
The implementation, interpretation, and justification of
likelihoods in cosmology

C. D. McCoy

28 April, 2017

Abstract

I discuss the formal implementation, interpretation, and justification of likelihood attributions in cos-
mology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal
problems that undermine their applicability in this context.

1 Introduction
In recent decades cosmologists have increasingly made use of arguments that involve the assignment of
probabilities to cosmological models, usually as a way of guiding further theorizing about the universe.
This despite cosmology being, on the face of it, an unlikely subject in which to employ probabilistic
reasoning. In usual applications the utility of probabilities depends on their connection to empirical fre-
quencies. In cosmology there is, so far as we know, only one universe. It would therefore seem to be
an almost pointless exercise to attribute probabilities to the universe, its particular creation, or its partic-
ular history, as the assignment of probabilities would apparently be completely arbitrary. Nevertheless,
perhaps owing to the significant observational limitations that exist in cosmology, cosmologists have
sought to bolster the available empirical evidence with probabilistic reasoning, maintaining that it is both
important and sensible to do so.1

Not only is strictly probabilistic reasoning salient in cosmology, but so are various other arguments
which are similar in style to probabilistic reasoning. I will refer to such reasoning in general as likelihood
reasoning. For example, typicality and some topology-based arguments do not rely on probabilities per
se, but, like many probabilistic arguments, they aim to show that some conclusion or kind of outcome is,
for example, typical or atypical, probable or improbable, or favored or disfavored, i.e. likely or unlikely.2

While the logical structure of such arguments is similar, the formal implementation, interpretation,
and justification of the likelihoods themselves can differ significantly. The aim of this paper is to investi-
gate these three features of likelihoods in order to determine the applicability of likelihood reasoning in
cosmology. Although it is not possible to show that such reasoning definitively fails in all cases, I will

1It is not hard to find cosmologists expressing the importance of such arguments in cosmology: “The problem of constructing
sensible measures on the space of solutions is of undeniable importance to the evaluation of various cosmological scenarios”
(Gibbons and Turok, 2008, 1); “...the measure could play an important role in deciding what are the real cosmological problems
which can then be concentrated on. In other words, we assume that our Universe is typical, and only if this was contradicted by
the experimental data would we look for further explanations” (Coule, 1995, 455-6); “Some of the most fundamental issues in
cosmology concern the state of the universe at its earliest moments, for which we have very little direct observational evidence.
In this situation, it is natural to attempt to make probabilistic arguments to assess the plausibility of various possible scenarios
(Schiffrin and Wald, 2012, 1).

2A referee notes the common technical usage of the term “likelihood” in statistics or more broadly in Bayesianism. I do not
mean it in any technical sense but rather as a general term that covers kinds of reasoning similar to probabilistic reasoning.
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argue that the various challenges I discuss do significantly undermine its viability in this context. These
challenges include both conceptual and formal issues.

Before turning to these issues, however, it is appropriate to say a little more about the kind of argu-
ments with which I am concerned. In an influential paper, Gibbons, Hawkings, and Stewart (GHS) give a
concise formula for how likelihood reasoning is applied in cosmology:

Cosmologists often want to make such statements as “almost all cosmological models of a
certain type have sufficient inflation,” or “amongst all models with sufficient baryon excess
only a small proportion have sufficient fluctuations to make galaxies.” Indeed one popular
way of explaining cosmological observations is to exhibit a wide class of models in which
that sort of observation is “generic.” Conversely, observations which are not generic are
felt to require some special explanation, a reason why the required initial conditions were
favoured over some other set of initial conditions.” (Gibbons et al., 1987, 736)

GHS here suggest how such arguments can be used to guide further theorizing in cosmology. As they
explicitly say, if some observed feature of the universe can be shown to be likely among the physically
reasonable cosmologies, then it requires no further explanation; if it is unlikely, then it requires further
explanation. Another variant goes as follows: if some unobservable feature of the universe is shown to be
likely among physically reasonable cosmologies, then one infers that it exists; if it is unlikely, then one
infers that it does not. In the following section I will provide an important example, fine-tuning of the
standard model of cosmology, that follows these formulas.

I emphasize that there exist various formal implementations of likelihood that can be used to sup-
port this kind of argument, e.g. using topology, measure theory, probability theory, etc. Cosmologists,
however, have generally favored those that are similar to the application of likelihoods in statistical me-
chanics, a context where likelihood reasoning is acknowledged as successful. Simply inferring from the
success of arguments in statistical mechanics to similar ones in cosmology presupposes, however, that
the justification and interpretation of likelihoods in statistical mechanics appropriately carries over to the
cosmological context. I will argue that this presupposition is incorrect. Indeed, a central claim defended
in this paper is that the justification and interpretation of cosmological likelihoods cannot be secured by
similar strategies used to justify and interpret the use of likelihoods in statistical mechanics. I draw at-
tention to this particular strategy at the outset because many cosmologists appear to take the problematic
inferences for granted, and it is important to see that it is not viable. This is not the only strategy, of
course, so its failure does not completely undermine likelihood reasoning in cosmology. Hence, although
there is an emphasis on this particular strategy in the paper, in the main it concerns general challenges to
implementing, interpreting, and justifying likelihoods in cosmology.

Although investigating the full complement of formal implementations of likelihood notions would
be of interest, for reasons of simplicity, familiarity, and relevance to arguments made in the literature, I
will concentrate mostly on probabilistic measures of likelihood. Although I will usually not generalize
the considerations raised in the following to other formal implementations of likelihood, many of them do
so generalize; the reader is therefore invited to keep these other implementations in mind. Nonetheless,
at times I do consider topology- and typicality-based arguments explicitly.

Concerning probabilistic likelihoods specifically, recall that an application of probability theory stan-
dardly requires three things: a set X of possible outcomes (the “sample space”), a σ-algebra F of these
possible outcomes (a collection of subsets that is closed under countable set-theoretic operations), and a
probability measure P that assigns probabilities to elements of F .3 The probability spaces relevant for

3Similarly, a topological space is specified by a set X (of possible spacetimes in this context) and a topology on X, i.e. a collection
of subsets of X (the “open” sets). With a topology on X one can define a suitable notion of “negligible set” in the topology on X, for
example a set whose closure has empty interior. The complements of negligible sets, “generic sets,” are then sets with properties
that are “almost always” possessed by the set X. In this way topology can be used to define a rough notion of likelihood: “almost
always” and “almost never.”
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likelihood reasoning are those whose possible outcomes are possible cosmologies (models of the uni-
verse). Since the success of probabilistic arguments depends on an adequate justification of the relevant
probability space and an adequate interpretation of probability in this context, I take as necessary condi-
tions on a cosmological probability space that it be well-defined and that the choice of X and P must be
justifiable and physically interpretable. (I take it that F can be chosen on essentially pragmatic grounds.)
These are the implementation, interpretation, and justification conditions required for a probabilistic like-
lihood attribution. The challenges I raise in the following concern meeting these conditions.

The plan of the paper is as follows. I first provide (§2) a concrete example, fine-tuning problems
with the standard model of cosmology, to further motivate and focus the subsequent investigation. In §3
I consider general conceptual issues of probability measures in cosmology, including the specification of
the appropriate reference class X, and the interpretation and the justification of the probability measure
P. The main conclusions of this section are that implementing cosmological probabilities can only be
understood as an assignment of probabilities to initial conditions of the universe and, more importantly,
that there is indeed no acceptable justification for any particular probability measure in the context of
(single universe) cosmology. I then investigate the potential for formally implementing a measure asso-
ciated with the space of possible cosmologies permitted by the general theory of relativity in §4. I point
out a variety of significant obstacles to providing any such measure. One can avoid (or at least ignore)
most of these general issues by truncating the spacetime degrees of freedom so that the relevant proba-
bility space is finite-dimensional. This is the approach taken to define the most discussed measure, the
Gibbons-Hawking-Stewart (GHS) measure (Gibbons et al., 1987). In §5 I argue that even setting aside
the problems raised in §§3-4 there are serious interpretive and technical problems with taking this nar-
rower approach, in particular for supporting the fine-tuning arguments presented in §2. I offer concluding
remarks in §6.

2 Fine-Tuning Problems in Cosmology
To make the discussion more concrete, I will make use of a specific example involving likelihood ar-
guments. Perhaps the most salient cases of likelihood reasoning in cosmology concern so-called “fine-
tuning” problems.4 Two of the most important fine-tuning problems in recent history are the hot big bang
(HBB) model’s flatness problem and horizon problem. They are important for my purposes because there
is some reason to think that they are part of a successful chain of likelihood arguments, which I will
briefly explain now.

The horizon and flatness problems begin with observations which suggest that the universe is, respec-
tively, remarkably uniform at large scales and has a spatial geometry very close to flat. In the context
of HBB model, the old standard model of cosmology, these presently observed conditions require very
special initial conditions: an extraordinary degree of uniformity and flatness. If the conditions at the
beginning of the universe were ever so slightly different than these initial conditions, the universe would
be nothing at all like what it is now. The fine-tuning of the HBB model, then, is taken to be precisely this
specialness of initial conditions.

How should one understand this specialness though? The most intuitive characterization makes use
of likelihoods: spatial flatness and uniformity are (in some sense) unlikely given the relevant physical
possibilities. What makes fine-tuning problematic, given this rendering, is unfortunately never made es-
pecially clear by cosmologists, but one might think that unlikely circumstances are either simply unlikely
to be true or perhaps that such circumstances lack explanatory power (making such fine-tuning problems
explanatory problems). In any case, it is in this way that the two fine-tuning problems can be understood
as instances of likelihood arguments. Following the formula of GHS, in the context of the HBB model

4Fine-tuning problems also appear elsewhere in physics. For example, in high energy physics the failure of naturalness in the
standard model of particle physics, known as the hierarchy problem, is often described as a fine-tuning problem.
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flatness and uniformity are not generic; therefore they require an explanation.
Thus this is not the end of the story, since the fine-tuning problems create an explanatory demand.

Indeed, the flatness and horizon problems are standardly used to motivate the introduction of the theory
of cosmological inflation as a solution. According to many cosmologists, inflation makes uniformity
and flatness generic outcomes of the inflationary epoch and is itself a generic mechanism found in a
wide variety of spacetimes. Thus, following the formula of GHS, cosmologists claim to have exhibited
a wide class of models in which flatness and uniformity are generic, thereby explaining the flatness and
uniformity of our universe.

One might dismiss these arguments as spurious, but there is perhaps at least some reason to think
that they might be trustworthy. Subsequent to the widespread adoption of the inflationary solution, it was
realized that inflationary theory could be used to make empirical predictions of anisotropies in the cosmic
microwave background. It is generally thought that these predictions have now been observationally
confirmed. Unless inflationary theory was just an extraordinarily lucky guess, it might seem that the
arguments that led to it exhibited good reasoning (Cf. (McCoy, 2017a)).

Although these arguments may be mistaken in various respects, my interest in them here concerns
their apparent reliance on likelihoods. Certainly physicists can be easily read as adopting this proba-
bilistic characterization of the fine-tuning problems and their resolution as likelihood arguments; some
philosophers have discussed them along these lines as well (Earman, 1995; Earman and Mosterı́n, 1999;
Smeenk, 2013; McCoy, 2015). The philosophical analyses made so far have not focused, however, on
assessing the details of the likelihoods involved, i.e. on assessing the implementation, interpretation, and
justification thereof. Thus the example described in this section is an important application of this study
of likelihood reasoning.

