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Abstract 

The first degree entailment (FDE) family is a group of logics, a many-
valued semantics for each system of which is obtained from classical logic 
by adding to the classical truth-values true and false any subset of {both, 
neither, indeterminate}, where indeterminate is an infectious value (any 
formula containing a subformula with the value indeterminate itself has the 
value indeterminate). In this paper, we see how to extend a version of star 
semantics for the logics whose many-valued semantics lack indeterminate to 
star semantics for logics whose many-valued semantics include 
indeterminate. The equivalence of the many-valued semantics and star 
semantics is established by way of a soundness and completeness proof. 
The upshot of the novel semantics in terms of the applied semantics of these 
logics, and specifically infectiousness, is explored, settling on the idea that 
infectiousness concerns ineffability. 

 

1. Introduction 

The interesting relationships between strong Kleene logic (K3), the logic of paradox (LP), 
and classical logic are well known, as are relationships between these three logics and 
first degree entailment (FDE), the conditional-free fragment of relevant logics.1 When 
ordered by strength, this quartet forms a lattice structure: the standard semantics for 
LP has a truth-value in between true and false interpreted as both, K3 an intermediate 
truth-value interpreted as neither, and FDE (in its four-valued form) has both of these. 

More recently, Graham Priest has generalised this quartet to an octect he calls ‘the FDE 
family’ which contains, in addition to the four logics mentioned, weak Kleene logic, 
some other ‘logics of nonsense’, and a logic developed alongside Jay Garfield in 
studying Nāgārjuna’s use of the catuṣkoṭi.2 In the present paper, I extend existing star 

 
* Matthew W. G. McClure is in the second year of the undergraduate philosophy programme at the University 

of Edinburgh. Matthew isn't sure exactly what their philosophical interests are, but logic is probably among them. 
1 Some classic references and contemporary discussions are Asenjo 1966; Beall 2017, 2018, 2019; 

Belnap 2019a, 2019b; Dunn 1976; Omori & Wansing 2017; and Priest 1979. Note that strong Kleene logic 
differs from the logic of paradox only by the intermediate value not being designated (as would befit 
neither true nor false). 

2 Priest 2014, 2010, 2019; Garfield & Priest 2009. 
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semantics (a form of semantics making use of an operator ∗ rather than extra truth-
values) to cover the whole family. This has implications for how we interpret the logics. 

First, I introduce the FDE family and its many-valued semantics (§2). Then I give 
generalisations of existing star semantics for four of the logics in the family – first 
degree entailment, the logic of paradox, strong Kleene, and classical logic. The main 
contribution of the present paper (§3) is novel star semantics for the ‘!-variants’, logics 
in the family whose many-valued semantics involves the truth-value ! . After 
presenting and discussing the star semantics for these logics, I show that the many-
valued semantics and the star semantics are equivalent (§4). I then consider how the 
star semantics affects interpretations of these logics, and specifically of the idea of 
infectiousness (§5). I suggest that three interpretations of infectiousness (the nonsense 
interpretation, the off-topic interpretation, and the emptiness interpretation) converge 
with one another, with infectiousness capturing something like ineffability. 

 

2. The FDE Family and i 

2.1 The FDE Family 

The FDE family consists of two quartets, each with a lattice structure when ordered 
by strength (' is properly stronger than ( iff everything which is (-valid is '-valid, 
but not the other way around). The FDE quartet has first degree entailment (BN) as 
its weakest logic and classical logic (Ø) as its strongest, with strong Kleene logic (N) 
and the logic of paradox (B) between them. The other four logics are what I will call 
the )-variants of each of these systems, logics obtained by adding the value ) to a many-
valued semantics, which are similarly arranged, with each )-variant being weaker than 
its )-free twin. Figure 1 shows the relationship between the logics. 

 

Figure 1: The FDE family ordered by strength. 
 

Many of the logics in the FDE family are familiar to logicians. Table 1 records the 
details. * is the value true only, # false only, + both true and false, , neither true nor 
false, and ) the infectious indeterminate value (some authors write ‘-’ for ‘empty’ for 
this value). The names of the logics in this paper are taken from the values added to 
*, # to arrive at the many-valued semantics for the logic in question. 
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Often called Truth-values Name in this paper 

Classical logic *, # Ø 

Logic of paradox *, #, + B 

Strong Kleene *, #,, N 

Weak Kleene *, #, ) I 

First degree entailment *, #, +,, BN 

Sfde *, #, +, ) BI 

—— *, #,,, ) NI 

FDE! *, #, +,,, ) BNI 

   

  Table 1: Logics in the FDE family.3 
 

Throughout this paper, a many-valued semantics for one of these logics is marked 
with a ‘+’ (e.g., BN+ is the many-valued semantics for first degree entailment) whereas 
a star semantics is marked with a ‘*’ (e.g., BN* is the star semantics for first degree 
entailment). This paper is concerned only with the propositional systems. 

Before providing a many-valued semantics, let us, for sake of explicitness, define our 
vocabulary (which is the same no matter the sort of semantics). The set of sentences 
or formulae Sent  is defined inductively from the set of propositional parameters 
Prop = {0, 1, … , 0", … }, where 4, … are metavariables standing for sentences: 

• All propositional parameters are sentences. 

• If ⌜4⌝ is a sentence, then ⌜¬4⌝ is a sentence. 

• If ⌜4⌝ and ⌜8⌝ are sentences, then ⌜(4 ∨ 8)⌝ is a sentence. 

• If ⌜4⌝ and ⌜8⌝ are sentences, then ⌜(4 ∧ 8)⌝ is a sentence. 

The material conditional can be defined as an abbreviation: ⌜(4 ⊃ 8)⌝ : = ⌜(¬4 ∨ 8)⌝. It 
shall not be discussed in detail. For the most part, logics in the FDE family are 
extended by other conditionals, e.g., strict and relevant conditionals. In all but Ø, it 
fails to satisfy at least one of ⊨ 4 ⊃ 4 and 4,4 ⊃ 8 ⊨ 8. 

