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1 Introduction

In a multi-armed bandit problem, an individual is repeatedly faced with a
choice between a number of potential actions, each of which yields a payoff
drawn from an unknown distribution. The agent wishes to maximize her total
accumulated payoff (in the finite horizon case) or converge to an optimal action
in the limit (in the infinite horizon case). This very general model has been
used to model a variety of economic phenomena. For example, individuals
choosing between competing technologies, like different computer platforms,
seek to maximize the total usefulness of the purchased technologies, but cannot
know ahead of time how useful a particular technology will be. Others have
suggested applying this model to the choice of treatments by doctors (Berry
and Fristedt, 1985) crop choices in Africa (Bala and Goyal, 2008), choice of
drilling sites by oil companies (Keller, Rady, and Cripps, 2005), and choice of
modeling techniques in the sciences (Zollman, 2009).

The traditional analysis of strategies in bandit problems focuses on either
a known finite number of actions or a discounted infinite sequence of actions
(cf. Berry and Fristedt, 1985). In both these cases, strategies are evaluated
according to their ability to maximize the (discounted) expected sum of pay-
offs. Recent interest in boundedly rational strategies have led some scholars to
study strategies which do not maximize expected utility. These strategies are
evaluated according to their ability to converge in the infinite limit to choosing
the optimal action, without considering their short or medium run behavior.
For example, Beggs (2005) considers how a single individual who employs a
reinforcement learning algorithm (due to Roth and Erev, 1995) would perform
in a repeated multi-armed bandit problem.

Many of the above choice problems, like technology choice, are not made
in isolation, but rather in a social context. An individual can observe not only
her own successes or failures, but those of some subset of the population of
other consumers. As a result, several scholars have considered bandit problems
in social settings (Bolton and Harris, 1999; Ellison and Fudenberg, 1993; Bala
and Goyal, 2008; Keller, Rady, and Cripps, 2005). Bala & Goyal, for example,
consider a myopic Bayesian maximizer placed in a population of other myopic
Bayesian maximizers, and find that certain structures for the communication
of results ensure that this community will converge to the optimal action, but
other social structures will not.

Although Beggs and Bala & Goyal seem to utilize essentially the same met-
ric for the comparison of boundedly rational algorithms – convergence in the
limit – their investigation are more different than they appear. Beggs consid-
ers how an individual does when he plays a bandit in isolation; Bala & Goyal
consider how a group fares when each of its members confronts the same ban-
dit. The myopic maximizer of Bala & Goyal would not converge in the limit if
he was in isolation (Huttegger, 2011). More surprisingly, Beggs’ reinforcement
learner might not converge if placed in the wrong social circumstance.

The above investigations raise a central question: what relation, if any, is
there between a strategy’s performance considered in isolation and its per-
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formance in a social context? To answer this question, we make precise four
different ways of evaluating the asymptotic performance of strategies in multi-
armed bandit problems. We then characterize the performance of a variety of
boundedly rational strategies. We find that which boundedly rational strate-
gies are judged as appropriate depends critically on (i) whether the strategy is
considered in isolation or in a wider social context, and (ii) whether the strat-
egy is evaluated in itself, or as part of a collection of complimentary strategies
that can work together. Our results, we believe, make perspicuous the choices
one must make before engaging in the analysis of various boundedly rational
strategies.

In section 2 we provide the details of our model of bandit problems and four
general classes of boundedly rational strategies. These four classes were chosen
to represent many of the strategies investigated in literatures in economics,
psychology, computer science, and philosophy. Following this, we present the
different formalizations of the notion of convergence in the limit in section 3.
Here we provide the theorems which demonstrate which strategies meet the
various definitions, and illustrate that the different definitions are distinct
from one another. Section 4 concludes with a discussion of the applications
and potential extensions of the results presented here.

2 The model of learning

A learning problem is a quadruple 〈Ω,A,O, p〉, where Ω is a set of unknown
states of the world, A is a finite set of actions, O is a countable set of non-
negative real numbers called outcomes, and p = {p(·|a, ω)}a∈A,ω∈Ω is a set if
probability measures specifying the probability of obtaining a particular utility
given an action and state of the world.1

Informally, in each time period, each agent chooses one of a finite number
of actions A. We assume that the set of actions is constant for all times, and
each action results probabilistically in an outcome (or payoff) from a countable
set O of non-negative real numbers. Importantly, the probability of obtaining
an outcome given a particular action and state of the world does not change
over time. For this reason, what we call a learning problem is also called
a “stochastic” or “non-adversarial” multi-armed bandit problem to indicate
that agents are attempting to learn a fixed state of the world, not the strategy
of a competing player in a game.2 There is a set Ω of possible states of the
world that determines the probability distribution over O associated with each
action. Agents do not know the state of the world, and their actions aim to
discover it.

1 The bar notation p(·|a, ω) ought not be understood as conditioining. In other words, for
distinct actions a and a′ and distinct states of the world ω and ω′, the probability measures
p(·|a, ω) and p(·|a′, ω′) are not obtained from conditioning on a third common measure; they
are essentially unrelated. We use this notation because it is standard and allows us to avoid
notational conflicts with other definitions that we introduce.

2 For an exposition of the adversarial model, see Cesa-Bianchi and Lugosi (2006).
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To model communication among agents, we use finite undirected graphs
G = 〈VG, EG〉, where vertices VG represent individual agents, and edges EG
represent pairs of agents who can share information with one another. We will
often write g ∈ G when we mean that g ∈ VG. By a similar abuse of notation,
we use G′ ⊆ G to denote a group of learners G′ ⊆ VG. For any learner g ∈ G,
define NG(g) = {g′ ∈ G : {g, g′} ∈ EG} to be the neighborhood of g in the
network G. We assume {g} ∈ NG(g) for all g ∈ G, so that each individual
observes the outcomes of her own choices. When the underlying network is
clear from context, we write N(g), dropping the subscript G.

A history specifies (at a given time period) the actions taken and outcomes
received by every individual in the graph. Formally, for any set C, let |C|
denote its cardinality, which if C is a sequence/function, is the length of C. Let
C<N be the set of all finite sequences with range in C, and given a seqeuence
σ, let σn denote the nth coordinate of σ. Then define the set H of possible
histories as follows:

H = {h ∈ ((A×O)<N)<N : |hn| = |hk| for all n, k ∈ N}.

Here, hn is the sequence of actions and outcomes obtained by some collection
of learners at stage n of inquiry, and so the requirement that |hn| = |hk| for
all n, k ∈ N captures the fact that the size of a group does not change over
time. For a network G and a group G′ ⊆ G, define:

HG′,G = {h ∈ H : |hn| = |G′| for all n ∈ N}

When the network is clear from context, we will simply write HG′ to simplify
notation. Then HG is the set of network histories for the entire network, and
HN(g) is the set of neighborhood histories for the learner g. If G′ is a group
and h ∈ HG′ is a history for the group, the expressions Ag,n(h) and Og,n(h)
denote the action taken and outcome obtained respectively by learner g ∈ G′
on the nth stage of inquiry.

Example 1: Let G be the undirected graph with two vertices joined by an
edge. Let Ω = {ω1, ω2}, A = {a1, a2}, O = {0, 1}, and

p(1|ai, ωi) = .7 for i = 1, 2

p(1|ai, ωj) = .1 for i 6= j

One can imagine A as possible drugs, outcomes 1 and 0 as respectively
representing that a patient is cured or not, and ωi as representing the state
of the world in which ai is the better treatment. A possible network history
h ∈ HG of length two is 〈〈〈a1, 1〉, 〈a1, 0〉〉, 〈〈a1, 0〉, 〈a2, 0〉〉〉, which denotes the
history in which (i) one doctor applied treatment a1 to two successive patients,
the first of which was cured but the second of which was not, and (ii) a second
doctor applied treatment a1 to a patient who it failed to cure and then applied
treatment a2 to a second patient who was also uncured.
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A method (also called a strategy) m for an agent is a function that specifies,
for any particular history, a probability distribution over possible actions for
the next stage. In other words, a method specifies probabilities over the agent’s
actions given what she knows about her own and her neighbors’ past actions
and outcomes. Of course, an agent may act deterministically simply by placing
unit probability on a single action a ∈ A. A strategic network is a pair S =
〈G,M〉 consisting of a network G and a sequence M = 〈mg〉g∈G specifying the
strategy employed by each learner, mg, in the network.

Together, a strategic network S = 〈G,M〉 and a learning problem 〈Ω,A,O, p〉
determine a probability pSω(h) of any finite history h ∈ HG′ for any group
G′ ⊆ G. To see why, again consider Example 1. Suppose the two learners both
employ the following simple strategy: if action ai led to a success 1 on the
previous stage, play it again with probability one; if the action failed, play the
other action. Then the probability pSω1

(h) of the history h in Example 1 in
state of the world ω1 is

pSω1
(h) = p(1|a1, ω1) ·p(0|a1, ω1) ·p(0|a1, ω1) ·p(0|a2, ω1) = .7 · .3 · .3 · .9 = .1323

Notice, however, the same history h might have a different probability if one
were to respecify the methods employed by the agents in the network. For
example, suppose the agents both employed the rule “switch actions if and
only if a success is obtained.” Then the history h above would have probability
zero (regardless of state of the world), as the first learner continues to play
action a1 after a success.