Note that there are three steps in the fine-tuning arguments for inflation that depend on likelihoods
(Ellis, 1988; Coule, 1995). First, it must be demonstrated (rather than merely supposed on the basis
of intuition) that the uniform and flat spacetimes underlying the HBB model are unlikely. If they are
unlikely, then they require some special explanation (as GHS say). This is why they should be considered
fine-tuning problems. If inflationary theory is to solve these problems, then it must be shown that inflating
cosmologies generically lead to spatial uniformity and flatness. This is the second place where likelihoods
must be invoked. It must also be shown, however, that inflating cosmologies themselves are not unlikely,
or that they are at least more likely than the special HBB spacetimes. This is the third place where
likelihoods must be invoked.

Cosmologists have often relied on intuitive judgments of likelihood in making the arguments men-
tioned above, but the soundness of the arguments plausibly depends on there being an objective way of
assessing the likelihoods of cosmological models (Gibbons et al., 1987; Hawking and Page, 1988) and
some justified way of interpreting these likelihoods. Let us first look, then, at what problems stand in the
way of justifying and interpreting likelihoods in cosmology.

3 General Conceptual Problems
In this section I discuss the significant conceptual issues that stand in the way of establishing a likelihood
measure on the space of possible cosmologies. These general issues concern the choice of an appropriate
reference class of cosmologies to serve as the sample space, and the justification and interpretation of a
specific measure associated with the sample space.

The basic issue which makes applying probability theory to cosmology difficult has already been
mentioned: there is, so far as we know, only one universe. The uniqueness of the universe has long been
recognized as a problem for cosmology as a science, however its significance has often been overstated.5

5There are several papers discussing whether cosmology is even a science written in the middle of the 20th century: (Dingle,
1955; Munitz, 1962; Harré, 1962; Davidson, 1962). Many of the views expressed, however, have been justly criticized more recently
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Thus it is necessary to draw the argument out in some detail in order to avoid an overly hasty conclusion.
In the end, though, I do conclude that the point is decisive. There is simply no physical content to be
found in the addition of cosmological probabilities to classical, single-universe cosmology.6

3.1 The Reference Class Problem
The first issue to face in defining a probability space in cosmology is deciding on the appropriate reference
class, i.e. the appropriate sample space. Again, a probability space is standardly specified by a set X of
possible outcomes, a σ-algebra F of these possible outcomes, and a probability measure P that assigns
probabilities to elements of F . The problem of deciding the appropriate reference class is the problem of
determining precisely what X should include.7

I begin with the reference class problem because likelihood reasoning depends very much on what
X is. If the set of possibilities is in fact much, much larger than one assumes, an outcome that is likely
according to one’s assumptions may actually be unlikely. In contrast, the reference problem is less of an
issue when modeling specific physical systems. So long as the target system can be modeled, one usually
does not care so much which other systems are physically possible.

As said, in cosmology the appropriate reference class X will be the set of (physically) possible cos-
mologies. A cosmology is standardly taken to be a relativistic spacetime in contemporary cosmology,
i.e. a model of the general theory of relativity (GTR).8 This is essentially because at large scales gravity
appears to be the most important physical force in the universe, and general relativity is the best, most
highly-confirmed theory of gravity that we have. Assuming that every element of X is a relativistic space-
time does not, however, obviously answer the question of what the possible cosmologies are. Which set
of models of GTR are possible models of the universe?

Trust in our theories is usually thought to underwrite the belief that the models of that theory are
physically possible. On this point of view our justified belief in the laws or modal structure of GTR would
therefore determine X as the complete collection of models of GTR. This collection, the nomologically
possible models, is the result of “the most straightforward reading of physical possibility” (Earman, 1995,
163)9).

The practice of cosmologists (and relativists) does not necessarily accord with this line of think-
ing however. By any measure general relativity is a permissive theory; any number of undesirable or
pathological spacetimes is possible according to it.10 Many authors are for this reason inclined to exclude
certain models from physical consideration, such as models with closed timelike curves (CTCs).11 Should

for being overly skeptical towards addressing the scientific problems arising from the uniqueness of the universe (Kanitscheider,
1990; Ellis, 2007; Smeenk, 2008, 2013).

6Quantum cosmology and multiverse cosmology could make for a different conclusion. Although I focus on classical, single-
universe cosmology here, I do believe further investigation into these larger contexts is warranted. Although some of my conclusions
would carry over, there are some novelties which may make the case for cosmological probabilities better there. The interested
reader should refer to the critiques in (Smeenk, 2014) and (Ellis et al., 2004) as a starting point.

7To some extent it does not matter too much precisely what X is so long as it is large enough, since one can always use
the probability measure to assign zero probability to any subset of X, in effect counting them as impossible. Indeed, it may be
mathematically convenient to include some “extra” objects in X for mathematical convenience, simplicity, etc. Nevertheless, the
reference problem will remain, whether in the guise of choosing X or choosing elements of X to which probability zero is assigned.

8In full detail it should also include a physical model of relevant cosmological phenomena in that spacetime (Ellis and van Elst,
1999; Cotsakis and Leach, 2002; Ellis et al., 2012), but for my purposes it is only necessary to consider the spacetime component
of a cosmology, setting aside the specific physics of the spacetime’s material contents.

9This straightforward reading of physical possibility is actually spelled out in two ways by Earman and his collaborators (Earman
et al., 2009, 95), but here I will simply take this reading as the identification of nomological and physical possibility.

10Among the more exotic models are the “causally bizarre” Gödel spacetime and Taub-NUT spacetime which have CTCs. It must
be acknowledged, however, that even the most familiar examples of spacetimes permitted by GTR have fairly unintuitive features:
expanding space (Friedman-Robertson-Walker, de Sitter), spacetime singularities (Schwarzschild, Friedman-Robertson-Walker),
etc. Therefore some distinction between the “undesirable” and the merely “unintuitive” need be made.

11The inclination to disbar spacetimes with CTCs is sometimes characterized (grandiosely) as the “cosmic censorship conjecture.”
Wald (1984, 304) states it simply (albeit imprecisely) as “all physically reasonable spacetimes are globally hyperbolic.” Since
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one exclude pathological examples from the set of possible cosmologies because they do not strike one
as “physically possible?”

I do not mean to take a stand on the question here. The point I rather wish to make is that in prac-
tice cosmologists do exclude certain relativistic spacetimes from consideration, thereby presuming some
alternative physical modality to the “straightforward” nomological one given by the general theory of
relativity. For the most part models are excluded merely because they are thought to be physically impos-
sible or physically unreasonable, although (as a referee suggests) exclusions may be made on the basis
of additional laws added to GTR as well. Nevertheless, the available justifications for these exclusions
tend to be rather dubious (if given at all), as they do not rely on well-motivated physical principles or
observational grounds (as has been noted by some commentators (Earman, 1987; Manchak, 2011)).

Some weight of consideration should be accorded to practice however, so the possibility of justify-
ing the exclusion of pathological spacetimes should not be quickly dismissed merely because adequate
justifications have not been so far given. If so, then the reference class problem cannot be regarded as
solved simply because one can identify nomological and physical possibility by fiat (or by philosophical
artifice).

In any case, even permitting the kinds of assumptions that exclude pathological spacetimes (such as
global hyperbolicity which rules out CTCs) or mathematically inconvenient spacetimes (such as those
that lack compact spatial sections), one is still left with a vast collection of cosmological models which
will then be considered physically possible. If one furthermore arbitrarily restricts attention to space-
times with some specific manifold M, as is common in the cosmology and relativity literature, i.e. to the
subcollection of physically possible cosmologies with underlying manifold M and a physically possible
metric g on this manifold (Lerner, 1973), one generically has an infinite-dimensional space (GTR is a
field theory, after all). This leads to a second difficulty related to the nature of the reference class: al-
though this space of models will possess some mathematical structure, there are difficulties with defining
a probability measure (in particular) on such a space (see §4 below).

Whether because of these difficulties or in ignorance of them, physicists’ attention has so far been
mostly directed at simple sets of cosmologies which can be presented as finite-dimensional state spaces,
e.g. the state spaces on which one can define the GHS measure (the main topic of §5). While this brings
the cosmological framework closer to the statistical mechanical one, where state spaces are generally
taken to be finite-dimensional, this maneuver raises a (third) problem, which is not found in the statistical
mechanical context. How can a measure contrived on a special (sub)set of physically possible spacetimes
represent cosmological probabilities correctly?

On the one hand, if the collection S of simple models, e.g. spatially homogeneous and isotropic
spacetimes, is taken to be the full set of physically possible models, then it is difficult to see how this can
be justified on any well-motivated physical principle or on observational grounds. Surely, that is, GTR
(or even pure physical intuition) suggests that there are spacetimes which may be physically possible
cosmologies besides any particular simple collection of spacetimes S .

If, on the other hand, the collection S (equipped, say, with probability measure µS ) is a subset of a
larger possibility space X (equipped with probability measure µX), then the likelihood of a set of models
Z ⊂ S in the subspace must be a conditional likelihood µS (Z) = µX(Z|S ). In other words, the probability
space S must be a conditional probability space of X.12 Formally, the probability assigned to a collection

globally hyperbolic spacetimes do not have CTCs, it follows that all physically reasonable spacetimes do not have them either, at
least if this version of the cosmic censorship conjecture is true. But then one wonders what it takes to be a physically reasonable
spacetime. Whereas some find CTCs objectionable on philosophical grounds—for example, “those who think that time essentially
involves an asymmetric ordering of events...are free to reject the physical possibility of a spacetime with CTCs” (Maudlin, 2012,
161)—others encourage a certain degree of epistemic modesty with respect to physical reasonableness. Manchak (2011), for
example, demonstrates that given any physically reasonable spacetime there exists observationally indistinguishable spacetimes
which exhibit undesirable or pathological features.

12Let X be the larger sample space with σ-algebra F and probability measure µX . Suppose S is a measurable subset of X with
non-zero measure according to µX . Then the conditional probability space S has σ-algebra {S ∩ Z|Z ∈ F } and probability measure
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of models Z ⊂ S must be
µS (Z) = µX(Z|S ) =

µX(Z ∩ S )
µX(S )

=
µX(Z)
µX(S )

. (1)

The probabilities of the large space X put a constraint on the probabilities of the smaller space S , a
constraint that the probability measures which can be associated with the smaller space are not guaranteed
to meet.

To illustrate these considerations in the most important case in cosmology, consider the subset of
models of GTR that satisfy the cosmological principle (CP). The CP constrains the set of models from
general relativity to those that are spatially homogeneous and isotropic. These models are known as the
Friedman-Robertson-Walker (FRW) spacetimes. First, we may ask, is this assumption admissible as a
way of specifying X? Although the FRW models have been observationally successful, there is certainly
no good argument that justifies the CP as definitively delimiting the space of physically possible space-
times (Beisbart and Jung, 2006; Beisbart, 2009)—especially since the universe is not strictly speaking
homogeneous and isotropic. More plausibly, then, the probabilities that we would obtain by making
this assumption and building a probability measure on the set of FRW spacetimes are not unconditional
probabilities: the space of physically possible cosmologies is surely larger. How large? If the space X
of physically possible cosmologies is the space of nomically possible spacetimes (according to GTR),
then the set S of FRW models is almost certainly negligible, a problematic result given the uses to which
cosmologists want to put likelihood measures in cosmology. Even if S were not negligible, it is hard to
see what the point of constructing measures associated with S , the set of FRW spacetimes, is without
knowing what the measure is associated with the full possibility space X (at least if the motivation is
to derive an objective probability measure). One simply needs to know the full measure (well enough,
anyway) in order to know the correct conditional measure.