 

  

 
3 Priest 2019, p. 281. 
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2.2 Many-valued Semantics 

We now turn to the many-valued semantics. A BNI+ model >:Sent → @ is a mapping 
of sentences to the truth-values @  constrained by the evaluation scheme, which is 
shown in Table 4. (@ is the union of {*, #} and some subset of {+,,, )}, as in Table 1.) The 
scheme for any logic with less than the full set of truth-values just omits those entries 
in the tables containing truth-values the logic lacks. In BN+ and stronger, the truth-
values can be thought of as forming a lattice as in Figure 2,4 with conjunction as the 
greatest lower bound, and disjunction as the least upper bound. (Negation is a 
De Morgan involution with +, ,, and - fixed points.) 

 

Figure 2: The truth partial order on {*, #, +,,}.5 

   

 

Table 2: The connectives in BNI+. 
 

In systems with + ∈ @, the set of designated – roughly, at least true – values B = {*, +}; 
otherwise B = {*}. 

Definition. A model >:Sent → @ satisfies a sentence 4 iff >(4) ∈ B. 

Definition. A model > satisfies set of sentences C  iff for all 4 ∈ C , > satisfies 4. 

 
4 More generally, they form a bilattice (a set plus two lattice orderings) with a truth ordering (shown) 

and an information ordering in which ! carries maximal information, " minimal information, and #,% 
incomparable with one another in between ! and ". 

5 Belnap 2019a, p. 60. 
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Validity is then informally understood as designation preservation over all models.6 We 
can define a multiple-premiss, single-conclusion consequence relation in the ordinary 
way: C ⊨ 4 iff any model satisfying C  satisfies 4. Formally: 

C ⊨
+
4 ⇔ ∀>(∀8∈% (>(8) ∈ B) ⟹ (>(4) ∈ B). 

 

3. Star Semantics 

3.1 The Basic Picture: BN* 

Star semantics are a form of Kripke-style semantics developed for FDE by Richard 
Sylvan and Val Plumwood.7 The basic insight is that instead of adding truth-values, 
we add points (also called ‘situations’, ‘set-ups’, or ‘worlds’ – though this term might 
have metaphysical undertones we want to avoid) and make negation an intensional 
rather than extensional operator. This results in a simpler, two-valued, evaluation 
scheme. 

The following is a simplified form of the variant of star semantics for BN I will call 
BN*.8 (The semantics in its most general form comes later.) 

A model H is a triple ⟨J,∗ ,⊫⟩ satisfying the following constraints: 

• J = {@, … } is a set of points (@ is a designated point); 

• ∗:J → J is a function on points satisfying 

o N∗∗ = N (involution); and 

• ⊫ ⊆ J × Sent such that for N ∈ J: 

o N ⊫ (4 ∨ 8) iff N ⊫ 4 or N ⊫ 8; 

o N ⊫ (4 ∧ 8) iff N ⊫ 4 and N ⊫ 8; 

o N ⊫ ¬4 iff N∗ ⊯ 4. 

Figure 3 gives an example. 

 
6  A reviewer thought it a good idea for me to explain why I am not using the term ‘truth 

preservation’, which might be more familiar. Designation preservation concerns the designated values 
#, !. Since there is a truth-value # for true only, truth preservation might most naturally be thought of as 
preservation of the value #, but this is not what we want: # is merely one of the values we are interested 
in preserving (the designated ones). ‘Designation preservation’ avoids this confusion. 

7 Routley & Routley 1972. 
8 This differs in some ways from standard contemporary presentations of FDE’s star semantics. For 

those, see, e.g., Omori & Wansing 2017, p. 1024; Priest 2008, pp. 151–52. 



McClure    Star Models and the Semantics of Infectiousness 40 

 

Figure 3: An example star model (A at a point means A fails there). 
 

Definition. A point N (in some model) satisfies a sentence 4 iff N ⊫ 4 (in that model). 

Definition. A model H = ⟨J,R,∗ ,⊫⟩ satisfies a sentence 4 iff @ ⊫ 4 (@ ∈ J). 

Definition. A model H satisfies set of sentences C  iff for all 4 ∈ C , H satisfies 4. (Same 
as before.) 

The definition of multiple-premiss, single-conclusion consequence is broadly the same 
as before – C ⊨ 4  iff any model satisfying C  satisfies 4  – but differs in terms of 
satisfaction of a sentence by a model: 

C ⊨
∗
4 ⇔ ∀H(∀8∈% (@ ⊫ 8) ⟹ (@ ⊫ 4)). 

 

3.2 Extensions of BN* 

The semantic systems B*, N*, and Ø* are obtained from BN* as just presented by 
adding to the model structure and imposing additional constraints. A model H is in 
this case a quintuple ⟨J,S+,S−,∗ ,⊫⟩ constrained just as a BN* model, but with the 
further constraints that 

• S+,S− ⊆ J (S+ and S− are subsets of J); 

• for N ∈ S+: 

o N ⊫ 4 or N∗ ⊯ 4 (intensional exhaustion);9 

• for N ∈ S−: 

o N ⊯ 4 or N∗ ⊫ 4 (intensional exclusion). 

BN* in its more general form has this quintuple model structure and satisfies these 
constraints, but places no further constraints on the models. 

B* adds to BN* the constraint that 

• @ ∈ S+, 

 
9 This principle comes from Beall 2009, p. 9. 
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ensuring (by exhaustion) that @ satisfies at least one of 4, ¬4 for all 4, ruling out the 
equivalent of ,.10 

N* adds to BN* the constraint that 

• @ ∈ S−, 

ensuring (by exclusion) that @ satisfies at most one of 4, ¬4 for all 4, ruling out the 
equivalent of +. 

Ø* adds to BN* the constraint that 

• @ ∈ S+ ∩ S−,11 

ensuring @ satisfies exactly one of 4, ¬4 for all 4.12 

 

3.3 Generalisation to the i-variants 

We are now in a position to present the semantics for BNI*. It is similar to BN*, though 
with different constraints. A model H is a sextuple ⟨J,R,S+,S−,∗ ,⊫⟩ satisfying the 
following constraints: 

• J = {@, … }; 

• R,S+,S− ⊆ J; 

• ∗:J → J is a function on points satisfying 

o N∗∗ = N (involution); 

o N ∈ R ⟹ N∗ ∈ R (closure: R is closed under ∗); 

• ⊫ ⊆ J × Sent such that 

o for N ∈ S+: 

§ for N ∈ R: 

o N ⊫ 4 or N∗ ⊯ 4; 

o for N ∈ S−: 

 
10 One will note that if & satisfies exhaustion, then &∗ will satisfy exclusion, and that if & satisfies 

exclusion, &∗ will satisfy exhaustion. 
11 One can also get Ø* from the simpler BN* semantics by imposing constraint that ∗ satisfies &∗ =

& (identity). This ensures that every point satisfies exactly one of (, ¬( (ruling out the equivalents of ! 
and "). Note that any identity function is an involutory function, so we need not explicitly impose the 
constraint that &∗∗ = &. 