Because outcomes can be interpreted as utilities, it follows that for any
state of the world ω, there is an expected value µaω of the action a that is
constant throughout time. Hence, in any state of the world ω, there is some
collection Aω = {a ∈ A : µaω ≥ µa

′

ω for all a′ ∈ A} of optimal actions that
maximize expected utility. It follows that the event that g plays an optimal
action at stage n has a well-defined probability, which we will denote pSω(Ag,n ∈
Aω). In the next section, we study the limiting behavior of such probabilities
in various strategic networks.

Some learning problems are far easier than others; for example, if one action
has higher expected utility in every world-state, then there is relatively little
for the agents to learn. We are principally interested in more difficult problems.
We say a learning problem is non-trivial if no finite history reveals that a given
action is optimal with certainty. In other words, a learning problem 〈Ω,A,O, p〉
is non-trivial if for all strategic networks S = 〈G,M〉, and all network histories
h ∈ HG, if pSω1

(h) > 0 for some ω1 ∈ Ω, then there exists ω2 ∈ Ω such that
Aω1
∩ Aω2

= ∅ and pSω2
(h) > 0. We say a learning problem is difficult if it is

non-trivial, and 1 > p(0|a, ω) > 0 for all ω ∈ Ω and all a ∈ A. That is, no
action is guaranteed to succeed or fail, and no history determines an optimal
action with certainty.
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2.1 Six Types of Strategies

Although the number of differing strategies is enormous, we will focus on
the behavior of six types of boundedly rational strategies: decreasing ε-greedy
(εG), reinforcement learning (RL), weighted reinforcement learning (wRL),
simulated annealing (SA), upper confidence bound algorithms (UCB), and
what we call, δε methods. We study these strategies for four reasons. First,
the first five types of strategies have been employed extensively in economics,
computer science, statistics, and many other disciplines in which one is inter-
ested in finding the global maximum (or minimum) of a utility (respectively,
cost) function. Second, all six strategies are simple and algorithmic: they can
easily be simulated on computers and, given enough discipline, performed by
human beings. Third, the strategies have desirable asymptotic features in the
sense that, in the limit, they find the global maximum of utility functions
under robust assumptions. Fourth, some of the strategies have psychological
plausibility as learning rules in particular types of problems.

Before introducing the strategies, we need some notation. For any sequence
σ and any natural number n, the expression σ � n denotes the initial segment
of σ of length n; by convention, let σ � n = σ if |σ| < n. For any two se-
quences σ and σ′ on any set, write σ � σ′ if the former is an initial segment
of the latter. If σ is a sequence, then ran(σ) denotes its range when the se-
quence is considered as a function. For example, ran(〈m1,m2,m3〉) is the set
{m1,m2,m3} and ran(〈m1,m2,m1〉) is the set {m1,m2}. When two sequences
σ and σ′ differ only by order of their entries (e.g. 〈1, 2, 3〉 and 〈2, 1, 3〉), write
σ ∼= σ′.

In the definitions of the various strategies below, let w = 〈wa〉a∈A be a
vector of non-negative real numbers.

Decreasing Epsilon Greedy (εG): Greedy strategies that choose, on each
round, the action that currently appears best may fail to find an optimal ac-
tion because they do not engage in sufficient experimentation. To address this
problem, one can modify a greedy strategy by introducing some probabilistic
experimentation. For instance, suppose 〈εn〉n∈N is a sequence of probabilities
that approach zero. At stage n, an εG-learner plays each action which cur-
rently appears best with probability 1−εn

k , where k is the number of actions
that currently appear optimal. Such a learner plays every other action with
equal probability. Because the experimentation rate εn approaches zero, it fol-
lows that such an εG learner experiments more frequently early in inquiry, and
plays an estimated EU-maximizing action with greater frequency as inquiry
progresses. εG strategies are attractive because, if εn is set to decrease at the
right rate, then they will play the optimal actions with probability approach-
ing one in all states of the world. Hence, εG strategies balance short-term
considerations with asymptotic ones. Because they favor actions that appear
to have higher EU at any given stage, such strategies approximate demands
on short run rationality.
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Formally, and more generally, let each agent begin with an initial estimate
of the expected utility of each action, given by the vector 〈wa〉a∈A. Let µ̂ag,n(h)
be g’s estimate of the expected utility of action a at stage n along history h,
where n is less than or equal to the length of h. This is given by wa if no one in
g’s neighborhood has yet played a, otherwise it is given by the current average
payoff of action a through stage n from plays in g’s neighborhood. Additionally,
define the set of actions which currently have the highest estimated utility:

A∗g,n(h) := {a ∈ A : µ̂ag,n(h) ≥ µ̂a
′

g,n(h) for all a′ ∈ A}

Given (i) a vector w = 〈wa〉a∈A of non-negative real numbers representing
initial estimates of the expected utility of an action a and (ii) an antitone
function ε : H → (0, 1) (i.e h � h′ implies ε(h′) ≤ ε(h)), an εG method
determined by 〈w, ε〉 is any method m of the form:

m(h)(A∗g,n(h)) = 1− ε(h)

m(h)(A \ A∗g,n(h)) = ε(h)

We will often not specify the vector 〈wa〉a∈A in the definition of an εG method;
in such cases, assume that wa = 0 for all a ∈ A.

Reinforcement Learning (RL): Reinforcement learners begin with an ini-
tial, positive, real-valued weight for each action. On the first stage of inquiry,
the agent chooses an action in proportion to the weights. For example, if there
are two actions a1 and a2 with weights 3 and 5 respectively, then the agent
chooses action a1 with probability 3

3+5 and a2 with probability 5
3+5 . At sub-

sequent stages, the agent then adds the observed outcome for all the actions
taken in his neighborhood to the respective weights for the different actions.

Formally, let g be an individual, w = 〈wa〉a∈A be a vector of positive real
numbers, which represent the initial weights. Let h ∈ HG′ be the history for
the individuals in g’s neighborhood. Let Wa

g,n(h) represent the total accumu-
lated payoff for action a in g’s neighborhood in history h through stage n,
which includes the initial weight wa. Define Wg,n(h) :=

∑
a∈AWa

g,n(h), which
represents the total payoff through stage n of all actions (and their initial
weights) in g’s neighborhood along the history h. An RL strategy mw is de-
fined by specifying w. For any w, the probability that an action a is played
after observed history h is given by:

mw(h)(a) =
Wa
g,n(h)

Wg,n(h)

Because wa is positive for all a ∈ A, the chance of playing any action is always
positive.

Reinforcement learning strategies are simple and appealing, and further,
they have been studied extensively in psychology, economics, and computer
science.3 In economics, for example, reinforcement learning has been used to

3 Here, we use the phrase “reinforcement learning” as it is employed in game theory.
See Beggs (2005) for a discussion of its asymptotic properties. The phrase “reinforcement
learning” has related, but different, meanings in both psychology and machine learning.
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model how individuals behave in repeated games in which they must learn
the strategies being employed by other players.4 Such strategies, therefore, are
important, in part, because they plausibly represent how individuals actually
select actions given past evidence. Moreover, RL strategies possess certain
properties that make them seem rationally motivated: in isolation, an indi-
vidual employing an RL method will find one or more of the optimal actions
in her learning problem (see Theorem 4 below - the first half of which is a
consequence of Theorem 1 in (Beggs, 2005)).

Weighted Reinforcement Learning (wRL): Although naive reinforce-
ment learners asymptotically approach optimal behavior, the rate at which
they do so is often quite slow (Beggs, 2005). One way to quicken convergence
is to redefine/alter the “weight” functions Wa

g,n introduced above. Instead
of simply adding together the payoffs of a given action a, one can redefine
Wa
g,n(h) to be a polynomial or exponential function of the payoffs obtained

from playing a (Cesa-Bianchi and Lugosi, 2006); we will make such a notion
more precise below.

However, two facts should be observed about such wRL methods. First,
the way in which the modified weight functions are used requires that utilities
are bounded from above; so such methods are not well-defined in all learning
problems like the remaining algorithms we consider. Second, one cannot simply
use the new weight functionsWa

g,n as one did in simple reinforcement learning,

namely, by choosing action a with probability
Wa
g,n(h)

Wg,n(h)
. Doing so would fail to

ensure that all actions are sufficiently explored, as the exponential or polyno-
mial functions can cause the reinforcement associated with a given action to
increase very quickly. Instead, one must introduce an experimentation param-
eter ε, as one does with εG strategies, that keeps the probability of playing a
given action high.

Formally, suppose utilities are bounded above by a constant u. Define the
learner g’s “regret” for playing action a at stage n in h as follows:

Rag,n(h) =

{
u−Og,n(h)
mg(h�n)(a)

if Ag,n(h) = a

u−Og,n(h) otherwise

Notice 1
mg(h�n)(a)

is well-defined if Aag,n = a, as in that case the probability

that g’s method chooses action a is strictly positive (as the set of actions is
countable). Define the cumulative regret Rag,≤n(h) of action a along h to be
the sum of regrets Rag,k, where k ≤ n.

