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Abstract

Several physicists, among them Hawking, Page, Coule, and Carroll, have argued against
the probabilistic intuitions underlying fine-tuning arguments in cosmology and instead
propose that the canonical measure on the phase space of Friedman-Robertson-Walker
spacetimes should be used to evaluate fine-tuning. They claim that flat spacetimes in this
set are actually typical on this natural measure and that therefore the flatness problem is
illusory. I argue that they misinterpret typicality in this phase space and, moreover, that no
conclusion can be drawn at all about the flatness problem by using the canonical measure
alone.

1 Introduction
For several decades now cosmologists have maintained that the old standard model of
cosmology, the highly successful hot big bang (HBB) model, suffers from various fine-tuning
problems (Dicke and Peebles, 1979; Linde, 1984). They claim that the spacetimes on which the
HBB model is based, the Friedman-Robertson-Walker (FRW) spacetimes, require seemingly
“special” initial conditions, such that when only these conditions are evolved forward in time
by the dynamical law of the general theory of relativity (GTR) do the presently observed
cosmological conditions obtain. For example, the flatness problem depends on the existence of
special initial conditions in the HBB model which are required to explain the
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observationally-inferred spatial flatness of the universe. Due to their extreme precision or
intuitive “unlikeliness,” these initial conditions are thought to be unduly special, such that many
cosmologists have felt that the initial conditions themselves are in need of explanation and,
moreover, present a significant conceptual problem for the HBB model.

Although physical fine-tuning could be interpreted in a variety of ways, cosmologists
typically understand it to mean that observationally-required initial conditions are in some
sense unlikely (Smeenk, 2013; McCoy, 2015). In order to substantiate this interpretation one
must show that initial conditions in the HBB model which reproduce present conditions are in
fact unlikely. This task presupposes that there is a justifiable way of assessing the likelihoods of
cosmological models (Gibbons et al., 1987; Hawking and Page, 1988). Many arguments found
in the cosmological literature, however, rely on ad hoc, unjustified likelihood measures.
Gibbons et al. (1987) propose a “natural” measure (henceforth called the GHS measure) on the
set of FRW spacetimes (with matter contents represented by a scalar field) as a natural and
justified way of evaluating likelihoods. The GHS measure is simply the canonical Liouville
measure associated with the phase space of FRW spacetimes when GTR is put into a
Hamiltonian formulation and in a substantive sense “comes for free” with the phase space.

While I would maintain that the GHS measure cannot be successfully used to make
arguments about fine-tuning in cosmology quite generally, I argue here only for its
inapplicability to the flatness problem. Some authors (Gibbons and Turok, 2008; Carroll and
Tam, 2010) have attempted to make probabilistic arguments, in analogy to familiar
probabilistic arguments in statistical mechanics, by making the GHS measure into a probability
measure. However, as the total measure of the FRW phase space is infinite, there is no
canonical choice of probability measure with which to make probabilistic arguments, a point
that has been recognized already by some (Hawking and Page, 1988; Schiffrin and Wald,
2012). Accordingly, any justification of a particular probability measure is completely
independent of the justification of the GHS measure—in short, these probability measures are
not in any real sense the GHS measure. On the other hand, one might try to use the GHS
measure by itself to make typicality arguments in analogy to typicality arguments in statistical
mechanics (Goldstein, 2012). Carroll in particular advocates this approach and, interestingly,
claims that the GHS measure alone tells us that almost all spacetimes are spatially flat (Carroll
and Tam, 2010; Remmen and Carroll, 2013; Carroll, forthcoming)—that there is in fact no
flatness problem (Hawking and Page (1988, 803-4) and Coule (1995, 468) suggest the same).
Carroll’s claim, however, rests on a subtle mistake in interpreting typicality. I claim, on the
contrary, that the GHS measure cannot tell us anything about likelihood without substantive
additional assumptions such as those made in statistical mechanics, e.g. a partition of phase
space into “macroproperties” or similar. These necessary assumptions, however, are doubtfully
justifiable in the cosmological context. Thus I ultimately conclude that the GHS measure
cannot be used to clarify the nature of fine-tuning in cosmology.