12 ‘What about *+ ∪ *−?’, one might ask. The constraint that @ ∈ *+ ∪ *− should yield symmetric 
three-valued logic (Field 2008, pp. 78–81). Importantly, (∧ ¬( ⊨ 0 ∨ ¬0, which is valid in this logic but 
not BN, will turn out valid: any model with @ ∈ *+ will have @ ⊫ 0 ∨ ¬0, and no model with @ ∈ *− 
will have @ ⊫ (∧ ¬(, so every model with @ ∈ *+ ∪ *− will either fail to satisfy (∧ ¬( or satisfy 0 ∨
¬0. 



McClure    Star Models and the Semantics of Infectiousness 42 

§ N ⊯ 4 or N∗ ⊫ 4; 

o for N ∈ R: 

§ N ⊫ (4 ∨ 8) iff N ⊫ 4 or N ⊫ 8, 

§ N ⊫ (4 ∧ 8) iff N ⊫ 4 and N ⊫ 8, 

§ N ⊫ ¬4 iff N∗ ⊯ 4; and 

o for N ∉ R: 

§ N ⊫ (4 ∨ 8) iff N ⊫ 4 or N ⊫ 8 and N acknowledges 4 and 8, 

§ N ⊫ (4 ∧ 8) iff N ⊫ 4 and N ⊫ 8 and N acknowledges 4 and 8, 

§ N ⊫ ¬4 iff N∗ ⊯ 4, and 

§ N ⊫ 4 iff N∗ ⊯ 4. 

Note that S+’s exhaustion condition holds for points in R (that is, S+ ∩ R). 

Definition. A point N acknowledges a sentence 4 iff N stands in ⊫ to 4 or ¬4. 

The definition of validity is unaffected, and business is as usual for normal points (those 
in R). Let us unpack those conditions on the points outside of R (abnormal points). The 
constraint that N ⊫ 4 iff N∗ ⊯ 4 ensures that whenever 4 holds at N (N abnormal), 4 
fails at N∗ , and whenever 4  holds at N∗ , 4  fails at N . By the truth-conditions of 
negation, this means that whenever 4 holds at an abnormal point, so does ¬4, and 
whenever ¬4 holds, so does 4. 

The acknowledgement condition requires that a point N stands in ⊫ to 4, ¬4. By the 
constraint on negation, the condition simplifies to: 

Definition. A point N acknowledges a sentence 4 iff N stands in ⊫ to 4. 

The above conditions for conjunction and disjunction are therefore equivalent to: 

• N ⊫ (4 ∨ 8) iff N ⊫ 4 and N ⊫ 8, 

• N ⊫ (4 ∧ 8) iff N ⊫ 4 and N ⊫ 8. 

The result is that for a formula 8  containing any of the connectives as a major 
connective, an abnormal point N  satisfies 8  just in case it satisfies all of the 
subformulae which are arguments of the main connective, and each of those are 
satisfied just in case the same condition holds with respect to their main connective 
(or, if the subformula in question is a propositional parameter 0 , N  satisfies 0 ). 
Conversely, should any propositional parameter 0  occurring in a formula 8  be 
unsatisfied at an abnormal point N, the smallest subformula of 8 containing 0 as an 
argument of a connective will be unsatisfied by N (if there is one – if not, 8 fails at N 
trivially), and the smallest subformula of 8 containing this subformula as an argument 
of a connective shall likewise be unsatisfied by N (if there is one, else the buck stops 
here), …, and so 8 shall itself be unsatisfied by N. 
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All this is to say that nonsatisfaction by an abnormal point is infectious – the failure of 
any subformula of a formula at an abnormal point ensures the failure of that formula 
there. 

Note that this more general model structure holds for BN*, B*, and N* too in their 
most general form, but is moot, since there are no abnormal points (R = J so J −
R = ∅) – hence, we can use the simpler semantics without any worries. From these 
more general models we obtain those of BN* and its extensions by imposing the 
constraint that @ ∈ R. 

To obtain BI*, NI*, and I* from BNI*, impose the same constraints that when imposed 
on BN* yield B*, N*, an Ø*, respectively: 

logic constraint 

BI* @ ∈ S+ 

NI* @ ∈ S− 

I* @ ∈ S+ ∩ S− 

 

4. Equivalence of Many-valued and Star Semantics 

In this section, we see that the star semantics and the many-valued semantics are 
equivalent for the logics BNI, BI, NI, and I. (I do not discuss the other logics in detail 
for sake of brevity.) 

 

4.1 Natural Deduction for the FDE Family 

In recent work, Priest provides natural deduction systems for the FDE family.13 Let us 
mark a natural deduction system of this kind with a subscript ‘S’ (e.g., BN( is the 
natural deduction system for BN). Priest has proved these systems sound and 
complete relative to the many-valued semantics for all the logics in the FDE family. 
Soundness and completeness results relative to the star semantics then establish the 
equivalence of the star and many-valued semantics for the logic in question. 

In the natural deduction systems, a basic deduction in the system is of the form 4; 
complex deductions are formed by applying rules to basic deductions and other complex 
deductions. Then C ⊢ 8  iff 8  is at the end of a deduction whose undischarged 
assumptions (if there are any) are all in C . For example, {4} ⊢ 4 since 4 is a deduction 
whose undischarged assumptions are only in {4}. 

The rules are given in Table 3, in which a double line means that a rule goes both ways, 
Y(4) may be any sentence containing all of the propositional parameters that occur 

 
13 Priest 2019. 
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within 4 (Priest’s notation for this is ‘4†’), and [4]* is an assumption discharged by 
the rule labelled with ‘,’. Systems for stronger )-variants add rules from Table 4: 
  

logic extra rules 

BI( wxm 

NI( efq 

I( wxm, efq 

  

  

Table 3: Priest’s rules for BNIG. 