Summing up, three issues were raised in this section. I first drew attention to the justification of
a particular set of possible spacetimes as the physically possible ones. In most applications of physical
theory this issue is perhaps not pressing; for likelihood arguments to be successful in cosmology, however,
it is crucial to choose the right X, since whether a spacetime or set of spacetimes is likely depends on
precisely what the reference class is. Second I noted that the set of physically possible spacetimes is
almost certainly infinite dimensional, unlike the possibility spaces used in statistical mechanics. This is a
significant disanalogy and, moreover, creates serious technical difficulties in defining the possibility space
as a probability space (as will be discussed below in §4). Finally I pointed out that restricting attention to
a subset of physically possible spacetimes and assigning probabilities to the elements of this subset is a
dubious strategy, since this subset must form a conditional probability space of the full probability space
associated with the set of physically possible spacetimes.

3.2 Interpretation of Cosmological Likelihoods
The second issue to address is how to interpret cosmological likelihoods. I will say something in a mo-
ment on what I mean by interpretation, but I will begin with a preliminary issue: whether the likelihoods
invoked in cosmology should be understood as epistemic or ontic. By ontic probabilities I mean physical
probabilities; they describe chanciness (in one way or another) inherent in the physical system. Epis-
temic probabilities are probabilities which are attributed to agents; they are justifiable degrees of belief.
If ontic probabilities exist and are known, then a plausible rule of rationality holds that epistemic proba-
bilities should be set to the ontic probabilities. Nevertheless epistemic probabilities can be applicable to
situations that do not involve ontic probabilities, e.g. when in situations of uncertainty.

On the one hand, one might expect that cosmological likelihoods should be ontic if they are to have
physical significance and play a role in fine-tuning arguments. Perhaps this is why this approach is
favored by most cosmologists who have written on the topic. The most well-known proposal in this vein

µS (S ∩ Z) = µX(Z|S ).
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is the already-mentioned canonical measure of (Gibbons et al., 1987), the GHS measure.13 Topological
methods may be used to give an objective measure of likelihood as well.14 The basic strategy of these
approaches is to begin with some physically motivated attribution of likelihoods to sets of cosmologies in
some relevant space of possible cosmologies. The motivations may come, for example, from the structure
of the space of models of GTR or from intuitions on how models in such spaces are physically related.
With the likelihoods in hand, if one finds (for example) that spatially flat FRW spacetimes represent a
negligible set of cosmologies and inflating FRW spacetimes are generic cosmologies, arguably one has a
warranted basis for making an argument in favor of inflation.

On the other hand, purely epistemic notions of likelihood appear to be behind many cosmologists’
intuitions about fine-tuning cases. There are relatively few places in the literature where more precise
formal methods are used to substantiate these intuitions. Accordingly, it is difficult to analyze and assess
the merits of purely epistemic measures of likelihood in cosmology in general. Examples do however
exist, such as (Evrard and Coles, 1995) and (Kirchner and Ellis, 2003).15

A more thorough review of approaches to defining cosmological likelihoods would engage with the
epistemic approaches, however I will restrict myself to addressing the more prominent physical ap-
proaches (apart from some comments on the principle of indifference below). This is due to the greater
importance of the latter approaches in the physics literature and to maintain a reasonable scope in this
paper.

I will also be more restrictive than is usual in the philosophical literature in how I employ the term
“interpretation” in what follows. In philosophy an “interpretation of probability” is usually understood to
refer to an account of how the concept of probability should be analyzed (Hájek, 2012). For the purposes
of my argument it is not necessary to make use of the standard accounts, e.g. the logical interpretation,
the frequentist, the propensity, etc. By “how probability is interpreted” I will mean “how randomness
is understood”. It is important to recognize some source of randomness in an application of probability
theory in order for that application to be justified. As Hollands and Wald say in their discussion of
applications of probability in cosmology, for example,

probabilistic arguments can be used reliably when one completely understands both the na-
ture of the underlying dynamics of the system and the source of its ‘randomness’. Thus,
for example, probabilistic arguments are very successful in predicting the (likely) outcomes
of a series of coin tosses. Conversely, probabilistic arguments are notoriously unreliable
when one does not understand the underlying nature of the system and/or the source of its
randomness. (Hollands and Wald, 2002b, 5)

Identifying possible sources of randomness is generally overlooked as a way of distinguishing ac-
counts of probability. For purely epistemic probabilities this randomness is introduced by the agent,
whether in terms of her independent choice, a standard of indifference, etc. For genuine chances this
randomness comes from the physical situation (in some respect or another). This randomness need not
be taken as a full-fledged feature of nature however. In Humean accounts of chance, for example, all that
is understood to exist is a so-called “Humean mosaic” of events; laws and probability are understood as
objective systematizations of this mosaic (Loewer, 2001, 2004).

In physics the structure of theories can helpfully suggest where objective randomness may be “re-
alized”. Conventional physical theories are described in terms of a set of physically possible states, a
dynamics that determines the evolution of a system from physical state to physical state, and a set of

13The notable papers discussing their approach include (Henneuax, 1983; Gibbons et al., 1987; Hawking and Page, 1988; Coule,
1995; Gibbons and Turok, 2008; Carroll and Tam, 2010; Schiffrin and Wald, 2012).

14Hawking (1971), for example, proposes the application of such methods in cosmology. (Isenberg and Marsden, 1982) is another
well-known example.

15Evrard (1996) and Evrard and Coles (1995) argue for a dissolution of the flatness problem using an epistemic approach to
cosmological parameters. Their approach is criticized by Coule (1996), who favors the canonical measure.
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functions that determine observable quantities defined on the set of states. Therefore there are naturally
three ways randomness can enter into a physical description: the initial state of the system, the partic-
ular dynamical evolution of the system, and the realized observable properties of the system. From a
metaphysical point of view one might question whether the association of randomness with these for-
mal, descriptive features of theories is ontologically significant. Nevertheless, for present purposes it is
sufficient to address the interpretation of probability at this theoretical level of description.

With this bit of terminology fixed, we can now ask how to interpret probability in cosmology, i.e.
where to attribute randomness in the universe. Insofar as one takes the standard approach, according
to which cosmological models are relativistic spacetimes, the space of states will be the set of possi-
ble spacetimes (or perhaps initial data on a spacelike hypersurface) permitted by GTR (or some subset
thereof, as discussed in the previous section, depending on how one solves the reference class problem).
The dynamics is given by the Einstein equation and the observables are going to be certain geometric
properties of spacetime (which must in practice of course be supplemented by other physical models to
derive proper observables like galaxy counts, galactic redshifts, light element abundances, etc.). Since
general relativistic dynamics is essentially deterministic (setting to the side the issue of gauge and patho-
logical spacetimes such as those with closed time-like curves, as these do not introduce randomness into
the theory), one cannot locate the randomness there except by making the randomness so insignificant as
to give rise to an essentially deterministic dynamics. Empirical considerations strongly militate against
the idea that cosmological observables are substantially stochastic as well. In short, there is very little
reason to think that the universe is “fluctuating” around the space of possible cosmologies dynamically
and very little reason to think that its observable properties are either (insofar as one can even distinguish
these). That leaves the initial state, the initial “choice” of spacetime, as the only way physical randomness
can enter into cosmology.16

On this interpretation the (initial condition of the) universe is to be understood as the outcome of a
random trial, whether literally or merely characterized as such. A cosmological probability measure, in
other words, can only represent the objective chance of our universe being in a particular state (initially)
or of a possible universe being realized. Naturally, the possibility of this viewpoint has suggested itself to
some cosmologists, who compare the situation (usually pejoratively) to a blind-folded creator selecting a
universe by throwing a dart at the dartboard of possible universes.17

Should one adopt such a point of view in cosmology? It is a coherent possibility at least. It is arguably
tenable in statistical mechanics (where it is (tacitly) employed in typical Boltzmannian approaches) as
one can at least verify the consistency of frequencies of initial microstates with empirical frequencies of
observables (Hemmo and Shenker, 2012). In the absence of an analogous micro-theory, however, it is
unclear why one would want to accept this interpretation in cosmology. As Loewer flatly observes, “one
problem is that it does not make sense to talk of the actual frequency with which various initial conditions
of the universe are realised” (Loewer, 2001, 615). A single-sample probabilistic scenario in cosmology
is obviously observationally indistinguishable from a deterministic scenario that involves no probability
at all, only an initial state. Moreover, there is relatively little theoretical reason to suppose that there
was a random trial selecting among the space of relativistic spacetimes. Without any input from physics
about the source and nature of this randomness of initial conditions (recalling the Hollands and Wald
quotation above) and no way to verify it empirically, we should find the “dart throwing” interpretation
highly unsatisfying as an explication of cosmological probabilities. If we were, however, to possess a
trustworthy theory that did suggest such a random start to the universe (a multiverse theory or a theory of
quantum gravity could do so, if sufficiently warranted), then we might have sufficient reason to introduce
a probability measure and interpret it in this way. It would likely not be, however, associated with the full

16At least this is so at this level of description. The context of quantum cosmology would open up alternative possibilities.
However the present discussion is, again, focused only on classical cosmology, in keeping with literature discussed.

17Cf. (Penrose, 1989b, 444) and (Hollands and Wald, 2002a, 2044). This view is, however, defended philosophically in (De-
marest, 2016).
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space of classical relativistic spacetimes.
I think it worth noting in passing that this issue of interpretation also infects foundational discussions

of statistical mechanics when they move in response to the pressure to “globalize” the theory (Callender,
2011b), i.e. to treat the universe as a whole as a statistical mechanical system. As said, in the Boltzman-
nian approach the only possibility for interpreting statistical mechanical randomness is in understanding
the initial conditions of the system as random (either in actuality or as the best systematization of the
“Humean mosaic”). As before, we have relatively little reason to believe that the universe itself began
as the outcome of a random trial in this scenario. It is only by generalizing from familiar statistical
mechanical systems, i.e. subsystems of the universe, to the universe as whole (supposing that it is a sta-
tistical mechanical system too) that the idea has any degree of plausibility. Nevertheless this inference is
disturbingly close to a composition fallacy.18

Therefore, in both theoretical contexts mentioned, general relativity and statistical mechanics, the
only admissible interpretation of cosmological probabilities locates the associated randomness with initial
conditions. Although the interpretation is coherent, I have suggested already that in both cases this
interpretation has very little to recommend it. Whether one should adopt it, however, is really a matter of
justification, so to this topic I turn.