2 The Gibbons-Hawking-Stewart Measure
An adequate view of what the GHS measure is and can do relies on understanding the details of
how it is introduced. For this reason I develop here the measure with considerably more care
than other accounts in the literature, which tend to jump straight to a Lagrangian or
Hamiltonian formulation of GTR without elucidating the geometrical origin of their variable
choices and the relations between physical parameters.

My starting point is the initial value formulation of GTR, in which the “position” initial
data of spacetime are represented by the spatial metric hab on a spacelike Cauchy surface Σ and
the “momentum” initial data by the extrinsic curvature πab (Wald, 1984; Malament, 2012).
FRW spacetimes are spacetimes with homogeneous and isotropic spacelike hypersurfaces, so
one can foliate the spacetimes by a one-parameter (t) family of these spacelike hypersurfaces Σt

that are orthogonal to a smooth, future-directed, twist-free, unit timelike field ξa on M, where I
define ξa = ∇at. For FRW spacetimes the extrinsic curvature of an initial data surface Σt is
Hhab, where H is the so-called Hubble parameter and represents the expansion rate of space.
Thus the initial data for an FRW spacetime are completely represented by two objects: (1) the
spatial metric hab and (2) the Hubble parameter H associated with a spatial hypersurface Σ. The
space of initial data is therefore the product of the set of homogeneous and isotropic
Riemannian manifolds Σ (with metric hab) and the set of (real-valued) Hubble parameters H.
Homogeneous and isotropic Riemannian manifolds have constant curvature κ.

Complete, connected Riemannian manifolds of constant sectional curvature are called
space forms. It is a theorem that every simply-connected three-dimensional space form is
isometric to the sphere S 3(

√
(1/κ)) if κ > 0, R3 if κ = 0, or the hyperbolic space H3(

√
(1/κ)) if

κ < 0 (Wolf, 2010). The standard metrics on each of these manifolds are understood to be the
metrics induced on them by embedding them in R4. Every Σ is therefore isometric to one of
these three classes of space forms. Space forms of each of the three kinds are moreover
homothetic, i.e. they are isometric up to the square of a scale factor a (McCabe, 2004).
Accordingly one has the means to represent curvature κ as a function of the scale factor; in
particular, for any Σ, a2κ is some constant k. Hence one can set any spatial metric hab = a2γab,
where γab is the standard metric on the appropriate space form. This is useful in the initial
value formulation of FRW spacetimes because all time dependence of hab is thereby located
solely in the scale factor a rather than in the radius of curvature of the space form. Therefore
the configuration space of initial data can be represented as R2, the product of the scale factor a
and the Hubble constant H.

The Einstein equation reduces to two constraint equations and two evolution equations in



the initial value formulation (Geroch, 2013):
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where R is the Ricci scalar of Σ, Rab is the Ricci tensor of Σ, and Da is the derivative operator
on Σ. For FRW spacetimes, these equations simplify to the following three (the second
equation from above is trivial since πab does not vary across Σ):

R − 6H2 = −16πρ; (5)

Ḣhab =

(
− H2 −

4π
3

(ρ + 3p)
)
hab; (6)

ḣab = 2Hhab, (7)

where we take advantage of the fact that the stress-energy of FRW spacetimes can be
represented as a perfect fluid with ρ the energy density and p the pressure of the space-filling
matter. The first two equations are known as the Friedman equations. Since hab = a2γab,
ḣab = 2aȧγab, and 2Hhab = 2Ha2γab, it follows from the third equation above that

H =
ȧ
a
, (8)

which is the usual definition of the Hubble parameter H. To simplify matters somewhat and to
make contact with the literature, I shall henceforth restrict the matter contents of spacetime to
be a scalar field φ in a potential V which evolves according to the coupled Einstein-Klein-
Gordon equation.1 Then one has the following equations of motion (Hawking and Page, 1988,
790):

R − 6H2 = −16π
(1
2
φ̇2 + V(φ)

)
(9)

Ḣ = −H2 −
8π
3

(1
2
φ̇2 − V(φ)

)
(10)

φ̈ + 3Hφ̇ + V ′(φ) = 0, (11)

where V ′ is the derivative of the potential with respect to φ.2 (The third equation can be derived
from the previous two and so is in fact redundant.)

