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Aggregation for potentially infinite populations without

continuity or completeness∗

David McCarthy† Kalle Mikkola‡ Teruji Thomas§

Abstract

We present an abstract social aggregation theorem. Society, and each individual, has a

preorder that may be interpreted as expressing values or beliefs. The preorders are allowed

to violate both completeness and continuity, and the population is allowed to be infinite.

The preorders are only assumed to be represented by functions with values in partially

ordered vector spaces, and whose product has convex range. This includes all preorders

that satisfy strong independence. Any Pareto indifferent social preorder is then shown to

be represented by a linear transformation of the representations of the individual preorders.

Further Pareto conditions on the social preorder correspond to positivity conditions on the

transformation. When all the Pareto conditions hold and the population is finite, the social

preorder is represented by a sum of individual preorder representations. We provide two

applications. The first yields an extremely general version of Harsanyi’s social aggregation

theorem. The second generalizes a classic result about linear opinion pooling.

Keywords. Social aggregation; discontinuous preferences and comparative likelihood re-

lations; incomplete preferences and comparative likelihood relations; infinite populations;

Harsanyi’s social aggregation theorem; linear opinion pooling; partially ordered vector spaces.
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1 Introduction

Individuals may have incomplete values and beliefs.1 They may be undecided which of two
goods is preferable, or which of two events is more likely. The former is reflected, for example,
in the literature developing multi-utility theory, and the latter in work on representing beliefs
by sets of probability measures, and on decision theories that feature such sets. Individuals may
also have discontinuous values and beliefs.2 For example, they may see some goods as being
infinitely more valuable than others (or, equivalently, see some goods as only having significance
as tiebreakers). In addition, allowing individuals to regard some events as infinitesimally likely

∗David McCarthy thanks the Research Grants Council of the Hong Kong Special Administrative Region, China
(HKU 750012H) for support. Teruji Thomas thanks the Leverhulme trust for funding through the project ‘Pop-
ulation Ethics: Theory and Practice’ (RPG-2014-064). An earlier version of this paper appeared as ‘Aggregation
for general populations without continuity or completeness’ MPRA Paper No. 80820 (2017).

†Corresponding author, Dept. of Philosophy, University of Hong Kong, Hong Kong,
davidmccarthy1@gmail.com

‡Dept. of Mathematics and Systems Analysis, Aalto University, Finland, kalle.mikkola@iki.fi
§Global Priorities Institute, University of Oxford, United Kingdom, teru.thomas@oxon.org
1The literature on the topics of this paragraph is vast. References that are directly relevant to our approach

are given in section 2.1.
2The applications we discuss are either decision theoretic (values) or to do with comparative likelihood (beliefs).

Each subject has its own family of continuity axioms, but we rarely need to specify these, and we rely on context
to determine which family we are discussing.
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provides a solution to a number of problems to do with conditional probability, decision theory,
game theory and conditional preference.

A standard question is how to aggregate the values or beliefs of individuals to form a collective
view. Here we also wish to allow the population to be infinite. One rationale is that even in
a finite society, a decision maker having incomplete information about the values and beliefs
of members of society may wish to model each individual as an infinite set of types.3 But the
most obvious rationale comes from the much discussed problem of intergenerational equity. Here,
the possibility that society will extend indefinitely into the future requires an infinite number
of people. It is also commonly modelled by an infinite sequence of generations, each one with
a social utility function; in such a model, the generations play the role of ‘individuals’ whose
interests are to be aggregated.4

Section 2 presents a family of abstract aggregation theorems. Each of possibly infinitely
many individuals, and society, is equipped with a preorder on a given set. We assume that
these preorders are represented by functions with values in partially ordered vector spaces, and
whose product has convex range. The use of partially ordered vector spaces is explained and
motivated in section 2.1; axiomatizations of such representations are given in sections 3.1 and
3.2.2. Roughly speaking, our main result shows that Pareto indifference holds if and only if the
social preorder can be represented by a linear combination of the representations of the individual
preorders. Further Pareto conditions correspond to positivity conditions on the linear mapping.

Section 3 illustrates the interest of the results with two applications, corresponding respec-
tively to the aggregation of values and of beliefs. The first yields an extremely general version
of the celebrated social aggregation theorem of Harsanyi (1955) that assumes only the central
expected utility axiom of strong independence. The other shows that aggregate beliefs are given
by linear pooling. To reiterate, unlike other results in the literature, these results hold without
any completeness or continuity assumptions, and allow for an infinite population.

We end in section 4 with a discussion of related literature, but for now we acknowledgeMongin
(1995) and De Meyer and Mongin (1995) for drawing attention to formal similarities between
preference aggregation and opinion pooling, and emphasizing the usefulness of the convex range
assumption we use below.

The proofs of our main theorems rely only on concepts from basic linear algebra, rather than
any theorems from convex or functional analysis. All proofs are in the Appendix.

2 Main results

2.1 Representations in partially ordered vector spaces

We are going to consider representations of preorders with values in partially ordered vector
spaces. We first recall the basic definitions, and give some examples illustrating this type of
representation.

Recall that a preorder % is a binary relation that is reflexive and transitive; we write ∼ and
≻ for the symmetric and asymmetric parts of % respectively. Since preorders can be incomplete,
we write xf y if neither x % y nor y % x.

Let (X,%) and (X ′,%′) be preordered sets. A function f : X → X ′ is increasing if x % y ⇒
f(x) %′ f(y); strictly increasing if x % y ⇒ f(x) %′ f(y) and x ≻ y ⇒ f(x) ≻′ f(y); a represen-

3In the context of values, see e.g. Zhou (1997), attributing the idea to Harsanyi (1967–68); for beliefs, see e.g.
Herzberg (2015).

4The literature on this topic is largely shaped by the approaches of Ramsey (1928) (opposing impatience),
and of Koopmans (1960) and Diamond (1965) (requiring impatience). Our results are compatible with both
approaches.
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tation of % if x % y ⇔ f(x) %′ f(y); an order embedding if it is an injective representation; and
an order isomorphism if it is a bijective representation.

A preordered vector space is a real vector space V with a (possibly incomplete) preorder %V

that is linear in the sense that v %V v′ ⇔ λv + w %V λv′ + w, for all v, v′, w ∈ V and λ > 0.5

Note that we allow vector spaces to have infinite dimension. A partially ordered vector space
is a preordered vector space in which the linear preorder is a partial order; that is, it is anti-
symmetric. An ordered vector space is a partially ordered vector space in which the partial order
is an order; that is, it is complete. When L : V → V ′ is a linear map between partially ordered
vector spaces, L is increasing if and only if it is positive, in the sense that v %V 0 ⇒ Lv %V ′ 0;
and L is strictly increasing if and only if it is strictly positive, meaning that v %V 0 ⇒ Lv %V ′ 0
and v ≻V 0 ⇒ Lv ≻V ′ 0.

In this paper we will be exclusively concerned with representations with values in partially
ordered vector spaces.6 We provide an axiomatic basis for using such representations for pref-
erence relations in Lemma 16, and for comparative likelihood relations in Lemma 23 below, but
for now we focus on examples. The set R of real numbers, with the usual ordering, is a simple
example of a partially ordered vector space, so our representations include familiar real-valued
ones. Allowing for arbitrary partially ordered vector spaces allows for natural representations of
incomplete and discontinuous preorders, as the following examples illustrate.

Example 1. Consider bundles of three goods (say fame, love, and money) represented by points
in X = R3

+. Let V = R3, with the following linear partial order:

(x1, x2, x3) %V (y1, y2, y3) ⇐⇒ (x1 ≥ y1, x2 ≥ y2, and, if x1 = y1 and x2 = y2, then x3 ≥ y3).

Let f : R3
+ → V be the function f(x1, x2, x3) = (23x1 +

1
3x2,

1
3x1 +

2
3x2, x3). Suppose person A’s

preference relation %A over simple lotteries over R3
+ is represented by expectations of f , thereby

satisfying the expected utility axiom of strong independence.7 It violates the completeness
axiom, because, for example, (1, 0, 0)fA (0, 1, 0), reflecting the fact that A finds fame and love
only roughly comparable. (Note that the incomparability is limited in the sense that two units of
fame are preferred to one unit of love, and vice versa.) The preferences violate standard decision
theoretic notions of continuity, such as the Archimedean axiom of Blackwell and Girshick (1954)
and the mixture continuity axiom of Herstein and Milnor (1953), reflecting the fact that while
A sees money as valuable, she finds fame (likewise love) infinitely more valuable.

Example 2. Consider a sphere S divided into open northern and southern hemispheres S+ and
S−, and equator S0. Let µ+, µ−, and µ0 be the uniform probability measures on S+, S−, and S0,
respectively. For every measurable set A ⊂ S define f(A) = (µ+(A ∩ S+), µ−(A ∩ S−), µ0(A ∩
S0)) ∈ V , for V = R3 as in the previous example. This f represents a likelihood preorder
on the algebra X of measurable subsets of S. The preorder is incomplete, since, for example,
the hemispheres S+ and S− are incomparable. (Here we have allowed the incomparability to
be unlimited, in the sense that any positive-measure subsets of S+ and S− are incomparable.)
Moreover, the equator S0, though more likely than the null set, is less likely than the interior of
any spherical triangle, no matter how small. Correspondingly, the likelihood preorder violates
standard continuity axioms for comparative likelihood, such as the Archimedean axiom C6 of
Fine (1973), or the monotone continuity axiom of Villegas (1964) and its weakening C8 in Fine
(1973). For both of these reasons, the likelihood preorder cannot be represented by a standard
([0, 1]-valued) probability measure.

5A linear preorder, in our sense, is sometimes called a vector preorder. See section 4 for generalisation to
vector spaces over ordered fields other than R.

6See however Remark 5 for comments relevant to merely preordered vector spaces.
7A preorder % on a convex set X satisfies strong independence if for each α ∈ (0, 1), x, y, z ∈ X, x % y if and

only if αx+ (1− α)z % αy + (1− α)z.
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In Example 1, the domain X = R3
+ is a convex set and the representation f is mixture

preserving, i.e. f(αx+(1−α)x′) = αf(x)+(1−α)f(x′) for all x, x′ ∈ X,α ∈ [0, 1]. When V = R,
von Neumann-Morgenstern expected utility representations of preferences are the paradigmatic
representations of this type. In Example 2, the domain X is a Boolean algebra of sets, and the
representation f is a vector measure, meaning that it is finitely additive: f(x∪x′) = f(x)+f(x′)
for disjoint x, x′ ∈ X . When V = R, probability measures are the paradigmatic representations
of this type.8

The applications of our aggregation theorems we provide in sections 3.1 and 3.2 involve
mixture-preserving and vector-measure representations with values in arbitrary partially ordered
vector spaces. The next examples illustrate how such representations generalize some standard
ways of representing incomplete or discontinuous preorders.