3.3 Justification of Cosmological Likelihoods
The final issue to address in this section is the justification of cosmological likelihoods. The particular
case on which I have been concentrating is that of probability distributions on some given sample space of
cosmologies, assuming that initial conditions are subject to (real or imagined) randomness (since this is
the only available ontic interpretation). To be sure there are significant technical problems with supplying
such a probability space structure to these possible cosmologies, as will be discussed in §4. Even if
these technical problems could be overcome, however, a more crucial issue is whether it is possible to
adequately justify any particular cosmological probability measure. I will argue that it is not possible to
do so.19

The first (admittedly obvious) point to make is that cosmological likelihoods cannot be empirically
justified, at least insofar as cosmology concerns a single universe. If we suppose that probability the-
ory applies to cosmology, then it must be the case that our universe is the outcome of a single random
trial over possible initial conditions, as argued above. Cosmological probability measures are therefore
vastly underdetermined. If one tries to make GTR into a probabilistic theory by defining a probability
distribution over possible cosmologies, it is clearly the case that any choice of probability measure that
assigns some probability to the cosmological model best representing our universe is empirically ade-
quate. Note that the adequate probability measures include the probability distribution that makes our
universe “quasi-determined”—assigns the cosmology representing our universe probability one.

The uniqueness of the universe therefore forces consideration of a non-empirical justification for
cosmological likelihood measures. Several prominent cosmologists have accordingly relied on a priori
principles, like the principle of indifference (PI) or some kind of objective “naturalness”, to justify uni-
form probability distributions (Kofman et al., 2002; Linde, 2007). The PI holds that if there is no salient
reason to prefer any other probability distribution, given some sample space, one should assign a uniform
probability density to that space (hence the probability measure is purely epistemic). A similar principle

18That is, an unsupported inference that a property of the parts is a property of the whole.
19This seems to be one of the main conclusions of (Schiffrin and Wald, 2012, 9). The authors claim that “the only way to justify

the use of the Liouville measure in cosmology would be to postulate that the initial conditions of the Universe were chosen at random
from a probability distribution given by the Liouville measure.” What they seem to mean is that the only possible interpretation of
the Liouville measure (when it is a probability measure and not just a measure) is that it specifies the probabilities of specific initial
conditions of the universe obtaining, and that the only “justification” of understanding it as such is as a theoretical posit. A posit,
of course, is hardly a justification—they describe it (charitably) as an “unsupported hypothesis”—so I take it that they essentially
would conclude that cosmological probabilities are unjustified.
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is invoked in assigning a uniform probability distribution with respect to the natural Liouville measure as-
sociated with statistical mechanical phase spaces. Gibbons, Hawking, and Stewart’s approach follows the
statistical mechanical strategy. Although they note the problematic nature of the PI—“indeed...it is not at
all clear that every model should be given equal weight if one wishes the measure to provide an inductive
probability” (Gibbons et al., 1987)—they assume that the probabilities should be uniform with respect to
the Liouville measure. Carroll and Tam (2010) recognize that the Liouville measure does not in general
entail any particular probability measure. As they say, however, “since the Liouville measure is the only
naturally-defined measure on phase space, we often assume that it is proportional to the probability in the
absence of further information; this is essentially Laplace’s ‘Principle of Indifference’.” They too go for
the uniform mapping, however, and provide as precedent the practice of assuming a uniform probability
distribution on the Liouville measure of phase space from statistical mechanics.20

Unfortunately for one who wishes to apply such principles, in a reference class composed of an in-
finity of cosmologies there is no mathematically natural choice of probability measure and no probability
distribution uniform with respect to the Liouville measure. In special cases (for example if the Liouville
measure of a space equipped with it is finite) there may be a canonical choice of probability measure that
is uniform with respect to the possibilities, but one then faces a dilemma raised earlier: either this space
delimits the full space of possible cosmologies (which is highly implausible, if not clearly false) or its
probabilities must be conditional probabilities in a larger space of possible cosmologies (which, insofar
as this larger space has infinite total measure and therefore no uniform probability measure, cannot then
be justified by the PI, naturalness, etc.). Therefore even if a justification of uniformity, by way of mathe-
matical naturalness, the PI, etc., were possible in statistical mechanics, it would not easily carry over to
the case of cosmology.

However, it has been made abundantly clear in the philosophical literature that a prioristic principles
like the PI are not generally justifiable in statistical mechanics, mainly because empirical frequencies
depend importantly on the nature of a physical system’s randomness and there is no reason to expect
that the source of randomness acts uniformly on some space of possibilities (Shackel, 2007; Norton,
2008; North, 2010). If this is correct, then the simplest way of justifying the inference from statistical
mechanics to cosmology fails, namely that the same principle may be used in both contexts. There is
also no independent, compelling support for the PI or its cousins in cosmology (McMullin, 1993; Ellis,
1999; Earman, 2006; Norton, 2010; Callender, 2010). In cosmology very little at all is known about the
mechanism that brings about the initial conditions of our models of the universe, and so assigning equal
weights to distinct cosmological possibilities (especially if based merely on a lack of knowledge) is highly
dubious, since it may well be the case that certain initial conditions are in fact more likely according to
the true (presumably quantum) mechanism responsible for them.21

I have so far claimed that there is no direct empirical or a priori justification of cosmological proba-
bilities, but there are indirect ways through which one might try to justify them. One prominent approach
is to argue that the empirical justification of a uniform probability distribution in statistical mechanics in-
directly justifies a uniform probability distribution in cosmology (for the moment setting aside the usual
assumption that a cosmological model is a relativistic spacetime). In foundational discussions of statis-
tical mechanics (especially in the context of the “past hypothesis” scenario described in (Albert, 2000))
philosophers often suppose that the justification of a uniform probability distribution for usual statistical

20One sometimes sees the Liouville measure associated with a mechanical phase space called the “Lebesgue measure”. The
Lebesgue measure standardly refers to the natural measure associated with Rn. The measurable subsets U of phase space can be
called “Lebesgue measurable sets” in the following sense: for all charts ϕ : O → Rn on n-dimensional phase space Γ, ϕ[U ∩ O]
is a Lebesgue measurable set in the usual sense. Since in general there is no canonical pull-back of the Lebesgue measure to Γ,
however, it is somewhat misleading to call the Liouville measure the Lebesgue measure. Of course when the phase space is Rn, the
Liouville measure just is the usual Lebesgue measure and the terminology is justifiable, although consistency should incline one
towards the former term.

21The only viable response I can see to these points is to modify the space of possibilities to make the PI hold, but then it is clear
that the correct space of possibilities is not in fact justifiable a priori.
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mechanical systems justifies a uniform probability distribution for the universe when it is modeled as a
statistical mechanical system. I suggested at the end of the previous subsection that in the absence of
an argument this inference commits the fallacy of composition. Let us see now whether there is any
argument which could support the validity of the inference.

The most plausible way would be to argue that the universe is a statistical mechanical system because
it is sufficiently similar to usual statistical mechanical systems. Our best understanding of the universe,
however, suggests that it is not. Perhaps most importantly, gravitation plays a central role in cosmology
unlike in conventional statistical mechanical systems, as has been pointed out and discussed in (Earman,
2006; Wallace, 2010; Callender, 2010, 2011a). This is, after all, why cosmological models are modeled
using theories of gravitation.

Although this issue by itself seriously threatens the inference, there is a more serious problem. It
is crucial to recognize that the cosmological probabilities discussed in this paper are (in statistical me-
chanical jargon) macroprobabilities, not microprobabilities. Cosmological probabilities are attributed to
entire macroscopic histories (or initial states) of the universe. Statistical mechanical probabilities, by
contrast, are microprobabilities; they are attributed to entire microscopic histories (or initial states) of sta-
tistical mechanical systems. There are, however, no unconditional non-trivial macroscopic probabilities
in statistical mechanics. This is because the empirical content of statistical mechanics is related to mi-
croscopic frequencies. Macroscopic frequencies of course can be determined from these, and conditional
macroscopic probabilities can certainly be defined as transition probabilities. But it makes no sense in
statistical mechanics to ask what the probability is of a system beginning in a particular macrostate; the
initial macrostate is taken as given in statistical mechanics. Thus one cannot hope to justify cosmological
probabilities by way of the justification of statistical mechanical probabilities, since they are different
kinds of probabilities (macro vs. micro).22 It would be a category mistake.

It is worth emphasizing the importance of this point, since failing to locate the empirical content of
statistical mechanics in microprobabilities and to recognize the lack of an a prioristic justification of sta-
tistical mechanical probabilities has led to some popular, specious arguments. Particularly related to the
present discussion is the claim that the “low entropy” state of the universe is improbable. The argument
assumes that statistical mechanical probability assignments are determined by the so-called proportional-
ity postulate, according to which a uniform probability distribution is applied to the entire phase space of
the system (rather than to just the initial macrostate). Hence non-trivial unconditional macroprobabilities
are assigned to macrostates. Macrostates with a small phase space volume will of course be assigned a
small probability according to this principle. Since low entropy states are assumed to have a small phase
space volume, the past “low entropy” state of the universe is accordingly improbable. Demands to explain
this improbability of the initial macrostate (in accord with the GHS formula from the introduction), as in
(Penrose, 1989a; Price, 2002, 2004), are therefore based on an ill-motivated application and interpretation
of probability to cosmology (and statistical mechanics).23

Cosmological probabilities therefore fail to be justifiable on all the plausible strategies obviously
available. Perhaps, though, probability theory is simply the wrong way to formulate likelihoods in cos-
mology. As said, I cannot treat all possible formulations here, but there is one further case that is important
to mention. Even if no unique probability distribution can be justified, it may be the case that there is
a natural non-probabilistic measure on the space of possible cosmologies. This is indeed the case with
the GHS measure (§5). While I grant the mathematical naturalness of such measures, I stress that math-
ematical naturalness is no guarantee of physical significance. It is a distinct step which requires its own
justification, interpreting a mathematically natural measure as a physical likelihood measure. After all,

22Of course one might suppose that the universe has a microstate, in analogy with statistical mechanics, but that is irrelevant to
the argument here. The point is that cosmological probabilities are unconditional macroprobabilities, and such probabilities do not
exist in statistical mechanics. Hence statistical mechanics cannot be used to justify them in cosmology.

23Responses to these demands have accepted their presupposition—that the initial macrostate of the universe is improbable—and
weighed whether and how some explanation could be provided (Callender, 2004). One ought to simply reject the presupposition as
ill-motivated and inadequately justified.
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measures can play a variety of roles in a physical theory (for example as a standard for integration along
trajectories). There is simply no reason to assume that a mathematical measure must play the role of a
likelihood measure in any theory that comes equipped with one.

Nevertheless, in statistical mechanics it has been argued that the Liouville measure can be used in
such a way, i.e. as a typicality measure (Lebowitz, 1993a,b; Dürr, 2001; Goldstein, 2001, 2012). In this
approach to interpreting statistical mechanics one makes do with the Liouville measure alone, and uses
it as a standard of typical and atypical behavior. The basic schema of the typicality arguments used in
this context is to show that some behavior or property is highly likely and its contrary is highly unlikely,
in which case one can infer that that behavior or property holds; “In other words, typical phase space
points yield the behavior that it was our (or Boltzmann’s) purpose to explain. Thus we should expect
such behavior to be prevail in our universe” (Goldstein, 2001, 58).24

One of course may try to infer from the putative success of typicality arguments in statistical mechan-
ics to their applicability in cosmology. Yet, if typicality arguments are indeed successful in statistical
mechanics, then they are because they depend importantly on the full complement of structures in statis-
tical mechanics, e.g. the correct space of possibilities, the collection of macro-states, etc. One generally
has empirical evidence that suggests the right structures for a system in statistical mechanics. One does
not have this in the case of cosmology, in particular because of the issues mentioned above in connection
to the reference class problem. Echoing the first point there, what is typical in cosmology depends very
much on what set of cosmologies one is considering—and there is no guarantee that what is typical in one
context is typical in another. Thus the transfer of justification from statistical mechanics to cosmology is
again blocked.