 

 

  

Table 4: The extra rules for stronger i-variants. 
 

In what follows, I shall write the inverse of the star function thus: ∗N = \ iff \∗ = N – 
sc. (∗N)∗ = ∗(N∗) = N. 

 

4.2 Soundness 

Theorem. C ⊢BNI$ 4 only if C ⊨BNI∗ 4. Soundness for BNI. 

Proof. By recursion: the base case shows that the basic deduction (4 ⊢ 4) is valid, and 
the step cases show that satisfaction carries over each rule. Base case: 4 ⊢ 4 only if 
4 ⊨ 4. Take arbitrary model H; if H satisfies 4 then @ ⊫ 4, which is the conclusion. 

dn: A
¬¬A

dem:
¬(A ^ B)
¬A _ ¬B

¬(A _ B)
¬A ^ ¬B

adj: A B
A ^ B s: A ^ B

A
A ^ B

B

wad: A f(B)
A _ B

f(A) B
A _ B

sc: A _ B
[A]1

...
C

[B]2
...
C

1,2
C

efq: A ^ ¬A
B wxm: f(A)

A _ ¬A
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The general idea for the step cases is that we start with a deduction 

 

and for each rule show that any model H satisfies C = C" ∪ C+ ∪⋯ (and the rule inputs 
thereby) only if H satisfies the rule output. I will (except in the case of sc) leave the 
deduction from C  to the rule inputs implicit for sake of brevity and simplicity, and 
show that H satisfies the inputs only if it satisfies the outputs. (Another way to think 
of this is to restrict H to models satisfying C .) 

• dn↑: ¬¬4 ⊨ 4. Suppose arbitrary H satisfies ¬¬4. Then @ ⊫ ¬¬4. By the 
truth-conditions of ¬, @ ⊫ ¬¬4 iff @∗ ⊯ ¬4 iff @∗∗ ⊫ 4. By involution, @∗∗ =
@, so @ ⊫ 4. 

• dn↓: 4 ⊨ ¬¬4. Suppose arbitrary H satisfies 4. Then @ ⊫ 4. By the truth-
conditions of ¬ , @ ⊫ 4  iff ∗@ ⊯ ¬4  iff ∗∗@ ⊫ ¬¬4 . By involution, ∗∗@ =
(∗∗@)∗∗ = @, so @ ⊫ ¬¬4. 

• dem, ↓: ¬(4 ∧ 8) ⊨ ¬4 ∨ ¬8. Take arbitrary H such that @ ⊫ ¬(4 ∧ 8). If @ ∉
R , @ ⊫ ¬(4 ∧ 8)  iff @ ⊫ 4 ∧ 8  iff @ ⊫ 4  and @ ⊫ 8  iff @ ⊫ ¬4  and @ ⊫ ¬8 
iff @ ⊫ ¬4 ∨ ¬8 . In case @ ∈ R , we have @∗ ⊯ 4 ∧ 8 ; so, by the truth-
conditions of ∧, one of 4,8 must fail at @∗ : @ ⊯ 4 or @ ⊯ 8. By the truth-
conditions of ¬, in former case @ ⊫ ¬4, so by the truth-conditions of ∨, @ ⊫
¬4 ∨ ¬8; in latter case, @ ⊫ ¬8 and thus @ ⊫ ¬4 ∨ ¬8. 

• dem, ↑: ¬4 ∨ ¬8 ⊨ ¬(4 ∧ 8). Take arbitrary H such that @ ⊫ ¬4 ∨ ¬8. The 
abnormal case is trivial. If @ ∈ R , either @ ⊫ ¬4  or @ ⊫ ¬8 . From these 
follow, by the truth-conditions of ¬ , @∗ ⊯ 4  and @∗ ⊯ 8 , respectively. In 
either case, the truth-conditions for 4 ∧ 8 are not met at @∗, so @∗ ⊯ 4 ∧ 8. 
But @ ⊫ ¬(4 ∧ 8) iff @∗ ⊯ 4 ∧ 8. 

• dem- ↓: ¬(4 ∨ 8) ⊨ ¬4 ∧ ¬8. Take arbitrary H such that @ ⊫ ¬(4 ∨ 8). The 
abnormal case is trivial. If @ ∈ R , we have @∗ ⊯ 4 ∨ 8 , so, by the truth-
conditions of ∨, @∗ ⊯ 4 and @∗ ⊯ 8. By the truth-conditions of ¬, @ ⊫ ¬4 
and @ ⊫ ¬8, and consequently @ ⊫ ¬4 ∧ ¬8. 

• dem- ↑: ¬4 ∧ ¬8 ⊨ ¬(4 ∨ 8). Take arbitrary H such that @ ⊫ ¬4 ∧ ¬8. The 
abnormal case is trivial. If @ ∈ R , truth-conditions of ∧ yield that @ ⊫ ¬4 
and @ ⊫ ¬8, so @∗ ⊯ 4 and @∗ ⊯ 8. Therefore, the truth-conditions of 4 ∨ 8 
cannot be met at @∗, so @∗ ⊯ 4 ∨ 8, and thus, by the truth-conditions of ¬, 
@ ⊫ ¬(4 ∨ 8). 

• adj: {4,8} ⊨ 4 ∧ 8. Take arbitrary H satisfying {4,8}; H then satisfies 4 and 
satisfies 8, so @ ⊫ 4 and @ ⊫ 8. By the truth-conditions of ∧, @ ⊫ 4 ∧ 8. 

G1 G2
...

... · · ·
input1 input2

rule output
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• s: 4 ∧ 8 ⊨ 4. Take arbitrary H such that @ ⊫ 4 ∧ 8. By the truth-conditions 
of ∧, @ ⊫ 4. The 8 case is analogous. 