Example 3 (Multi-representation). Suppose a preorder % on a set X is represented in the
following way. There is a family { fi | i ∈ I } of functions from X to R such that x % x′ if
and only if fi(x) ≥ fi(x

′) for all i ∈ I. This can be rewritten as a representation by a single
function F : X →

∏

i∈I R when
∏

i∈I R is equipped with the product partial order,9 making it
a partially ordered vector space, and F is defined by (F (x))i = fi(x). Note that if the fi are
mixture preserving on convex X , then F is also mixture preserving; and if the fi are probability
measures on an algebra X , then F is a vector measure.

Multi-representations like this are used in expected utility theory to represent the preferences
of agents with incomplete values;10 in decision theory to represent the preferences of agents with
incomplete beliefs;11 and in probability theory to represent agents with incomplete beliefs.12

Example 4 (Lexicographic representation). Suppose a preorder % on a set X is represented in
the following way. There is a finite vector (f1, . . . , fn) of functions from X to R such that x % x′

if and only if fj(x) = fj(x
′) for all j or fj(x) > fj(x

′) for the least j such that fj(x) 6= fj(x
′).

The fj can again be combined into a single function F : X → Rn, with (F (x))j = fj(x). As
in Example 3, if the fj are mixture-preserving functions or probability measures, then F is a
mixture-preserving function or a vector measure. Moreover, this F represents % if we endow Rn

with the ‘lexicographic’ order. To give the general picture, let (J ,%J ) be an ordered set, and
let RJ

wo be the subspace of RJ whose members have well-ordered support.13 The lexicographic
order %lex on RJ

wo is defined by the property that f %lex f ′ if and only if f = f ′ or f(j) > f ′(j)
for the %J -least j such that f(j) 6= f ′(j). This makes RJ

wo what Hausner and Wendel (1952)
call a ‘lexicographic function space’. It is an ordered vector space. In the original example we
can identity Rn with RJ

wo, for J := {1, 2, . . . , n} with the usual ordering.

Representations with values in lexicographic function spaces are used in expected utility
theory to represent the preferences of agents with discontinuous values;14 in decision and game

8Standard treatments of probability theory assume countable additivity, but the motivation for this further
requirement is reduced given that we will not be assuming continuity axioms like Monotone Continuity.

9In general, for a family {(Xi,%i) : i ∈ I} of preordered sets, the product preorder %P on
∏

i∈I Xi is defined
by the condition that (xi)i∈I %P (yi)i∈I if and only if xi %i yi for each i ∈ I.

10See e.g. Aumann (1962); Fishburn (1982); Seidenfeld et al (1995); Shapley and Baucells (1998);
Dubra et al (2004); Baucells and Shapley (2008); Evren (2008); Manzini and Mariotti (2008); Evren (2014);
Galaabaatar and Karni (2012, 2013); McCarthy et al (2017a).

11See e.g. Gilboa and Schmeidler (1989); Seidenfeld et al (1995); Bewley (2002); Ghirardoto et al (2003); Nau
(2006); Gilboa et al (2010); Ok, Ortoleva and Riella (2012); Galaabaatar and Karni (2013).

12For entries to a vast literature, see Halpern (2003) and Stinchcombe (2016); on multi-representation of in-
complete comparative likelihood preorders, discussed further in section 3.2, see Insua (1992) and Alon and Lehrer
(2014).

13That is, RJ
wo = { f ∈ RJ | { j ∈ J | f(j) 6= 0 } is well-ordered by %J }.

14See Hausner (1954); Fishburn (1971); Blume, Brandenburger and Dekel (1989); Borie (2016);
Hara, Ok and Riella (2016); McCarthy et al (2017b).
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theory to represent the preferences of agents with discontinuous beliefs;15 and in probability
theory to represent agents with discontinuous beliefs.16

The constructions in these examples can be combined, yielding representations of possibly
incomplete and discontinuous relations that take values in

∏

i∈I RJi
wo, a partially ordered vector

space where each component has the lexicographic order and their product has the product
partial order.17 In fact, this construction is fully general: every partially ordered vector space
can be order-embedded in such a space.18

Finally, we note that our approach is also compatible with the use of representations with
values in non-Archimedean ordered fields, such as non-standard models of the real-numbers.19

These provide natural ways of representing discontinuous relations; see Example 10 below. We
discuss this topic further in section 4.

Remark 5 (Preordered Vector Spaces). We focus on representations in partially ordered vector
spaces, rather than merely preordered ones, because it seems desirable for objects that are ranked
equally to be assigned the same value. But for some purposes it is useful to consider preordered
vector spaces instead. Our results have implications for this more general case, insofar as any
preordered vector space has a partially ordered vector space as a quotient.20 Lemma 18 and
Theorem 19 illustrate some of the extensions this makes available.

2.2 Framework and axioms

We assume throughout that X and I are nonempty, possibly infinite, sets. For each i ∈ I ∪ {0},
let %i be a preorder on X . In applications, I is typically a population, and for each i in I, %i

expresses the values or beliefs of individual i, while %0 expresses those of the social observer.
Say that a family {fi : X → Vi}i∈I of functions with values in vector spaces is co-convex if

their joint range (fi)i∈I(X) ⊂
∏

i∈I Vi is convex. Equivalently, the fi are co-convex if there is
a surjective map q from X onto a convex set X̄, and mixture-preserving functions f̄i : X̄ → Vi,
such that fi = f̄i ◦ q. Thus co-convexity is a modest generalisation of the assumption that X is
a convex set and the fi are mixture preserving.

The central assumption of our main theorems will be that for i ∈ I ∪ {0}, the %i have co-
convex representations fi with values in partially ordered vector spaces Vi. In the special case
in which I is finite and each Vi is the real numbers with the usual ordering, the requirement of
co-convex representations was introduced by De Meyer and Mongin (1995).

Any preordered set can be shown to have a representation with values in some partially
ordered vector space (McCarthy et al , 2018, Lemma A.6), so the question is the significance of
co-convexity. We postpone this question, though, until sections 3.1 and 3.2, where we present
contexts in which co-convex representations naturally arise.

We consider the following Pareto-style axioms.21

15See Blume, Brandenburger and Dekel (1991a,b); Brandenburger, Friedenberg and Keisler (2008).
16See Halpern (2010); Brickhill and Horsten (2018).
17If desired, the Ji can be enlarged so that the representation may be taken into

∏
i∈I RJ

wo. Elements in this
space can be seen as I ×J matrices, with the row space lexicographically ordered, and one matrix ranking higher
than another if it ranks higher in each row.

18That every ordered vector space can be order-embedded in a lexicographic function space was shown by
Hausner and Wendel (1952); the extension to partially ordered vector spaces is given in Hara, Ok and Riella
(2016) and McCarthy et al (2017b).

19See e.g. Hammond (1994a,b, 1999); Herzberg (2009); Halpern (2010); Pivato (2014);
Benci, Horsten and Wenmackers (2018a); Benci, Horsten, and Wenmackers (2018b); Brickhill and Horsten
(2018).

20That is, if %V is a linear preorder on V , then it determines a linear partial order on V/∼V ; the quotient map
V → V/∼V is a representation of %V .

21See e.g. Weymark (1993, 1995) for discussion in the context of Harsanyi’s theorem.
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P1 If x ∼i y for all i ∈ I, then x ∼0 y.
P2 If x %i y for all i ∈ I, then x %0 y.
P3 If x %i y for all i ∈ I, and x ≻j y for some j, then x ≻0 y.
P4 If x %i y for all i ∈ I \ {j} and xfj y, then x 6-0 y.

When I is finite and the %i are preference relations, P1 is Pareto indifference; P1–P2 together
are sometimes called semi-strong Pareto; and P1–P3 are strong Pareto. Since we are allowing for
incompleteness, P4 is a natural supplement. Given P2 and a sufficiently rich domain, P4 follows
from the simpler condition that, if x ∼i y for all i ∈ I \ {j} and xfj y, then xf0 y. But to avoid
domain conditions, we will appeal to P4 as formulated. P1–P4 are also natural conditions under
other interpretations of the %i, such as when they are comparative likelihood relations.

2.3 Results

Suppose we are given co-convex representations fi : X → Vi of the %i, i ∈ I. Set VI :=
∏

i∈I
Vi

and fI := (fi)i∈I : X → VI. We are interested in the question of whether %0 has a representation
of the form LfI, with L a linear map from VI into some partially ordered vector space V . When
I is finite, we can write

LfI =
∑

i∈I
Lifi

where Li : Vi → V is the ith component of L;22 thus LfI is an additive representation. But when
I is infinite, L is not determined by its components; relatedly, the sum over i does not make
sense.23 In any case, by endowing VI with the product partial order %P, we can consider the
positivity of L. Note that if L is positive, or strictly positive, then so is every Li, but if I is
infinite, the converse need not hold.

Since fI and LfI are automatically co-convex, a necessary condition for the existence of a
representation of %0 of the form LfI is that there exists some representation f0 : X → V0 of
%0 such that all the fi, including f0, are co-convex. Our first theorem says that this necessary
condition is also sufficient, and lays out the connection between the Pareto-style axioms and the
positivity properties of L.

Theorem 6. Assume that for i ∈ I ∪ {0} the %i have co-convex representations fi.
(a) P1 holds if and only if %0 has a representation of the form LfI, with L linear.
(b) P1–P2 hold if and only if %0 has a representation of the form LfI, with L linear and

positive.
(c) P1–P3 hold if and only if %0 has a representation of the form LfI, with L linear and strictly

positive.
(d) P1–P4 hold if and only %0 has a representation of the form LfI, with L linear and strictly

positive, and every Li an order embedding.

An obvious question is whether every representation f0 : X → V0 of %0, co-convex with fI,
has the form LfI. Note that, if f0 is a representation, then so is f0 + b, for any constant b ∈ V0,
but at most one of these will be of the form LfI. So a more reasonable question is whether we
can write every f0 in the form LfI + b. The following result gives an affirmative answer, subject
to the following domain richness condition.

DR VI = Span(fI(X)− fI(X)).

22In other words, regardless of whether I is finite, Li := L1i, where 1i is the natural embedding of Vi into VI.
23Nonetheless, the linearity of L does entail a kind of finite additivity; see section 3.1 for further discussion in

the context of Harsanyi’s theorem.
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In other words, fI(X) is not contained in any proper affine subspace of VI; equivalently, VI is the
affine hull of fI(X).24

Theorem 7. Assume that for i ∈ I ∪ {0} the %i have co-convex representations fi. For the
left-to-right directions of parts (b)–(d), assume DR.
(a) P1 holds if and only if f0 = LfI + b for some b ∈ V0 and L linear.
(b) P1–P2 hold if and only if f0 = LfI + b for some b ∈ V0 and L linear and positive.
(c) P1–P3 hold if and only if f0 = LfI + b for some b ∈ V0 and L linear and strictly positive.
(d) P1–P4 hold if and only if f0 = LfI + b for some b ∈ V0 and L linear and strictly positive,

with every Li an order embedding.

In the special case in which I is finite and Vi = R for each i ∈ I ∪ {0} (so that P4 is vacuous),
this is proved in De Meyer and Mongin (1995, Prop. 1) without assuming DR.25

So far we have allowed the representations fi to have values in different partially ordered
vector spaces. One might wish to construct a single partially ordered vector space V in which all
of the different preorders are represented, and in which the representation of %0 is essentially the
sum of the representations of the %i. ‘Essentially’ is required here since we cannot literally sum
over I when it is infinite. But say that a map S :

∏

i∈I
V → V extends summation if it restricts

to the summation map
⊕

i∈I
V → V ; equivalently, each component Si of S is the identity map

on V .

