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a b s t r a c t

We give two social aggregation theorems under conditions of risk, one for constant population cases,
the other an extension to variable populations. Intra and interpersonal welfare comparisons are
encoded in a single ‘individual preorder’. The theorems give axioms that uniquely determine a social
preorder in terms of this individual preorder. The social preorders described by these theorems have
features that may be considered characteristic of Harsanyi-style utilitarianism, such as indifference
to ex ante and ex post equality. However, the theorems are also consistent with the rejection of all
of the expected utility axioms, completeness, continuity, and independence, at both the individual
and social levels. In that sense, expected utility is inessential to Harsanyi-style utilitarianism. In
fact, the variable population theorem imposes only a mild constraint on the individual preorder,
while the constant population theorem imposes no constraint at all. We then derive further results
under the assumption of our basic axioms. First, the individual preorder satisfies the main expected
utility axiom of strong independence if and only if the social preorder has a vector-valued expected
total utility representation, covering Harsanyi’s utilitarian theorem as a special case. Second, stronger
utilitarian-friendly assumptions, like Pareto or strong separability, are essentially equivalent to strong
independence. Third, if the individual preorder satisfies a ‘local expected utility’ condition popular in
non-expected utility theory, then the social preorder has a ‘local expected total utility’ representation.
Fourth, a wide range of non-expected utility theories nevertheless lead to social preorders of outcomes
that have been seen as canonically egalitarian, such as rank-dependent social preorders. Although our
aggregation theorems are stated under conditions of risk, they are valid in more general frameworks
for representing uncertainty or ambiguity.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The subject of this paper is how to evaluate different as-
signments of welfare to members of society in the presence of
risk. We thus consider distributions of welfare among individuals,
and lotteries, probability measures over distributions. Each lottery
determines for each relevant individual a prospect, a probabil-
ity measure over welfare states. We assume that the value of
prospects for the individuals facing them is represented by a pre-
order of prospects that we call the individual preorder, which thus
encodes intra and interpersonal welfare comparisons under risk.
We assume that the value of lotteries, from an impartial point
of view, is represented by a preorder of lotteries that we call the
social preorder.1 We will say more about how to interpret welfare
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1 A preorder is a reflexive, transitive binary relation.

states and the individual and social preorders in Sections 2.1 and
3.2.

How should the individual and social preorders be related? In
what we will refer to as his utilitarian theorem, Harsanyi (1955)
proved (in a slightly different framework) that if the individ-
ual preorder satisfies expected utility theory, then it determines
a unique social preorder satisfying expected utility theory, the
strong Pareto principle, and a suitable condition of impartiality.
This social preorder ranks lotteries by their expected total utility.2

Our main result is naturally seen as a generalization of
Harsanyi’s utilitarian theorem. It says that any individual preorder
determines a unique social preorder satisfying three axioms re-
lated to Pareto and impartiality. These axioms are much weaker
than Harsanyi’s, and in particular we do not require either the

2 We state expected utility and Pareto axioms in Sections 4.1 and 4.3
respectively. But it is already useful to state the most central expected utility
axiom, to which we will often refer: a preorder ≿X on a convex set X satisfies
strong independence if for p, p′ , q ∈ X and α ∈ (0, 1), p ≿X p′ if and only if
αp + (1 − α)q ≿X αp′

+ (1 − α)q.
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individual or the social preorder to satisfy expected utility the-
ory. Our first version of this result, Theorem 2.2, considers the
constant population case, meaning that the same people exist in
every social outcome; Theorem 3.5 extends the result to variable
populations. In the variable case, our axioms do entail a mild
constraint on the individual preorder related to the possibility of
nonexistence that we call Omega Independence (Section 3.2). But
it remains true that neither the individual nor the social preorder
has to satisfy any axiom of expected utility.3

As we will explain, there are good reasons to think of the social
preorders described by our theorems as being, like Harsanyi’s,
utilitarian in flavor; we will ultimately dub them quasi utilitar-
ian.4 Moreover, our weakening of Harsanyi’s premises should
surely be welcomed by utilitarians, as it provides our framework
with considerable flexibility in the kinds of welfare comparisons
it can accommodate. Recall that the three main expected utility
axioms are completeness, continuity, and independence. In not
requiring completeness, we allow for all kinds of incomparabil-
ities between welfare states (and between welfare states and
non-existence); in not requiring continuity, we allow some wel-
fare states to be infinitely more valuable than others; in dropping
independence, we allow for all sorts of views about welfare
comparisons under risk.5 Indeed, while independence has come
to be seen as integral to Harsanyi-style utilitarianism, it is not so
clear why it should be seen as a basic utilitarian commitment.6

Even so, one may wish to impose further constraints on the
individual and social preorders. It turns out that many natural
conditions bring quasi utilitarian theories closer to Harsanyi’s
utilitarianism. We explore this point systematically in sections 4
and 5.