Although the reference class problems and the issue of interpretation are important and significant,
the most decisive issue is therefore with justification. I have argued that the justification of measures in
statistical mechanics does not carry over straightforwardly to cosmology, so the most appealing indirect
justification fails. I also argued that there is no independent justification for cosmological likelihoods. A
priori justifications fail, just as they do in statistical mechanics. Empirical justification, the only sensible
justification of likelihoods in statistical mechanics, is not possible in cosmology, due to the uniqueness of
the universe. Likelihood reasoning, in short, should be considered inapplicable to cosmology because it
cannot be adequately justified.

4 Likelihood in the Solution Space of General Relativity
In the remaining two sections of this paper I mostly set aside the conceptual problems which I have raised
in the previous section and consider the prospects of rigorously defining some notion of likelihood on the
space of cosmologies, i.e. without worrying too much about whether it makes much sense to do so. In
this section I deal with the case where the space of possible universes is taken to be the solution space
of GTR or some subspace thereof; in §5 I deal with the case where the solution space is restricted to
be finite dimensional by specific modeling assumptions, focusing in particular on the GHS measure on
minisuperspace.

I will follow the lead of GHS, etc. in looking for mathematically natural, objective likelihood mea-
sures in the structure of the solution space of GTR or subspaces thereof. Simply defining a likelihood
measure is trivial. Finding one that is “picked out” by the mathematical structure of a theory, however,

24Although some enthusiastic disciples of Boltzmann claim that typicality is the heart of all foundational matters in statistical
mechanics—as Dürr (2001, 122) remarks, “we have the impression that we could get rid of randomness altogether if we wished
to do so”—full reliance on typicality arguments clearly represents a significant retreat from the quantitative successes of statistical
mechanics (Wallace, 2015), which depend on probability distributions to derive the empirical content of the theory (for example
to predict fluctuation phenomena). As Pitowsky further notes, “the explanation...is a weak one, and in itself allows for no specific
predictions about the behavior of a system within a reasonably bounded time interval” (Pitowsky, 2012, 41). Additional criticisms
of the typicality account in statistical mechanics can be found in (Frigg, 2009, 2011; Frigg and Werndl, 2012).
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suggests (to many) that it has special physical significance and is justified. If one has to make a special
choice, then a special justification must be given. I will follow this line of thinking hence, despite the
reservations I raised previously.

The full solution space of GTR is the space of relativistic spacetimes that satisfy the Einstein equation.
The principal questions before us are, “what structure does this space have and can that structure be
used to define a privileged notion of likelihood?” A relativistic spacetime M is standardly defined as
a differentiable four-dimensional manifold M that is Hausdorff, connected, and paracompact equipped
with a Lorentzian metric g, a rank two covariant metric tensor field associated with M which has Lorentz
signature. Given this definition of a relativistic spacetime, the space of possible cosmologies obviously
will range over the set of four-dimensional topological manifolds; moreover, for each four-dimensional
topological manifold, there is also a range of smoothness structures on these manifolds that make them
into differentiable manifolds; finally, for each smooth, four-dimensional differentiable manifold, there is
a (“kinematic”) range of Lorentzian metrics, which range is restricted by the Einstein equation to yield
the possible (“dynamical”) set of cosmologies. I consider first the range of possibilities permitted by
the manifold structure of a relativistic spacetime, then the range of possibilities permitted by the metric
structure.

4.1 Manifold Possibility
There is presently relatively little that we can say about the structure of this large and complicated set of
solutions in all its fullness. Since the applications of GTR that are most of interest to physicists concern
particular spacetimes and perturbations thereof, far less attention has been paid to the set of solutions as
a whole. Yet, as mentioned in the previous section, likelihood arguments depend on particular structural
features of this space, so there is no getting around the need to understand it.

Of course, with specific modeling assumptions the set of relevant solutions can be reduced to some-
thing much more tractable. In the case of FRW spacetimes, for example, one restricts attention to mani-
folds that can be expressed as twisted products I ×a Σ (a is the scale factor), where I is an open timelike
interval in the Lorentzian manifold R1,1 and Σ is a homogeneous and isotropic three-dimensional Rieman-
nian manifold (McCabe, 2004, 530). Since one can fully classify these 3-manifolds (Wolf, 2010), one
can enumerate the different possible FRW spacetime manifolds (McCabe, 2004, 561). With such an enu-
meration one could (at least conceivably) specify the likelihoods of each kind of product of 3-manifolds
and 1-manifolds.

However, if one were to want a likelihood measure on the full space of possible cosmologies (ac-
cording to arguments in §3 one certainly should), in particular one which is naturally motivated by the
mathematical structure of that space, then it would require a means of classifying all four-dimensional
manifolds.25 This is not yet possible. Indeed, the classification of such manifolds is a notoriously dif-
ficult mathematical problem (and distinctly so in comparison to other dimensions, where classification
has been established by geometrization or surgery techniques) (Freedman and Quinn, 1990; Donaldson
and Kronheimer, 1997). Of course, one might try to avoid the mathematical difficulties by assuming
that the relevant manifolds are of a particular simple kind or that many manifolds are unphysical. This
opportunistic move is not so obviously well-motivated however.

Consider, for example, the discovery of so-called exotic smoothness structures on the topological
manifold R4, i.e. smoothness structures that are homeomorphic to R4 but not diffeomorphic to the stan-
dard Euclidean smoothness structure on R4. This discovery reveals a large class of possible spacetime
models, one that is almost entirely overlooked in cosmological work, where the Euclidean smoothness

25A classification would not solve the justification problem though. There may of course be alternate ways of partitioning the set
of possible cosmologies, and the mere existence of a classification scheme in any case does not entail that it is physically significant.
Again, I am setting such concerns aside and concentrating on the problem of whether one simply has enough structure to define a
likelihood measure of some kind or another on the assumption that natural mathematical structure has physical significance.
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structure is automatically presumed on the topological manifold R4. Is this presumption justified? Should
spacetimes with exotic smoothness structures be excluded? The standard of physical equivalence in GTR
suggests that they are not so easily dismissed:

The discovery of exotic smoothness structures shows that there are many, often an infinity, of
nondiffeomorphic and thus physically inequivalent smoothness structures on many topologi-
cal spaces of interest to physics. Because of these discoveries, we must face the fact that there
is no a priori basis for preferring one such structure to another, or to the ‘standard’ one just
as we have no a priori reason to prefer flat to curved spacetime models. (Asselmeyer-Maluga
and Brans, 2007, 13)

One should therefore not neglect consideration of these spacetimes, at least in the absence of reasons to
discount such spacetimes as physically possible.

Conceivably, one might retreat from physical likelihood claims concerning the full space of mathe-
matically possible solutions and argue that some kind of epistemic likelihood measure is measure enough.
One might hope, that is, that observation and induction thereon could be used to exclude enough “exotic”
spacetimes to make classification of the remainder tractable. There is reason to doubt that this strategy
would make any important difference, since alternative spacetime topologies or smoothness structures
do present an underdetermination threat. Observationally indistinguishable spacetimes (Glymour, 1977;
Malament, 1977) may have different global topological features, and so-called “small” exotic manifolds
may be smoothly embedded outside our observational horizon in what we would otherwise have thought
was a spacetime based on R4. Insofar as these alternate spacetimes can have observable consequences,
it would seem that they must be considered as epistemically possible given what we know about our
observable universe.

Manchak (2009, 2011) in particular has forcefully argued that we do face a substantial epistemic
predicament in cosmology because of the existence of observationally indistinguishable spacetimes. In
his cases global properties of spacetime, such as inextendibility and hole-freeness, are underdetermined
by the theoretical possibility of observationally indistinguishable spacetimes which do or do not possess
these properties —even assuming robust inductive principles for local conditions on spacetime. His argu-
ments have influenced several commentators to claim that knowledge of any global property of spacetime
is indeed beyond our epistemic horizon (Beisbart, 2009; Norton, 2011; Butterfield, 2012, 2014). If Man-
chak is right, then the kind of underdetermination he discusses cannot be broken or bracketed. If the other
kinds of underdetermination, e.g. by exotic manifolds, represent an epistemic threat as well, then they too
cannot be broken or bracketed. Thus one must either show that these underdetermination arguments fail
or accept that the success of likelihood arguments depends on the resolution of the manifold classification
problem.

It may indeed be the case that these underdetermination arguments are unsuccessful, and perhaps just
for the usual kinds of reasons Laudan and Leplin (1991). We may, for example, have grounds to favor a
specific choice that breaks the underdetermination, or it may be the case that the underdetermination in
question is of a superfluous feature that only arises because of our choice of theoretical framework.26 So
far, however, there have been only a few attempts (Magnus, 2005; McCoy, 2017b) at criticizing underde-
termination arguments in the specific context of cosmology.

Yet there is reason to think that critiques of the underdetermination arguments mentioned above would
not resolve the issue in favor of those who would want to exclude unusual spacetimes in favor of the
simple ones. Indeed, some physicists claim, in effect, that underdetermination may be broken in favor
of the unusual spacetimes. For example, some have argued that we may justifiably infer non-standard

26One should also note that some assumptions have been made already to limit the theoretical possibilities in cosmology from
the beginning. For example, we only consider locally Euclidean Hausdorff manifolds that are connected, and paracompact. There
are relatively straightforward arguments to favor these particular choices (Ellis, 1971; Hawking and Ellis, 1973), but they could
perhaps be questioned.
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topologies for the universe if it best explains observational phenomena. As mentioned, exotic smoothness
structures may have detectable astrophysical effects (Sładkowski, 2009), and if we inhabited a “small
universe” (Ellis and Schreiber, 1986) in which light has had time to travel around the universe multiple
times, we might be able to observe multiple images of galaxies, etc. which might favor a compact spatial
topology.27 Thus it is not enough to show that the underdetermination arguments fail in order to avoid
the classification problem; one must also show that they fail in such a way to make one’s preferred set of
solutions salient.

Summing up the discussion thus far, I have argued that a significant obstacle to defining likelihoods
on the space of solutions is the problem of classifying manifolds. Without some means of classifica-
tion, there seems to be no natural way of assigning likelihoods at this level of description of a relativistic
spacetime. Presently all accounts of cosmological likelihoods, whether ontic or epistemic, ignore the
issue completely, making specific choices of topology and smoothness structures without justification.
This is not at all surprising, since the potential relevance of non-standard topologies and smoothness
structures is little discussed in the philosophical or physical literature. It also does not appear easy to
justify the choice cosmologists conventionally make given what the physical possibilities apparently are.
Some of the alternative manifolds have physical consequences; if they are physically possible, it is diffi-
cult to see why they should be automatically considered unlikely (as is done tacitly in assuming particular
manifolds).

4.2 Metric Possibility
The next level of description to consider is that in terms of the spacetime metric. So let us assume,
along with workers investigating the solution space of general relativity and, derivatively, the space of
cosmologies, a fixed spacetime manifold M (Isenberg and Marsden, 1982, 188). Then one can understand
general relativity as a particular field theory on M using the framework of covariant classical field theory
(Fischer and Marsden, 1979). This field bundle is a map π : L(M) → M with typical fiber L, where L
is the vector space of Lorentzian metric tensors, e.g. for p in M, Lp = {gp |TpM × TpM → R} with gp

normally non-degenerate, symmetric, and possessing a Lorentzian signature. A configuration of the field
is represented by a section of this bundle, viz. a tensor field g on M. The canonical configuration space
of the theory is thus the space of sections, which I denote hence as L .