1The scalar field is meant to be the inflaton, the field that drives inflation in the early universe.
2If our interest were solely in assessing the HBB model’s fine-tuning, one could do the following analysis for

perfect fluid matter contents. The results would be qualitatively similar however, as shown by Carroll and Tam
(2010, §4.2).



For FRW spacetimes the spatial Ricci scalar is R = −6κ. As noted before, one can cast κ in
terms of the scale factor and a constant k: κ = k/a2. By using the scale factor a to replace κ, one
has introduced a constant k which has no physical significance beyond identifying whether the
space form is flat, positively-curved, or negatively-curved. One therefore usually takes
equivalence classes of curves according to these three cases and chooses k = +1, 0, and −1 as
representatives. Then one may write R = −6k/a2, so that one finally has the first Friedman
equation in its usual form (for a scalar field in a potential):( ȧ

a

)2

=
8π
3

(1
2
φ̇2 + V(φ)

)
−

k
a2 . (12)

The foregoing indicates that our FRW initial data hab and πab are equivalently representable
in the k-indexed phase spaces {a, ȧ, φ, φ̇}k. These entire spaces are not the actual spaces of
initial data, however, since the previous Friedman equation is a constraint equation that must be
satisfied by initial data. One must also keep in mind that k is an index for three separate copies
of the space {a, ȧ, φ, φ̇}. There is no continuous path between the three spaces (a flat FRW
spatial hypersurface remains flat).

Have identified the relevant spaces for representing FRW space forms, I next put the theory
into a Hamiltonian formulation (Wald, 1984, Appendix E) in order to obtain a symplectic
structure and, hence, the canonical measure associated with the phase space. I begin with the
Lagrangian for our theory of FRW spacetimes with a scalar field as the matter contents, where I
have introduced the lapse function N as a Lagrange multiplier:

L =
√
−g

( R
16π

+
1

2N2 φ̇
2 − V(φ)

)
. (13)

In terms of the variables I have chosen, this is

L = −
1

8π
(

3
N

aȧ2 − 3Na3 k
a2 ) +

1
2N

a3φ̇2 − Na3V(φ), (14)

in agreement with (Hawking and Page, 1988; Gibbons and Turok, 2008; Carroll and Tam,
2010). The momenta of a and φ are

pa ≡
∂L

∂ȧ
=
−3aȧ
4πN

; pφ ≡
∂L

∂φ
=

a3φ̇

N
. (15)

The Hamiltonian on this phase space is

H = paȧ + pφφ̇ − L = N
(
−

2πp2
a

3a
+

p2
φ

2a3 + a3V(φ) − a3 3
8π

k
a2

)
, (16)



from which one recovers (after setting N = 1) our constraint (the Friedman equation) as the
Hamiltonian constraint C:

C ≡ −
2πp2

a

3a
+

p2
φ

2a3 + a3V(φ) − a3 3
8π

k
a2 = 0. (17)

The phase space γ of our system is thus the four-dimensional space {a, pa, φ, pφ} equipped with
the canonical symplectic form

ωpa,a,pφ,φ = dpa ∧ da + dpφ ∧ dφ. (18)

The dynamically accessible phase space points are constrained to be on the
three-dimensional hypersurface C. Thus it would be inappropriate to use ω for constructing a
canonical volume measure on phase space. One can, however, pull the symplectic form back
onto the constraint surface by first solving the constraint for pφ:3

pφ = a3
(4π

3
p2

a

a4 +
3

4π
k
a2 − 2V(φ)

)1/2

. (19)

Following Carroll and Tam, I also switch coordinates from pa to H, so that

pφ = a3
( 3
4π

(H2 + k/a2) − 2V(φ)
)1/2

(20)

and
dpa = −

3
4π

(
2aHda + a2dH

)
. (21)