• wad: {4,Y(8)} ⊨ 4 ∨ 8. Take arbitrary H such that @ ⊫ 4 and @ ⊫ Y(8). If 
@ ∈ R , then, by the truth-conditions of ∨ , @ ⊫ 4 ∨ 8 . If @ ∉ R , then, by 
definition of Y(), @ stands in ⊫ to all propositional parameters occurring in 8 
(call this set of sentences a.). Let a*+" be defined inductively as the union of 
a* with the set of sentences formed by negating, conjoining, or disjoining any 
of the sentences in a*, and let a be the union of a* for all ,. By the truth-
conditions of operators at abnormal points (given the acknowledgement 
condition and the constraint that N ⊫ 4 iff N∗ ⊯ 4), if @ stands in ⊫ to all the 
sentences in a*, @ stands in ⊫ to all the sentences in a*+". Since @ stands in 
⊫ to everything in a. and 8 ∈ a, @ ⊫ 8, and thus, by the truth-conditions of 
∨, @ ⊫ 4 ∨ 8. The {8,Y(4)} case is analogous. 

• sc: Priest has a proof that works just as well.14 To summarise, suppose we 
have C" ⊢ 4 ∨ 8, C+ ∪ {4} ⊢ b, and C/ ∪ {8} ⊢ b. Assume for recursion that 
C" ∪ C+ ∪ C/ ⊆ c and that C" ⊨ 4 ∨ 8, C+ ∪ {4} ⊨ b, and C/ ∪ {8} ⊨ b. c ⊨ 4 ∨ 8 
(since ⊨ is monotonic), so, by the truth-conditions of ∨, c ⊨ 4 or c ⊨ 8, from 
each of which follows c ⊨ b (since c ∪ {4} ⊨ b and c ∪ {8} ⊨ b).      □ 

Theorem. C ⊢BI$ 4 only if C ⊨BI∗ 4. Soundness for BI. 

Proof. We extend BNI( with wxm: 

• wxm: Y(4) ⊨ 4 ∨ ¬4. Suppose arbitrary H satisfies Y(4), so @ ⊫ Y(4). If @ ∉
R , by definition of Y() , @  stands in ⊫  to all propositional parameters 
occurring in 4 (this set a.). Construct a as in wad. Then since @ stands in ⊫ 
to all the sentences in a., and 4 ∈ a (and thus ¬4 ∈ a), we have @ ⊫ 4 and 
@ ⊫ ¬4 and, by the truth-conditions of ∨, @ ⊫ 4 ∨ ¬4. 

In the case of @ ∈ R, we start with the fact that, since @ ∈ S+, either @ ⊫ 4 or @∗ ⊯ 4. 
If @ ⊫ 4, @ ⊫ 4 ∨ ¬4 follows by the truth-conditions for ∨. If @∗ ⊯ 4, @ ⊫ ¬4 and so 
@ ⊫ 4 ∨ ¬4.                                                                                                                  □ 

Theorem. C ⊢NI$ 4 only if C ⊨NI∗ 4. Soundness for NI. 

Proof. We extend BNI( with efq: 

• efq: 4 ∧ ¬4 ⊨ 8. Suppose not: then there is some model H such that @ ⊫ 4 ∧
¬4, but @ ⊯ 8. By the truth-conditions of ∧, @ ⊫ 4 and @ ⊫ ¬4. But @ ⊫ ¬4 
only if @∗ ⊯ 4. Since NI* models require N ⊯ 4 or N∗ ⊫ 4 (since @ ∈ S−), H 
is not a model.                                                                                                     □ 

Theorem. C ⊢I$ 4 only if C ⊨I∗ 4. Soundness for I. 

Proof. We extend BNI( with efq and wxm.  																																																											□ 

 
14 Ibid., pp. 282–83. 
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For soundness results for BN, B, N, and Ø, we would need to check the soundness of 
the extra rules relative to the relevant models.15 

 

4.3 Completeness 

Lemma. Henkin construction: C ⊬ 4  only if there is some e ⊇ C  such that e ⊬ 4 ; 
e ⊢ 8 only if 8 ∈ e  (closure); and e ⊢ 8 ∨ b only if e ⊢ 8 or e ⊢ b (primeness). 

Proof. Here I will summarise Priest’s proof.16 The formulae 80 are enumerated and e  
(a Henkin theory) is constructed from C = e. by taking the union of each e0 defined 
as e*+" = e* ∪ {8*} iff e* ∪ {8*} ⊬ 4, and e*+" = e*  otherwise. e ⊬ 4 follows from 
the fact that e  is compact. For closure, suppose for reductio that e ⊢ 8* but 8* ∉ e ; 
but then, by construction, e* ∪ {8*} ⊢ 4, so e ⊢ 4. For primeness, suppose e ⊢ 8* ∨
81 but 8* ∉ e  and 81 ∉ e . Then e* ∪ {8*} ⊢ 4 and e1 ∪ {81} ⊢ 4, so e ⊢ 4.     □ 

Lemma. Antitheory construction: Let e  be a Henkin theory. There is some g 
extending {¬8 ∣ 8 ∉ e} such that g ⊬ b for all b in {b ∣ ¬b ∈ e}; g ⊢ B only if B ∈ g 
(closure); and g ⊢ B ∨ i  only if g ⊢ B  or g ⊢ i  (primeness). Call g  the antitheory 
twin of e . 

Proof. Enumerate the formulae 80  and construct g  from {¬b ∣ b ∉ e} = g.  as in the 
Henkin construction but the with inductive definition of g* changed to g*+" = g* ∪ {8*} 
iff for all B ∈ {B ∣ ¬B ∈ e}, g* ∪ {8*} ⊬ B, and g*+" = g* otherwise. Closure, primeness, 
and that g ⊬ B for all B ∈ {B ∣ ¬B ∈ e} are analogous to the Henkin case.      □ 

Lemma. Let e  be a Henkin theory and g its antitheory. Then e  is the antitheory of g. 

Proof. Let a be the antitheory of g, so we need to show that a = e : 4 ∈ e  iff 4 ∈ a. 
For the left-to-right conditional, suppose 4 ∈ e : then, by closure via dn, ¬¬4 ∈ e . By 
the construction of g, ¬4 ∉ g and hence, by the construction of a, ¬¬4 ∈ a, from 
which we get 4 ∈ a by closure via dn. The right-to-left conditional is similar.     □ 

Theorem. C ⊨BNI∗ 4 only if C ⊢BNI$ 4. Completeness for BNI. 