Theorem 8. Assume that for i ∈ I∪{0} the %i have co-convex representations fi. Then P1–P4
hold if and only if there exists a partially ordered vector space V , representations gi : X → V of
the %i for i ∈ I ∪ {0}, and a linear map S :

∏

i∈I
V → V such that

(a) g0 = SgI
(b) S extends summation and is strictly positive on

∏

i∈I
Span(gi(X)− gi(X))26

(c) fI, f0, gI, and g0 are together co-convex.
If DR holds as well as P1–P4, we can further require V = V0 and g0 = f0.

2.3.1 Domain assumptions

DR is a stronger domain assumption than is needed for Theorem 7(b)–(d) and the last claim
in Theorem 8,27 and we adopt it for its simplicity. It cannot simply be dropped from these
theorems, even when I is finite, as the following example shows.

Example 9. Let X = R and I = {1, 2}. Let %1 and %2 be represented by f1(x) = x and
f2(x) = −x. Thus VI = R×R, fI(x) = (x,−x), and Span(fI(X)−fI(X)) = R(1,−1). Let V0 = R

with the ‘trivial’ linear partial order such that any two distinct elements are incomparable (thus

24To interpret DR, it is worth noting that, by Lemma 25 below, and taking into account the fact that fI(X) is
convex, Span(fI(X) − fI(X)) = {λ(fI(x) − fI(y)) : λ > 0, x, y ∈ X}. Thus when the %i are preference relations,
so that the Vi may be seen as utility spaces, DR says that any logically possible profile of utility differences (i.e.
any element of VI) is realized as the utility difference between some x, y ∈ X, at least up to scale. Indeed, DR is
equivalent to the conjunction of the claims (i) that Vi = Span(fi(X) − fi(X)), so that that none of the utility
spaces Vi is gratuitously large (in terminology introduced in section 2.4, this means that fi is pervasive); and (ii)
that Span(fI(X) − fI(X)) =

∏
i∈I

Span(fi(X) − fi(X)).
25In this special case, our methods give an alternative and arguably simpler DR-free proof of part (a), but they

do not appear to help at all with DR-free proofs of the other parts. See however the discussion at the end of
section 2.3.1.

26Here positivity refers to the product partial order on
∏

i∈I
V , restricted to

∏
i∈I

Span(gi(X)− gi(X)).
27For example, for Theorem 7(b)(c), DR could be replaced by the weaker assumption that Span(fI(X)−fI(X))

contains the positive cone { v ∈ VI | v %P 0 }; for part (d) and for the last part of Theorem 8 one could assume
that Span(fI(X) − fI(X)) contains both the positive cone and

⊕
i∈I

Vi. However, even these assumptions are
stronger than necessary.
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x %V0
0 if and only if x = 0). Let %0 be represented by f0(x) = x. Thus (fI, f0)(X) is convex,

%0 satisfies P1–P4, but DR fails.
Suppose f0 = LfI + b, with L : VI → V0 positive. We have (1, 0) %P 0 and since L is

positive, L((1, 0)) = 0; and similarly, L((0, 1)) = 0. Linearity of L implies L = 0, contradicting
f0 = LfI + b. Thus parts (b)–(d) of Theorem 7 do not hold. Similarly for the last claim of
Theorem 8: there is no representation g1 of %1 with values in V0.

When I is infinite, DR is perhaps surprisingly strong.

Example 10. Suppose that I = N, X =
∏

i∈I
[0, 1], Vi = R, fi(x) = xi for i ∈ I. Then

VI =
∏

i∈I
R is the space of sequences of real numbers, but Span(fI(X)− fI(X)) is the subspace

of bounded sequences, so DR fails.
Theorem 7(b)–(d) also fail. As in Benci, Horsten and Wenmackers (2018a), choose a uniform

probability measure µ on N with values in a non-Archimedean ordered field F that extends the
reals; as such, it is an ordered real vector space. Let V0 be the ordered real vector space of finite
(including infinitesimal) elements of F ; thus for every x in V0 there is some natural number n
with n %V0

x. Note that µ has values in V0. Let f0 : X → V0 map each element of X to its
µ-expectation; that is f0(x) =

∑

i∈I
µ({i})xi. The %0 so represented satisfies P1–P4 (note that

the %i are complete, so P4 is vacuous). All the %i satisfy strong independence, but %0 violates
both the Archimedean and mixture continuity axioms of expected utility.

Suppose f0 = LfI + b for some linear mapping VI → V0, implying b = 0. Consider the
sequence v = (1, 2, 3, 4, . . . ) in VI, and for each natural number n, the bounded sequence vn =
(1, 2, . . . , n− 1, n, n, n, n, . . . ). By linearity of L we must have L(vn) %V0

n− 1 (since f0(
1
n
vn) is

infinitesimally close to 1). But v %P vn for every natural number n. So if L is positive, we must
have L(v) %V0

n for every n. But that is impossible, by construction of V0. A similar argument
shows that the last claim of Theorem 8, involving DR, also fails.

An interesting question therefore is how far DR can be weakened in Theorems 7 and 8.
We plan to take up that question in other work, but for now we note that one can sometimes
bypass DR by allowing L in Theorem 7 to be defined only on a subspace of VI that contains
fI(X). For example, by adding constants to the fi, we can assume that fI(X) is contained
in Y := Span(fI(X) − fI(X)). Without any need for DR, Theorem 7(a)–(c) hold if L is only
required to be defined on Y . Part (d) also holds under the further assumption that Y contains
⊕

i∈I
Vi, which is needed for the components Li to be defined.28 This last assumption is weaker

than DR when I is infinite, and is satisfied in Example 10. To illustrate, f0 in that example
extends uniquely to a strictly positive linear L : Y → V0 that maps each bounded sequence to
its µ-expectation, with every Li an order embedding, and we have f0 = LfI. But the example
shows that L cannot be extended to a positive linear map VI → V0.

We will not pursue domain questions any further. For simplicity, we use DR to discuss the
uniqueness of the representations discussed section 2.3, to which we now turn. But we avoid it
in the applications we present in section 3.

2.4 Uniqueness

We first address the general question of to what extent representations with values in partially
ordered vector spaces are unique. Say that a function f : X → V is pervasive if V = Span(f(X)−

28The proofs of these claims are trivial variations on the proof of Theorem 7, so we omit them. The situation
for the last statement in Theorem 8 is slightly less straightforward, but, in short, we can again replace DR
by the assumption that Y contains

⊕
i∈I

Vi, if we only require in part (b) that S is strictly positive on Y ′ :=
Span(gI(X) − gI(X)). That is to say, assuming that Y contains

⊕
i∈I

Vi, P1–P4 hold if and only if there exist
representations gi : X → V0 of %i for i ∈ I, and a linear map S :

∏
i∈I

V0 → V0, such that f0 = SgI, S extends
summation, S is strictly positive on Y ′, and fI, f0, and gI are together co-convex.
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f(X)); equivalently, V is the affine hull of f(X). The restriction to pervasive representations
in the next result is mild, since by adding a constant to f we can always obtain a pervasive
representation of the preorder on X that is represented by f : for any x0 ∈ X , the representation
f∗ : X → Span(f(X)− f(X)) defined by f∗(x) = f(x) − f(x0) is pervasive.

Lemma 11. Suppose given co-convex representations f : X → V and g : X → V ′ of a preorder %
on X. Suppose that f and g are pervasive. Then there exists a unique linear order isomorphism
L : V → V ′ and unique b ∈ V ′ such that g = Lf + b.

The following result explains the sense in which the type of representation of %0 discussed in
Theorem 6 is unique.

Proposition 12. Assume that for i ∈ I∪{0} the %i have co-convex representations fi such that
DR holds. Suppose that L : VI → V and L′ : VI → V ′ are linear maps to partially ordered vector
spaces such that LfI and L′fI represent %0. Then there is a unique linear order isomorphism
M : L(VI) → L′(VI) such that L′ = ML.

The proof establishes in part that LfI : X → L(VI) and L′fI : X → L′(VI) are co-convex, pervasive
representations of %0, so that Lemma 11 applies. Note that Proposition 12, unlike Theorem 6,
assumes DR. Here is an example to illustrate why.

Example 13. Let X = R, let I = {1, 2}, and let %0,%1,%2 all equal the standard ordering
on R. Let V1, V2 = R with the standard ordering, and let f1, f2 : X → R both be the identity
map. Thus VI = R × R and DR fails. Let L : VI → V := R map (x, y) 7→ x + y, and let
L′ : VI → V ′ := VI be the identity map. Then LfI and L′fI both represent %0, but there is no
linear map M : V → V ′ such that L′ = ML.

Next we establish that the L and b in Theorem 7 are unique.

Proposition 14. Assume that for i ∈ I∪{0} the %i have co-convex representations fi such that
DR holds. Then there at most one linear map L : VI → V0 and one b ∈ V0 such that f0 = LfI+ b.

Here, DR cannot be dropped, even in the special case in which I is finite and Vi = R for each
i ∈ I ∪ {0}, by Fishburn (1984, Cor. 1).

In Theorem 8, given DR, we can choose g0 to be a pervasive representation of %0. (Choose
f0 to be pervasive, using the construction before Lemma 11, and then apply the last statement
of Theorem 8.) Thus we assume that g0 and g′0 are pervasive in the following result.

Proposition 15. Assume that for i ∈ I ∪ {0} the %i have co-convex representations fi such
that DR holds. Suppose gi : X → V and S :

∏

i∈I
V → V satisfy the conditions (a)–(c) of

Theorem 8, as do g′i : X → V ′ and S′ :
∏

i∈I
V ′ → V ′. Assume also that g0 and g′0 are pervasive.

Then there exists a unique linear order isomorphism L : V → V ′ and unique constants bi ∈ V ′

such that, for all i ∈ I ∪ {0}, g′i = Lgi + bi. Moreover, S′(v) = LS((L−1vi)i∈I) for all v ∈
⊕

i∈I
V ′ + Span(g′

I
(X)− g′

I
(X)).

3 Applications

We now present two applications in which co-convex representations naturally arise.
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3.1 Preference aggregation

Let us assume that the %i are preference relations, with %0 that of the social observer. In this
context, co-convex representations arise naturally from the main expected utility axiom of strong
independence (see note 7).

Lemma 16. Suppose X is a convex set.
(i) A preorder on X satisfies strong independence if and only if it has a mixture-preserving

representation. The representation may be chosen to be pervasive.
(ii) Any family {fi : X → Vi}i∈I of mixture-preserving functions is co-convex.

Given that the %i satisfy strong independence, pervasive (and, by Lemma 11, essentially
unique) mixture-preserving representation fi may be chosen for each of them, and these rep-
resentations are automatically co-convex. The results of section 2 therefore apply.29 Here, for
example, is a corollary of Theorem 8.