Does L naturally have some structure which could be used to define likelihoods? This question has
not been studied in nearly as much detail as the geometry of spacetime itself.28 Some things are known.
For example, it is desirable for many applications to treat subsets of L as a manifold, but in general it
is not possible to treat the entirety of these spaces as a manifold, because of, for example, the existence
of conical singularities in the neighborhood of symmetric spacetimes (Fischer et al., 1980; Arms et al.,
1982).29

The entire canonical configuration space can be given some structure by, for example, topologizing
it, as a way of introducing likelihoods topologically. Unfortunately, since there is an infinity of sections
of the field bundle, there is an infinity of topologies which one can define on the set. How can one decide
which topology is appropriate? Fletcher (2016) observes that some physicists have advocated a particular

27Various other multiply-connected topologies with observable consequences are physically possible as well (Lachièze-Rey and
Luminet, 1995; Luminet et al., 2003). At least in the case of multiply-connected topologies, the relevant techniques to test these
possibilities have been developed and observation has largely ruled out that we occupy one of the distinguishable ones (Cornish
et al., 1998, 2004).

28 “What is not nearly as well developed is the study of the space of Lorentzian geometries, which from the mathematical point
of view includes questions about its topology, metric structure, and the possibility of defining a measure on it, and from the physics
point of view is crucial for addressing questions such as when a sequence of spacetimes converges to another spacetime, when two
geometries are close, or how to calculate an integral over all geometries” (Bombelli and Noldus, 2004).

29That said, for vacuum spacetimes Isenberg and Marsden (1982) are able to show that near generic points the space of solutions
is a symplectic manifold and as a whole is a stratified symplectic manifold, at least with their choice of topology, and restricting to
globally hyperbolic spacetimes and spatially compact manifolds.
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topology as appropriate for discussing similarity relations in general relativity. For example, Lerner
(1973) favors the Whitney fine topology, a topology that is widely used to prove stability results in GTR
(Beem et al., 1996). Geroch has furnished some examples, however, which suggest that this topology has
“too many open sets,” i.e. the topology is intuitively too fine (Geroch, 1971)—at least for some purposes.
Other topologies have unintuitive results as well. The compact-open topology for example, renders the
verdict that chronology violating space-times are generic in L in any of the compact-open topologies
(Fletcher, 2016; Curiel, 2015, 12). Such considerations, and some further results of his own, lead Fletcher
to conclude that “it thus seems best to accept a kind of methodological contextualism, where the best
choice of topology is the one that captures, as best as one can manage, at least the properties relevant
to the type of question at hand, ones that relevantly similar space-times should share” (Fletcher, 2016,
15).30 Of course, whether any intuitions one has about which properties spacetimes should share can be
adequately justified (in a particular context) is then an issue which must be addressed in each individual
case. In any case, this “contextuality” at least makes clear what could be gleaned from the beginning:
there is no natural choice of topology for the entire space L .

There are also obstacles for defining L to be a measure space. In general L will be infinite-
dimensional, essentially because spacetimes have an infinity of degrees of freedom (Isenberg and Mars-
den, 1982, 181).31 This presents a problem for a measure-theoretic approaches, a problem to which Curiel
(2015) particularly draws attention. As he observes, “it is a theorem...that infinite-dimensional spaces of
that kind do not admit non-trivial measures that harmonize in the right way with any underlying topol-
ogy” (Curiel, 2015, 4). Thus it is not possible to substantiate claims of the form “most spacetimes (of
some kind) are similar with respect to property X”—where one interprets “most” is a measure-theoretic
notion and “similar with respect to” is a topological notion (Curiel, 2015, 4). He motivates the issue in
the following way:

Say we are interested in the likelihood of the appearance of a particular feature (having
a singularity, e.g.) in a given family of spacetimes satisfying some fixed condition (say,
being spatially open). If one can convincingly argue that spacetimes with that feature form a
“large” open set in some appropriate, physically motivated topology on the family, then one
concludes that such spacetimes are generic in the family, and so have high prior probability
of occurring. If one can similarly show that such spacetimes form a meagre or nowhere-
dense set in the family, one concludes they have essentially zero probability. The intuition
underlying the conclusions always seems to be that, though we may not be able to define it
in the current state of knowledge, there should be a physically significant measure consonant
with the topology in the sense that it will assign large measure to “large” open sets and
essentially zero measure to meagre or nowhere-dense sets. (Curiel, 2015, 3)

In finite-dimensional spaces it is possible to harmonize these notions in a way to make such claims have
content. Although he points out that the natural infinite-dimensional extension of finite-dimensional man-
ifolds depends on the differentiability class of the manifold with which one starts, Fréchet manifolds do
cover the two relevant cases, and it is a theorem then that “the only locally finite, translation-invariant
Borel measure on an infinite-dimensional, separable Fréchet space is the trivial measure ( viz. the one
that assigns measure zero to every measurable set)” (Curiel, 2015, 13). It follows that there is no sen-
sible application of measure theory for the kinds of topological manifolds one would expect to use for
rigorously discussing cosmological likelihoods.

Thus, even restricting attention to a specific manifold and its space of sections, there are significant
challenges to defining a likelihood measure. Although there is no problem with simply supplying this

30Hawking (1971, 396) advocates a similar contextualism: “A given property may be stable or generic in some topologies and
not in others. Which of these topologies is of physical interest will depend on the nature of the property under consideration.”

31“In cosmology, however, the systems one most often focuses on are entire spacetimes, and families of spacetimes usually form
infinite-dimensional spaces of a particular kind” (Curiel, 2015, 4).
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space with a topology, there is no natural topology. One must make a choice and somehow justify it on
some basis other than that given by the mathematical structure of the space. If one wants a measure-
theoretic explication of likelihood, then there is a natural measure; unfortunately, this measure is just the
trivial measure. Perhaps there are additional considerations which can be raised to aid in solving these
problems, but at present one must conclude that likelihood reasoning concerning GTR’s solution space
has no adequate natural mathematical foundation.

5 Likelihood in FRW Spacetimes
Cosmologists have mostly bypassed the technical and conceptual difficulties that come with trying to
define a notion of likelihood on the solution space of GTR. Instead they have focused on simpler finite-
dimensional cases, presumably hoping that the results derived there are consistent with the larger, contain-
ing cosmological possibility spaces (recall the consistency requirement discussed in §3.1). Simplifying
the problem in this way makes it technically feasible to define a variety of likelihood measures (although
most of the conceptual problems of §3 of course remain).

In this section I discuss one such measure, the most well known account of cosmological likelihoods
(Gibbons et al., 1987), to illustrate how some of the problems already mentioned arise in the simpler case
and to present some interpretational issues that arise which are specific to the GHS measure. The measure
defined by GHS is associated with the set of FRW spacetimes which have a scalar field as the only matter
component. GHS choose the set of FRW spacetimes because it is the relevant set for describing the HBB
universe. A scalar field is chosen as the matter content in order to represent the field driving inflation, as
their primary aim is to investigate fine-tuning questions related to inflation (§2).

It is clear, of course, that one cannot count on any serious empirical confirmation of likelihood as-
signments to cosmologies due to the assumed uniqueness of the universe (§3). The exercise of contriving
a likelihood measure might therefore appear futile, as GHS themselves observe:

The question of an appropriate measure, especially in cosmology, might seem to be more
philosophical or theological rather than mathematical or physical, but one can ask whether
there exists a ‘natural’ or privileged measure on the set of solutions of the field equations.
(Gibbons et al., 1987, 736)

This is, of course, the question asked in the previous section, and it is the question they ask for a restricted
set of relativistic spacetimes, the FRW spacetimes, thereby presuming that mathematical naturalness is a
mark of physical significance. In particular, GHS argue that by adapting the canonical Liouville measure
associated with phase space in statistical mechanics to the case of general relativity, i.e. formulating
GTR as a phase space theory, one obtains a measure that can be used to make likelihood arguments.
This construction is briefly presented below, followed by its application to the flatness problem, to the
likelihood of inflation, and to the uniformity problem.

5.1 The Gibbons-Hawking-Stewart Measure
To assess these applications, it will be worth detailing some of the principal features of the GHS measure.
I follow in outline the detailed derivations in (Schiffrin and Wald, 2012) and (McCoy, forthcoming ), since
the derivations in (Gibbons et al., 1987) and other papers making use of it are misleading or mistaken on
some important points.

Since the GHS measure is intended to be the Liouville measure associated with the phase space of
FRW spacetimes, one must first identify the appropriate phase space Γ for these spacetimes (with a scalar
field as the matter source). This requires making use of the initial value formulation of GTR, where one
takes a state of the system to be a spatial hypersurface Σ, the degrees of freedom of which are represented
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by the spatial metric h and its extrinsic curvature π. Since FRW spacetimes are spatially homogeneous
and isotropic, the spatial metric h is homogeneous and isotropic and the extrinsic curvature can be shown
to be Hh, where H is the expansion coefficient known as the Hubble parameter. Thus the initial data for
an FRW spacetime are adequately represented by h and H.

The Einstein equation for FRW spacetimes relates the hypersurface geometry (represented by h and
H) with the parameters of the specified matter contents, i.e. the scalar field. The Einstein equation can
be expressed in two equations with these assumptions, usually called collectively the Friedman equations
(here incorporating the scalar field as the matter constituent of spacetime):

H2 =
8π
3

(1
2
φ̇2 + V(φ)

)
−

k
a2 ; (2)

Ḣ = −4πφ̇2 +
k
a2 , (3)

where the scale factor a is related to the Hubble parameter H according to the equation H = ȧ/a (dots
represent differentiation with respect to cosmic time t), k represents whether space is negatively curved
(k = −1), flat (k = 0), or positively curved (k = 1), φ is the field value of the scalar field sourcing the
Einstein equation, and V is the scalar field’s potential.

Making use of, among other things, the Friedman equations, one can show that the initial data h
and H can be re-expressed in the four-dimensional space parameterized by {a, pa, φ, pφ}, where pa (the
conjugate momentum of a) is −3aȧ/4 and pφ (the conjugate momentum of φ) is a3φ̇. As with the phase
spaces of classical particle mechanics, this space comes equipped with the canonical symplectic form

ωpa,a,pφ,φ = dpa ∧ da + dpφ ∧ dφ, (4)

In classical mechanics the configuration space is composed of all the possible positions of the particles
and the phase space is composed of all the possible positions and momenta of the particles. In the case
under consideration, the configuration space is composed of all the possible values of the scale factor and
(homogeneous and isotropic) scalar field and the phase space is composed of these plus their associated
conjugate momenta.