Proof. By contraposition: C ⊬ 4 only if C ⊭ 4. Let e  be a Henkin theory extending C , 
and let g  be the antitheory twin of e . We then construct a model H =
⟨J,R,S+,S−,∗ ,⊫⟩ with J = {@, @∗} constrained in the following way:17 

• @ ⊫ 8 iff 8 ∈ e ; 

• @∗ ⊫ 8 iff 8 ∈ g; 

• @ ∈ R iff there is some b such that Y(b) ∈ e  but b ∉ e ; 

• @∗ ∈ R iff there is some b such that Y(b) ∈ e  but b ∉ g; 

 
15 See ibid., pp. 286–89. 
16 Ibid., p. 283. 
17 For discussion on the size of models, I am grateful to an anonymous reviewer. 
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We now need to check that H really is a model. If so, H is a model satisfying C  but 
not 4, so C ⊭ 4 (as wanted). Specifically, we need to show that that ⊫ satisfies the 
truth-conditions of the connectives. We do so by recursion on the truth-conditions of 
∧ and ¬, with 4 ∨ 8 equivalent to ¬(¬4 ∧ ¬8). 

The base case is trivial, since ⊫  imposes no constraints on the assignment of 
propositional parameters. The connectives need to satisfy: 

• N ⊫ 4 ∧ 8 iff N ⊫ 4 and N ⊫ 8 

• N ⊫ ¬4 iff N∗ ⊯ 4 

In the following I use @ and e  (matters are similar for @∗ and g). 

• ∧ : @ ⊫ 4 ∧ 8  iff @ ⊫ 4  and @ ⊫ 8  – viz. 4 ∧ 8 ∈ e  iff 4 ∈ e  and 8 ∈ e . 
Left-to-right is by closure via s. Right-to-left is by closure via adj. 

• ¬ : @ ⊫ ¬4  iff @∗ ⊯ 4  – viz. ¬4 ∈ e  iff 4 ∉ g . Left-to-right is from the 
construction of g by closure: since g ⊬ 4 for {4 ∣ ¬4 ∈ e}, each such 4 ∉ g. 
Right-to-left is by the fact that e  and g are antitheory twins. 

Since 4 ∨ 8  is equivalent to ¬(¬4 ∧ ¬8) , we can define ∨  in terms of ∧  and ¬ , 
meaning there is no need for a separate case for ∨. The deductions are simple.18 Since 
the rules are sound, they show semantic equivalence too.              □ 

Theorem. C ⊨BI∗ 4 only if C ⊢BI$ 4. Completeness for BI. 

Proof. For wxm, we add the constraint to H that @ ∈ S+ . The truth conditions are 
unaffected.  	 	 	 	 	 	 	 	 	 					□ 

Theorem. C ⊨NI∗ 4 only if C ⊢NI$ 4. Completeness for NI. 

Proof. For efq, we add the constraint to H  that @ ∈ S− . The truth conditions are 
unaffected.               □ 

Theorem. C ⊨I∗ 4 only if C ⊢I$ 4. Completeness for I. 

Proof. For both wxm and efq, we add both constraints, so @ ∈ S+ ∩ S−.      □ 

 

 
18  

           

¬(¬A ^ ¬B)
¬¬A _ ¬¬B

[¬¬A]1

A
[¬¬B]2

B 1,2
A _ B

A _ B

[A]1

¬¬A
¬¬A _ ¬¬B

[B]2

¬¬B
¬¬A _ ¬¬B 1,2

¬¬A _ ¬¬B
¬(¬A ^ ¬B)



McClure    Star Models and the Semantics of Infectiousness 49 

5. From Pure to Applied Semantics 

5.1 What Does it all Mean? 

Up until now, we have been broadly concerned with the ‘pure’ semantics of the FDE 
family and of infectiousness. Let us now turn to the ‘applied’ semantics. A pertinent 
motivation for considering this is given by reflecting on what the semantics mean – 
really mean. Johan van Benthem puts this concern bluntly for star semantics when he 
says: “Pending further explanation of the nature of [the * operator], one cannot even 
begin to say if [star semantics] is more than just a formal trick”.19 

What is at stake in the choice of semantics? Briefly, one important difference between 
the many-valued and star semantics concerns what is the most natural interpretation 
of negation. On the star semantics, it is natural to think of negation as an intensional 
exclusion operator: the fact that ¬4 holds at N is grounded in the fact that 4 fails at N∗, 
N∗ being the point (‘world’, with all its metaphysical import, is perhaps appropriate 
here) recording what is compatible with N.20 The many-valued semantics would seem 
to retain the classical interpretation of negation as the operator that makes the (at least) 
true (at least) false and the (at least) false (at least) true, but admits as logical 
possibilities those cases where sentences are both true and false and those where 
sentences are neither true nor false (and the strange cases, too). 

Detailed discussion of each of these interpretations is outside the scope of this paper, 
but I would like to take the opportunity to briefly gesture in the direction of negation 
as an exclusion operator, which I hope will frame discussion in the rest of this section. 
We first note that the two interpretations are equivalent in terms of when something 
is true/false, at least when we think of falsity as truth of negation (which is widely 
held).21 The consideration in favour of negation as exclusion is then the fact that this 
interpretation explains why falsity is truth of negation, whereas the classical 
interpretation says nothing beyond that falsity is truth of negation, and is thus open 
to the charge of ad hocery. 4 is false at N when ¬4 is true at N because N ⊫ ¬4 means 
N∗ ⊯ 4 – that is, 4 fails to be compatible with the way things are at N, so it is false. 

So, the star semantics has something going for it. But how much has it going for it? 
Let us consider some interpretations of the ) value, and try to make sense of them in 
terms of the semantics presented in this paper. 

Three of the candidates for an interpretation of logics containing ) are: 

• the nonsense interpretation, 

• the off-topic interpretation, and 

• the emptiness interpretation. 

 

 
19 Van Benthem 1979, p. 341. 
20 Meyer & Martin 1986, pp. 306–10. 
21 Ibid., p. 308, do not hold this, instead thinking of falsity as failure at a point. 
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5.2 Nonsense 

Perhaps the most prominent interpretation of )  is due to D. A. Bochvar.22  On the 
nonsense interpretation, a sentence assigned )  is meaningless or senseless. This 
senselessness, it is thought, is inherited by any sentence in which it occurs. Let us take 
the liar sentence (‘this sentence is false’) as our candidate for the bearer of our 
infectious value. Infectiousness means the following are meaningless: 

• ‘It is not the case that this sentence is false.’ 

• ‘Hillary climbed Everest and this sentence is false.’ 