A wRL learner uses regrets as follows. Let φ : R→ R+∪{0} be an increasing
and twice-differentiable weight function, and let ε : H → (0, 1) be an antitone

4 See Roth and Erev (1995) for a discussion of how well reinforcement learning fares
empirically as a model of how humans behave in repeated games. The theoretical properties
of reinforcement learning in games has been investigated by Argiento, et. al (2009); Beggs
(2005); Hopkins (2002); Hopkins and Posch (2005); Huttegger and Skyrms (2008); Skyrms
and Pemantle (2004).
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function. Then the wRL method mφ,ε associated with φ and ε is given by:

mφ,ε(h)(a) = (1− ε(h)) ·
φ′(Rag,≤n(h))∑
a∈A φ

′(Rag,≤n(h))
+
ε(h)

|A|

Common choices for φ include φ(x) = 1
λe

λx where λ > 0, and φ(x) = xr+
where r ≥ 2.

Simulated Annealing (SA): In computer science, statistics, and many other
fields, SA refers to a collection of techniques for minimizing some cost func-
tion.5 In economics, the cost function might represent monetary cost; in statis-
tical inference, a cost function might measure the degree to which an estimate
(e.g., of a population mean or polynomial equation) differs from the actual
value of some quantity or equation.

In our model of learning, SA strategies are similar to εG strategies. SA
strategies may experiment frequently with differing actions at the outset of
inquiry, but they have a “cooling schedule” that ensures that the rate of ex-
perimentation drops as inquiry progresses. SA strategies and εG strategies,
however, differ in an important sense. SA strategies specify the probability of
switching from one action to another; the probability of switching is higher if
the switch involves moving to an action with higher EU, and lower if the switch
appears to be costly. Importantly, however, SA strategies do not “default” to
playing the action with the highest EU, but rather, the chance of playing any
action depends crucially on the previous action taken.

Formally, let σ = 〈〈wa〉a∈A, 〈qa,a′〉a,a′∈A, T 〉 be a triple in which (i) 〈wa〉a∈A
is a vector of positive real numbers representing initial estimates of the ex-
pected utility of an action a, (ii) 〈qa,a′〉a,a′∈A is a matrix of numbers from the
open unit interval (0, 1) representing initial transition probabilities, that is, the
probability the method will switch from action a to a′ on successive stages of
inquiry, and (iii) T : H → R+ ∪ {0} is a monotone map (i.e. if h � h′, then
T (h) ≤ T (h′)) from the set of histories to non-negative real numbers which is
called a cooling schedule. For all a ∈ A and for all histories h of length n + 1
for a learner g, define:

s(h, a) = T (h) ·max{0, µ̂Ag,n(h)g,n (h)− µ̂ag,n(h)}

Here, s stands for “switch.” The switch function s(h, a) is large if the action
a appears to have greater value than the action last played along h, and it
is 0 otherwise. Moreover, the switch function decreases with the length of h
because it incorporates the cooling schedule T (h).

5 For an overview of SA methods and applications see Bertsimas and Tsitsiklis (1993),
which considers SA methods in non “noisy” learning problems in which the action space is
finite. Bertsimas and Tsitsiklis (1993) provides references for those interested in SA methods
in infinite action spaces. For an overview of SA methods in the presence of “noise”, see
Branke et al. (2008). Many of the SA algorithms for learning in noisy environments assume
that one can draw finite samples of any size at successive stages of inquiry. As this is not
permitted in our model (because agents can choose exactly one action), what we call SA
strategies are closer to the original SA methods for learning in non-noisy environments.
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The SA method determined by σ = 〈〈wa〉a∈A, 〈qa,a′〉a,a′∈A, T 〉 is defined
as follows. The value of mσ(〈−〉)(a), we assume, is either zero or one so that
some initial action is fixed, and

mσ(h)(a) =

{
qa′,a · e−s(a,h) if a 6= a′ = Ag,n(h)

1−
∑
a′′∈A\{a′} qa′,a′′ · e−s(a

′′,h) if a = a′ = Ag,n(h)

Since the switch function increases in the estimated value of the action a, the
method m assigns greater probability to those actions with higher estimated
value. Further, by the first case of the definition, because the switch function
decreases with the length of h, the probability that m switches actions de-
creases with time. Like εG methods, we will often not explicitly specify the
vector 〈wa〉a∈A in the definition of an SA method; in such cases, assume that
wa = 0 for all a ∈ A.

Delta-Epsilon (δε): The fourth class of methods that we consider consists
of intuitively plausible algorithms, though they have not been studied prior to
this paper. δε strategies are generalizations of εG strategies. Like εG strategies,
δε methods play the action which has performed best most frequently, and
experiment with some probability εn on the nth round, where εn decreases
over time. The difference between the two types of strategies is that each
δε method has some set of “favorite” actions Af ⊆ A that it favors in early
rounds. Hence, there is some sequence of (non-increasing) probabilities δn with
which δε methods plays its favorite action Af on the nth round. The currently
best actions are, therefore, played with probability 1−δn−εn on the nth stage
of inquiry.

Formally, let Af ∈ A, and δ, ε : H → [0, 1) be antitone maps such that
δ(h)+ε(h) ≤ 1. Then a δεmethod determined by the quadruple 〈〈wa〉a∈A, δ, ε, Af 〉
is any method m such that

m(h)(A∗g,n(h) \Af ) = 1− (ε(h) + δ(h))

m(h)(A \ (A∗g,n(h) ∪Af )) = ε(h)

m(h)(Af ) = δ(h)

Every εG method is a δε method, where A′ = ∅ and δ is the constant function
0.

δε methods capture a plausible feature of human learning: individuals may
have a bias, perhaps unconscious, toward a particular option (e.g., a type of
technology) for whatever reason. There is substantial psychological evidence
that people exhibit initial action/option preferences (i.e., prior to observing
any outcomes) that are grounded in aspects of the action or option that are
unrelated to its utility, but which nonetheless bias people’s choices in early
stages of learning (Kuhlman and Marshello, 1975; Stanovich and West, 1998;
Baron and Ritov, 2004). The δ parameter specifies the degree to which they
have this bias. Individuals will occasionally forgo the apparently better option
in order to experiment with their particular favorite technology. The ε param-
eters, in contrast, specify a learner’s tendency to “experiment” with entirely
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unfamiliar actions.

Upper Confidence Bound (UCB): At each stage of inquiry, a UCB learner
calculates an “upper confidence bound” ua for each action a; intuitively, the
bound ua might represent learner’s beliefs about the highest possible value
that action a may have. The learner then chooses the action with the greatest
upper confidence bound.

The motivation for UCB algorithms is fairly simple. If an action is played
infrequently, then a learner may inaccurately estimate the action’s value due
to insufficient sample size. As a result, if the learner were to use a confidence
interval (rather than a point-estimate) to represent his or her beliefs about the
action’s value, the resulting interval would be rather wide, containing values
much higher than the sample mean. UCB algorithms force a learner to play
actions sufficiently often so that the “confidence bounds” (which are not ac-
tually the bounds of confidence intervals) narrow in on the true value of each
action. At early stages of inquiry, there will be a large difference between the
confidence bounds and the estimated value of actions (heuristically, the confi-
dence intervals with different actions are wide and overlapping), and so UCB
learners explore many actions. At later stages of inquiry, when actions have
been played sufficiently often, the confidence bounds and sample mean differ
only slightly (heuristically, the confidence intervals are narrow), and so UCB
learners will typically play those actions with highest estimated value, which,
in the limit, are also the actions with the highest actual value. In this way,
UCB algorithms achieve a balance between “exploration” and “exploitation.”

The algorithms are defined formally as follows. For every group G′ ⊆ G
and every group history h ∈ HG′ , let OaG′,n(h) denote the outcome obtained

when action a is played for the nth time by some member in G′. So if T aG′,n(h)
is the number of times a is played along h through stage n, then the out-
comes obtained from playing a can be represented by a vector OaG′(h) :=
〈OaG′,1(h),OaG′,2(h), . . . ,OaG′,T a

G′,|h|(h)
(h)〉. UCB algorithms compute a confi-

dence bound for the action a using this vector, and the total number of plays
of all actions along h (which is just |h| · |h1| ).

Let ucb = {ucbni : Ri → R∪ {∞} | n ∈ N, i ≤ n} be a collection of Borel
measurable functions satisfying the following two properties:

1. For fixed i, the functions ucbni are non-decreasing in n. In other words,
for all fixed i ∈ N and all r ∈ Ri, one has ucbmi(r) ≥ ucbni(r) whenever
m ≥ n ≥ i.

2. For any sequence of i.i.d. random variables X1,X2, . . . with finite mean
µ <∞, and for any r < µ

p(ucbni(X1, . . . ,Xi) < r for some i ≤ n) = o(n−1)

where the o in the second condition is to be understood as indicating “little
o-notation” rather than an outcome. For any learner g and any neighborhood
history h ∈ HNG(g), let ucba(h) = ucb|h|·|h1|,T aNG(g),|h|(h)

(OaNG(g)(h)). Then

the UCB algorithm mucb associated with ucb maps any history h to the
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action a that maximizes ucba(h); if there is more than one such action, the
method chooses the action with lowest index. Property (1) asserts that one’s
current upper confidence bound for a should not decrease unless a is played
again; intuitively, it captures the fact that one’s confidence in the value of a
should depend only on the outcomes obtained when a has been played, and not
on how frequently other actions in the network have been employed. Property
(2) asserts that the upper confidence bound for all actions quickly approaches
the true value of the action, and moreover, it does not remain below the true
value for very long.