This space, however, is not yet the correct space of initial data and this form cannot be used to
construct a natural measure. This is because the first of the two Friedman equations above is a constraint
on this space that must be satisfied by the initial data. One can pull the symplectic form onto the surface in
phase space that satisfies the constraint equation, but the result is only a (pre-symplectic) differential form
since it is degenerate. There are, in other words, redundancies among the states in the three-dimensional
constraint surface. These redundancies are due to states on the surface being dynamically-related (so they
are part of the same phase space trajectory). Thus the natural next step would be to “solve the dynamics”
so that one can take equivalence classes of phase points that are part of the same trajectory. There are
difficulties with implementing this strategy in the context of GTR, so the simplest thing to do (what GHS
do) is take a two-dimensional surface that intersects all the histories by setting pa (or, with the usual
substitution, H) to a particular value. This finally yields the GHS measure µGHS by defining a map from
Lebesgue measurable sets U (Gibbons et al., 1987; Carroll and Tam, 2010; Schiffrin and Wald, 2012):

U 7→ −6
∫

U
a2 (3H2

∗ + 2k/a2)/8π − V
((3/4π)(H2

∗ + k/a2) − 2V)1/2
da dφ, (5)

where H = H∗ is used here to pick out a specific two-dimensional surface. The topology of the a–φ space
depends on k. If we swap a for α = 1/a, then it is a half-cylinder if k = 0, a hemisphere if k = +1, or a
hyperboloid if k = −1 (Schiffrin and Wald, 2012, 7). Although the measure is evidently fairly complex,
what matters most for its application is the leading quadratic term a2.
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5.2 The Flatness Problem
Recall that the HBB model’s fine-tuning problems, when interpreted as likelihood problems, depend on a
demonstration that the uniform and flat spacetimes underlying the HBB model are unlikely. Let us begin
with the flatness problem. If the flatness problem is indeed a problem, then what must be shown is that
spatially flat (k = 0) spacetimes are unlikely according to the GHS measure. To show this the measure of
flat spacetimes must be much smaller than the measure of non-flat spacetimes. Following GHS, we take
the relevant reference class for this claim to be FRW spacetimes. Various physicists, including Hawking,
Page, Coule, and Carroll, have argued that applying the GHS measure to this problem shows that spatially
flat FRW spacetimes are in fact likely; thus they make the surprising claim that there is actually no flatness
problem at all. Their arguments have recently been analyzed in detail in (McCoy, forthcoming ). I will
summarize the main points from there briefly, for they are relevant to the considerations raised in this
paper and also to the remaining applications of the GHS measure.

First, note that the leading a2 factor in the GHS measure causes the integral to diverge for large scale
factors (the scale factor ranges from 0 to infinity) (Gibbons et al., 1987, 745)—crucially, this is so for
each k—and (less obviously) to converge to 0 for small scale factors. Thus the total measure of the a–φ
space is infinite for each k. Hence the GHS measure is not naturally a probability measure, since it is not
normalizable without assuming some particular probability distribution on the a–φ space that normalizes
it.

The divergence of the measure due to the integral over scale factors might be taken to suggest that
almost all spacetimes have a large scale factor, since given any choice of scale factor a∗ the measure of
spacetimes with larger scale factor is infinite and the measure of spacetimes with smaller scale factor is
finite. In this sense FRW spacetimes typically have large scale factors. But the claim is misleading to
some extent. Consider an analogy with real numbers. Pick any number between zero and infinity; most
numbers are going to be larger than the chosen number (according to the usual Lebesgue measure). Does
that mean that most numbers are “large”? If one is precise about what one takes the claim to be, then it is
correct. But nowhere have we introduced a standard of “largeness” and the real numbers certainly do not
give us one. Likewise, the analogous claim in the context of FRW spacetimes is misleading, since there
is no given or natural standard of “large” for scale factors.

In any case, Hawking and Page argue that this fact about scale factors should be taken to imply that
almost all spacetimes are spatially flat, since the FRW dynamics insures that curved spacetimes become
flat as the scale factor increases (the curvature κ = k/a2). Similarly, Carroll and Tam (2010, 15) take
the measure to show that there is a divergence at zero curvature, from which they conclude that curved
spacetimes have negligible measure and that flat spacetimes have infinite measure. If these claims are
correct, then flat spacetimes are typical and there is in fact no flatness problem as cosmologists have
usually thought.

McCoy (forthcoming ) argues, however, that the interpretations that Hawking and Page, and Carroll
and Tam construe are highly misleading or mistaken in various respects. The first problem has already
been mentioned: there is no natural standard of “large” scale factor and, hence, no standard of “flatness”
for curvature, except k = 0. If one does take k = 0 as the natural standard of flatness, this leads to a second
problem, namely that curved spacetimes do not have negligible measure according to the GHS measure.
Each of the sets of negatively curved, flat, and positively curved spacetimes has infinite measure. It makes
no difference whether one puts k = −1, 0, or +1; the total measure of each of these three independent
phase spaces is infinite. If a set and its complement both have infinite measure, then no conclusion can
be drawn about whether it is likely or unlikely. Since the set of spatially flat FRW spacetimes has infinite
measure and the set of spatially curved FRW spacetimes both have infinite measure, no conclusion can
be drawn about the typicality of spacetime curvature on the basis of the GHS measure alone.

One way to make their claims about the flatness problem coherent is to suppose that they are tacitly
introducing a “curvature cutoff” by including the “nearly flat” spacetimes with the flat spacetimes. Then
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one could truly state that nearly flat spacetimes are typical. But what standard of “nearly flat” should one
use? As suggested already, it seems that any choice would be arbitrary, since there is no natural standard
of flatness in the context of FRW spacetimes (other than exact flatness). Moreover, since whether a
spacetime is “nearly flat” can depend on its dynamical evolution (for non-flat spacetimes), one should not
consider time slices of the cosmological histories; one should consider full histories (or else stipulate that
“nearly flat” spacetimes must be “nearly flat” for their entire histories).

Despite these issues, Gibbons and Turok (2008) introduce just such a curvature cutoff. They argue
that nearly flat spacetimes are empirically indistinguishable from flat spacetimes and therefore identify
all the spacetimes flatter than the chosen cutoff. They argue that their results do not depend on the exact
choice of cutoff. In a sense this claim is true, but it is one thing for their results to not depend on the
choice of a cutoff and another for their results to not depend on introducing a cutoff. If their results did
not depend on introducing a cutoff at all, then it seems that there would be no point in introducing a cutoff

to begin with; they should just use the GHS measure. That their results differ, then, from what would be
obtained by the GHS measure is suggestive. Indeed, by identifying the sufficiently flat spacetimes in the
way that they do, they effectively assign them zero measure (as Carroll and Tam (2010) point out). They
are no longer using the GHS measure but instead a probability measure obtained by defining a probability
distribution on the a–φ space that assigns zero probability to the large scale factor sets. Obviously it does
not matter where one puts in the cutoff if one wants to throw away infinite measure sets, but it does seem
rather unjustified to discard them when making likelihood assessments.

Although (McCoy, forthcoming ) goes into more details of the various arguments concerning the
likelihood of flatness, it is enough for my purposes to mention these points. The main one is that the GHS
measure by itself tells us nothing about the likelihood of flatness. The only way that it could be used to
draw definitive conclusions about flatness in FRW spacetimes is to introduce more structure. Either one
picks a standard of flatness, which appears to be rather arbitrary, or one adds a probability distribution,
in which case one is no longer using the GHS measure so much as a probability measure that is defined
by way of the GHS measure and the chosen probability distribution. Of course, in this latter case one
expects some special justification for the choice of probability distribution, since it cannot be natural in
the way the GHS measure is.

5.3 The Likelihood of Inflation in FRW spacetimes
Although the GHS measure cannot show that the flatness problem is real or illusory, let us suppose that
it is indeed real and motivates the introduction of inflation. Does the GHS measure have any application
to demonstrating that inflation solves the flatness problem? It would seem not, since it cannot even show
that there is a flatness problem. For the purpose of illustration, let us nevertheless consider whether it can.

There is at least a precise condition for when inflation occurs—when the universe is expanding at
an accelerated rate—so one can (potentially) pose precise questions about inflating spacetimes using the
GHS measure. This can be given as a condition on the scalar field representing the physical field driving
inflation: φ̇2 < V(φ). In terms of the phase space variables used before this is

1
4π

(
H2 +

k
a2

)
< V(φ). (6)

Two points are important to note at the outset. First, since the GHS measure is evaluated at a particular
Hubble parameter H∗ and whether inflation is occurring depends on H, the GHS measure cannot give a
definitive assessment of the likelihood of inflation without considering full histories. It is not enough
to consider some particular slice through the histories. Second, one also requires a specific model of
inflation (a specific choice of V(φ)) in order to make the assessment, since the given condition depends
on the precise shape of the scalar field potential.
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Let us turn now to the analysis. Recall from §2 that there are two conditions that must be met if
inflation is to solve the flatness problem: flatness must be generic outcomes of inflation (Ellis, 1988) and
inflating spacetimes themselves must be generic. As Carroll and Tam point out, however, the second
question is not exactly the question that must be answered affirmatively to solve the fine tuning problems.
It matters not, that is, that some spacetimes inflate only a little bit without solving the flatness problem.
What one actually requires is that it is likely that an FRW universe undergoes sufficient inflation to solve
the fine-tuning problems.

Consider the first question. Obviously for the k = 0 case the question is moot since space is flat
regardless of whether there inflation occurs. Flatness cannot be a generic outcome of inflation if space
is assumed to be flat. So it seems that we must consider non-flat spacetimes if the question is to have
any significance. However, since spatially curved hypersurfaces cannot become (truly) flat hypersurfaces
through the FRW dynamics, we require some specification of “nearly flat” in order to claim that some
sort of flatness is a generic outcome of inflation. Not only is such a choice arbitrary, as noted before, it
also makes the question moot. Since the GHS measure diverges as the curvature κ → 0 (due to arbitrarily
large scale factors in phase space), almost all spatially curved spacetimes are nearly flat to begin with,
regardless of whether inflation occurs or does not. Near flatness cannot be a generic outcome of inflation
if nearly all spacetimes are already nearly flat. Thus the GHS measure is no help in answering the first
question (unless one unjustifiably throws out these initially nearly flat spacetimes).

Does the GHS measure fare any better in answering the second question? Are sufficiently inflating
spacetimes generic? Obviously we must specify what it means for a spacetime to inflate sufficiently to
solve the, e.g., flatness problem. If the universe is spatially flat, then obviously there can be no flatness
problem for inflation to solve. If the universe is spatially curved, then it is clear that “solving the flatness
problem” depends, once again, on an assessment of the problem in terms of “near flatness”. One could
stipulate a standard, e.g. spacetimes that undergo a certain number of doublings in size (or alternatively
e-folds as cosmologists usually describe expansion). Then one could at least attempt some calculations.
This is the approach taken by, for example, Schiffrin and Wald (2012, §IV).

Schiffrin and Wald elect to treat the k = 0 case for a scalar field in a simple self-interaction potential
V = m2φ2/2, i.e. the slow roll inflation scenario. In this case the GHS volume element simplifies to

dΩ ∝ a2

√
3

4π
H2
∗ − m2φ2 da dφ. (7)

They consider the histories of inflating spacetimes in the slow roll regime and show that spacetimes which
undergo at least N e-folds of inflation are the ones for which |φ| & 2

√
N. Thus the GHS-measure of this

set is proportional to ∫ ∞

0
a2 da

∫ √
3/4πH∗/m

2
√

N

√
3

4π
H2
∗ − m2φ2 dφ. (8)

The φ integral is finite; the a integral obviously is not. If the measure of the complement of this set of
spacetimes is finite or negligible, then sufficiently inflating spacetimes would be generic. However, it
should be clear that the set of spacetimes which do not undergo at least N e-folds of inflation also has
infinite GHS-measure, since the a integral in the measure of this set would still diverge. Therefore the
likelihood of inflation is (unsurprisingly) indeterminate due to the large scale factor spacetimes.