Theorem 17. Suppose X is convex, and for all i ∈ I ∪ {0}, %i satisfies strong independence.
Assume P1–P4. Then there exists a partially ordered vector space V , mixture-preserving repre-
sentations fi : X → V of the %i, and a linear map S :

∏

i∈I
V → V that extends summation,

such that f0 = SfI.

In this context, our results generalize the celebrated social aggregation theorem of Harsanyi
(1955). In his framework, the population I is finite, and X is the set of simple probability
measures on a given set of social outcomes. In contrast, we allow I to be infinite, and we allow X
to be an arbitrary convex set, which may in particular be infinite dimensional.30 This allows for
a wide range of models of uncertainty. For example, in the setting of objective risk, X may be
any convex set of probability measures on a measurable space; in the setting of objective risk and
subjective uncertainty, it may be the set of Anscombe-Aumann acts; in the setting of subjective
uncertainty, it may be the set of Savage acts when those are equipped with convex structure, as
in for example Ghirardoto et al (2003);31 it may be a set of simple lotteries with nonstandard
probabilities; or it may be an arbitrary mixture space, and hence isomorphic to a convex subset
of a vector space as noted by Hausner (1954).32

One version of Harsanyi’s result is that, if P1–P3 hold, as well as strong independence,
continuity and completeness for each %i, then the social preorder can be represented by the
sum of real-valued mixture-preserving individual utility functions.33 Theorem 17 shows that

29For applications of Theorem 7, it may be useful to note that, in this context, DR is equivalent to the following
domain richness condition, stated directly in terms of X and the %i:
DR′ Suppose given xi, yi ∈ X and λi > 0, for each i ∈ I. Then there exist z,w ∈ X and λ > 0 such that, for

all i ∈ I, λ
λ+λi

w + λi

λ+λi
xi ∼i

λ
λ+λi

z + λi

λ+λi
yi.

(Heuristically: the difference in value for i between z and w is λi/λ times the difference between xi and yi.)
30The dimension of X is, by definition, the dimension of the smallest affine space that contains it; equivalently,

the dimension of the vector space Span(X −X).
31As is well known, however, allowing for subjective uncertainty is likely to lead to impossibility results; see the

end of section 4.
32For a discussion of the relationship between mixture spaces in the sense of Hausner and mixture sets in the

sense of Herstein and Milnor (1953), see Mongin (2001); Mongin constructs a natural map from each mixture set
onto a convex set, and shows that it is an isomorphism if and only if the mixture set is a mixture space (or in his
terminology ‘non-degenerate’).

33For discussion of different variations of Harsanyi’s result, see e.g. Weymark (1993). Note that Harsanyi’s
result is usually stated in terms of a weighted sum of individual utility functions; but one can absorb the weights
into the utility functions to get an unweighted sum. Of course, in both the weighted and unweighted versions,
the representation of the social preorder is a linear transformation of the profile of individual utilities. Roughly
speaking, Theorems 6 and 7 generalize the formulation with weighted sums, while Theorem 8 and its corollaries
Theorems 17 and 19 generalize the unweighted version.
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essentially the same conclusion holds without assuming continuity or completeness, but assuming
P4 (which is vacuous given completeness), and allowing the utility functions to be vector-valued.
In light of the discussion after Example 4, and especially note 17, the conclusion of Theorem 17
may be made visibly closer to Harsanyi’s by taking utility values to be matrices of real numbers;
Harsanyi’s conclusion is then the case where the matrices are one-by-one.

The only caveat is that, when I is infinite, the linear map S used to combine the individual
utility functions fi does not simply sum them up. However, we still get separability, or ‘finite
additivity’. If I = J ⊔ K, then VI = VJ × VK; denoting restrictions in the obvious way, we have
SfI = SJfJ+SKfK. So much follows from the linearity of S; since S also extends summation, SJ

is simply the summation map when J is finite.
Our results also yield fully additive representations in some important cases when I is infinite.

Suppose, for example, that in the context of Theorem 17, each element of X is a gamble in which
only finitely many people from I have any chance to exist. For each i ∈ I and x, x′ ∈ X , it is
natural to suppose that x ∼i x

′ if i is certain not to exist in either one; thus fi(x) = fi(x
′). By

subtracting a constant from fi, we may assume that fi(x) = fi(x
′) = 0. (Note that renormalizing

fi in this way changes neither the fact that fi represents %i nor the fact that SfI represents %0.)
The upshot of this construction is that, for each x ∈ X , fi(x) = 0 for all but finitely many i ∈ I.
We can therefore write SfI =

∑

i∈I
fi, a fully additive representation of the social preorder.

Suppose now that X is a convex set of probability measures on a measurable space Y . It
is natural to ask whether the representations constructed in Theorem 17, for example, can be
written as integrals over Y , in the style of expected utility theory.

To make the question precise, suppose we are given a vector space V and a separating vector
space V ′ of linear functionals V → R.34 A function U : Y → V is weakly X-integrable with
respect to V ′ if there exists f : X → V such that

∫

Y
Λ ◦ U dµ = Λ ◦ f(µ) for all Λ ∈ V ′, µ ∈ X .

In particular, every Λ◦U must be Lesbesgue integrable against every µ ∈ X . The Pettis or weak
integral is defined by setting

∫

Y
U dµ := f(µ). When f : X → V can be written in this form, we

say that f is expectational. The question, then, is whether the representations fi, including f0,
can be chosen to be expectational functions.

In the most common case, where X is a convex set of finitely supported probability measures
on a measurable space Y with measurable singletons, there is a straightforward positive answer:
any mixture-preserving, vector-valued function onX is expectational (independently of how V ′ is
chosen). However, in the general case, it turns out that we need to consider representations with
values in preordered vector spaces (cf. Remark 5). Indeed, the following result (McCarthy et al ,
2018, Lemma 4.3) contrasts with Lemma 16(i).

Lemma 18. Let X be an arbitrary convex set of probability measures. A preorder on X satisfies
strong independence if and only if it has an expectational (and not merely mixture-preserving)
representation with values in a preordered (but not necessarily partially ordered) vector space.

The next result uses this to elaborate on Theorem 8.

Theorem 19. Suppose X is a convex set of probability measures on a measurable space Y ,
and, for all i ∈ I ∪ {0}, %i satisfies strong independence. Assume P1–P4. Then there exists a
preordered vector space V equipped with a separating vector space V ′ of linear functionals; for
i ∈ I ∪ {0}, functions Ui : Y → V that are weakly X-integrable with respect to V ′, such that
µ 7→

∫

Y
Ui dµ represents %i; and a linear map S :

∏

i∈I
V → V that extends summation such

that U0 = SUI.

34Endowing V with the weak topology with respect to V ′ makes it a locally convex topological vector space
whose dual is V ′ (Rudin, 1991, 3.10).
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Thus when I is finite, for example, without assuming continuity or completeness or interpersonal
comparisons, we find that the social preorder is represented by the mapping µ 7→

∫

Y

∑

i∈I
Ui dµ;

in other words, by expected total utility.

3.2 Opinion pooling

Here we assume that X is a Boolean algebra of events, understood as sets of states of nature, and
the %i are comparative likelihood relations on X , expressing the beliefs of each individual, with
%0 expressing those of the social observer. So for events A,B ∈ X , A %i B has the interpretation
that, according to i, A is at least as likely as B.

Generalising ordinary probability measures, we will be considering representations by vector
measures,35 with values in partially ordered vector spaces. In Lemma 23(i) below, we give
a necessary and sufficient condition for a preorder % on X to be representable by a vector
measure f . But in terms of standard axioms of comparative probability (see e.g. Alon and Lehrer,
2014), the existence of such a representation entails that % satisfies Reflexivity, Transitivity, and
Generalized Finite Cancellation. Positivity and Non-Triviality are equivalent respectively to the
further conditions that f(A) %V 0 for all A ∈ X and that f(A) ≻V 0 for some A ∈ X . We
treat Positivity and Non-Triviality as natural but optional assumptions about %, rather than
imposing these conditions on f . The main remaining axioms—Completeness and Monotone
Continuity—are the ones which our use of vector measures is intended to avoid.

Our Pareto-style axioms P1–P4 may seem as plausible here as in the context of preference
aggregation. However, consider

Example 20. Let I = {1, 2}. A ball is going to be drawn randomly from an urn containing
three balls, red, yellow and blue. Individual 1 privately observes that the ball is not red, and
concludes {B} ∼1 {R, Y }. Individual 2 privately observes that the ball is not yellow, and
concludes {B} ∼2 {R, Y }. The social observer, privy to each individual’s private information,
will conclude {B} ≻0 {R, Y }, contrary to P1.

The natural reply, though, is that P1–P4 are not designed for the problem in which the
observer’s task is to aggregate the opinions represented by (%i, Ii), where Ii is i’s private infor-
mation. They are meant for circumstances in which the only data the observer has, or considers
relevant, is the %i, say when all private information is either hidden from the observer, or has been
made common knowledge. Thus we assume that P1–P4 are applicable in at least an important
range of cases; see Dietrich and List (2016) for related discussion.

Linear opinion pooling is the idea that society’s beliefs should be represented by a linear
combination of individual beliefs with nonnegative coefficients, and goes back at least to Stone
(1961). When each %i can be represented by a probability measure on X , linear pooling was
axiomatized by McConway (1981).36 An alternative axiomatization using Pareto-style conditions
was given in Mongin (1995) and De Meyer and Mongin (1995), applying the Lyapunov convexity
theorem. Further references are given in section 4. Here we give linear pooling results that replace
ordinary probability measures with vector measures. We will first extend the approach based
on Lyapunov’s theorem. However, this requires a finite population, as well as some technical
restrictions, so we will go on to explain an alternative approach, still using Pareto-style conditions,
that mixes objective and subjective probability, in the spirit of Anscombe-Aumann decision
theory.

35These were defined following Example 2.
36In this special case, the linear combination is typically normalized to a convex combination.
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3.2.1 Lyapunov

Our aggregation theorems apply if we assume that the %i are represented by co-convex vector
measures. This assumption follows under certain conditions from the Lyapunov convexity theo-
rem. The following version is proved in Armstrong and Prikry (1981) (their Theorem 2.2, which
allows X more generally to be an F -algebra).

Theorem 21 (Lyapunov). Suppose X is a σ-algebra, and {f i : X → R}i∈I is a finite family of
finitely additive, bounded, non-atomic signed measures on X. Then the f i are co-convex.

With this in mind, we say that a vector measure f : X → V is admissible if V is finite-
dimensional, and, with respect to some (hence any) basis of V , each component of f is bounded
and non-atomic.37 To illustrate, these conditions are fulfilled by f in Example 2. Then Lya-
punov’s theorem ensures that f(X) is convex; it also ensures that any finite number of admissible
vector measures are co-convex.

We thus obtain (for example) this application of Theorem 6.

Theorem 22. Suppose that I is finite, and that, for i ∈ I∪ {0}, %i is a preorder on a σ-algebra
X that can be represented by an admissible vector measure fi : X → Vi. Suppose also that P1–P4
hold. Then there exists a finite dimensional partially ordered vector space V and, for each i ∈ I, a
linear order embedding Li : Vi → V , such that the admissible vector measure

∑

i∈I
Lifi represents

%0.

