {fx}), and c ∈ H(L(y) ∪ {¬fx}): hence, c ∈ H(L(x) ∪ {fx}) and c ∈
H(L(y)∪{¬fx}), and by (d) of Definition 4.1, we have that c ∈ H(L(x)∪{fx ∨¬fx}). But
then, as fx ∨ ¬fx ∈ H(∅), we have c ∈ H(L(x)), contrary to the fact that L(x) is the limit
set.

(2) c ∈ H(L(x) ∪ {fx}), and c− ∈ H(L(y) ∪ {¬fx}): in this case, it is easy to see (under the
assumption that y < x) that c− ∈ H(L(x) ∪ {¬fx}) and c− ∈ H(L(x) ∪ {fx}), giving that
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c− ∈ H(L(x) ∪ {fx ∨ ¬fx}), and thus c− ∈ H(L(x)), contrary to the fact that L(x) is the
limit set.

(3) c− ∈ H(L(x) ∪ {fx}, and c ∈ H(L(y) ∪ {¬fx}: the argument is simlar, having this time
(under the assumption y < x) c ∈ H(L(x) ∪ {¬fx}), and thus c ∈ H(L(x)).

(4) c− ∈ H(L(x) ∪ {fx}), and c− ∈ H(L(y) ∪ {¬fx}): Similar to (1), just replacing c with c−.

It remains to show that exactly one of fx and ¬fx lies in Aq, but this is obvious otherwise c ∈ H(∅)
as H is with connectives. �

Theorem 4.4. If p = 〈H, f, f−, c〉 is a loopless (hence consistent) p-dialectical system with con-
nectives, then Ap is a completion.

Proof. Let p = 〈H, f, f−, c〉 a p-dialectical system with connectives where c 6∈ H(∅) (in such a way
that something is not derivable). Let fu = x and fv = ¬x and without loss of generality assume
u < v. Suppose that x 6∈ Ap; then c ∈ H(L(u)∪{x}), and by property (6) of definition 3.1, we have
x → c ∈ H(L(u)), from which ¬x ∈ H(L(u)). Suppose now that also c ∈ H(L(v) ∪ {¬x}), and
therefore by the same argument x ∈ H(L(v)). But there will be a stage s such that for all t ≥ s
we will have L(v) = Lt(v). Moreover, since L(u) ⊆ L(v) and H is an algebraic closure operator we
can assume that a t is big enough to have L(v) ⊆ Lt(v) ⊆ Ht(Lt(v)) from which L(u) ⊆ Ht(Lt(v)),
giving that both ¬x and x belong to Ht(Lt(v)) and therefore c ∈ Hs(Ls(v)) for some s ≥ t, giving
that Ls(v) must change after t: contradiction. �

4.2. Comparing dialectical, q-dialectical, and p-dialectical completions. We now consider
the relationships under inclusion of the various systems with connectives.

An immediate consequence of Theorem 2.1 is the following:

Corollary 4.5. Every dialectical completion is also a p-dialectical completion.

Proof. The proof of Theorem 2.1 shows that starting from a dialectical system d = 〈H, f, c〉, with
H(∅) infinite then one can build a p-dialectical system p with the same H, and the same c, p has
connectives as H does. On the other hand, the condition that H(∅) be infinite is granted by the
fact that H has connectives, and thus, for instance, if x ∈ H(∅) then x ∧ x ∈ H(∅) as well. �

Theorem 4.6. If (q, α) is a consistent loopless q-dialectical pair, with q = 〈H, c, c−, f, f−〉 a q-
dialectical system with connectives, and α a good approximation to H, then Aαq is a dialectical
completion.

Proof. Suppose that (q, α) is a loopless q-dialectical pair, q = 〈H, c, c−, f, f−〉 is a q-dialectical
system with connectives, c /∈ H(∅) and α is a good approximation to H. Then Aαq is a completion

by Theorem 4.3, and thus ¬c− ∈ Aαq : let u be such that fu = ¬c−, hence r(u) = 〈¬c−〉, and let

t0 be the least stage such that L(u+ 1) has reached limit already, ¬c− ≤ t0 (thus each s ≥ t0 has
an axiom 〈¬c−, {¬c−}〉 ∈ Hs), and c ∈ Ht0({c−,¬c−}). Suppose now that s ≥ t0 is a stage such
that c− ∈ Hs(Ls(v)) with v > u. But Hs is an algebraic closure operator, as α is good: therefore
¬c− ∈ Hs(Ls(v)) since ¬c− ∈ Ls(v). This gives {c−,¬c−} ⊆ Hs(Ls(v)), hence c ∈ Hs(Hs(Ls(v)) ⊆
Hs((Ls(v)). It is then clear that starting from t0, the q-dialectical procedure behaves as a dialectical
procedure, since f− no longer plays any role.