UCB strategies are desirable for a number of reasons. First, many of the
common upper confidence bound functions are easily computable, and hence,
UCB algorithms are easy to implement. Among other reasons, computation
is eased by the fact that UCB algorithms are deterministic and hence, do not
require use of a randomizing device like the other strategies above. Second,
because the upper confidence bounds ua approach the actions’ actual values
µaω at a quick enough rate (by the second property above), UCB learners will,
in every learning problem, converge to playing an optimal action in the limit,
regardless of social setting (See Theorem 2 below, which is a trivial conse-
quence of Theorem 2.2 in Agrawal (1995)). Finally, UCB algorithms not only
find optimal actions asymptotically, but when employed in isolation, they ac-
tually minimize regret at each stage of inquiry (Auer et al., 2002).

3 Individual versus Group Rationality

One of the predominant ways of evaluating these various boundedly rational
strategies is by comparing their asymptotic properties. Which of these rules
will, in the limit, converge to playing one of the optimal actions? One of the
central claims of this section is that there are at least four different ways one
might make this precise, and that whether a learning rule converges depends
on how exactly one defines convergence.

Our four ways of characterizing long run convergence differ on two dimen-
sions. First, one can consider the performance of either only a single strategy
or a set of strategies. Second, one can consider the performance of a strategy
(or strategies) when they are isolated from other individuals or when they
are in groups with other strategies. These two dimensions yield four distinct
notions of convergence, each satisfied by different (sets of) strategies.

We first consider the most basic case: a single agent playing in the absence
of any others. Let Sm = 〈G = {g}, 〈m〉〉 be the isolated network with exactly
one learner employing the strategy m.

Definition 1 A strategy m is isolation consistent (ic) if for all ω ∈ Ω:

lim
n→∞

pSmω (Ag,n ∈ Aω) = 1
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ic requires that a single learner employing strategy m in isolation con-
verges, with probability one, to an optimal action. ic is the weakest criterion
for individual epistemic rationality that we consider. It is well-known that, re-
gardless of the difficulty of the learning problem, some εG, SA-strategies and
wRL are ic. Similarly, some δε strategies are ic. Under mild assumptions, all
RL methods can also be shown to be ic

Theorem 1 Some εG, SA, and δε strategies are always (i.e. in every learning
problem) ic. Similarly for wRL methods in the learning problems in which they
are well-defined. Finally, if 〈Ω,A,O, p〉 is a learning problem in which there
are constants k2 > k1 > 0 such that p(o|a, ω) = 0 if o 6∈ [k1, k2], then all RL
methods are ic.

Here, when we speak of “some” or “all” RL strategies, we mean “some” or
“all” specifications of the parameters 〈wa〉a∈A in the definitions of the algo-
rithm. Similarly for the remaining algorithms.

The second type of convergence that we consider is that of an individual
learner in a network of other, not necessarily similar, learners. This notion,
which we call “universal consistency”, requires that the learner converge to
playing an optimal action in any arbitrary network. Let S = 〈G,M〉 be a
strategic network, g ∈ G, and m be a method. Write Sg,m for the strategic
network obtained from S by replacing g’s method mg with the alternative
method m.

Definition 2 A strategy m is universally consistent (uc) if for any strategic
network S = 〈G,M〉 and any g ∈ G:

lim
n→∞

pSg,mω (Ag,n ∈ Aω) = 1

By definition, any uc strategy is ic, since the isolated network is a strategic
network. Now uc strategies always exist, regardless of the difficulty of the
learning problem, since one can simply employ an ic strategy and ignore one’s
neighbors. But in fact, one class of the algorithms above both incorporates
data from one’s neighbors and is also uc:

Theorem 2 [Agrawal (1995)] UCB algorithms are always uc.

The proof of theorem 2 is obtained by simply rewriting Agrawal’s proof
in our notation, and so is omitted. However, none of the remaining strategies
considered above are always uc:

Theorem 3 In all difficult learning problems, there are RL, wRL, SA, εG,
and δε strategies that are ic but not uc. In addition, if 〈Ω,A,O, p〉 is a non-
trivial learning problem in which there are constants k2 > k1 > 0 such that
p(o|a, ω) = 0 if o 6∈ [k1, k2], then all RL methods are ic but not uc.

The general result that not all ic strategies are uc is unsurprising given
the generality of the definitions of strategies, actions, and worlds. One can
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simply define a pathological strategy that behaves well in isolation, but chooses
suboptimal actions when in networks. The important feature of the above
theorem is that plausible strategies, like some RL and SA strategies, are ic
but fail to be uc. The reason for such failure is rather easy to explain.

Consider εG strategies first. Recall, in such strategies, the ε function spec-
ifies the probability with which a learner will experiment/explore seemingly
inferior actions. This function must finely tuned so as to ensure that learners
experiment (i) sufficiently often so as to ensure they find an optimal action,
and (ii) sufficiently infrequently so as to ensure they play an optimal action
with probability approaching one in the long-run. Such fine-tuning is very
fragile: in large networks, learners might acquire information too quickly and
fail to experiment enough to find an optimal action.

How so? Consider a learner g who employs an εG strategy as follows.
After n stages of learning, g randomly explores some seemingly suboptimal
action with probability 1

nx/y
, where x is the total number of actions that g

has observed (including those of his neighbors) and y is the total number of
actions that g herself has performed. Thus, our learner very reasonably adjusts
the rate at which she explores new actions as a function of the amount of
acquired evidence. Yet this is equivalent to adopting an experimentation rate
of 1/n|NG(g)|, i.e. to adjusting one’s experimentation rate on the basis of one’s
neighborhood size. So our learner experiments with rate 1

n in isolation, but
with rate no greater than 1

n2 when embedded in a larger network. By the Borel
Cantelli Lemma, the former rate is large enough to ensure that each action is
played infinitely often (and thus the space of actions is explored), whereas the
latter is not. So some εG strategies (and hence, some δε strategies) are ic but
not uc.

Similar remarks apply to SA and wRL strategies. For instance, recall that
SA strategies are driven by a “cooling schedule”, which dictates the probability
with which one switches from one action to another. Just as the ε function
in εG methods can be adjusted to drive exploration in isolation but not in
a social context, so can the cooling schedule of SA strategies be defined so
that, in social settings, learners adopt some suboptimal action early and, with
non-zero probability, never abandon it.

RL strategies fail to be uc for a different reason. At each stage of inquiry,
RL learners calculate the total utility that has been obtained by playing some
action in the past, where the totals include the utilities obtained by all of one’s
neighbors. If a reinforcement learner is surrounded by enough neighbors who
are choosing inferior actions, then the cumulative utility obtained by plays of
suboptimal actions might be higher than that of optimal actions. Thus, a RL
method might converge to playing suboptimal actions with positive probability
in the limit.

One might wonder if this result is at all robust, as the networks considered
here are unweighted. That is, perhaps the fact the RL methods are not uc
depends crucially upon the assumption that agents trust all of their neighbors
equally. Instead, one might imagine that an agent assigns real-valued “weights”
to each of her neighbors, where such weights might represent how much the
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agent trusts her neighbors. If agents weight their neighbors in such a way, one
might hypothesize that a learner employing an RL method cannot be misled.
This hypothesis is false, so long as the weights that agents assign to neighbors
are constant. After proving Theorem 3 in the Appendix, we show a similar
result holds for RL methods even in weighted networks.

The argument that RL strategies fail to be uc, however, does rely heav-
ily the existence of learners who fail in the limit to find the optimal action.
This might occur because the RL learner is surrounded by individuals intent
on deceiving her, or alternatively because she is surrounded by individuals
who have a different utility function over outcomes. One might exclude this
possibility. When only RL methods are present in a network, then Theorem 4
below shows that, under most assumptions, every learner is guaranteed to find
optimal actions. That is, RL methods work well together as a group. We will
return to this point after introducing more general definitions of group ratio-
nality. Before doing so, however, we explain why UCB algorithms are uniquely
uc among the methods we have considered.

Like εG and SA methods, UCB algorithms are designed to balance “explo-
ration and exploitation” and so one might wonder why the upper-confidence
bound functions cannot be tuned so as to yield UCB functions that are ic
but not uc in the same way one can for εG and SA methods. The difference
is that, in UCB algorithms, the confidence bound ua associated with a as a
function of both (i) the total number of actions taken, and (ii) the number
of times a in particular has been played. Importantly, the bound associated
with a cannot decrease unless a is played again (by property (2)), and so the
action a must be explored until its inferiority is nearly certain. This is not
true of the εG, SA, wRL, and RL methods considered above, as their rates
of experimentation do not depend upon how often any particular action has
been employed.

The third and fourth notions of convergence focus on the behavior of a
group of strategies, either in “isolation” (i.e., with no other methods in the
network) or in a larger network. One natural idea is to impose no constraints
on the network in which the group is situated. Such an idea is, in our view,
misguided. We say a network is connected if there is a finite sequence of edges
between any two learners. Consider now individuals in unconnected networks:
these learners never communicate at all, and so it makes little sense to think of
such networks as social groups. Moreover, there are few interesting theoretical
connections that can be drawn when one requires convergence of a “group”
even in unconnected networks. We thus restrict our attention to connected net-
works, where far more interesting relationships between group and individual
rationality emerge. To see why, we first introduce some definitions.