Both Carroll and Tam (2010) and Gibbons and Turok (2008) attempt to overcome this problem with
the GHS measure by regularizing the integrals to make them finite. They also choose to evaluate the
likelihood of inflation at different values of H∗. Naturally they come up with different answers. This
is because one must consider a full history to determine whether a spacetime has inflated and because
regularizing the divergence in the GHS measure requires making some (potentially consequential) choice
to make the measure finite. There is no canonical choice: different choices will lead to different results
(this latter issue is thoroughly discussed in (Schiffrin and Wald, 2012)).
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To illustrate the point in a simple way, consider the following. Since the GHS measure factorizes
into two integrals, one over a and one over φ, one might think to define a probability measure µρ with
probability distribution ρ defined by

ρ =
1∫
dΩ

. (9)

Then µρ is simply∫ ∞
0 a2 da

∫ √3/4πH∗/m
2
√

N

√
3

4πH2
∗ − m2φ2 dφ∫

dΩ
=

∫ √3/4πH∗/m
2
√

N

√
3

4πH2
∗ − m2φ2 dφ∫ √

3
4πH2

∗ − m2φ2 dφ.
, (10)

since the integral over the scale factor drops out. This measure is not invariant under time evolution, how-
ever, because a crucial part of the time-invariant measure has essentially been thrown away. Depending
on how one chooses H∗ one will therefore compute (potentially wildly) different probabilities of inflation
(Schiffrin and Wald, 2012).32

Schiffrin and Wald conclude their analysis with the following thoughts:

Should one impose a cutoff in a at, say, the Planck time and conclude that inflation is highly
probable? Or, should one impose a cutoff in a at a late time and conclude that inflation
is highly improbable? Or, should one impose an entirely different regularization scheme
and perhaps draw an entirely different conclusion? Our purpose here is not to answer these
questions but to emphasize that, even in this simple minisuperspace model, one needs more
information than the GHS measure to obtain the probability of inflation. (Schiffrin and Wald,
2012, 12)

I am in agreement with their final point: one requires more than the GHS measure to obtain the probability
of inflation. However this is the case because the GHS measure is not naturally a probability measure.
More importantly, one also requires more than the GHS measure to draw conclusions about whether
flatness is typical, whether inflation generically makes space flat, and whether inflation itself is typical.
Thus, although the GHS measure is mathematically natural, it cannot tell one much about the generic
properties of FRW spacetimes.

5.4 The Uniformity Problem
So far I have only discussed the fine-tuning problems with respect to a small reference class, the set of
FRW spacetimes with a single scalar field (minisuperspace). This is in several respects an inadequate
reference class. Carroll and Tam (2010, 21) note that “examining a single scalar field in minisuperspace
is an extremely unrealistic scenario;” Schiffrin and Wald (2012, 12-3) observe that “minisuperspace is a
set of measure zero in the full phase space. Even if we are only interested in nearly [FRW] solutions,
it is far from clear that the GHS measure will give a valid estimate of the phase space measure of the
spacetimes that are ‘close’ to a given [FRW] solution.” One might therefore, as a first step beyond FRW
models, move to examining the analog of the GHS measure on perturbed FRW spacetimes. Obviously
this does not solve the “measure zero” problem, since one can run the same argument on perturbed FRW
spacetimes as one did with FRW spacetimes—likelihoods assigned to the perturbed FRW spacetimes are
only significant if they are consistent with likelihoods assigned to the full space of possible cosmologies
(§3.1). Presumably, however, what one aims for is some “inductive” support for conclusions which are

32Carroll has since acknowledged Schiffrin and Wald’s critique: “The procedure [Tam and I] advocated in (Carroll and Tam,
2010) for obtaining such a measure was faulty, as our suggested regularization gave a result that was not invariant under a choice of
surface on which to evaluate the measure” (Carroll, forthcoming , 19).
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consistent in both the containing and contained reference classes, since it is not entirely clear what the
full set of possible cosmologies is.

Nevertheless, setting the reasonableness of proceeding to the side, for the horizon problem to be a
problem of likelihoods one must obviously consider a larger set of spacetimes than the FRW spacetimes,
since these are by definition spatially uniform. The technical details involved in constructing the relevant
Liouville measure on perturbed FRW spacetimes are somewhat more complex than the technicalities so
far discussed and not particularly illuminating, so I will only mention the relevant results and crucial
assumptions.33 The canonical volume element Ω on “almost” FRW models (according to Schiffrin and
Wald (2012)) is

ΩGHS ∧

( a(H2
∗ + ka−2)

H∗(3H2
∗ − V + 3ka−2

)N1

×

N1∏
n=1

(k2
n − 3k)dΦ(n) ∧ dδ(n) ∧

(1
4

a3
)N2 N2∏

n=0

dḣ(n) ∧ dh(n). (11)

Here there are additional terms (beyond those in the FRW volume element ΩGHS ) involving inhomo-
geneous scalar perturbations (Φ and δ) and tensor perturbations (ḣ and h).34 N1 and N2 correspond to
short-wavelength cutoffs for the scalar and tensor modes, respectively. These are necessary to make the
phase space finite. One must also impose a long-wavelength cutoff, which Schiffrin and Wald implement
by restricting attention to spatially compact spacetimes. Finally, some explication of “almost” FRW must
be made: Schiffrin and Wald take it to mean that the magnitude of the metric perturbation Φ and the
magnitude of the density perturbation δ are small in comparison to the background FRW metric, as do
Carroll and Tam (2010).

Although some of the assumptions made to obtain this volume element may be challenged, the main
problems revealed by adapting the GHS measure to perturbed FRW spacetimes are the same as before,
and it would only belabor the points made already to go into detail. As before, the total measure of phase
space is infinite, so probabilistic arguments cannot be made on the basis of the canonical measure alone.
Indeed, Schiffrin and Wald note that “including more perturbation modes makes the large-a divergence
more severe” (Schiffrin and Wald, 2012, 17). It follows that the results on the probability of inflation
given by Carroll and Tam (2010) cannot to be trusted because an arbitrary choice has to be made to derive
them. Once again, one can get any probability one wants by a particular choice of H∗ (the value of the
Hubble parameter where the measure of sets of spacetimes is evaluated).

Can one nevertheless make a likelihood argument with respect to uniformity? Is there a horizon
problem according to the canonical measure? Carroll and Tam (2010, 25) claim that there is: “There
is nothing in the measure that would explain the small observed values of perturbations at early times.
Hence, the observed homogeneity of our universe does imply considerable fine-tuning; unlike the flatness
problem, the horizon problem is real.” In some sense this conclusion is (intuitively) correct, since one
expects that (nearly) uniform spacetimes are highly unlikely given all the spacetimes that seem physically
possible. This goes for all spacetimes with symmetry, however, insofar as one takes GTR to delimit
the space of possible cosmologies. Of course if one makes this claim, then one should say the same
thing about spatial flatness (which is plausibly even less likely in the space of possible cosmologies).
But these conclusions have nothing to do with the GHS measure; rather they are judgments based on
expectations related to the space of possible cosmologies. This, though, is just the intuitive basis that
objective measures were intended to avoid and improve upon.

6 Conclusion
I have discussed the formal implementation, interpretation, and justification of likelihood attributions in
cosmology. A variety of arguments and issues were raised which, taken together, strongly suggest that

33The interested reader is directed to (Schiffrin and Wald, 2012, §V) and to (Carroll and Tam, 2010, §5) for further details.
34Note that h here is not the spatial metric as it was previously.
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the use of probabilistic and similar reasoning is misplaced in the context of single-universe cosmology.
Some of these concerned conceptual problems and some concerned technical problems. Some of these
concerned independent considerations in cosmology and some concerned the application of considera-
tions from statistical mechanics in cosmology. In all cases the verdict is the same: likelihood reasoning is
problematic in cosmology. Since the discussion was widely ranging, a brief summary of the main points
is in order.

The first issue I raised was the reference class problem (§3.1): What is the appropriate reference class
of cosmologies for attributing cosmological likelihoods? The problem is particularly important in the
context of likelihood arguments, since such arguments depend sensitively on the choice of possibility
space. Although the space of models of GTR is a natural choice for this space, it is not necessarily
the correct one. Nevertheless, it seems plausible to suppose that the space of models is “large” like the
space of relativistic spacetimes. In this case one requires a way to attribute likelihoods on the full space
of possibilities, since the appropriate likelihood attributions to subsets of this space may depend on the
likelihoods on the full space. The formal challenges of implementing some likelihood measure on the full
space were related in §4. The main issues involved the unavailability of natural structures which could
be used as likelihood measures. Although there is potential for further work here, it does seem doubtful
whether these challenges can be fully met.

However, even if they can be met, the attribution of likelihoods in cosmology faces significant con-
ceptual difficulties. First is the issue of interpreting these likelihoods (§3.2). Some may be interpreted
in terms of typicality, as is popular among some researchers working on the foundations of statistical
and quantum mechancis. The only available interpretation of cosmological probabilities (in the partic-
ular sense of locating the origin of the probabilistic “randomness”), however, is that they pertain to an
initial random trial to select an otherwise deterministically-evolving universe—the “god throwing darts”
interpretation. While this strikes many as practically a reductio ad absurdum of the project of attributing
probabilities to entire universes, it is at the very least coherent. If this is the only interpretation, though,
then it becomes quite hopeless to justify any particular choice of probability measure (§3.3): any choice
of measure which attributes a non-zero probability to the model(s) describing our universe is admissible,
in the sense of being empirically adequate.

One might avoid this latter problem by proposing that the choice of measure is a priori. It has been
claimed, for example, that probability and typicality measures are mathematically natural in statistical
mechanics. There is indeed a relevant sense in which some mathematical objects “come for free” given
certain mathematical structures (they don’t require any special choices other than the choice to make
a definition), but that does not imply that their physical interpretation comes for free. In any case, for
the spaces of possibilities considered by cosmologists there is no natural probability measure, since the
total measures of these spaces are infinite. A choice has to be made, and none of the choices made by
cosmologists is well-motivated, let alone well-justified.

Finally I considered a specific case considered in the physics literature. For certain spaces of pos-
sibilities, e.g. minisuperspace, there is a natural measure, namely the Liouville measure associated with
the phase space of minisuperspace, called the GHS measure (§5). I showed (relying partly on arguments
made in (McCoy, forthcoming ) and (Schiffrin and Wald, 2012)) that the GHS measure cannot be used
for the purposes to which it has been put by cosmologists: it cannot be applied to the flatness problem
(§5.2); it cannot be used to calculate the likelihood of inflation in FRW spacetimes; it cannot be applied to
the uniformity problem (§5.4). In each case the essential issue is that there is no typical spacetime in the
spaces of possibilities considered. Thus one must introduce a choice (of cutoff, of probability measure,
etc.), none of which is well-motivated, let alone justified.

It follows the the fine-tuning arguments presented in §2 are unsupported when fine-tuning is inter-
preted in likelihood terms. Therefore the fine-tuning arguments, as they stand, either fail, or else an
alternative interpretation of fine-tuning must be sought which validates them. Alternative interpretations
have been suggested (instability, lack of robustness, excess idealization, etc.) (McCoy, 2015), although
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these have so far been little investigated. Given the problems facing a likelihood interpretation of fine-
tuning, there does seem to be some reason to think that these alternative approaches to fine-tuning may
be more promising,
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