Let v be the greatest slot such that for every s ≥ t0, Ls(v) = Lt0(v) (clearly v > u; such a maximum
exists since at t0 almost all r(v) are empty), and let d = 〈H, g, c〉 be the dialectical system where g
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is defined as follows. First fix a strictly increasing computable sequence z0 < z1 < · · · of elements
of H(∅). Then

• if v′ < v then let

gv′ =


fv′ , if r(v′) = 〈 〉,
ρ(v′), otherwise and ρ(v′) /∈ {gv′′ : v′′ < v′},
min zi /∈ {gv′′ : v′′ < v′}, otherwise;

• if v′ ≥ v then let

gv′ =

{
fv′ , if fv′ /∈ {gv′′ : v′′ < v},
min zi /∈ {gv′′ : v′′ < v′}, otherwise.

Then g is a computable permutation and by the above remarks, it is easy to see that Aαq = Ad. �

Theorem 4.7. If p = 〈H, f, f−, c〉 is a loopless p-dialectical system with connectives, in which
f− = ¬, then Ap is both a dialectical completion, and a q-dialectical completion.

Proof. Let p = 〈H, f, f−, c〉 be a p-dialectical system with connectives in which f− = ¬ and c is a
contradiction. Let d = 〈H, f, c〉: we claim that Ap = Ad. Let us use the superscripts p and d, to
distinguish the relevant parameters of p and d, respectively. We will prove by induction on u that

• if rd(u) = 〈fu〉 then rp(u) = 〈fu〉, and if rd(u) = 〈 〉 then rp(u) = 〈fu,¬fu〉;
• for every v ≤ u, if rd(v) = 〈 〉 then ¬fv ∈ H(Ld(v)).

Notice that from this and the fact that Aq and Ap are completions, it easily follows that Ap = Ad.

Case u = 0 (base of the induction). This case easily follows from the assumptions and the basic
definitions.

Suppose that the clam is true of u. If c ∈ H(Lp(u + 1) ∪ {fu+1}) then c ∈ H(Ld(u + 1) ∪ {¬fv :

v ≤ u& rd(v) = 〈 〉} ∪ {fu+1}). By the inductive assumption, {¬fv : v ≤ u& rd(v) = 〈 〉} ⊆
H(Ld(u + 1)), hence c ∈ H(Ld(u + 1) ∪ {fu+1}). This shows that if rd(u + 1) = 〈fu+1〉 then
rp(u + 1) = 〈fu+1〉. The claims that if rd(u + 1) = 〈 〉 then rp(u + 1) = 〈fu+1,¬fu+1〉, and if
rd(u+ 1) = 〈 〉 then ¬fu+1 ∈ H(Ld(u+ 1)), come straight from the definitions.

The remaining claim (i.e. Ap is a q-dialectical completion) follows from the following lemma.

Lemma 4.8. For every dialectical completion Ad there exists a loopless q-dialectical pair (q, α)
such that Ad = Aαq .

Proof. Let d = 〈H, f, c〉 be a consistent dialectical system with connectives. By Lemma 1.11 let α
be a good approximation to H; let c− be c ∧ c (thus c ∈ H({c′})); finally let f− be any proposing
function. Notice that q = 〈H, f, f−, c, c−〉 is a (proper) q-dialectical system as c 6= c−. We claim
that Ad = Aαq . This follows from the fact that c− does not play any role in the q-dialectical

procedure, as if c− ∈ Hs(X), then by goodness of the approximation, we also have c ∈ Hs(X) since
c ≤∈ Hs({c−}) ⊆ Hs(Hs(X)) ⊆ Hs(X). �

�
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5. p-dialectical sets and degrees

The characterizations of the Turing degrees of the dialectical sets and of the q-dialectical sets has
been given in [3]:

Lemma 5.1. The Turing degrees of the dialectical sets, and of the q-dialectical sets, are exactly
the c.e. Turing degrees.

Proof. See [3]. �

Let us now consider the case of p-completions. If T is a formal theory with set of theorems ThmT ,
and d is a dialectical system with connectives such that H(∅) = ThmT , then we say that d is a
dialectical system for T . If d is a consistent dialectical system for T , and T is consistent, then Ad is
a completion of T . Let us consider a propositional calculus with propositional atoms {pi : i ∈ ω}:
by codes, we assume that this set coincides ω. Given a set A ⊆ ω, let TA be the propositional
calculus, obtained by adding to the classical propositional calculus the axioms {pi : i ∈ A}. The
following is due to [4].