The differential of pφ is then

dpφ =
(3/4π)a3HdH − a3V ′dφ + 6a2((3H2 + 2k/a2)/8π − V)da

((3/4π)(H2 + k/a2) − 2V)1/2 . (22)

Substituting these into ω then gives the pullback of the symplectic form onto C. The result is
the following (pre-symplectic) differential form:

ωa,H,φ = ΘHa(dH ∧ da) + ΘHφ(dH ∧ dφ) + Θaφ(da ∧ dφ), (23)

where

ΘHa = −
3

4π
a2; (24)

ΘHφ =
(3/4π)a3H

((3/4π)(H2 + k/a2) − 2V)1/2 ; (25)

Θaφ =
6a2((3H2 + 2k/a2)/8π − V)
((3/4π)(H2 + k/a2) − 2V)1/2 . (26)

3The scalar field can have positive or negative momentum, so strictly speaking there should be a ± in the
following equation. The reader is welcome to annotate the equations that follow.



This form is not symplectic (it is degenerate), so one cannot construct a natural volume
measure on C. Ideally, the “real” phase space of our system would be given by “solving the
dynamics,” and then taking equivalence classes of phase points that are part of the same
trajectory. In this way one would obtain the space of motions, onto which one could then pull
back the degenerate form to obtain a new symplectic form (of degree two less than ω) and
construct a canonical measure. This is quite complicated in general due to the differential
equation that must be solved. The usual approach to take instead is to set H to some value H∗
in the differential form and define the measure accordingly, i.e. set

dΩ = ωa,H,φ|H=H∗ = Θaφ|H=H∗dadφ. (27)

One may do this because surfaces of constant Hubble parameter in phase space are transverse
to temporal evolution, and the measure is preserved under translation of these surfaces along
the Hamiltonian flow. Finally, one may naturally define the GHS measure µGHS on Lebesgue
measurable sets U by

U 7→
∫

U
dΩ = −6

∫
U

a2 (3H2
∗ + 2k/a2)/8π − V

((3/4π)(H2
∗ + k/a2) − 2V)1/2 dadφ. (28)

Modulo a unit choice, this expression of the GHS measure is equivalent to those derived in
(Carroll and Tam, 2010; Schiffrin and Wald, 2012).4

3 The Flatness Problem
Because of the a2 factor, the GHS measure clearly diverges for large scale factors, a point
originally recognized by Gibbons et al. (1987, 745); it also converges to 0 for small scale
factors. Due to the divergence, one may readily say that, given any choice of Hubble parameter
H∗, almost all spacetimes will have a “large” scale factor. More precisely, pick any scale factor
a∗; the set of spacetimes with a < a∗ is a negligible set: the total measure of this set is finite
whereas the total measure of its complement is infinite.

What is the significance of this fact about the GHS measure, specifically for the flatness
problem? Hawking and Page suggest the following:

“Thus for arbitrarily large expansions (and long times), and for arbitrarily low
values of the energy density, the canonical measure implies that almost all
solutions of the Friedmann-Robertson-Walker scalar equations have negligible

4There are some complications with the k = 1 case. See (Schiffrin and Wald, 2012, 8) for the details. Gibbons
et al. (1987) use a simplifying but less transparent coordinate choice. They also choose to investigate only the
special case where V = m2φ2/2. It can be shown with some work that their expression is equivalent to this one with
this potential.



spatial curvature and hence behave as k = 0 models. In this way a uniform
probability distribution in the canonical measure would explain the flatness
problem of cosmology...” (Hawking and Page, 1988, 803-4)

By “arbitrarily large expansions” (and “arbitrarily low values of energy density”), they appear
to mean the following. Pick any arbitrary a∗ (and any arbitrary φ∗).5 According to the GHS
measure almost all spacetimes have a > a∗ (and φ > φ∗), or, equivalently, the spacetimes with
a < a∗ (and φ < φ∗) compose a negligible set. Furthermore, since this holds for any choice of
a∗, one may infer that almost all spacetimes are arbitrarily close to having κ = 0 (since
κ = k/a2) in exactly the same sense. It is perhaps somewhat misleading to say that curved FRW
spacetimes with large scale factors “behave as k = 0 models;” the curvature does not change in
flat FRW spacetimes whereas they do in curved ones. It is, however, false to say that a
“uniform probability distribution” with respect to the GHS measure would explain the flatness
problem of cosmology. There is in fact no such uniform probability distribution, since the GHS
measure is not finite. Moroever, there is also no canonical probability distribution ρ at all which
would make U 7→