Definition 3 (N-Network) Let S = 〈G,M〉 be a strategic network, and let
N be a sequence of methods of the same length as M . Then S is called a
N -network if N ∼= M .

In other words, an N network is a network in which all and only the
methods in N are employed.
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Definition 4 (Group Isolation Consistency) Let N be a sequence of
methods. Then N is group isolation consistent (gic) if for all connected N -
networks S = 〈G,M〉, all g ∈ G, and all ω ∈ Ω:

lim
n→∞

pSω(Ag,n ∈ Aω) = 1

Definition 5 (Group Universal Consistency) Let N be a sequence of
methods. Then N is group universally consistent (guc) if for all networks
S = 〈G,M〉, if S′ = 〈G′,M ′〉 is a connected N -subnetwork of S, then for all
g ∈ G′ and all ω ∈ Ω:

lim
n→∞

pSω(Ag,n ∈ Aω) = 1

Characterizing group rationality in terms of sequences of methods is impor-
tant because doing so allows one to characterize exactly how many of a given
strategy are employed in a network. However, in many circumstances, one is
only interested in the underlying set of methods used in a network. To this
end, define:

Definition 6 (Group Universal/Isolation Consistency (Sets)) Let M
be a set of methods. Then M is gic (respectively, guc) if for for every sequence
of methods M such that ran(M) = M, the sequence M is gic (respectively,
guc).

So a set M is gic if, for all connected networks that have only methods in M
and each method in M occurs at least once in the network, each learner in
the network converges to playing optimal actions. A set M is guc if, for all
networks in which each method in M is represented at least once and those
employing M are connected by paths of learners using M, each agent in the
subnetwork employing M converges.

The names encode a deliberate analogy: gic stands to guc as ic stands to
uc. Just as an ic method is only required to converge when no other methods
are present, so a gic sequence of methods is only required to find optimal
actions when no other methods are present in the network. And just as a
uc method must converge regardless of the other methods around it, a guc
sequence of methods must converge to optimal actions regardless of other
methods in the network. Thus, it is clear that if M is guc, then it is also gic.
The converse is false in general, and RL methods provide an especially strong
counterexample:

Theorem 4 Suppose 〈Ω,A,O, p〉 is a non-trivial learning problem in which
there are constants k2 > k1 > 0 such that p(o|a, ω) = 0 if o 6∈ [k1, k2]. Then
every finite sequence of RL methods is gic, but no such sequence is guc.

The first half of theorem 4 asserts that RL methods do, as we expected,
perform well as a group when no other agents are present. However, the proof
of the second half of the theorem shows that just as a single learner employing
an RL method can be misled by his or her neighbors, so can arbitrarily large
groups of RL methods be swayed by actions in the ambient network.
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One might wonder whether, like RL methods, all ic methods form gic
groups. That conjecture is false:

Theorem 5 In difficult learning problems, there are sequences M (respectively
sets) of εG (and hence, δε) methods that are not gic, but such that every
coordinate (respectively element) m of M is ic. In fact, M can even be a
constant sequence consisting of one method repeated some finite number of
times. Similarly for SA methods, and for wRL methods in the learning problems
in which they are well-defined.

Notice that, with respect to εG, SA, and δε methods, theorem 5 entails
theorem 3. In fact, the sketch of proof theorem 3 given above is also a sketch
of proof of theorem 5: in networks consisting of exclusively εG or SA learners,
agents may acquire information too quickly thereby failing to explore the space
of actions sufficiently.

Thus far, we have investigated the relationship between (i) ic and uc meth-
ods, and (ii) ic and gic sets of methods. And clearly, any sequence (respec-
tively set) of uc strategies M is both guc and gic, since the uc methods are
just those that converge regardless of those around them (It thus follows im-
mediately that guc and gic groups exist). So what is the relationship between
ic and guc sets of methods?

In general, not all sequences (respectively sets) of methods that are gic
or guc need to be composed entirely of ic methods. Consider, for instance,
the set of strategies consisting of one uc method, and another method that
“imitates” the best strategy amongst one’s neighbors (other than oneself) and
defaults to some fixed action if one has no neighbors. Such imitators will fail
to converge in isolation, as in isolation, they may default to some fixed inferior
action. However, if a connected network consists of at least one uc method
and such imitators, then all agents will always play EU-maximizing actions
in the limit, and hence, the sequence is gic. Why? Since there is a learner
g employing a uc method, he or she will play EU-maximizing actions with
probability one in the limit. All of g’s neighbors, by definition, either imitate g
or employ the same method as g, and therefore, they also play EU maximizing
actions with probability one in the limit. Thus, neighbors of neighbors of g
also play EU maximizing actions with probability one in the limit. And so on.
Because the network is connected, g’s optimal behavior cascades through the
entire network.

This argument, however, trades on the fact that at least one learner in the
network employs a uc strategy. Surprisingly, there are sequences and sets of
strategies that are guc, but such that no strategy itself is ic (let alone uc).

Theorem 6 In non-trivial learning problems, there are sequences and sets of
δε methods M such that M is guc, but no m in M is ic.

The proof of theorem 6 is nearly identical to the above argument concerning
the network of “imitators.” For simplicity, consider the class of δε methods for
which ε is the constant function 0. Like the imitators, these δε methods mimic
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the behavior of their most successful neighbors with high probability, and
otherwise, they default to some preferred set of actions with probability δ. For
concreteness, assume that δ assigns unit probability to some fixed action a if a
appears to be optimal, and probability 1

n otherwise, where n is the number of
stages of learning that have elapsed. In isolation, such a δε method may fail to
explore the space of actions sufficiently because it may default to its preferred
action a over and over again.

However, consider a set M of different δε methods, where each method
has a different favored action. Suppose, for example, the set of methods are
sufficiently diverse so that every action is favored by at least one method in the
set. Now consider a network consisting of such methods. Whatever the true
state of the world, there is some agent g in the network who favors an optimal
action by assumption. Thus, if δ is defined as above (so that the chance of
playing one’s favored action is always at least 1

n ), then g will play his favored
action infinitely often. So both g and his neighbors will learn that said action
is optimal, and because δε learners imitate the best available action, both g
and his neighbors employing δε methods will perform his favored action (or
some other optimal action) with unit probability in the limit. By the same
reasoning, neighbors of neighbors of g will also adopt g’s behavior (or some
optimal action). And so on. If each of the δε learners are connected by a
path in the network, g’s optimal behavior will cascade through the entire
network among such learners. So sets of δε methods can be guc, though no
individual method in the set is ic. This argument provides further evidence
for the the broader thesis that a “diversity” of learning methods or problem-
solving approaches can increase the performance of a group, even when each
individual’s approach is not particularly fruitful (Hong and Page, 2001, 2004).

Finally, because all εG strategies are δε strategies, we obtain the following
corollary that shows that, depending on the balance between dogmatism and
tendency to experiment, a method may behave in any number of ways when
employed in isolation and when in networks.

Corollary 1 In difficult learning problems, there exist different sequences (re-
spectively sets) M of δε methods such that

1. Each member (respectively, coordinate) of M is ic but not uc; or
2. Each member (respectively, coordinate) of M is ic, but M is not gic; or
3. M is guc, but no member (respectively, coordinate) of M is ic.

The only conceptual relationship between the four types of convergence
that is not discussed in the above corollary is the relationship between guc
and gic. But recall that Theorem 4 asserts that some gic sets are not guc,
and we note the reverse implication is trivial.

4 Discussion

We believe that the most important part of our results is the demonstration
that judgments of individual rationality and group rationality need not coin-
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cide. Rational (by one standard) individuals can form an irrational group, and
rational groups can be composed of irrational individuals. Recent interest in
the “wisdom of crowds” has already suggested that groups might outperform
individual members, and our analyses demonstrate a different way in which
the group can be wiser than the individual. Conversely, the popular notion
of “groupthink,” in which a group of intelligent individuals converge prema-
turely on an incorrect conclusion, is one instance of our more general finding
that certain types of strategies succeed in isolation but fail when collected into
a group. These formal results thus highlight the importance of clarity when
one argues that a particular method is “rational” or “intelligent”: much can
depend on how that term is specified, regardless of whether one is focused on
individuals or groups.

Our analysis, however, is only a first step in understanding the connections
between individual and group rationality in learning. Our work ought to be
extended in at least five ways.

First, there are a variety of methods which satisfy none of the conditions
specified above, but are nonetheless convergent in a particular setting. Bala
and Goyal (2008) illustrate how a method which is not IC, UC, GIC, or GUC
nonetheless converges in a particular type of network. Additional investigation
into more permissive notions of individual and group rationality are likely
to illustrate the virtues of other boundedly rational learning rules, and may
potentially reveal further conceptual distinctions.

Second, the algorithms we consider do not directly assess the reliability
and/or trust-worthiness of data acquired from other learners in the network.
It is obvious that “real-world” learners do assess and weigh competing infor-
mation received from others. Thus, one natural extension of our work is to
modify common learning algorithms, like the six classes considered above, so
that they employ such “social” information about others’ reliabilities. One
could then investigate whether such modified algorithms also exhibited diver-
gent behavior in isolation versus social contexts.