Lemma 5.2. For every c.e. A there exists a dialectical system d = 〈H, f, c〉 for the theory TA,
such that:

(1) A ≤m Ad,
(2) Ad ≤tt ThmTA,
(3) ThmTA ≤tt A,

and therefore Ad ≡tt A.

Proof. See [4].

�

Corollary 5.3. The c.e. Turing degrees coincide with the degrees of p-completions, and with the
degrees of p-dialectical sets.

Proof. If A is a c.e. set then by the above lemma there is a dialectical completion Ad with the
same tt-degree as A. But every dialectical completion is a p-completion by Corollary 4.5, and thus
every c.e. Turing degree contains a p-completion. On the other hand every p-dialectical set is also
q-dialectical, thus by Lemma 5.1 we have that the degree of any p-dialectical set is c.e. �

6. A p-dialectical completion, which is neither a dialectical completion, nor a
q-dialectical completion

In the following T is taken to be Peano Arithmetic (assumed to be sound).

The following lemma has been known to logicians for many years already, and a proof-theoretic
proof can be found in, or at least worked out from, Smoryński [20, p. 362]. This proof uses a version
of the fixed point theorem originally due to Kent [12]. Notably it is based on Rosser’s method of
comparison of witnesses and includes a relativized proof predicate as in Kreisel-Levy Essential
Unboundedness Theorem, asserting that a certain formula is derivable from a true formula of a
certain fixed complexity ([20, p. 362])
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We propose a purely computability-theoretic proof, which looks perhaps simpler than [20]. Be-
ing a Σn (Πn) sentence means of course being provably equivalent in T to a sentence which is
synctactically Σn (Πn).

Lemma 6.1. For every n ≥ 1, there exists a sentence ψ ∈ Σn+1 such that, for every ϕ ∈ ∆n+1, if
6`T ϕ, then 6`T ψ → ϕ and 6`T ¬ψ → ϕ.

Proof. Suppose S is the set of all ∆n+1-sentences. We need a ψ such that, for all ϕ ∈ S, if T +¬ϕ
is consistent, then ψ is independent of T + ¬ϕ.

Recall that S is c.e., so let ϕ0, ϕ1, . . . be a recursive enumeration of S. Let DimT denote the
standard provability predicate, expressing, via codes, whether a given number is a proof of a given
formula. For each j, we define the function fj as follows: On input s, search for the least i such
that either

(a) DimT (s, pΦ∅
(n)

j (0) = 1→ ϕiq) ∧ ¬ϕi, or

(b) DimT (s, p¬Φ∅
(n)

j (0) = 1→ ϕiq) ∧ ¬ϕi,

and define

fj(s) =


1 if i is found, and (a) holds,

0 if i is found, and (b) holds,

↑ if no such i is found.

By the Relativized Parameter Theorem, fj = Φ∅
(n)

h(j), for some computable function h; and let g be

a computable function so that

Φ∅
(n)

g(j)(x) =


↑ if fj has empty domain,

1 if the first value of fj is 1 (i.e. fj(m) = 1 where m is the least

number in the domain of fj),

0 if the first value of fj is 0

In the following, we often identify statements relative to fj or Φ∅
(n)

j with their formal arithmetical
translations. Let e be a fixed point for g. That is:

Φ∅
(n)

e = Φ∅
(n)

g(e).

Let ψ be the sentence which says that Φ∅
(n)

e (0) = 1.

Claim:

(1) If s is a proof from ψ to ϕi for some i, then T proves ϕi (and thus ϕi is true);
(2) If s is a proof from ¬ψ to ϕi for some i, then T proves ϕi (and thus ϕi is true).

Proof. We induct on s, assuming the lemma for all t < s. Since the claim is true for all t < s, fe(t)
diverges for all such t. Note that T can prove that fe(t) diverges for all t < s. For each t < s, T
can determine if t is a proof of ψ → ϕi or ¬ψ → ϕi for some i. If not, then clearly fe(i) diverges.
If it is a proof of that form, then by our inductive hypothesis, T also proves ϕi. Thus, T proves
that fe(t) diverges, since ¬ϕi is a condition for convergence of fe(t).
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(1) If s is a proof from ψ to ϕi, then s is a proof of ϕi from Φ∅
(n)

e (0) = 1. T can argue: Either ϕi
is true or ϕi is false. If ϕi is false, then fe(s) converges to 1. This means that Φ∅

(n)

g(e)(0) = 1.

But then this means that ϕi is true (from the proof s). Thus, T has proved that ϕi is true.

(2) If s is a proof from ¬ψ to ϕi, then s is a proof of ϕi from ¬Φ∅
(n)

e (0) = 1. T can argue:
Either ϕi is true or ϕi is false. If ϕi is false, then fe(s) converges to 0. This means that

Φ∅
(n)

g(e)(0) = 0. But then this means that ϕi is true (from the proof s). Thus, T has proved

that ϕi is true.