• ‘Hillary climbed Everest or this sentence is false.’ 

How is this thought extended to the star semantics? A natural thought is as follows. 
To fail at one of the abnormal points is to be senseless – it is just like being ). When we 
are in a context in which the meaningfulness of our expressions is guaranteed, then, 
we can constrain our models to those in which @ is normal. When our expressions 
may lack meaning/sense, @ may be abnormal. 

But what grounds have we to say that this nonsense value is infectious? In the case of 
paradoxes like the liar, this is far from obvious. Bochvar takes these paradoxes as 
paradigm examples of meaningless sentences (the logic of his concern being I),23 but 
in N or weaker or B or weaker, indeterminate does not seem the most obvious 
assignment. The liar sentence looks like it should be both true and false, and its twin 
(‘this sentence is true’) looks like it should be neither true nor false, and the thought 
that those things which walk and quack like ducks are probably ducks is a compelling 
one.24 

Even if the liar and related puzzles are not genuinely antinomous in the sense 
indeterminate requires, there may well be other candidates, but it is not altogether 
obvious what these would be. This would seem to leave )-variant infectious logics 
insufficiently motivated with respect to their )-free uninfectious twins, offering little 
in the way of explanatory resources we did not already have – that pigs could, for all 
we know, fly is not a strong reason to revise our folk theory of porcine aviation. (But 
a flying pig is.) 

The more underlying worry here is that if we cannot sensibly talk about something 
(in the way required for infectiousness to apply), why are there sentences in our 
language about it? Why can we conjoin, disjoin, and negate it? We leave this thought 
for now, and shall return to it later. 

 

 

 
22 Bochvar & Bergmann 1981. 
23 Ibid., pp. 105–07. 
24 Beall 2018, pp. 48–49. 
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5.3 Incongruity 

The off-topic interpretation is a more recent suggestion of Jc Beall’s, formulated in 
response to weaknesses in the nonsense interpretation.25 On this account, the truth-
values go: 

• *: true (and not false), and on-topic; 

• #: false (and not true), and on-topic; 

• +: both true and false, and on-topic; 

• ,: neither true nor false, and on-topic; 

• ): off-topic. 

Suppose we have it that Marmite is tasty. Does it follow that Marmite is tasty or 
Wellington is in New Zealand? In the )-variants, no. But why not? On the off-topic 
interpretation, while truth is preserved over the inference, topic is not. The topic of 
‘Marmite is tasty’ is Marmite or tasty food or similar, whereas the topic of ‘Marmite is 
tasty or Wellington is in New Zealand’ is some compound or product of the topics of 
the disjuncts. 

The application to the star semantics is analogous to the nonsense interpretation case. 
The normal points are ones where everything is on-topic, and the abnormal points 
ones where things may be off-topic. When @ is constrained to the normal points, we 
are guaranteed to be on-topic; when it is not, we are not. 

On such an interpretation, it is natural to think of points (normal points, at any rate) 
as theories concerning some topic, and classes of points as collections of theories 
concerning that topic. We might add the qualification that a theory may not be 
exhaustive with respect to its topic, so let us concern ourselves only with exhaustive 
theories.26 

It is then natural to think of a model as an exhaustive theoretical position with respect to 
some topic: @ is the correct theory of the topic according to that position, other normal 
points are rival theories concerning the topic, regarded by that position as incorrect, 
and abnormal points are theories which are off-topic by the lights of that position. 

Let us consider the topic that encompasses everything. There will be a class of 
exhaustive theoretical positions (models) concerned with such a topic, and among 
such a class of exhaustive theoretical positions, there will be a correct one – the theory 
of everything. @ will be the way that everything is, and other normal points will be 
ways that everything is not. But what are we to say about abnormal points? 

 
25 Beall 2016. 
26 What to say about inexhaustive theories on this sort of account is not totally clear. We could have 

it such that claims & does not decide ( are such that & ⊯ ( and &∗ ⊫ ( (neither true nor false), but then 
it is unclear how to draw the distinction between matters a theory makes no decision on, and matters 
a theory holds are underdetermined or otherwise neither true nor false. 
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When faced with such a question, two options seem salient. The first is to say that such 
a model will have no abnormal points, since it concerns everything, and everything 
means everything. Such an answer would yield that the correct logic, insofar as logic is 
concerned with ‘absolute generality’ or ‘universal closure’, is BN (FDE) or one of its 
extensions – at any rate, not an infectious logic. Indeed, Beall has made an argument 
along such lines for BN.27 (Note that this would not make infectious logics useless, 
since we are nearly always concerned with less than everything, so things might still 
be off-topic with respect to what we are interested in.) 

The second is to countenance the idea that there are certain matters which are off-topic 
with respect to everything. This is difficult to get one’s head around, but it is to be 
expected that the theory of everything seems strange in certain respects. But even 
stranger is the idea that @ could be abnormal (as the )-variant models allow). To these 
thoughts we shall return. 

 

5.4 Emptiness 

It has been suggested that the catuṣkoṭi (‘four corners’ or tetralemma) of classical 
Buddhist philosophy corresponds to BN.28 The catuṣkoṭi’s exclusive corners (and their 
BN counterparts) are: 

Corner BN+ BN* 

being 4 >(4) = * @ ⊫ 4, @∗ ⊫ 4; 

not being 4 >(4) = # @ ⊯ 4, @∗ ⊯ 4; 

both being and not being 4 >(4) = + @ ⊫ 4, @∗ ⊯ 4; 

neither being nor not being 4 >(4) = , @ ⊯ 4, @∗ ⊫ 4 

But Nāgārjuna, founder of the Madhyamaka school, sometimes rejects all the corners 
– the fourfold negation: 

Having passed into nirvana, the Victorious Conqueror 
Is neither said to be existent 
Nor said to be nonexistent. 
Neither both nor neither are said.29 

Garfield and Priest analyse this as demanding another truth-value – our ), yielding 
BNI+ – to formally capture the Madhyamaka concept of śūnyatā (emptiness, the 
absence of svabhāva or essence).30 Madhyamaka metaphysics holds that ultimate reality 
(linked to ultimate truth) exhibits emptiness in this sense – everything is grounded (in 
a certain sense) in other things. Conventional reality (linked to conventional truth) is not 
empty, since we speak and think of things as having essence. The picture is nihilistic 