∫
U
ρdΩGHS into a probability measure—one has to make a choice in order to

obtain a probability measure in the case of infinite total measure, a choice which appears
completely arbitrary in this context.

Carroll and Tam (2010, 14) invite us to consider the question in more “physically
transparent” terms by looking at the curvature κ, which I previously exchanged in favor of the
scale factor a when deriving the GHS measure. One can recast the scale factor a as the
curvature κ using the relation from before, namely κ = k/a2. (Note especially that this switch
maps the entire set of scale factors for the k = 0 case to the single point κ = 0.) One then
defines the GHS measure (at least for curved FRW spacetimes) by the map

U 7→
∫

U
dΩ = −6

∫
U

1
|κ|5/2

(3H2
∗ + 2κ)/8π − V

((3/4π)(H2
∗ + κ) − 2V)1/2 dκdφ. (29)

It is clear that the measure diverges for small values of curvature, i.e. curvatures close to flat,
due to the curvature term in the denominator. This is pointed out by Carroll and Tam. They
suggest the following interpretation of this fact:

“Considering first the measure on purely Robertson-Walker cosmologies (without
perturbations) as a function of spatial curvature, there is a divergence at zero
curvature. In other words, curved [FRW] cosmologies are a set of measure
zero—the flatness problem, as conventionally understood, does not exist.” (Carroll
and Tam, 2010, 15)

5Gibbons and Turok (2008, 6) point out that φ is always bounded given H∗, so it is not really necessary to pick
an arbitrary φ∗.



As stated these claims are highly suspect.
Firstly, Carroll and Tam assert that all values of their curvature coordinate Ωk (essentially

equivalent to κ) can be integrated over. While this is perhaps true, portraying the phase space in
terms of curvature is misleading. For curved FRW spacetimes, it is true that the measure
diverges for small values of curvature κ, as I indicate above and as Hawking and Page suggest
in the passage from their paper quoted above. The recast measure, however, is infinite at zero
curvature because the entire set of k = 0 scale factors is mapped to κ = 0. The GHS measure
diverges for large scale factors in the case of flat FRW spacetimes just as it does for curved
FRW spacetime. Thus it is misleading to describe a “divergence at zero curvature;” there is
nothing special going on in flat FRW spacetimes (at least in this respect).6

Secondly (and relatedly), curved FRW spacetimes are clearly not a set of measure zero—at
least according to the GHS measure. The initial data of FRW spacetimes is representable in the
space {a, ȧ, φ, φ̇}k. The curvature constant k serves as an index for three different phase spaces,
each of which has an infinite total measure—even after taking into account constraints and
choosing a hypersurface in the constraint surface according to GHS’s procedure. The
unboundedness of the total phase space measure for each kind of FRW spacetime is due, again,
to the unbounded range of the scale factor Schiffrin and Wald (2012, 11).7 This is quite plain
when one expresses the GHS measure in terms of the scale factor. Transforming to the
curvature coordinate κ should not change the fact that the total measure of each phase space is
infinite. So, while it is true that the GHS measure attributes infinite measure to flat FRW
spacetimes (as Carroll and Tam appear to recognize), it also does so both to positively curved
FRW spacetimes and to negatively curved spacetimes. Therefore it is false that the curved
FRW cosmologies are a set of measure zero according to the GHS measure. Hence one cannot
conclude on this basis that the flatness problem does not exist.