Hence, for any i such that ϕi is not a theorem of T , there can be no proof in T of ψ → ϕi, or
¬ψ → ϕi. �

�

Remark 6.2. Notice that in the previous lemma, the sentence ψ associated with the set of all
∆n+1-sentences is Σn+1.

A classA of ∆0
2 sets is called computable if there is a ∆0

2 predicateA(e, x) such thatA = {Ve : e ∈ ω},
where

Ve = {x : A(e, x)}.
If {A(e, x, s) : s ∈ ω} is a computable approximation to A(e, x), i.e. limsA(e, x, s) = A(e, x) for
every x, then we let Ve,s(x) = A(e, x, s).

Theorem 6.3. If a class A of ∆0
2 sets is computable, then there is a p-dialectical system p with

connectives such that Ap is a completion of Peano Arithmetic and Ap /∈ A.

Proof. Suppose we are given a computable class of ∆0
2 sets A = {Ve : e ∈ ω}. We want to build a

p-dialectical system p = 〈K, f, f−, c〉 with connectives, satisfying the requirements

Ne : Ap 6= Ve,

and such that Ap is a completion of Peano Arithmetic. Let again T denote Peano Arithmetic, and
let H be the enumeration operator given by

H = {〈x,D〉 : D `T x}.

Via a suitable Gödel numbering, throughout the proof, numbers should be thought of as sentences
of the language of T . We choose c to be the usual contradiction 0 = 1.

The construction is by stages. At the end of stage s we will have defined a finite set Axs of axioms
to be added to the axioms of T , and finite approximations fs, f−s to computable functions f , f−,
respectively, so that f =

⋃
s f

s, f− =
⋃
s f
−
s , and Ax =

⋃
s Axs is a c.e. set. In order to define

a p-dialectical system, we will have also to specify a suitable enumeration operator K: since the
construction is computable, the theory S∞ obtained by adding all axioms

⋃
s Axs to those of T is

a c.e. extension of T , and we will let

K = {〈x,D〉 : D `S∞ x}.

Lemma 6.4. K is a algebraic closure operator with connectives, and for every set X, H(X) ⊆
K(X).

Proof. Immediate. �



22 J. AMIDEI, U. ANDREWS, D. PIANIGIANI, L. SAN MAURO, AND A. SORBI

By Lemma 6.1 let Γ be a computable function which with every finite set S of sentences associates
a sentence x such that

(∀S′ ⊆ S)[c /∈ H(S′) =⇒ x /∈ H(S′) &¬x /∈ H(S′)].

We say in this case that x has been chosen to be independent of every such S′. In the rest of the
proof, we will distinguish between K-consistency (i.e. consistency in S∞: a set X is K-consistent
if c /∈ K(X)) and H-consistency (i.e. consistency in T : a set X is H-consistent if c /∈ H(X)).

The strategy to meet Ne. We outline the construction and the strategy to meet the requirement
Ne, and we describe what our desired p-dialectical system should achieve. In addition to fs, f−s ,
throughout the construction we use several computable parameters, which are modified stage by
stage: xe,s, ρ̂s(u), r̂s(u), As. In particular As stands for a finite set, such that, for every u, A(u) =
limsA

s(u) exists; the parameters xe,s, ρ̂s(u), r̂s(u) will be such that xe = lims xe,s, lims ρ̂s(u) = ρ̂(u),
and lims r̂s(u) = r̂(u) exist, and ρs(u) will coincide with ρ(u) of the p-dialectical system we are
aiming at; moreover A(xe) = Ap(xe) for every e.

We reserve the two slots 3e, 3e+ 1 to attack and satisfy Ne. The action may take place at several
different stages: at each stage s we denote by C = Cs the set consisting of all (finitely many)
Boolean combinations of the sentences corresponding to the numbers so far mentioned and used in
the construction.

The first time at which we attack requirement Ne we let f3e = ye, f3e+1 = xe, where C := Cs, and

xe = Γ(C)

ye = Γ(C ∪ {xe}).

We then execute the following cycle, which starts with k = 0, ye(0) = ye:

(1) wait until the least stage t > s such that xe ∈ Ve,t, then add the axiom ¬(ye(k)∧xe) in Ax;
extract xe from A (i.e., define At(xe) = 0); go to (2) with s := t;

(2) wait until the least stage t > s such that xe /∈ Ve,t then add the axiom ¬ye(k) in Ax, define
ye(k+1) = f−(ye(k)) = Γ(C); add xe into A (i.e., define At(ye(k+1)) = 1 and At(xe) = 1);
go to (1) with s := t and k := k + 1.