 
27 Beall 2018, 2019. 
28 Priest 2010. 
29 Nāgārjuna & Garfield 1995, §21.17. 
30 Garfield & Priest 2009; Priest 2010, §4. 
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with respect to the ultimate truth of our views while allowing them some sort of 
(conventional) truth, forming a middle way (three guesses what ‘Madhyamaka’ 
translates to). So the trick, roughly, on the many-valued semantics is to assign ) when 
we are speaking of ultimate reality, which defies theorisation, and assign the normal 
four truth values when we are talking about conventional matters.31 

The story here for the star semantics is similar, too. Normal points are linked to effable 
conventional reality, and abnormal points to ineffable ultimate reality. A sentence 
evaluated at a normal point concerns conventional reality, and, at an abnormal point, 
ultimate reality. Since ultimate reality is ineffable, abnormal points will not satisfy 
sentences said of it. Hence infectiousness is motivated. So, when we allow ourselves 
to speak of ultimate reality, @ may be abnormal. 

 

5.5 Disjunction and its Simulacra 

Hitoshi Omori and Damian Szmuc have argued that one interesting feature of 
infectious logics (when they are given a plurivalent semantics) is this: while their 
conjunction operator does capture genuine conjunction, their disjunction operator does 
not capture genuine disjunction.32 To see the force of this claim, consider the fact that 
4 ∧ 8 is at least true iff 4 is at least true and 8 is at least true, but it is not necessarily 
the case that 4 ∨ 8 is at least true iff 4 is at least true or 8 is at least true, since one of 
4, 8 could be at least true, while the other is infectiously untrue – in which case 4 ∨ 8 
would not be at least true. 

That the disjunction operator does not capture genuine disjunction – does not respect 
the truth-conditions of disjunction – seems even more stark on the star semantics, 
since the truth-conditions for 4 ∨ 8 at abnormal points are 

• N ⊫ 4 ∨ 8 iff N ⊫ 4 and N ⊫ 8, 

equivalent to to those of 4 ∧ 8. To put it baldly, disjunctions at abnormal points are 
effectively conjunctions: 

• N ⊫ 4 ∨ 8 iff N ⊫ 4 ∧ 8.33 

 

5.6 Putting These Thoughts Together 

We saw that infectiousness (and that to which it applies), on the pure semantics given 
in this paper, can be interpreted as capturing some sort of meaninglessness or 
senselessness (on the nonsense interpretation), falling outside the scope of the most 
general topic (on the off-topic interpretation), and taking a view on ineffable ultimate 

 
31 Priest thinks the picture is ultimately more complicated, and we end up with a five-valued 

plurivalent logic (2010, §5). 
32 Omori & Szmuc 2017, pp. 279–81. For discussion of plurivalence, see Priest 2014. 
33 One might wonder whether something funny is going on with negation, too. Omori and Szmuc 

2017 point out that it satisfies the ¬( is at least true/false iff ( is at least false/true condition, and it 
satisfies & ⊫ ¬( iff &∗ ⊯ ( too. So all seems fine here. 
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reality (on the emptiness interpretation). But we were left with two headscratchers: 
what are the candidates for senseless sentences, if not the traditional paradoxes, and 
how are we to understand abnormal points in our theory of everything? 

These thoughts, which seemed puzzling in isolation, seem to fit together now. This is 
to say that the three interpretations considered, on the star semantics, seem to 
converge: What is senseless? Answer: that which is off-topic with respect to the 
absolutely general topic according to the correct absolutely general exhaustive 
theoretical position. But what could that be? Answer: ineffable ultimate reality. 
(According to the real world, on such a picture, @ would be abnormal.) 

What this would seem to suggest is that there is something in this picture, and 
infectious logics are modelling something interesting. Three broken clocks do not 
often agree on the time. 

However, interesting as that which is infectious seems, so too does there just seem to 
be something wrong with it – if something is infectious, you probably do not want it. 
This intuition would seem vindicated by the first option we considered about what to 
say about abnormal points with respect to the theory of everything, and by Omori and 
Szmuc’s worries about disjunction. These thoughts fit together too: disjunction in 
infectious logic is not the right account of disjunction because infectious logic is not 
the right account of logic. Logic is interested in relations between sentences in true 
theories about some topic or other (or perhaps about the absolutely general topic in 
particular, depending on how we think of topic-neutrality).34 

Here we find ourselves back with the distinction between many-valued and star 
semantics, for an interesting difference here emerges in terms of what it might be 
appropriate to call their quarantine strategies. How do we keep this abnormal infectious 
stuff from tearing down the logical edifice (and everything else with it)? In less 
dramatic language, how do we quarantine such a pathosis? 

The star semantics, in a sense, handles quarantine all by itself. As one will recall, points 
in a star model for an infectious logic are split into the normal points, where 
disjunction is disjunction and all is well with the world, and the abnormal points, 
where things get quite strange. Mathematicians like to describe this sort of distinction 
as that between the well-behaved and the pathological, the latter of which seems 
particularly appropriate terminology to describe infectious logics. 

In the star semantics, a sharp line is drawn between well-behaved points and 
pathological points – the abnormality is confined to J −R . In the many-valued 
semantics, however, models lack such a structural difference, and sentences assigned 
) are treated like everything else – they pathologise the whole model, so to speak. 
Quarantining, then, must be done at the level of models. (Maybe this difference counts 
as some sort of reason in favour of a star semantical treatment of infectiousness, and, 

 
34 For an account of logic along these lines, see Beall 2018, 2019. 
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by extension, negation as an exclusion operator, or perhaps it is just an interesting 
observation.) 

 

6. Conclusion 

In this paper, I have extended star semantics to the infectious logics in the FDE family, 
mirroring the existing many-valued semantics. Discussion of the interpretation of 
infectiousness started with the idea that both what infectiousness is and what is 
infectious seem of significant philosophical interest but also very difficult to pin down, 
and came to rest on the idea that three prominent interpretations of infectious logics 
(when adapted to match the star semantics) seem to converge on taking infectiousness 
to concern something like ineffability. There’s gold in them thar hills, but there aren’t 
really any hills.35  

 
35  My thanks are due to three anonymous UPJA reviewers, whose comments have proved 

invaluable. 
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