One might try to rescue Carroll and Tam’s claim about the flatness problem by interpreting
flatness more broadly, namely by including “nearly flat” curved spacetimes. This requires
specifying what the set of “nearly flat” curved spacetimes is to be. That is, one would appear to
require a specification of the set of spacetimes with curvature less than some κ∗ (at some time
corresponding to Hubble parameter H∗). Almost all spacetimes will then, according to the GHS
measure, have a “small” curvature κ in comparison to this curvature κ∗. In other words, the set

6Carroll and Tam appear to equivocate several times between there being a divergence at κ = 0 and the measure
diverging as κ → 0: “The integral diverges near [κ = 0], which is certainly a physically allowed region of parameter
space” (Carroll and Tam, 2010, 17); “The measure diverges on flat universes” (Carroll and Tam, 2010, 28).

7Besides in (Schiffrin and Wald, 2012), this fact is correctly pointed out in (Gibbons et al., 1987; Hawking
and Page, 1988). While Carroll and Tam (2010, 20-1) observe that “this divergence was noted in the original GHS
paper, where it was attributed to ‘universes with very large scale factors’ due to a different choice of variables,”
they object to this as an interpretation: “This is not the most physically transparent characterization, as any open
universe will eventually have a large scale factor.” For this reason they exchange the scale factor for curvature; it is
not clear, however, how this characterization is more physically transparent since it amounts to the same physical
thing.



of spacetimes with κ > κ∗ is a negligible set. Since our universe’s spatial curvature is thought to
be “nearly flat,” i.e. it should be less than κ∗ (whatever it is), it would then follow from this
argument that our universe is actually typical, contra what is assumed in the flatness problem
(and in agreement with Carroll and Tam’s claim). Unfortunately this argument surely does not
follow from the GHS measure alone, since one had to make an independent choice in choosing
κ∗, a choice that is not natural in any clear sense whatsoever (except perhaps under some kind
of wishful thinking). Furthermore, it is doubtful that there is any reasonable argument to justify
a choice of κ∗—an explication of “close to flat” in the context of the completely uniform FRW
models; it would appear to be an entirely arbitrary, unmotivated choice.

Here is a slightly different tack into the same stiff headwind, for the sake of illustration.
Suppose κ∗ is the (non-zero) spatial curvature of our universe at the present time. The GHS
measure can be used to infer that almost all spacetimes with the same Hubble parameter will
have flatter spatial curvatures. In such circumstances, one might be inclined to wonder “Why is
my universe’s spatial curvature so large? It seems like it ought to be much smaller if my
universe is typical!” On this line of thought, then, it seems like one actually has a curvature
problem rather than a flatness problem. Of course, one would say this for any κ∗ whatsoever,
regardless of its magnitude. Thus it is not clear how one would ever be in the position to be
satisfied with one’s curvature in an FRW universe—at least insofar as one expects things in our
universe to be typical (in accord with Copernican principle-style reasoning).

No matter. The measure at least suggests the possibility of this question. What is the
answer? The only feasible answer in this context is that the curvature depends on the actual
dynamical history of the universe; it has no further explanation within the context of the HBB
model (apart from the one depending on an initial condition). That answer may be unsatisfying,
but the question is a bad one anyway, driven by misleading intuitions. This kind of thinking is
clearly motivated by supposing that the GHS measure can be used as a likelihood measure, as
Carroll and Tam clearly do:

“When we consider questions of fine-tuning, however, we are comparing the real
world to what we think a randomly-chosen history of the universe would be like.”
(Carroll and Tam, 2010, 11)

However, there is, as these previous illustrations are meant to show, no such thing at all as a
typical FRW spacetime. The GHS measure cannot explain why the universe’s curvature is what
it is, because it merely encodes the fact that curvature can be any value whatever in an FRW
spacetime.

Some popular conceptions (in physics and beyond) of statistical mechanics encourage this
line of thought. Putatively successful typicality arguments in statistical mechanics (Goldstein,
2012) depend, however, not only on having a phase space measure but also on both the
dynamics of the system and on a specification of macroproperties or macrostates (defined as
regions of phase space) (Frigg, 2009; Frigg and Werndl, 2012). Accordingly, any claim of



fine-tuning in FRW spacetimes on the sole basis of the GHS measure (which does at least
incorporate the FRW dynamics) is bound to miss the mark without additional assumptions
(such as a well-motivated standard of flatness).