Outcomes of the strategy. The cycle eventually stops since Ve(xe) may change only finitely many
times, and eventually A(xe) 6= Ve(xe). Having in mind the p-dialectical system which we want to
build and its characterizing parameters ρ, r, L, this cycle must be viewed as our attempt to build a
stack r(3e) of which the number ye(k) becomes the top when it is appointed; similarly, when xe is
initially appointed we have r(3e+ 1) = 〈xe〉. Our intended goal is that if L(3e) is K-consistent (i.e.
c /∈ K(L(3e))) and we add the axiom ¬ye(k) in Ax then ye(k) will be discarded by the p-dialectical
procedure (as L(3e) ∪ {ye(k)} is not K-consistent) and it will be replaced by ye(k + 1) so as to
momentarily have L(3e)∪ {ye(k+ 1)} K-consistent; so the p-dialectical procedure will put back xe
as a thesis. If L(3e)∪ {ye(k)} is K-consistent, and we add the axiom ¬(ye(k)∧ xe) in Ax, then the
p-dialectical procedure keeps L(3e)∪{ye(k)} K-consistent and discards xe as a thesis. This process
is repeated as many times as are needed to diagonalize A(xe) 6= Ve(xe). Use of the function Γ in
choosing each ye(k) and xe allows us to conclude that ye(k) does not clash with L(3e) to derive c,
and xe does not clash with L(3e+ 1) to derive c, for any reasons other than those due to which we
add axioms in Ax, i.e. in order to diagonalize A against Ve. If our p-dialectical system is able to
mirror faithfully the cycle for Ne as described, then Ap(xe) = A(xe) and thus Ap(xe) 6= Ve(xe).
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Other issues in defining f and f−. We must also come up with f being a permutation of ω, and
with f− being total.

At non-zero even stages we take care of surjectivity of f , by picking the least available slot u with
u = 3k + 2 for some k, and the least x which has not as yet been proposed by f : we define fu = x
and if f−(x) is as yet undefined then we define f−(x) = a0, where a0 ∈ H(∅). Note that injectivity
of f is immediate by construction.

At non-zero even stages we also pick the least z such that f−(z) has not as yet been defined, and
we put f−(z) = Γ(C) with C evaluated at these stages.

The construction. The modifications imposed on a parameter during a stage of the construction
will determine the final value of the parameter at the end of the stage. It is understood that
a parameter which is not explicitly modified at a stage s, maintains, at the end of stage s, the
same value as the one it possessed at the beginning of stage s. Throughout a stage s + 1, if a
parameter is mentioned without specifying any stage of approximation, then it is understood to be
evaluated with the value it possessed by the end of stage s. When we apply the function Γ at stage
s + 1, without loss of generality, we may assume that Γ picks an element which is different from
all numbers so far mentioned in the construction, in particular from every number already in the
domain of f−: otherwise, as in Craig’s trick for computable axiomatizability of c.e. theories, take
as many iterations w∧w∧ . . . of the conjunctive connective ∧ on the value w provided by Γ as are
needed to achieve this goal.

Step 0. Choose a c.e. injective sequence a0 < a1 < · · · in H(∅), and define f−0 (ai) = ai+1, for every
i. Define also f0 = A0 = ∅ and Ax0 = T . All the other parameters are undefined.

Step s+ 1, odd. We say that a requirement Ne requires attention at s+ 1, if either

(r1) xe is not defined; or
(r2) either xe ∈ Ve but no axiom ¬(ρ̂(3e) ∧ xe) lies in Ax, or xe /∈ Ve and ¬ρ̂(3e) ∈ Ax.

Consider the least e such that Ne requires attention, and take action accordingly:

(a1) if Ne requires attention through (r1), then define (where C is the current approximation to
the set C as in the above description of the strategy for Ne)

xe,s+1 = Γ(C)

ye,s+1 = Γ(C ∪ {xe,s+1}).

Define f−s+1(xe,s+1) = Γ(C ∪ {xe,s+1, ye,s+1}).
(a2) if Ne requires attention through (r2) then we further distinguish the following two cases:

(a21) if xe ∈ Ve then add the axiom ¬(ρ̂(3e) ∧ xe) in Axs+1; let

r̂s+1(3e+ 1) = r(3e+ 1)̂ 〈f−s+1(xe,s+1)〉,

and As+1(xe) = 0;
(a22) if xe /∈ Ve, then add an axiom ¬ρ̂(3e) in Axs+1; define f−s+1(ρ̂(3e)) = Γ(C) if f−(ρ̂(3e))

is undefined; let ρ̂s+1(3e) = f−s+1(ρ̂(3e)); let

r̂s+1(3e) = r̂(3e)̂ 〈ρ̂s+1(3e)〉.
Let also As+1(xe)) = 1.
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Resetting. For all relevant u > 3e + 1 i.e. u of the form 3e′ or u = 3e′ + 1, let r̂s+1(u) = 〈〉, and
consequently ρ̂s+1(u) be undefined. Add the axioms ¬ρ̂(u) in Axs+1.