Third, although we distinguish four criteria of individual and group ratio-
nality, we focus exclusively on asymptotic convergence to optimal behavior.
In contrast, important work in machine-learning (see, for example, Auer et
al. (2002)) aims to find algorithms that minimize regret uniformly at each
stage of learning. It is important to characterize whether or not such stricter
criteria - which essentially require agents to learn quickly - yield divergent
judgments of individual and group rationality in the same way we have found
with asymptotic criteria.

Fourth, in addition to considering different methods/algorithms and alter-
native criteria of rationality within the bandit-problem framework, our results
should be extended to different formal frameworks for representing inquiry.
We have focused on the case of multi-armed bandit problems, but these are
clearly only one way to model learning and inquiry. It is unknown how our for-
mal results translate to different settings. One natural connection is to consider
learning in competitive game-theoretic contexts. Theorems about the perfor-
mance in multi-armed bandits are often used to help understand how these
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rules perform in games, and so our convergence results should be extended to
these domains.

In particular, one natural question is how our results extend to the “ad-
versarial” multi-armed bandit problem, in which a forecaster competes with a
player who chooses the observed outcomes so as to maximize the forecaster’s
predictive loss. This model can be understood as representing the task of learn-
ing other players’ strategies in a competitive game, or as statistical inference
from non-stationary processes. How such a model should be generalized to in-
corporate network learning (e.g. Do all players in a network compete agains a
common player? Can the common opposing player choose different outcomes
for different learners? etc.) is an open question.

Fifth, there are a range of natural applications for our results. As already
suggested, understanding how various boundedly rational strategies perform
in a multi-armed bandit problem has important implications for a variety of
different economic phenomena, and in particular, for models of the influence
that social factors on learning. This framework also provides a natural repre-
sentation of many cases of inquiry by a scientific community.

More generally, this investigation provides crucial groundwork for under-
standing the difference between judgments of convergence of various types
by boundedly rational strategies. It thus provides a means by which one can
better understand the behavior of such methods in isolation and in groups.
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Appendix A - Formal Definitions

Notational Conventions

In the following appendix, 2S will denote the power set of S. Let S<N denote
all finite sequences over S, and let SN be the set of all infinite sequences over
S. We will use 〈−〉 to denote the empty sequence. If σ is a subsequence of σ′,
then write σ v σ′, and write σ @ σ′ if the subsequence is strict. If σ � σ′, then
σ v σ′, but not vice versa. For example 〈1, 2〉 v 〈3, 1, 5, 2〉, but the former
sequence is not an initial segment of the latter.

Given a network G and a group G′ ⊆ G and any n ∈ N, we let HG′,n

denote sequences of HG′ of length n. Because (i) the sets of actions, outcomes,
and agents are all at most countable and (ii) the set of finite sequences over
countable sets is countable, we obtain:

Lemma 1 H, HG′ , HG, Hn, HG′,n, and HG,n are countable.

Write Ag,n(h) to denote the action taken by g on the nth stage of inquiry
in h, and Og,n(h) to denote the outcome obtained. If h ∈ HG′ has length 1 (i.e.
h represents the actions/outcomes of group G′ at the first stage of inquiry),
however, it will be easier to simply write Ag(h) and Og(h) to denote the initial
action taken and outcome obtained by the learner g ∈ G′. Similarly, if h ∈ HG′

is such that |hn| = 1 for all n ≤ |h| ( i.e. h represents the history of exactly one
learner), then we write An(h) and On(h) to denote the action and outcome
respectively taken/obtained at stage n in h. Finally, for any group history
h ∈ HG′ , define QG′(h, a) := {〈n, g〉 ∈ N×G′ : Ag,n(h) = a}, to bet the set
of ordered pairs 〈n, g〉 such that g plays a at stage n in h.

For a network G and a group G′ ⊆ G, a complete group history for G′ is an
infinite sequence 〈hn〉n∈N of (finite) group histories such that hn ∈ HG′,n and
hn ≺ hk for all n < k. Denote the set of complete group histories for G′ by
HG′ . Define complete individual histories Hg similarly. By abuse of notation,
we let HG = ∪G′⊆GHG′ to be the set of all complete histories for all groups
G′ in the network G.

For any group history h ∈ HG′,n of length n, define:

[h] = {h ∈ HG′ : hn = h}

In other words, [h] is the set of complete group histories extending the finite
group history h. It is easy to see that the sets [h] form a basis for a topology,
and so let τG be the topology generated by sets of the form [h], i.e. τG is
arbitrary unions of sets of the form [h], where G′ ⊆ G and h ∈ HG′ . Let FG
be the Borel algebra generated by τG.

Lemma 2 The following sets are measurable (i.e. events) in 〈HG,FG〉:

1. [Ag,n = a] = {h ∈ HG : Ag,n(hn) = a} for fixed a ∈ A and g ∈ G
2. [G′ plays A′ infinitely often] = {h ∈ HG : ∀n ∈ N∃k ≥ n∃g ∈ G′(Ag,k(hk) ∈

A′)} for fixed A′ ⊆ A and G′ ⊆ G
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3. [limn→∞ µ̂ag,n = r ] = {h ∈ HG : limn→∞ µ̂ag,n(hn) = r} for fixed a ∈ A,
g ∈ G, and r ∈ R.

4. [limn→∞m(hn)(Aω) = 1] = {h ∈ HG : limn→∞m(hn)(Aω) = 1}, where
ω is a fixed state of the world such that Aω is finite, and m is a fixed
method.

Hence, if one considers Ag,n : HG → A as the function h 7→ Ag,n(hn), then
by Theorem 2.1, the mapping Ag,n is a random variable with respect to the
power set algebra on A (recall, A is countable). Similar remarks apply to Og,n,
Oag,n, Wa

g,n, Rag,n etc. when considered as functions from complete histories to
the set of outcomes (or sums of outcomes). In general, we will use calligraphic
letters to denote random variables.

Given a strategic network S = 〈G,M〉, a collection of learners G′ ⊆ G,
and a state of the world ω, one can define, by recursion on the length of a
history h ∈ HG′ , the probability pSG′,ω,n(h) that each learner g ∈ G′ performs
the action and obtains the outcomes specified by the history h ∈ HG′,n.

pSG′,ω,0(〈−〉) = 1

pSG′,ω,n+1(h) := pSG′,ω,n(h � n) · Πg∈G′ mg(h � n)(Ag,n+1(h))

·p(Og,n+1(h)|Ag,n+1(h), ω)

Given a strategic network S = 〈G,M〉 and a state of the world ω ∈ Ω, one
can define pSω to be the unique, countably additive probability measure on
〈HG,FG〉 such that

pSω([h]) = pSG′,ω,n(h) for all G′ ⊆ G and all h ∈ HG′ .

The measure pSω exists and is unique by Caratheodory’s Extension theorem.
Details are available in Mayo-Wilson, Zollman, and Danks (2010). By abuse
of notation, we do not distinguish between pSG′,ω,n(h) and its extension pSω([h])
in the ensuing proofs, as the expressions denote the same quantities.

Basic Lemmas

Lemma 3 Let S = 〈G,M〉 be any strategic network, g ∈ G, and a ∈ A. Then
for all ω ∈ Ω:

pSω( lim
n→∞

µ̂ag,n = µaω | NG(g) plays a infinitely often) = 1

so long as pSω(NG(g) plays a infinitely often) > 0.

Proof: Fix g ∈ G and consider the random variables OaNG(g),n restricted to the

subalgebra of FG generated by the event E = [NG(g) plays a infinitely often]
(i.e. consider them as maps to the set of outcomes, endowed with power set al-
gebra, from the set [NG(g) plays a infinitely often] endowed with the σ-algebra
FG ∩ E := {F ∩ E : F ∈ FG}). These random variables are independent by
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construction of pSω. They are identically distributed on the subalgebra gener-
ated by the event E because the action a is played infinitely often by definition
in E, and they have mean µaω by definition. Hence, by the strong law of large
numbers:

lim
n→∞

µ̂ag,n := lim
n→∞

∑
j≤nOaNG(g),j

n
= µaω

with probability one under the measure pSω(·|NG(g) plays a infinitely often).
The result follows.

�

Lemma 4 Let S = 〈G,M〉 be a strategic network, g ∈ G, ω ∈ Ω. Suppose
that pSω(limn→∞mg(hn)(Aω) = 1) = 1. Then limn→∞ pSω(Ag,n ∈ Aω) = 1.

Proof: Let ε ∈ Q ∩ (0, 1), and let n ∈ N. Define:

Fn,ε := {h ∈ HN(g),n : mg(h)(Aω) > 1− ε}

Fn,ε := {h ∈ HN(g) : mg(hn)(Aω) > 1− ε} =
⋃

h∈Fn,ε

[h]

En,ε := {h ∈ HN(g) : mg(hk)(Aω) > 1− ε for all k ≥ n}

Clearly, En,ε ⊆ Fn,ε. It follows that:

pSω(Ag,n+1 ∈ Aω) =
∑

h∈HN(g),n

pSω(h) ·mg(h)(Aω)

=
∑

h∈Fn,ε

pSω(h) ·mg(h)(Aω) +
∑

h∈HN(g),n\Fn,ε

pSω(h) ·mg(h)(Aω)

≥
∑

h∈Fn,ε

pSω(h) ·mg(h)(Aω)

≥
∑

h∈Fn,ε

pSω(h) · (1− ε)

= pSω(Fn,ε) · (1− ε)
≥ pSω(En,ε) · (1− ε)

Notice that E1,ε ⊆ E2,ε ⊆ . . ., and so it follows that limn→∞ pSω(En,ε) =
pSω(∪n∈NEn,ε). Now by assumption:

pSω( lim
n→∞

mg(hn)(Aω) = 1) = 1

Notice that

[ lim
n→∞

mg(hn)(Aω) = 1] = ∩δ∈Q∩(0,1) ∪n∈N En,δ.
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So it follows that

1 = pSω( lim
n→∞

mg(hn)(Aω) = 1)

= pSω(∩δ∈Q∩(0,1) ∪n∈N En,δ)

≤ pSω(∪n∈N En,ε)

= lim
n→∞

pSω(En,ε)

≤ 1

1− ε
· lim
n→∞

pSω(Ag,n+1 ∈ Aω) by the argument above

As ε was chosen arbitrarily from the Q ∩ (0, 1), the result follows.