Gibbons and Turok (2008) take a different approach from Carroll and Tam. They correctly
observe that universes with large scale factors are universes with small spatial curvatures. They
then claim that the scale factor is neither “geometrically meaningful” nor “physically
observable” and therefore propose to identify all the “indistinguishable” nearly flat spacetimes
on the surface identified by H∗.8 They do so by effectively choosing a “cutoff” curvature κ∗ and
throwing out all the spacetimes with curvatures smaller than it. The advantage to doing this is
that the total measure of FRW spacetimes with curvatures larger than κ∗ is finite, so that one
can then define a probability measure in a natural way.

The disadvantage is that this makes no sense. As Carroll and Tam comment,

“To us, this seems to be throwing away almost all the solutions, and keeping a set
of measure zero. It is true that universes with almost identical values of the
curvature parameter will be physically indistinguishable, but that doesn’t affect the
fact that almost all universes have this property.” (Carroll and Tam, 2010, 20)

Indeed, doing what Gibbons and Turok do is throwing away almost all the solutions (although
the remaining set has finite measure, not measure zero as Carroll and Tam claim). They are also
right to point out that if nearly flat universes are physically indistinguishable, so are “nearly-κ”
universes for almost any κ. Gibbons and Turok do not throw out these universes however (else
they would not have been left with any universes at all). Their justification for an additional
assumption therefore fails.

Ironically, Carroll and Tam make essentially the same error as Gibbons and Turok, by
identifying the flat and nearly flat spacetimes. Instead of throwing out all the flat and nearly flat
spacetimes like the latter pair, however, the former pair throws out the complement of the flat
and nearly flat spacetimes by assigning them zero measure. They then triumphantly conclude
that all FRW spacetimes are essentially flat.

Carroll and Tam propose to tame the remaining divergence in the GHS measure by
regularizing the integral, in effect making the measure finite. The problem with doing this is
that, since the GHS measure is not finite, regularizing the measure makes it no longer the GHS
measure, in which case any justification the measure had by its “naturalness” is lost, since a

8It is not clear what they mean by “geometrically meaningful.” The scale factor is clearly geometric in the
relevant sense, since it relates space forms of the same kind by scalings. It is moreover physically meaningful
because space is expanding (or contracting) in FRW spacetimes. The precise value of a does not matter, as it can be
re-scaled, but that does not undermine its meaningfulness. It is also unclear how the fact that a is physically unob-
servable should matter, since most features of spacetime are not observable, e.g. the metric g, the spatial curvature
κ, etc. The physically relevant content of these, including the scale factor, can be inferred from observations and
appropriate assumptions.



choice was made. In short, they may as well have just assumed whatever probability
distribution they end up with from the very beginning. Their stated justification for regularizing
is pragmatic: “This non-normalizability is problematic if we would like to interpret the
measure as determining the relative fraction of universes with different physical properties”
(Carroll and Tam, 2010, 17). However this is obviously an inadequate justification for the
propriety of their measure.9

4 Conclusion
I have argued that the GHS measure cannot be used to make assessments of fine-tuning in the
context of the HBB model’s flatness problem, from which it follows that it cannot be used to
make typicality arguments in that context. The main issue is that the total measure of spatially
flat FRW spacetimes and the total measure of spatially curved FRW spacetimes according to
the GHS measure are both infinite. Thus one cannot claim that flat spacetimes are more typical
than curved ones or vice versa. This is evident when one derives the measure carefully.
Although several physicists have claimed otherwise, there is simply no such thing as a typical
FRW spacetime. It is possible to add more structure to the set of FRW spacetimes in order to
make some subset of these spacetimes typical and its complement atypical, but I argued that
there is no physical motivation to introduce this kind of structure in cosmology (unlike in
statistical mechanics). In any case, the motivation to use the GHS measure, its mathematical
naturalness, disappears once one makes these kinds of modifications. For these reasons I say
that no conclusion can be drawn at all about the flatness problem using the canonical measure
alone.
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