On all remaining u which are different from the xi that are still defined at the end of this stage,
define As+1(u) = 0.

Step s+ 1 > 0, even. Let u be the least available slot of the form u = 3e+ 2, and let x be the least
number such that x /∈ range(f): define fs+1

u = x and f−s+1(x) = a0 if f−(x) has not been already

defined; otherwise, let i be the greatest number such that (f−)i(x) is already defined, and define
f−s+1((f

−)i(x)) = a0.

Pick the least z such that f−(z) is not as yet defined, define f−s+1(z) = Γ(C).

The verification. The following lemma is an easy consequence of the construction.

Lemma 6.5. The function f is bijective and the function f− is acyclic. Hence p = 〈K, f, f−, c〉 is
a p-dialectical system.

Proof. f− is acyclic because we define it through Γ which picks at each stage numbers not in the
domain of f− and because of the way we have arranged things when we define or have defined at
0, f−(v) = ai for some i. The rest of the claim is obvious by Lemma 6.4. �

Let S∞(= K(∅)) be the c.e. extension of Peano Arithmetic, having, as additional axioms, the
axioms added during the construction. Define the entry stage of a number v which ever appears
in a string r̂(u) with u ∈ {3e, 3e + 1 : e ∈ ω} to be the least s at which v enters the range of f or
f−. Next we define the entry stage of an axiom (one of the axioms added during the construction):
the entry stage of an axiom ¬v is the entry stage of v, and that of an axiom ¬(v ∧ z) is the entry
stage of v. In the verifications below, it will be useful to keep in mind that if X,Y are sets such
that X ⊆ Ax, and Y is K-consistent, then Y ∪X is H-consistent.

Lemma 6.6. Each requirement acts finitely often. In particular, for every e lims xe,s = xe exists,
for every u ∈ {3e, 3e+1 : e ∈ ω}, lims r̂s(u) = r̂(u) exists, and thus lims ρ̂s(u) = ρ̂(u) exists; finally,
limsAs(xe) = A(xe) exists and A(xe) 6= Ve(xe).

Proof. Assume inductively that each Ni, i < e, eventually stops acting. After every Ni, with i < e
has ceased to act, there is a least stage t0 such that Ne defines the final value of xe. At that point
we keep modifying r̂(3e) and r̂(3e+ 1), only in response to changes in Ve(xe), but as Ve is a ∆0

2 set,
this can happen only finitely many times. The claim about A(xe) 6= Ve(xe) easily follows from the
construction. �

The following lemmata intend to explicitly relate the above construction to the p-dialectical system
p = 〈K, f, f−, c〉. In the lemma and its proof, ρ, r, L are the parameters associated with the p-
dialectical system p = 〈K, f, f−, c〉.
Lemma 6.7. Suppose that u = 3e is such that L(u) exists in the limit. Then xe = lims xe,s exists.
Moreover assume that L(u) ∪ {¬xe} is K-consistent; then for every s following the last stage at
which L(u) changes,

(1) c ∈ K(L(u) ∪ {ρ̂s(u)}) if and only if ¬ρ̂s(u) is among the final axioms of S∞;
(2) if L(u)∪{ρ̂s(u)} is K-consistent then c ∈ K(L(u)∪{ρ̂s(u)}∪{xe}) if and only if ¬(ρ̂s(u)∧xe)

is among the final axioms of S∞.
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Proof. Suppose that u = 3e satisfies the assumptions. In particular from the existence of L(u) in
the limit it is clear that xe = lims xe,s exists: in fact, once appointed after L(u) ceases to change,
we have that xe does not change any more. Notice that in both claims (1) and (2) the right-to-left
implication is trivial. So we need only prove the left-to-right implication of each equivalence. Let
us first consider the first item.

(1) Suppose that c ∈ K(L(u)∪ {ρ̂s(u)}). This means that there is a finite subset X ⊆ Ax such
that c ∈ H(L(u)∪{ρ̂s(u)}∪X): assume that X is ⊆-minimal with this property. It can not
be X = ∅ as L(u) is H-consistent and thus ρ̂s(u) would be chosen independently of L(u):
notice that the value ρ̂s(u) has not been chosen before L(u) stops changing because of the
resetting procedure at the end of odd stages. Let a ∈ X be of greatest entry stage. Notice
that, by minimality, c /∈ H(L(u)∪{ρ̂s(u)}∪(Xr{a})), i.e. the set L(u)∪{ρ̂s(u)}∪(Xr{a})
is H-consistent.