Lemma 5 Let S = 〈G,M〉 be a strategic network, g ∈ G, A′ ⊆ A, and ω ∈ Ω.
Suppose limn→∞ pSω(Ag,n ∈ A′) = 1. Then:

pSω(g plays A′ infinitely often ) = 1.

Proof: By contraposition. Suppose pSω(g does not play A′ infinitely often )
is positive. By definition: [g does not play A′ infinitely often ] = ∪n∈N ∩k≥n
[Ag,k 6∈ A′], and so (by countable additivity), there is some j ∈ N such that
pSω(∩k≥j [Ag,k 6∈ A′]) = r > 0. It follows that pSω(Ag,k ∈ A′) ≤ 1 − r for all
k ≥ j. Hence, limn→∞ pSω(Ag,n ∈ A′) ≤ 1− r < 1.

Corollary 2 Let S = 〈G,M〉 be a strategic network, g ∈ G, and ω ∈ Ω.
Suppose that there is some n ∈ N such that

pSω(
⋂
k>n

[Ag,k 6∈ Aω]) > 0

Then limn→∞ pSω(Ag,n ∈ Aω) < 1.

Appendix - Proofs of Major Lemmas

In the following two propositions, let mε be εG method defined as follows. Let
〈wa〉a∈A be a vector of strictly positive real numbers, and ε : H → R+ ∪ {0}
be the function ε(h) = 1

|h||h1| . Let mε be the εG method defined as follows:

mε(h)(a) =


1−ε(h)
|A∗
g,|h|(h)|

if a ∈ A∗g,|h|(h)

ε(h)
|A\A∗

g,|h|(h)|
otherwise

Proposition 1 In all learning problems, mε is ic.

Proof: Let Smε be the isolated network consisting of one learner g employing
mε. Let a ∈ A and n ∈ N. Define:

En = [An = a]
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Then by definition of the method mε action a is chosen on stage n is always
played with probability at least 1

|A|·n > 0, regardless of history, by assumption

the initial weights are positive. It follows that: p
Smε
ω (En | ∩k≤j<n Ecj ) ≥ 1

|A|·n
for any pair of natural numbers n and k such that k < n. Hence, for all k ∈ N:∑

n>k

p
Smε
ω (En | ∩k≤j<n Ecj ) =∞

By the Borel Cantelli-Lemma, it follows that p
Smε
ω (En infinitely often ) = 1.

In other words, the only learner in Smε plays a infinitely often. As a was
chosen arbitrarily, every action in A is played infinitely often. By Lemma 3,
g’s estimates of the expected utility of each action approach the true expected
utility in every possible state of the world with probability one, i.e.,

p
Smε
ω ((∀a ∈ A) lim

n→∞
µ̂ag,n = µaω) = 1

Because mε plays the (estimated) EU maximizing actions with probability
approaching one in every state of the world, it follows that:

p
Smε
ω ( lim

n→∞
mε(hn)(Aω) = 1) = 1.

By Lemma 4, the result follows.

Proposition 2 Let 〈Ω,A,O, p〉 be a difficult learning problem. Then 〈mε,mε〉
is not gic.

Proof: Let S = 〈G = {g1, g2}, 〈mε,mε〉〉 be the strategic network consisting
of exactly two researchers, both of whom employ the method mε. Let ω1 ∈
Ω. As the learning problem is non-trivial, there is some ω2 ∈ Ω such that
Aω1

∩ Aω2
= ∅. As the learning problem is difficult, there is some history

h ∈ HG such that (i) every action in Aω1
has garnered zero payoff along h, (ii)

some action in Aω2
has garnered positive payoff along h, and (iii) pSω1

(h) > 0.
Suppose h has length n. Define:

E = [h] ∩
⋂
g∈G

⋂
j>n

[Ag,j 6∈ Aω1 ]

F = [h] ∩
⋂
g∈G

⋂
j>n

[Ag,j ∈ Aω2
]

Fk = [h] ∩
⋂
g∈G

⋂
n<j<n+k

[Ag,j ∈ Aω2
]

Notice first that F ⊆ E, and so pSω1
(F ) ≤ pSω1

(E). Thus, it suffices to show
that pSω1

(F ) > 0. Next notice that F1 ⊇ F2 ⊇ . . . F , and so limk→∞ pSω1
(Fk) =

pSω1
(F ). Because mε chooses actions in A \ A∗g,n(h) with probability at most

1
|h|2 , it is easy to check, by induction on k, that

pSω1
(Fk) ≥ pSω1

([h]) ·Πn<j<k (1− 1

j2
)2.
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The term under the product sign is squared because g1 and g2 choose their
actions independently of one another. It follows that:

pSω1
(F ) = lim

k→∞
pSω1

(Fk) ≥ lim
k→∞

pSω1
([h]) ·Πn<j<k (1− 1

j2
)2 > 0

where the last inequality follows from the fact that pSω1
(h) > 0. By Corollary

2, the result follows. Notice the same proof works for any finite sequence that
has range mε and length greater than or equal to two.

Proposition 3 Let 〈Ω,A,O, p〉 be any learning problem. Let m be the SA
method determined by the following. Fix a0 ∈ A, and choose qa0,a > 0 however
one pleases so that

∑
a∈A qa0,a = 1. Set qa,a′ = qa0,a′ for all a, a′ ∈ A. Set the

cooling schedule T : H → R to be the function T (h) = log(|h||h1|) (here, log is
the natural logarithm). Then m is ic. If 〈Ω,A,O, p〉 is difficult, then 〈m,m〉
is not gic.

Proof: The proofs of the two claims are analogous to those of Proposition 1
and 2. See Mayo-Wilson, Zollman, and Danks (2010) for details.

Proposition 4 Let 〈Ω,A,O, p〉 be a difficult learning problem with only finitely
many actions. Let ε(h) = 1

|h||h1| . Suppose φ(x) = xr, where r ≥ 2, or φ(x) =
1
λe

λx, where λ > 0. Then the wRL method mφ,ε is ic but not gic.

Proof: The proof that the wRL method mφ,ε is ic follows directly from The-
orem 6.9 in Cesa-Bianchi and Lugosi (2006). To show that it is not gic, let S
be the connected strategic network consisting of exactly two learners g1 and
g2 employing mφ,ε. We show that the probability that an optimal action is
never played pSω((∀n ∈ N)(∀g ∈ G)Ag,n ∈ A \Aω) is strictly positive. Let g be
either of the learners. Then: Then:

pSω(Ag,n+1 = a) =
∑

h∈Hg,n

pSω(h) ·mφ,ε(h)(a)

=
∑

h∈Hg,n

pSω(h) ·

[
1

|A| · |h|2
+

(
1− 1

|A| · |h|2

)
φ′(Rag,|h|(h))∑
b∈A φ

′(Rbg,|h|(h))

]

≤
∑

h∈Hg,n

pSω(h) ·
[

1

|A| · |h|2
+

(
1− 1

|A| · |h|2

)]
as

φ′(Rag,|h|(h))∑
b∈A φ

′(Rbg,|h|(h))
≤ 1

=
∑

h∈Hg,n

pSω(h) ·
[

1

|A| · n2
+

(
1− 1

|A| · n2

)]
by definition of Hg,n

=

(
1− 1

n2

)(
1− 1

|A|

) ∑
h∈Hg,n

pSω(h)

=

(
1− 1

n2

)(
1− 1

|A|

)
as

∑
h∈Hg,n

pSω(h) = 1
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Routine calculation then shows that:

pSω((∀n ∈ N)(∀g ∈ G)Ag,n ∈ A\Aω) ≥ Πn∈N |A\Aω|·
[(

1− 1

n2

)(
1− 1

|A|

)]2
> 0

�

In the following two propositions, let mδε
a be the δε method determined by the

quadruple 〈w = 〈wa〉, A′ = {a}, ε, δ〉 such that ε(h) = 0, and wa′ = 0 for all
a′ ∈ A, and

δ(h) =

{
1 if a ∈ A∗g,n(h)
1
|h| otherwise

Proposition 5 Let 〈Ω,A,O, p〉 be a non-trivial learning problem. Then mδε
a

is not ic.

Proof: Let S be the isolated network consisting of one learner g employing the
method mδε

a . As the learning problem is non-trivial, there is some ω ∈ Ω such
that a 6∈ Aω. This implies that [An 6∈ Aω] ⊆ [An = a]. Define E to be the set
of histories along which only the action a is played, i.e., E =

⋂
n∈N [An = a].