So, under the stated assumptions, the social observer’s beliefs are given by a linear pooling
of individual beliefs.

3.2.2 Convexification

Here we give an approach that allows the population to be infinite and that provides an axiomatic
basis for the use of vector measures. It mixes objective and subjective probabilities in the style
of Anscombe and Aumann (1963).

We proceed by embedding X in a convex set X . Here we only assume that X is a Boolean
algebra on a set S of states of nature. Say that an extended event is a function F : S → [0, 1]
that is constant on each cell of a finite partition A ⊂ X of S. We identify each A ∈ X with
the extended event χA given by the characteristic function of A. Let X be the set of extended
events; it is a convex subset of the vector space of all functions S → R.

A preorder % on X can be understood as a comparative likelihood relation in the following
way. Suppose that, for each p ∈ [0, 1], a coin with bias p is going to be tossed, independently of the
events encoded in X ; let Hp be the event that it lands heads.38 Given F ∈ X, constant on each
cell of some partition {E1, . . . , En} ⊂ X of S, we associate the event HF = E1Hp1

∨· · ·∨EnHpn
,

where pj is the value that F takes on Ej . Thus HF occurs whenever nature selects some event

Ej from the partition, and, independently, the coin with bias pj lands heads. F %F ′ holds just

in case HF is judged at least as likely as HF ′ .39 So interpreted, % should appropriately take into

37Each component of f is automatically a finitely additive signed measure on X. Following
Armstrong and Prikry (1981), a finitely additive signed measure fj is said to be non-atomic if for every ǫ > 0
there is a finite partition {A1, . . . , An} of X such that for all k the total variation |fj |(Ak) of Ak under fj is less
than ǫ. Note that non-atomicity in this sense has nothing to do with the partial order on V .

38At a cost in abstraction, we could avoid the need for infinitely many coins by considering a single sample
from [0, 1] with the uniform measure.

39While emphasizing that our conceptual approach is not decision theoretic, % should match the preferences of
an agent who gets a prize on heads.
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account the objective probabilities of the coin tosses; we suggest that the appropriate constraint
is strong independence.

The following proposition allows us to generate representations of likelihood relations on X
by vector measures.

Lemma 23. Let X be a Boolean algebra and X the set of extended events.
(i) If a preorder % on X satisfies strong independence, its restriction % to X can be represented

by a vector measure. Conversely, a preorder % on X can be represented by a vector measure
only if it arises in this way.

(ii) If a mixture-preserving function f : X → V , with V a vector space, satisfies f(χ∅) = 0,
its restriction f to X is a vector measure. Conversely, a function f : X → V is a vector
measure only if it arises in this way.

Lemma 23, in combination with Lemma 16, yields the following application of Theorem 6.

Theorem 24. Let X be a Boolean algebra, and X the space of extended events. For i ∈ I∪ {0},
let %i be a preorder on X whose restriction to X is %i. Assume that each %i satisfies strong

independence, and that the %i together satisfy P1–P4.
Then there is for each i ∈ I ∪ {0} a vector measure fi : X → Vi that represents %i, and a

strictly positive linear map L : VI → V0, with each Li an order embedding, such that f0 = LfI.

Let us contrast the two routes to linear pooling. Convexification allows the population to
be infinite, and avoids the restriction of the Lyapunov approach to %i with admissible repre-
sentations. In addition, Lemma 23 provides necessary and sufficient conditions for a preorder
% on X to be represented by a vector measure, whereas no such result has been given for %
to be represented by an admissible vector measure. On the other hand, convexification requires
extending X to X , along with Pareto and strong independence for the extended preorders. It
is hard to see an objection to this extension of Pareto,40 but strong independence has its critics
(even while remaining very popular) in the standard decision theoretic version of the Anscombe-
Aumann framework.41 Those with similar doubts in our comparative likelihood framework (cf.
note 39) might prefer the Lyapunov approach. Finally, for those who prefer to avoid objec-
tive probabilities, we note the possibility of imposing convex structure directly on X ; compare
Ghirardoto et al (2003).

4 Related literature

We conclude by relating our results to extant work.
In section 2.1 we noted that our use of partially ordered vector spaces generalises some

other forms of representation. These include representations with values in a non-Archimedean
ordered field F , often used to model failures of continuity (see note 19 for references). Here,
F is generally assumed to be an extension of the real numbers, and as such is an ordered real
vector space (cf. Example 10). However, advocates of this approach may prefer to rework our
results using F , rather than R, as the basic field. This would mean interpreting such conditions
as linearity, convexity, and strong independence using coefficients drawn from F .42 We do not
pursue this project, but the only results that we do not expect to extend almost verbatim are
Theorems 19 and 22.

40We note, however, that if the %i satisfy P1–P4, and are extended to strongly independent preorders %i on

X, it does not follow that the %i satisfy P1–P4.
41See e.g. Gilboa (2009) for discussion.
42Thus, for example, a subset X of an F -vector space is convex over F if and only if, for all x, y ∈ X and all

α ∈ F with 0 < α < 1, we have αx+ (1− α)y ∈ X.
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As already noted, in the special case in which I is finite and Vi = R for each i ∈ I ∪ {0},
Theorem 7 is proved in De Meyer and Mongin (1995, Prop. 1), without requiring DR; note that
P4 is vacuous under these assumptions. This is the first result we know of that emphasizes
the usefulness of co-convexity in the context of social aggregation. They apply their result to
preference aggregation to obtain Harsanyi’s theorem, and to opinion pooling using Lyapunov, in
the special case in which each %i is represented by a standard probability measure.

Zhou (1997) allows I to be infinite, and considers the special case in which X is a mixture
set and the fi are mixture-preserving representations with values in R (i.e. von Neumann-
Morgenstern expected utility functions),43 so that the %i satisfy strong independence, conti-
nuity and completeness. Under these assumptions, his Theorems 1 and 2 are essentially our
Theorem 7(a) and (b) respectively.44 He also raises the question of whether, in our terminology,
DR can be dropped from Theorem 7(b), and gives an affirmative answer under yet further as-
sumptions. Our examples in section 2.3.1 show that the answer is negative in general. But we
emphasise that our Theorem 6 and the main part of Theorem 8 do not assume DR.

Despite the importance of the problem, the results of Danan et al (2015) are the only ones
we know of that generalize Harsanyi’s theorem by dropping completeness. They assume a finite
population, and take X to be the set of probability measures on a finite set of outcomes. They
assume that the %i satisfy strong independence and a slight strengthening of mixture continuity.
It follows that the %i have expected multi-utility representations (Shapley and Baucells, 1998;
Dubra et al, 2004), and they present their results in such terms. Recall from Example 3 than any
multi-representation can be re-interpreted as a representation in a partially ordered vector space.
Our Theorem 7(a) and (b) say that, given P1 or P1 and P2, the vector-valued representation of
%0 is linearly related to those of the other %i. Danan et al prove essentially this same result in
their setting, and go slightly further in describing the components of the linear relation in terms
of the original multi-representations. They also explain how these results extend to the case of
an infinite population, generalizing Zhou’s results to allow for incompleteness (although, unlike
Zhou, assuming a finite set of outcomes).

Our results differ from theirs in three main ways. First, we do not require continuity; one
motivation for this is that in the absence of completeness, continuity is a more problematic
assumption than it appears.45 Second, as emphasized in section 3.1, we allow for a much wider
range of interpretations of the domain X . Third, while they only consider the axioms P1–P2,
we consider the effects of adding the standard strong Pareto-style axiom P3, and in addition,
the apparently novel P4. This whole package of Pareto-style axioms is plausible, in our view,
and essential to those of our results that are arguably the fullest generalizations of Harsanyi. Of
course, our results do not wholly replace those of Danan et al (2015), as they study details that
arise specifically in the context of continuity and multi-utility representations. But we believe
that it is important to consider the full range of Pareto-style conditions, even in that context;
our results provide a framework for doing so, although we do not pursue it here.

As in Harsanyi’s theorem, the results of Zhou (1997), Danan et al (2015) and this paper do
not assume interpersonal comparisons. Immediately after the statement of his main theorem,
though, Harsanyi (1955) introduces interpersonal comparisons and a form of anonymity, leading
to the further conclusion that the social preorder can be represented by the sum of real-valued
mixture-preserving individual utility functions that have been normalized to reflect interpersonal
comparisons. Generalizations of this version of Harsanyi’s result, that assume interpersonal

43As Mongin (2001) proves, each mixture set X maps naturally onto to a convex set X such that any mixture-
preserving function on X comes from one on X; thus the use of mixture-preserving functions on mixture sets
rather than on convex sets does not give any greater generality.

44The exact statement of Zhou’s Theorem 2 is closer to the variant of Theorem 7(b) outlined in section 2.3.1.
45See Dubra (2011) and McCarthy and Mikkola (2018), extending a classic observation of Schmeidler (1971).
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comparisons and anonymity at the outset but drop one or more of continuity, completeness,
strong independence, and the requirement of a finite population, are given in Fleurbaey (2009),
Pivato (2013, 2014), and McCarthy et al (2018).46

Generalizations of Harsanyi to the case where preferences are over Anscombe-Aumann or
Savage acts, allowing individuals to have different beliefs and values, are well known to lead to
impossibility results.47 Our treatment of opinion pooling separately from preference aggregation
may therefore be seen as following the advice of, for example, Mongin (1998, pp. 352–3) to
aggregate opinion prior to aggregating preferences.

The classic axiomatization of linear opinion pooling, when the population is finite and the
pi are standard ([0, 1]-valued) probability measures on a σ-algebra, was given in McConway
(1981). An axiomatization using analogues of the Pareto-style conditions P1–P3 was given in
Mongin (1995); see also De Meyer and Mongin (1995). Chambers (2007) extends that approach
to axiomatize linear pooling for ordinal probabilities. Extending McConway’s approach, linear
pooling results for finitely additive probability measures and an infinite population are given in
Herzberg (2015) and Nielsen (2019); the latter giving an equivalent result using analogues of P1
and P2.

5 Proofs

We begin with some simple observations about convex sets, cones and vector preorders.

Lemma 25. Let Z be a nonempty convex set. Then Span(Z − Z) = {λ(z − z′) | λ ∈ R, λ >
0, z, z′ ∈ Z }.

Proof. The right-hand side is clearly contained in and spans the left-hand side. It suffices to
show that it equals its own span. It is clearly closed under scalar multiplication. To show that it
is closed under addition, suppose given λ(z−z′) and µ(w−w′) with λ, µ > 0 and z, z′, w, w′ ∈ Z.
Then it is easy to check λ(z − z′) + µ(w − w′) = ν(v − v′), for ν := µ + ν, v := λ

ν
z + µ

ν
w, and

v′ := λ
ν
z′ + µ

ν
w′. Note that ν > 0 and that v, v′ are elements of Z, since it is convex.

Given a vector space V , recall that C ⊂ V is a convex cone if 0 ∈ C, C + C ⊂ C and
λC ⊂ C for all λ > 0. Clearly if C,C′ ⊂ V are convex cones, then so is C +C′. The following is
well-known; see e.g. Ok (2007, G.1.3).