We distinguish the two possible cases due to which a can occur as a new axiom:
(a) Case a = ¬v, for some v. In this case, if v /∈ L(u)∪{ρ̂s(u)} then (as v has greatest entry

stage) we have chosen v to be independent of L(u)∪{ρ̂s(u)}∪ (Xr{a}), contradicting
that c ∈ H(L(u) ∪ {ρ̂s(u)} ∪X) which implies, by logic, that v ∈ H(L(u) ∪ {ρ̂s(u)} ∪
(X r {a})). Hence v ∈ L(u) ∪ {ρ̂s(u)}. On the other hand, it can not be v ∈ L(u)
since L(u) is K-consistent. Therefore, v = ρ̂s(u) as desired.

(b) Case a = ¬(v ∧ z), for some v, z. (Recall that in this case the entry stage of a
is by definition that of v.) Then v ∧ z ∈ H(L(u) ∪ {ρ̂s(u)} ∪ (X r {a})), hence v ∈
H(L(u)∪{ρ̂s(u)}∪(Xr{a})): if v /∈ L(u)∪{ρ̂s(u)}, then v /∈ L(u)∪{ρ̂s(u)}∪(Xr{a})
contradicting that v (being of greatest entry stage) has been chosen to be independent
of L(u) ∪ {ρ̂s(u)} ∪ (X r {a}). Thus v ∈ L(u) ∪ {ρ̂s(u)}. If v ∈ L(u) then v = ρ̂(u′)
and z = ρ̂(v′ + 1) with v′ + 1 < u, i.e. the pair v′, z′ refer to a requirement Ne′ with
z = xe′ for some e′ < e, contradicting that L(u) is K-consistent. Thus we conclude
that v = ρ̂s(u) and z = xe, and thus v → xe ∈ H(L(u)∪ (X r {a})). By logic we have
that ¬v ∈ H({¬xe}∪L(u)∪ (X r {a}), contradicting the fact that v is independent of
L(u) ∪ {¬xe} ∪ (X r {a}), as by assumption L(u) ∪ {¬xe} is K-consistent, and v has
greatest entry stage, and thus by construction v has entry stage greater than or equal
to that of xe, but, if equal, the claim holds as well by the way we choose v = ye in (a1)
of the construction.

(2) Suppose that c ∈ K(L(u)∪{ρ̂s(u)}∪ {xe}). As before, let X ⊆ Ax be a finite set such that
c ∈ H(L(u)∪{ρ̂s(u)}∪ {xe}∪X), and X is minimal with this property. As in the previous
case, we may assume X 6= ∅ as L(u) ∪ {xe} is H-consistent (being x − e appointed after
L(u) has reached limit and being L(u) H-consistent) and thus by resetting ρ̂s(u) is chosen
independently of this set (the entry stage of ρ̂s(u) is greater than or equal to that of xe: if
equal the claim follows by the way we choose v = ye in (a1) of the construction). Let again
a ∈ X be of greatest entry stage.
(a) Case a = ¬v, for some v. As in (1a), we are forced to conclude that v = ρ̂s(u), which

yields a contradiction the fact that L(u) ∪ {ρ̂s(u)} is K-consistent.
(b) Case a = ¬(v ∧ z), for some v, z. As in (1b) we can argue that v = ρ̂s(u), and thus

z = xe.

�

Lemma 6.8. For every u, L(u) exists in the limit; moreover if u = 3e then L(u)∪{xe}, L(u)∪{¬xe}
are K-consistent.
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Proof. The proof is by induction on u.

Cases u = 0, 1, 2.

Assume first that u = 0. Then L(0) = ∅. It is enough to show that {¬x0} is K-consistent. We
show only that {¬x0} is K-consistent: the other case is similar. Notice that x0 = x0,s for ever
s > 0, thus x0 has least possible entry stage. So, suppose that c ∈ K({¬x0}) and let X ⊆ Ax be a
minimal set such that c ∈ H({¬x0} ∪X). It can not be X = ∅ because x0 is chosen independently
of ∅ as c /∈ H(∅). Let a ∈ X be of greatest entry stage.

We distinguish the two possible cases due to which a can occur as a new axiom:

(1) Case a = ¬v, for some v. It follows that v ∈ H({¬x0} ∪ (X r {a}), contradicting that v
has greatest entry stage and thus it is chosen independent of {¬x0} ∪ (X r {a}) which is
H-consistent.