By Corollary 2, it suffices to show that pSω(E) > 0. In fact, we show E has
probability one. To do so, note that, by convention, the initial weights assigned
to each action in A are zero, so that a appears to be an optimal action on the
first stage, i.e. a ∈ A∗g,0(〈−〉). So g plays a with probability one on the first
stage. Because outcomes are non-negative, it follows that regardless of the
outcome of the first play, a remains seemingly optimal at stage 2, and so on.
Hence, regardless of the state of the world, in every history h for the isolated
network S with positive probability, the only action played along h is a. It
follows that pSω(E) = 1.

Proposition 6 Let 〈Ω,A,O, p〉 be any learning problem, and M = 〈mδε
a 〉a∈A,

where mδε
a is defined as in Proposition 5. Then M is guc.

Proof: Let S = 〈G,N〉 be any strategic network containing a connected M -
subnetwork S′ = 〈G′,M〉. Let ω ∈ Ω. Pick some a ∈ Aω, and some g ∈ G′
such that mg = mδε

a . Let En = [Ag,n = a], so that pSω(En | ∩k≤j<n Ecj ) ≥ 1
n

for any pair of natural numbers k < n (by definition of mδε
a ). By the Second

Borel-Cantelli Lemma, it follows that

pSω(g plays a infinitely often ) = 1.

By Lemma 3, it follows that, almost surely, every learner in NG(g) has an
estimate of the EU of a that approaches the actual EU of a in ω. Because
a ∈ Aω, by the definition of the strategies {mδε

a′}a′∈A and Lemma 4, it then
follows that, almost surely, every learner in NG(g) ∩ G′ plays actions in Aω
with probability approaching one.

Continuing, by Lemma 5, it follows that, almost surely, every learner in
NG(g)∩G′ plays plays actions in Aω infinitely often. Because Aω is finite, by
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the pigeonhole principle, it follows that if an individual plays actions from Aω
infinitely often, then there is some a′ ∈ Aω that he plays infinitely often. It
follows that, almost surely, for every learner in g′ ∈ NG(g)∩G′, there is some
action ag′ ∈ Aω that g′ plays infinitely often.

Let g′′ ∈ G′ be an agent such that g′′ is a neighbor of some neighbor g′ of
g. Now we can repeat the argument above. Since g′ plays some optimal action
ag′ ∈ Aω infinitely often almost surely, then by Lemma 3, it follows that g′′

has an estimate of the EU of ag′ that approaches the actual EU of ag′ almost
surely. By the definition of the strategies {mδε

a′}a′∈A and Lemma 4, it then
follows that g′′ plays plays actions in Aω with probability approaching one.
So neighbors of neighbors of g play EU maximizing actions with probability
approaching one if they are in G′.

In general, let π(g, g′) be the length of the shortest path between g and
g′ in G. By induction n ∈ N, we see that for any agent g′ ∈ G′ such that
π(g, g′) = n, g′ plays EU maximizing actions with probability approaching
one. Because the subnetwork S = 〈G′,M〉 is connected, for all g′ ∈ G, there
is a finite path between g and g′, and so we’re done.

Appendix B - Proofs of Theorems

Proof of Theorem 1: That all RL strategies are ic under the assumptions
of the theorem follows from Theorem 4, which is a trivial generalization of the
proof of Theorem 1 in Beggs (2005). The proof that the wRL method mφ,ε

of Proposition 4 is ic follows directly from Theorem 6.9 in Cesa-Bianchi and
Lugosi (2006). That some εG methods are isolation consistent follows from
Proposition 1. Because every εG method is a δε method, it follows that some
δε methods are ic. Finally, that some SA methods are isolation consistent fol-
lows from Proposition 3, and for conditions characterizing when a wide class
of SA methods are ic, see Bertsimas and Tsitsiklis (1993).

Proof of Theorem 3: This is an immediate consequence of Theorems 5 and 4.

Proof of Theorem 4: First, we show that every finite sequence of RL meth-
ods is gic. Let M be any finite sequence of RL methods, and let S = 〈G,N〉
be any M -network (in fact, one need not assume G is connected). Pick g ∈ G
and ω ∈ Ω. We must show that limn→∞ pSω(Ag,n(h) ∈ Aω) = 1.

To do so, we adopt the proof of Theorem 1 in Beggs (2005) in the following
way. As in Beggs’ proof, it suffices to consider the consider the case in which
A contains exactly two actions a1 and a2. Beggs defines two random variables
Ai(n) and πi(n) (where i = 1, 2), which respectively represent the total utility
acquired by playing action ai through stage n and the payoff acquired by
playing action ai on stage n. In our model, these two random variables are
the mappings Wai

g,n and Wai
g,n −W

ai
g,n−1. Because neighborhoods contain only

finitely many agents by assumption, the assumptions of the theorem imply
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that the two variables are bounded and can be plugged directly into the proof
of Theorem 1 in Beggs (2005) to yield the result.

Next we show that no finite sequence of RL methods is guc in any non-
trivial learning problem in which there are constants k2 > k1 > 0 such that
p(o|a, ω) = 0 if o 6∈ [k1, k2]. Let M be a finite sequence of RL methods.
It suffices to find (i) a strategic network S = 〈G,N〉 with a connected M -
subnetwork S′ = 〈G′,M〉, (ii) a learner g ∈ G′, and (iii) a state of the world
ω ∈ Ω such that limn→∞ pSω(Ag,n ∈ Aω) 6= 1.

To construct S, first take a sequence of learners of the same cardinality as
M and place them in a singly-connected row, so that the first is the neighbor
to the second, the second is a neighbor to the first and third, the third is a
neighbor to the second and fourth, and so on. Assign the first learner on the
line to play the first strategy in M , the second to play the second, and so
on. Denote the resulting strategic network by S′ = 〈G′,M〉; notice S′ is a
connected M -network.

Next, we augment S′ to form a larger network S as follows. Find the least
natural number n ∈ N such that n · k1 > 3 · k2. Add n agents to G′ and
add an edge from each of the n new agents to each old agent g ∈ G′. Call
the resulting network G. Pick some action a ∈ A, and assign each new agent
the strategy ma, which plays the action a deterministically. Call the resulting
strategic network S; notice that S contains S′ as a connected M -subnetwork.

Let ω be a state of the world in which a 6∈ Aω (such an a exists because
the learning problem is non-trivial by assumption). We claim that

(∗) lim
k→∞

pSω(Ag,k ∈ Aω) < 1

for all g ∈ G′, and so M is not guc. Let g ∈ G′. By construction, regardless of
history, g has at least n neighbors each playing the action a at any stage. By
assumption, p(o|a, ω) > 0 only if o ≥ k1 > 0, and so it follows that the sum
of the payoffs to the agents playing a in g’s neighborhood is at least n · k1 at
every stage. In contrast, g has at most 3 neighbors playing any other action
a′ ∈ A. Since payoffs are bounded above by k2, the sum of payoffs to agents
playing actions other than a in g’s neighborhood is at most 3 · k2 < n · k1.
It follows that, in the limit, one half is strictly less than ratio of (i) the total
utility accumulated by agents playing a in g′ neighborhood to (ii) the total
utility accumulated by playing all actions. As g is a reinforcement learner, g,
therefore, plays action a 6∈ Aω with probability greater than one half in the
limit, and (∗) follows.

Weighted Networks Example: In this example, we show that the above
proof that RL methods are not uc extends to weighted networks, so long as the
weights remain constant. Let S be any strategic network, and fix an agent g
in S. Assume that g assigns each of her neighbors f ∈ NG(g) some normalized
weight sf so that 0 ≤ sf < 1 and

∑
f∈NG(g) sf = 1. We assume that sg < 1

so that the agent g does not completely disregard her neighbors findings. A
similar example can be given when weights are not normalized.
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Suppose g employs a RL method, and let W =
∑
a∈A wa be the sum of

all initial weights assigned to each action according to g’s RL method. The
assumption that the network is weighted plays a role in g’s calculations of
reinforcements as follows. If g′s neighbor f obtains outcome o from playing
action a on stage n, then instead of simply adding o to the reinforcementWa

g,n,
the agent g adds sf · o, i.e., she weights the outcome.

Let ω be any state of the world, and let k2 be the value of any optimal
action. Let a0 6∈ Aω be any non-optimal action. As in the previous proposition,
we assume payoffs are bounded from below by some constant k1 > 0, and in
particular, the payoff of a0 is at least k1 on each stage. Finally, suppose that
all of g’s neighbors always play the action a0. By the following calculation, it
follows that, for large enough n, the probability pn(a0) that g plays action a0
on stage n is bounded away from zero in ω, and since a0 6∈ Aω, it follows that
RL methods are not uc in weighted networks.

pn(a0) ≥ wa + k1n(1− sg)
W + k2nsg + k1n(1− sg)

≥ k1nsg
W + k2nsg + k1n(1− sg)

For large enough n, we have k2n(1− sg) > W , and so:

pn(a0) ≥ k1n(1− sg)
2k2nsg + k1n(1− sg)

=
k1(1− sg)

2k2sg + k1(1− sg)
> 0 as sg < 1

Proof of Theorem 5: Immediate from Propositions 1, 2, 3, and 4.
Proof of Theorem 6: Immediate from Propositions 5 and 6.