Lemma 26. Let C ⊂ V , where V is a vector space. The binary relation %V on V defined by
v %V w ⇔ v − w ∈ C is a linear preorder if and only if C is a convex cone. Conversely, any
linear preorder on V is of this form.

Lemma 27. Suppose Z is a nonempty subset of a vector space V , and % is a preorder on Z
that satisfies strong independence. Let C := {λ(x − y) | λ ∈ R, λ > 0, x, y ∈ Z, x % y }. Then C
is a convex cone in V . Equip V with the linear preorder %V defined by v %V w ⇐⇒ v−w ∈ C.
Then the inclusion ι : Z → V represents %.

Proof. It is clear that 0 ∈ C, and that for λ > 0, λC ⊂ C. To show that C+C ⊂ C, let v, w ∈ C.
Then v = λ(x− y) and w = µ(x′ − y′) for some λ, µ > 0, x, x′, y, y′ ∈ Z with x % y and x′ % y′.

46While it would be straightforward to add interpersonal comparisons and anonymity to the results of this
paper when I is finite, there is a well known incompatibility between full anonymity and Pareto when I is infinite.
This is avoided in Pivato (2014) by restricting to finite anonymity, and in McCarthy et al (2018) by restricting
to social lotteries in which only finitely many individuals have a chance of existing.

47From among a very large body of literature, see e.g. Broome (1990); Mongin (1995, 1998); Mongin and Pivato
(2015); and Zuber (2016).
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We have
v + w = (λ+ µ)

[

(

λ
λ+µ

x+ µ
λ+µ

x′
)

−
(

λ
λ+µ

y + µ
λ+µ

y′
)

]

.

Let α = λ
λ+µ

. Since % satisfies strong independence, we have αx + (1 − α)x′ % αy + (1 − α)x′

and αy + (1 − α)x′ % αy + (1 − α)y′, and thus αx + (1− α)x′ % αy + (1− α)y′. The displayed
equation then shows that v + w ∈ C, establishing that C is a convex cone.

We now show that for x, y ∈ Z, x % y ⇔ x %V y. Clearly x % y ⇒ x − y ∈ C ⇒ x %V y.
Conversely, suppose x %V y. Then x−y ∈ C, hence there exist λ > 0, x′, y′ ∈ Z with x′ % y′ and
x−y = λ(x′−y′). Letting α = 1

1+λ
, this rearranges to αx+(1−α)y′ = αy+(1−α)x′. Since x′ % y′

and % satisfies strong independence, we have αx+ (1− α)x′ % αx+ (1− α)y′ = αy + (1− α)x′.
By strong independence again, we must have x % y.

Recall that we write 1i : Vi → VI for the natural embedding of Vi into VI.

Proof of Theorem 6. First let us verify that, in each case, the right-hand side entails the left-
hand side. So suppose we have a partially ordered vector space (V,%V ) and a linear L : VI → V
such that LfI represents %0. Recall that we equip VI with the product partial order %P.

Suppose first that x ∼i y for every i ∈ I. Then fI(x) = fI(y), hence LfI(x) = LfI(y). Since
LfI represents %0, we find that x ∼0 y. Therefore P1 holds. Next, suppose that L is positive,
and suppose x %i y for every i ∈ I. Then fI(x) %P fI(y), hence LfI(x) %V LfI(y), so x %0 y.
Thus P2 holds as well as P1. Similarly, suppose that L is strictly positive. If x %i y for all i ∈ I

and x ≻j y for some j ∈ I, then fI(x) ≻P fI(y), whence LfI(x) ≻V LfI(y) and x ≻0 y; thus P3
holds. This covers the right-to-left directions in (a)–(c).

As for (d), suppose that L is strictly positive and each Li is an order embedding. Suppose
that x %i y for all i ∈ I \ {j} and x fj y. This implies that fi(x) %Vi

fi(y) for all i ∈ I \ {j}
and fj(x) fVj

fj(y). We can therefore write fI(x) − fI(y) = v1 + v2 with v1 %P 0 and v2 =
1j(fj(x)− fj(y))fP 0. Since L is strictly positive, we have L(v1) %V 0; since Lj represents %Vj

,
we have L(v2)fV 0. Therefore L(fI(x)−fI(y)) = L(v1)+L(v2) 6-V 0. This implies x 6-0 y. This
shows that P4 must hold as well as P1–P3.

Conversely, now, we show that the left-hand side entails the right in each case.
Assume P1. Define subsets of VI:

C0 = {λ(fI(x)− fI(y)) | λ > 0, x, y ∈ X, x %0 y }

CP = { v | v ∈ VI, v %P 0 }

C = C0 + CP .

We first prove that these are convex cones. Let X ′ = (fI, f0)(X) ⊂ VI × V0. By the co-convexity
assumption, X ′ is convex. Let πI and π0 be the projections of VI×V0 onto VI and V0 respectively.
Let %′ be the preorder on X ′ represented by the restriction of π0 to X ′: x %′ y ⇐⇒ π0(x

′) %V0

π0(y
′). This %′ satisfies strong independence, as in Lemma 16(i). Define a subset of VI × V0:

C′
0 = {λ(x′ − y′) | λ > 0, x′, y′ ∈ X ′, x′ %′ y′ }.

By Lemma 27, C′
0 is a convex cone. Note that, for x′ = (fI, f0)(x) and y′ = (fI, f0)(y) ∈ X ′, we

have
x′ %′ y′ ⇐⇒ π0(x

′) %V0
π0(y

′) ⇐⇒ f0(x) %V0
f0(y) ⇐⇒ x %0 y. (1)

This shows that C0 = πI(C
′
0), and therefore that C0 is a convex cone. Meanwhile, CP is a convex

cone by Lemma 26. Therefore the sum C is also a convex cone.
Next we prove

x %0 y ⇐⇒ fI(x)− fI(y) ∈ C0. (2)
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The left-to-right direction is obvious from the definition of C0. For the converse, we first show
that πI is injective on Y := Span(X ′−X ′). Since πI is linear and Y is a vector space, it suffices to
show that if πI(v) = 0 for some v ∈ Y , then v = 0. So suppose πI(v) = 0. By Lemma 25, we can
write v = λ(a′ − b′), with a′, b′ ∈ X ′, λ > 0; by definition of X ′, we can write a′ = (fI(a), f0(a))
and b′ = (fI(b), f0(b)) with a, b ∈ X . Then πI(v) = 0 implies fI(a) = fI(b); so, by P1, a ∼0 b,
and hence f0(a) = f0(b). Therefore a′ = b′ and v = 0, establishing injectivity of πI on Y .

Now suppose fI(x) − fI(y) ∈ C0. Let x′ = (fI, f0)(x) and y′ = (fI, f0)(y). Note that
πI(x

′ − y′) = fI(x) − fI(y) ∈ C0. Since x′ − y′ ∈ Y , C0 = πI(C
′
0), C

′
0 ⊂ Y , and πI is injective on

Y , we can conclude that x′ − y′ ∈ C′
0. By Lemma 27, however, x′ − y′ ∈ C′

0 implies x′ %′ y′, and
by (1) we obtain x %0 y. This establishes the right-to-left direction in (2).

With these preliminaries, we now prove the left-to-right direction in part (a). Assuming P1,
we define a partially ordered vector space (V,%V ) as follows. We first let V be the quotient of
VI by the subspace C0 ∩ −C0, and let L : VI → V be the quotient map. L(C0) is a convex cone
in V , so it defines a linear preorder %V on V , by Lemma 26. Namely, we have

L(v) %V L(w) ⇐⇒ L(v − w) ∈ L(C0) ⇐⇒ v − w ∈ C0.

It follows that %V is a partial order: if L(v) ∼V L(w) then v − w ∈ C0 ∩ −C0, so L(v) = L(w).
We claim that L : VI → V is the required map for part (a): that is, we claim that LfI represents
%0. Suppose first that x %0 y. Then fI(x) − fI(y) ∈ C0, so LfI(x) %V LfI(y). Conversely, if
LfI(x) %V LfI(y), then fI(x)− fI(y) ∈ C0. Therefore, using (2), we find x %0 y, as desired.

For part (b), further assuming P2, we instead define V to be the quotient of VI by C ∩ −C.
We let L : VI → V be the quotient map, and now we equip V with the linear partial order %V

defined by
L(v) %V L(w) ⇐⇒ L(v − w) ∈ L(C) ⇐⇒ v − w ∈ C. (3)

It is clear from the fact that C contains CP that L is positive. It remains to prove that LfI
represents %0. Suppose first that x %0 y. Then fI(x) − fI(y) ∈ C0 ⊂ C, so LfI(x) %V

LfI(y). Conversely, if LfI(x) %V LfI(y), then fI(x) − fI(y) ∈ C. We may therefore write
fI(x) − fI(y) = v0 + vP for some v0 ∈ C0, vP ∈ CP . Solving this equation for vP , we find
vP ∈ Span(fI(X) − fI(X)). Since fI(X) is convex, Lemma 25 implies vP = λ(fI(x

′) − fI(y
′))

for some λ > 0, x′, y′ ∈ X . Since vP ∈ CP , P2 implies x′ %0 y′, hence, by (2), vP ∈ C0. This
implies fI(x) − fI(y) ∈ C0, and hence by (2) again, x %0 y.

For parts (c) and (d), we use the same V , L, and %V as in part (b). For part (c), it only
remains to show that if P1–P3 hold, then L is strictly positive. As before, L is positive, and %V

is a partial order; because of this, it suffices to show that, for v ∈ VI, v ≻P 0 rules out Lv = 0.
Suppose on the contrary that Lv = 0. Then, by the way L was defined, we must have v ∈ C∩−C.
We can therefore write −v = v0 + vP with v0 ∈ C0 and vP ∈ CP . Since v0 ∈ C0, we can further
write v0 = λ(fI(x)− fI(y)) with λ > 0, x %0 y. Rearranging, we find fI(y)− fI(x) =

1
λ
(v + vP ).

So if v ≻P 0, we have fI(y)− fI(x) ≻P 0. P3 yields y ≻0 x, a contradiction.
Finally, for part (d), it suffices to show that, if P1–P4 hold, then every Li is an order

embedding: v %Vi
0 ⇔ Li(v) %V 0. Since, as just established, L is strictly positive, so is each

Li, and it remains to show that if Li(v) %V 0, then v %Vi
0. Suppose therefore that Li(v) %V 0.

That is, L1iv %V 0, so by (3), 1iv ∈ C and we can write 1iv = v0 + vP for some v0 ∈ C0,
vP ∈ CP . We may further write v0 = λ(fI(x) − fI(y)) for some λ > 0, x %0 y. Rearranging, we
find fI(y)− fI(x) =

1
λ
(−1iv + vP ). Therefore, fj(y) %Vj

fj(x) for all j ∈ I \ {i}. By P3 and P4
respectively, we will have y 6-0 x (a contradiction) if fi(y) ≻Vi

fi(x) or fi(y)fVi
fi(x); therefore

we must have fi(x) %Vi
fi(y). Now, by choice of v0 and vP , v = λ(fi(x) − fi(y)) + (vP )i; both

terms on the right are %Vi
0, so we find v %Vi

0, as desired.