(2) Case a = ¬(v ∧ z), for some v, z. In this case we have that v ∧ z ∈ H({¬x0} ∪ (X r {a}),
and thus v ∈ H({¬x0} ∪ (X r {a}), contradicting that v has greatest entry stage (at most
equal to that of x0, but this, as in (1b) of the proof of the previous lemma does not make
things different) and thus it is chosen independent of {¬x0} ∪ (X r {a}).

By Lemma 6.7 this implies also the claim for u = 1, 2, as for these slots the p-dialectical procedure
perfectly mirrors the construction. Notice that consistency of L(1) follows from Lemma 6.7 and the
fact that, for the final values of ρ, we never add the axiom ¬ρ(0), and consistency of L(2) follows
from the fact that we never add the axiom ¬(ρ(0)∧ x0) in which case ρ(1) = xe, or we do add this
axiom and thus ρ(1) = a0 ∈ H(∅).

Cases u = 3e, 3e+ 1, 3e+ 2, with e > 0.

Assume that u = 3e, with e > 0. We first observe that L(3e) exists in the limit, and is K-consistent.
After L(3e− 1) remains unchanged, at subsequent stages for r(3e− 1) we observe the following: if
there is u < 3e− 1 such that there are strings σ, τ with r(u) = σ 〈̂f3e−1〉̂ τ (this can happen for at
most one u) then r(3e − 1) = 〈f3e−1〉̂ τ ; on the other hand by the way we define f−, we see that
f3e−1 never enters any of the stacks r(u) for u > 3e − 1; the only remaining possibilities are that
either r(3e− 1) becomes 〈f3e−1〉 if L(3e− 1) ∪ {f3e−1} is K-consistent, or 〈f3e−1, a0〉 otherwise. It
follows also that L(3e) is K-consistent.

It remains to see that L(3e) ∪ {¬xe} is K-consistent. Assume that it is not K-consistent. Then
there is a finite set X ⊆ Ax such that c ∈ H(L(3e) ∪ {¬xe} ∪ X), and X is minimal with this
property. As in the case u = 0 we can exclude the possibility X = ∅. Let a ∈ X be of greatest
entry stage. By an argument similar to that for the case u = 0, we conclude that either possible
case, i.e. a is of the form a = ¬v or a = ¬(v ∧ z), leads to a contradiction.

By Lemma 6.7, the claim extends to 3e+ 1 and 3e+ 2 as well. �

Lemma 6.9. If u ∈ {3e, 3e+ 1 : e ∈ ω} then ρ̂(u) = ρ(u).

Proof. For these u the p-dialectical procedure faithfully mirrors the construction. The only excep-
tion is that, by resetting, r̂(u) may not coincide with r(u) but is in any case a final segment of r(u),
as the string r(u) keeps records of all proposals made by f− including those made even before L(u)
has stopped changing, whereas r̂(u) is reset every time L(u) changes. But part of the resetting
procedure is adding the axiom ¬ρ̂(u) every time there is a change in Lu. Therefore each such ρ̂(u)
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is discarded by the p-dialectical procedure, and after L(u) has reached limit the stack r(u), after a
few consecutive discarding moves, starts to copy r̂(u). �

Lemma 6.10. For every e, the p-dialectical set Ap is a completion of Peano Arithmetic which
satisfies Ap 6= Ve.

Proof. The system p is loopless and so by Theorem 4.4 Ap is a completion. By Lemma 6.9, it
follows that ρ(3e + 1) = ρ̂(3e + 1), and thus by Lemma 6.6, A(xe) 6= Ve(xe). On the other hand,
Ap(xe) = A(xe). For this we use also that by Theorem 1.3 Ap consists exactly of the numbers that
eventually occupy L =

⋃
u L(u), for the final values L(u), and xe ∈ L if and only if xe /∈ Ve. �

This ends the prof of Theorem 6.3. �

Corollary 6.11. There exists a p-dialectical system p with connectives such that Ap is a completion
of Peano Arithmetic, and Ap is not dialectical.

Proof. Apply the previous theorem, taking A to be the class of ω-c.e. sets, which by a result in [3]
contains all dialectical sets, and is known to be a computable class of ∆0

2 sets. �

Remark 6.12. Notice that the q-dialectical system defined in the proof of Theorem 2.2 need
not preserve connectives, even if the original H does. This is fairly clear from the way H∗ is
defined: on the other hand, if the construction of q from p preserved connectives, then as the
result is independent of the approximation to H∗, it would be that Ad = Aαq where α is a good
approximation to H∗. But then, by Theorem 4.6 Aαq and thus Ap would be dialectical. It would
follow that every p-completion is a d-completion, contrary to Theorem 6.3.
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