The proof of Theorem 7 rests on the following ‘abstract Harsanyi theorem’.
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Theorem 28. Let X be a nonempty set. Let Y and Z be vector spaces and let f : X → Y ,
g : X → Z be co-convex. Then

g(x) = g(x′) =⇒ f(x) = f(x′) for all x, x′ ∈ X (4)

if and only if f = Lg+y0 for some linear L : Z → Y and some y0 ∈ Y . Moreover, the restriction
of L to Span(g(X)− g(X)) is uniquely determined.

Proof. To take the last statement first, suppose that f = Lg + y0 and also f = L′g + y′0.
Subtracting, we see that L and L′ differ by the constant y′0 − y0 on g(X), and therefore they are
equal on Span(g(X)− g(X)).

For the first statement, it is clear that (4) holds if f is of the form f = Lg + y0. For the
converse, let X ′ := (f, g)(X); it is a convex set by assumption. Let A := Span(X ′ − X ′); it is
a linear subspace of Y × Z. In light of Lemma 25 applied to X ′, the condition (4) is equivalent
to the condition that A contains no elements of the form (y, 0) with y 6= 0. Since A is a linear
subspace, we find that

(y, z), (y′, z) ∈ A =⇒ y = y′.

A is therefore the graph of a partial function L from Z to Y . By definition, the domain of L is
the projection of A to Z, namely Span(g(X)− g(X)), and L is characterized by the equation

A = {(L(z), z) : z ∈ Span(g(X)− g(X))}.

Also, L is a linear function since A is a linear subspace. Extend L arbitrarily to a linear
function from Z to Y . Fix (y, z) ∈ X ′ and set y0 = y − L(z). Then for any x ∈ X , we have
f(x) = L(g(x)) + y0.

Proof of Theorem 7. Note that, if LfI+ b represents %0, then so does LfI. Thus the right-to-left
direction in each part is a special case of the corresponding claim in Theorem 6.

For the left-to-right directions, assume for the remainder that P1 holds. This implies fI(x) =
fI(x

′) =⇒ f0(x) = f0(x
′) for x, x′ ∈ X . Co-convexity of the fi is equivalent to co-convexity

of fI and f0. Theorem 28 therefore yields a linear map L : VI → V0 and some b ∈ V0 such that
f0 = LfI + b, establishing part (a).

Let v ∈ VI. By the co-convexity assumption, fI(X) is convex, so DR and Lemma 25 imply
that there exist x, y ∈ X , λ > 0 such that fI(x) − fI(y) = λv. Since LfI represents %0,

x %0 y ⇐⇒ Lv %V0
0.

We have v %P 0 ⇔ x %i y for every i ∈ I. If P2 holds, v %P 0 ⇒ x %0 y; if P3 holds
v ≻P 0 ⇒ x ≻0 y. Using the displayed equivalence, if P2 holds, L is positive, and if P2–P3 hold,
L is strictly positive. This establishes (b)–(c).

Now assume P1–P4 hold. By Theorem 6(d), there exists a partially ordered vector space
(V ′,%V ′) and a linear map L′ : VI → V ′ such that L′fI represents %0, with every L′

i an order
embedding. Let v ∈ Vi. By convexity of fI(X), DR and Lemma 25 again, there exist x, y ∈ X ,
λ > 0 such that fI(x) − fI(y) = λ1iv. Then v %Vi

0 ⇐⇒ L′
iv %V ′ 0 ⇐⇒ L′fI(x) %V ′

L′fI(y) ⇐⇒ x %0 y ⇐⇒ f0(x) %V0
f0(y) ⇐⇒ LfI(x) %V0

LfI(y) ⇐⇒ Liv %V0
0.

This shows that Li represents %Vi
. Since V0 and Vi are partially ordered, it also shows that

kerLi = {0}: Liv = 0 ⇐⇒ Liv ∼V0
0 ⇐⇒ v ∼Vi

0 ⇐⇒ v = 0. Therefore Li is injective, and
Li is an order embedding, establishing (d).

Proof of Theorem 8. For the right-to-left direction, suppose we are given V , gi, and S satisfying
the three conditions (a)–(c), or even just (a) and (b). Suppose x, y ∈ X with x %i y for all i ∈ I.
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Since gi represents %i, this implies gI(x) − gI(y) %P 0, where now %P is the product partial
order on

∏

i∈I
V . Since gI(x)−gI(y) ∈ Y :=

∏

i∈I
Span(gi(X)−gi(X)), and S is assumed strictly

positive on Y , we find SgI(x) %V SgI(y), and since SgI represents %0, this implies x %0 y. This
establishes P1 and P2. If x ≻i y for some i ∈ I, then a similar argument yields x ≻0 y, and
hence P3.

For P4, suppose x %i y for all i ∈ I \ {j} and xfj y. Let 1j be the inclusion of V into
∏

i∈I
V

as the jth factor. Set v := gj(x)− gj(y), so that v fV 0. We may write gI(x)− gI(y) = vP + 1jv
with vP %P 0, and vP , 1jv ∈ Y . Since S is strictly positive on Y , we have SvP %V 0, and since
S extends summation we have S1jv = vfV 0. Therefore (since %V is a linear preorder) we have
SvP + S1jv 6-V 0, and since SgI represents %0 we find x 6-0 y, as desired.

Conversely, suppose that P1–P4 hold. From Theorem 6(d), there is a strictly positive linear
map L : VI → V with values in some partially ordered vector space V , such that LfI represents
%0 and every Li is an order embedding.48 This implies that gi := Lifi is a representation of of
%i with values in V for each i ∈ I. Together the gi define gI : X →

∏

i∈I
V .

We now define the map S :
∏

i∈I
V → V . The construction is illustrated by the following

commutative diagram.

X

∏

i∈I
Vi

∏

i∈I
V ′
i

∏

i∈I
V

V
⊕

i∈I
V

fI
gI

(Li)

L S1

S

S2

Here, let V ′
i := Li(Vi); it is a subspace of V order-isomorphic to Vi. (Note that Li is injective,

since it is an order embedding.) The Li together define an isomorphism (Li) :
∏

i∈I
Vi →

∏

i∈I
V ′
i .

On the other hand, L is a map from VI =
∏

i∈I
Vi to V . We therefore obtain a map S1 :

∏

i∈I
V ′
i →

V by S1 = L ◦ (Li)
−1.

Next, we have the summation S2 :
⊕

i∈I
V → V . The domains of S1 and S2 are both

subspaces of
∏

i∈I
V . The intersection of their domains is

⊕

i∈I
V ′
i . Given v ∈ V ′

i , L(1iL
−1
i (v)) =

v (where here 1i is the inclusion of Vi into
∏

i∈I
Vi). This shows that S1 and S2 coincide on each

V ′
i , and therefore on

⊕

i∈I
V ′
i . Therefore there exists a linear map S :

∏

i∈I
V → V that extends

both S1 and S2.
By construction, gI = (Li)fI and therefore SgI = LfI. Therefore g0 := SgI represents %0, as

required for part (a).
For part (b) it remains to show that S is strictly positive on Y . Note that in the commutative

diagram defining S, the horizontal map (Li) :
∏

i∈I
Vi →

∏

i∈I
V is an order embedding, under

which Y is the image of Y ′ :=
∏

i∈I
Span(fi(X) − fi(X)). Therefore S is strictly positive on Y

if and only if L is strictly positive on Y ′. But L is strictly positive on VI, which contains Y ′.
Part (c) is straightforward from the fact that fI and f0 are co-convex and gI and g0 are linear

transforms of fI.
For the last claim of the theorem, given DR as well as P1–P4, Theorem 7(d) provides a linear

L : VI → V0 such that f0 = LfI + b for some b ∈ V0. Repeating the construction above, now
with V = V0, we obtain gi and S satisfying conditions (b) and (c) but instead of (a) we have
f0 = LfI + b = SgI + b. However, picking any i ∈ I, we can replace gi by gi − b to obtain
f0 = SgI.

48Anticipating the proof of Theorem 19, we note that the following construction of the gi and S does not depend
on the Vi or V being partially ordered, rather than merely preordered.
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Proof of Lemma 11. We have f(x) = f(x′) ⇐⇒ x ∼ x′ ⇐⇒ g(x) = g(x′). Since f and g are
pervasive, Theorem 28 tells us that there is a unique linear L : V → V ′ and b ∈ V ′ such that
g = Lf + b, and also a unique linear L′ : V ′ → V and b′ ∈ V such that f = L′g + b′. (Note that
here b and b′ are uniquely determined as well as L and L′.) Together we find f = L′Lf+(L′b+b′).
We also have f = idV f , so the uniqueness statement in Theorem 28 implies that L′L = idV . A
similar argument gives LL′ = idV ′ , showing that L is bijective. It remains to show that L is an
order isomorphism: for all v1, v2 ∈ V , we want v1 %V v2 ⇐⇒ Lv1 %V ′ Lv2. By Lemma 25, and
the fact that f is pervasive, there exist x1, x2 ∈ X and λ > 0 such that v1−v2 = λ(f(x1)−f(x2)).
We have v1 %V v2 ⇐⇒ f(x1) %V f(x2) ⇐⇒ x1 % x2 ⇐⇒ g(x1) %V ′ g(x2) ⇐⇒ Lf(x1) %V ′

Lf(x2) ⇐⇒ L(v1) %V ′ L(v2), as desired.

Proof of Proposition 12. Span(LfI(X) − LfI(X)) = L Span(fI(X) − fI(X)) by the linearity of
L, and Span(fI(X)− fI(X)) = VI, by DR. Thus Span(LfI(X)− LfI(X)) = L(VI), showing that
LfI : VI → L(VI) is pervasive. So too is L′fI : VI → L′(VI).

We next show that LfI and L′fI are co-convex. Fix any x1, x2 ∈ X and α ∈ [0, 1]. Since
fI(X) is convex, there exists x3 ∈ X such that fI(x3) = αfI(x1) + (1 − α)fI(x2). Therefore
LfI(x3) = αLfI(x1) + (1 − α)LfI(x2), and similarly L′fI(x3) = αL′fI(x1) + (1 − α)L′fI(x2).
Therefore (LfI, L

′fI)(x3) = α(LfI, L
′fI)(x1) + (1 − α)(LfI, L

′fI)(x2). Thus LfI and L′fI are
co-convex.

By Lemma 11 there is therefore a unique linear order isomorphism M : L(VI) → L′(VI) and
b ∈ L′(VI) such that L′fI = MLfI + b. Suppose given v ∈ VI; by DR and Lemma 25 there are
x1, x2 ∈ X , and λ > 0, such that v = λ(fI(x1)− fI(x2)). From the fact that L′fI = MLfI + b it
follows that L′v = MLv, as required.

Proof of Proposition 14. Suppose that f0 = LfI+b and also f0 = L′fI+b′, so we have to show L =
L′ and b = b′. By DR and Lemma 25, we can write any v ∈ VI in the form v = λ(fI(x1)−fI(x2)),
with x1, x2 ∈ X and λ > 0. Applying L or L′ we find Lv = λ(f0(x1) − f0(x2)) = L′v; therefore
L = L′. Moreover, we have b = f0(x1)− LfI(x1) = f0(x1)− L′fI(x1) = b′.

Proof of Proposition 15. First we claim that g0 and g′0 are co-convex. Fix x1, x2 ∈ X and
α ∈ [0, 1]. Since fI and g0 are co-convex, there exists x3 ∈ X such that fI(x3) = αfI(x1) +
(1 − α)fI(x2) and g0(x3) = αg0(x1) + (1 − α)g0(x2). Similarly there exists x′

3 ∈ X such that
fI(x

′
3) = αfI(x1) + (1 − α)fI(x2) and g′0(x

′
3) = αg′0(x1) + (1 − α)g′0(x2). By Theorem 8, P1

holds. Since fI(x
′
3) = fI(x3), we must, by P1, have g0(x

′
3) = g0(x3). Therefore g0(x

′
3) =

αg0(x1) + (1− α)g0(x2), establishing that g0 and g′0 are co-convex.
Thus, by Lemma 11, there is a unique linear order isomorphism L : V → V ′ and unique

b0 ∈ V ′ such that g′0 = Lg0 + b0.
By assumption, for each i ∈ I, fi and gi are co-convex, and (by DR) fi is pervasive. As

described before Lemma 11, for any x0 ∈ X , gi − gi(x0) is a pervasive map X → Span(gi(X)−
gi(X)). Since fi is also pervasive, Lemma 11 gives a unique linear order isomorphism Mi : Vi →
Span(gi(X) − gi(X)) and unique ci ∈ V such that gi − gi(x0) = Mifi + ci. Thus gi = Mifi +
ci + gi(x0). It is easy to verify from the uniqueness claim in Lemma 11 that both Mi and
ci + gi(x0) are uniquely determined by this equation, independently of x0. As i varies these
together define a ∈

∏

i∈I
V and a linear order isomorphism M : VI →

∏

i∈I
Span(gi(X)− gi(X))

such that gI = MfI+a. Now fix i ∈ I and x ∈ X . By DR and Lemma 25, there exist y, z ∈ X and
λ > 0 such that λ(fI(y)− fI(z)) = 1ifi(x), where 1i is the inclusion of Vi into VI. We therefore
have λ(gI(y)− gI(z)) = λ(MfI(y)−MfI(z)) = M1ifi(x) = 1iMifi(x) = 1i(gi(x)− ai), where in
the last two terms 1i is the inclusion of V into

∏

i∈I
V as the ith factor. Applying S and using

the fact that it extends summation we find g0(y)− g0(z) = SgI(y)− SgI(z) = (gi(x)− ai)/λ.
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A parallel argument gives g′0(y)−g′0(z) = (g′i(x)−a′i)/λ for some a′i ∈ V ′. Since g′0 = Lg0+b0,
we have g′0(y)− g′0(z) = Lg0(y)− Lg0(z); so in combination we find

Lgi(x) − Lai = g′i(x)− a′i. (5)

Rearranging, g′i = Lgi + (a′i − Lai). We set bi = (a′i − Lai) ∈ V ′. Note that by (5), bi =
g′i(x) − Lgi(x) for every x ∈ X , and is uniquely determined by this equation.

For the last statement, suppose first that v ∈
⊕

i∈I
V ′. We have

LS((L−1vi)i∈I) = L(
∑

i∈I

L−1(vi)) =
∑

i∈I

LL−1(vi) =
∑

i∈I

vi = S′(v),

where every sum has finitely many non-zero terms. On the other hand, suppose v ∈ Span(g′
I
(X)−

g′
I
(X)). Using Lemma 25 we can write v in the form v = λ(g′

I
(x) − g′

I
(y)) with x, y ∈ X and

λ > 0. By equation (5), we have L−1vi = λ(gi(xi)− gi(yi)), so S((L−1vi)i∈I) = λ(g0(x)− g0(y))
and then LS((L−1vi)i∈I) = λ(g′0(x)− g′0(y)) = S′v.

Proof of Lemma 16. Suppose that % is a preorder on X . It is straightforward to check that
% satisfies strong independence if it has a mixture-preserving representation. Conversely, if %
satisfies strong independence, let V be the vector space SpanX and ι : X → V the inclusion.
Taking Z = X in Lemma 27, % and ι define a convex cone C in V and a linear preorder %V such
that ι then represents %. Let V be the quotient of V by the subspace C ∩−C, and let L : V → V
be the quotient map. Define a linear partial order %V on V by L(v) %V L(w) ⇔ v − w ∈ C.
It is clear that L is a representation of %V , hence Lι is a representation of %, with values in
the partially ordered vector space V . To complete the proof of part (i), it suffices to apply the
construction of pervasive representations described before Lemma 11.

For part (ii), fix any x, y ∈ X and α ∈ [0, 1]. Let z = αx + (1− α)y. From the fact that the
fi are mixture preserving, it follows that, for all i, fi(z) = αfi(x) + (1 − α)fi(y), and therefore
α(fi)i∈I(x) + (1− α)(fi)i∈I(y) = (fi)i∈I(z), establishing that (fi)i∈I(X) is convex.

Proof of Theorem 17. By Lemma 16, we can choose co-convex, mixture-preserving representa-
tions Fi : X → Vi, for i ∈ I ∪ {0}. We use these Fi as the ‘fi’ in Theorem 8, which then yields
V , gi : X → V and S :

∏

i∈I
V → V . For our current purposes we define fi := gi.

The only thing left to show is that the gi are mixture-preserving. This follows from the
construction of the gi in Theorem 8, but here is a direct argument. Fix x, y ∈ X and α ∈ [0, 1].
By Theorem 8(c), gi and Fi are co-convex. So there exists z ∈ X such that gi(z) = αgi(x) +
(1 − α)gi(y) and Fi(z) = αFi(x) + (1 − α)Fi(y). Since Fi is mixture preserving, the second of
these equations holds if and only if Fi(z) = Fi(αx + (1 − α)y), or equivalently if and only if
z ∼i αx + (1 − α)y. But then, since gi represents %i, gi(z) = gi(αx + (1 − α)y), and therefore
gi(αx + (1− α)y) = αgi(x) + (1− α)gi(y), as desired.

Proof of Theorem 19. Lemma 18 yields an expectational representation fi : X → Vi of each
%i; suppose fi(µ) =

∫

Y
ui dµ. Let V i = Vi/∼Vi

be the partially ordered quotient of Vi, and

f i : X → V i be the composition of fi with the quotient map; f i also represents %i. Since the
fi are expectational, they are mixture preserving, and it follows from Lemma 16 that they are
co-convex; then the f i are co-convex as well. By Theorem 6(d) there is a partially ordered vector
space V and a strictly positive linear map L : V I → V such that Lf I represents %0, and such
that the components Li : V i → V are order embeddings. Now define a preorder %V on V := VI

by x %V y ⇐⇒ Lx %V Ly, where x, y ∈ V I are the images of x, y ∈ VI. Let L denote the
set-theoretic identity map VI → V . Since L is strictly positive, so is L. Since each Li is an
order-embedding, so is each Li (note L is injective). Moreover, LfI represents %0. If V ′

i is the
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given separating vector space of linear functionals on Vi, then V ′ :=
⊕

i∈I
V ′
i is a separating

vector space of linear functionals on VI, so on V ; with respect to V ′, we have fI(µ) =
∫

Y
uI dµ.

Because L is the set-theoretic identity map we have LfI(µ) = L
∫

Y
uI dµ =

∫

Y
LuI dµ.

We now appeal to the proof of the left-to-right direction of Theorem 8: the construction
(which works even though Vi and V are now merely preordered vector spaces) takes as input fI
and L and yields gi : X → V representing %i (for i ∈ I ∪ {0}) and S :

∏

i∈I
V → V extending

summation such that g0 = Sg. Moreover, by construction gi = Lifi for i ∈ I, and g0 = LfI.
We find gi(µ) = Li

∫

Y
ui dµ =

∫

Y
Liui dµ, and, as already stated, g0(µ) =

∫

Y
LuI dµ. Defining

U0 = LuI and Ui = Liui for i ∈ I, it remains to show that U0 = SUI, i.e. that LuI = S(Liui).
And indeed S is constructed so that S ◦ (Li) = L.

Proof of Theorem 22. Since Lyapunov’s Theorem (Theorem 21) implies that the fi are co-convex,
Theorem 6 yields the vector space V and linear map L with components Li. The only additional
points to be checked are that V can be taken to be finite-dimensional and that

∑

i∈I
Lifi is an

admissible vector measure.
On the first point, one can harmlessly replace V by its subspace L(VI), since the latter contains

the image of every Li; since, under the hypotheses of the theorem, VI is finite-dimensional, so
is L(VI). (Alternatively, V as constructed in the proof of Theorem 6 will already be finite
dimensional.)

On the second point, given that the fi are admissible, it is straightforward to verify that their
product fI : X → VI is admissible, and so then is the linear transform LfI =

∑

i∈I
Lifi of fI.

Proof of Lemma 23. We begin with part (ii). Given f , we have to check that its restriction f to
X is additive. For A,B disjoint in X we have

1
2f(A ∪B) = 1

2f(χA + χB) =
1
2f(χA + χB) +

1
2f(χ∅) = f(12χA + 1

2χB)

= 1
2f(χA) +

1
2f(χB) =

1
2 (f(A) + f(B)).

Hence f(A ∪ B) = f(A) + f(B). Here we have used the fact that X is embedded into X by
A 7→ χA, the assumption that f(χ∅) = 0, the mixture preservation property (twice), and again
the embedding of X .

Conversely, suppose given a vector measure f : X → V . We essentially define f : X → V by
setting f(F ) =

∫

S
F df for each F ∈ X. Explicitly, suppose F is constant on each cell of the

partition {E1, . . . , En} ⊂ X of S, taking value pj on Ej . Then set f(F ) =
∑n

j=1 pjf(Ej). This

f is clearly mixture preserving, and the restriction of f to X is f .
For part (i), suppose given % satisfying strong independence; by Lemma 16, it admits a

mixture-preserving representation f : X → V . Subtracting a constant, we can assume f(χ∅) = 0.
Thus, by part (ii), f restricts to a vector measure f on X , which automatically represents %.

Conversely, if % can be represented by a vector measure f : X → V , then, by part (ii), f
extends to a mixture-preserving function f : X → V ; the preorder % on X represented by f
satisfies strong independence, by Lemma 16, and its restriction to X is %.

Proof of Theorem 24. From Lemma 16 we get co-convexmixture-preserving representations f i : X →
Vi of each %i. Subtracting a constant in each case, we can assume f i(χ∅) = 0.

Theorem 6(d) yields a strictly positive linear map L : VI → V , for some partially ordered
vector space V , with every Li an order embedding, and such that Lf I represents %0. By
Lemma 23(ii), the f i restrict to representations fi of the %i by vector measures. We recover the
statement of the theorem by redefining V0 := V and f0 := Lf I.
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