We begin with expected utility in Section 4. If the individual
preorder satisfies any one of the main axioms of expected utility
theory, then so does the corresponding social preorder (Proposi-
tion 4.2). Moreover, if the individual preorder has an expected

3 For notational convenience, we take the expected utility axioms to apply
to preorders, so that reflexivity and transitivity do not count as expected utility
axioms.
4 In speaking of ‘utilitarianism’, we do not need to take sides in the familiar

debate about how Harsanyi’s view relates to classical utilitarianism (see also
note 6). What is clear is that his view has many formal properties that are
by now closely associated with utilitarianism: besides the additive form, we
especially have in mind Pareto, separability, and indifference to equality. Thus
when discussing the utilitarian features of our social preorders, we only have
in mind the extent to which they share such properties.
5 In normative settings, the status of the expected utility axioms has been

heavily debated. For entries into a vast critical literature, see e.g. Pivato (2013)
and Dubra et al. (2004) (completeness as deniable); Richter (1971) and Fishburn
(1988) (continuity as a technical assumption); Luce and Raiffa (1957) and Kreps
(1988) (continuity as deniable); and Allais (1979) and Buchak (2013) (indepen-
dence as deniable). In addition, there are well-documented empirical violations
of completeness and independence, and continuity has often been regarded as
difficult to test for, raising a doubt about including it with other axioms in
positive theories. See, for example, Starmer (2000), Schmidt (2004) and Wakker
(2010). Here we mainly avoid positive topics, but see the beginning of Section 5
for a brief discussion.
6 While we stay neutral about the objection to a utilitarian interpretation of

Harsanyi’s results raised by Sen (1976, 1977) and Weymark (1991), their worry
can nevertheless be seen as providing a further motivation for our project. Sen
(1986, p. 1123) claims that classical utilitarianism starts with an ‘‘independent
concept of individual utilities of which social welfare is shown to be the sum’’. In
our terminology, the objection pressed by Sen and Weymark is essentially that
given that the individual preorder satisfies expected utility theory, no reason
has been offered for thinking that the cardinalization of welfare provided by
expected utility theory coincides with the cardinalization assumed by classical
utilitarianism (see Greaves, 2017 for discussion). But there is a perhaps more
basic issue. If Sen and Weymark are right, then it does not seem that classical
utilitarians are conceptually committed to expected utility theory in the first
place. Thus even if one regards expected utility theory, and independence in
particular, as normatively plausible, it is far from obvious that they should be
seen as fundamental axioms of utilitarianism itself.

utility representation, then the social preorder is represented
by total expected utility, or equivalently, expected total utility
(Theorem 4.4). This is the conclusion of Harsanyi’s utilitarian
theorem, but extended to variable populations, and resting on
much weaker premises (see Section 6.4). For example, strong
Pareto and expected utility axioms for the social preorder are
derived rather than assumed.

As we explain in Section 4.2, this result holds even if we allow
the expected utility representation of the individual preorder to
be vector valued; more precisely, we allow it to have values in
a preordered vector space. Such ‘Vector EU’ representations gen-
eralize standard real-valued expected utility representations, the
real numbers being the best known example of a preordered vec-
tor space; they also include the so-called multi expected utility
representations that have been extensively discussed in the liter-
ature. The motivation for considering Vector EU representations
is that their existence is equivalent to the central expected utility
axiom, strong independence (Lemma 4.3). Thus while Vector EU
representations are in many ways similar to ordinary real-valued
expected utility representations, they allow for the denial of con-
tinuity and completeness. Overall, the upshot of Theorem 4.4 is
that strong independence for the individual preorder is sufficient
for a quasi utilitarian social preorder to be represented by vector-
valued expected total utility, in both the constant and variable
population cases. This provides a remarkably general version of
Harsanyi’s utilitarian theorem.

Still, as we mentioned in note 6, it is curious that any in-
dependence axiom should be seen as a fundamental premise
of utilitarianism. The results of Section 4.3 are striking in this
light. Proposition 4.8 shows that, for quasi utilitarian preorders,
independence conditions on the individual preorder are essen-
tially equivalent to corresponding Pareto conditions on the social
preorder, and also to corresponding separability conditions. The
conditions that correspond to strong independence are what we
call Full Pareto, an apparently novel but natural extension of
strong Pareto to cases involving incompleteness, and a version
of strong separability. This means that, with one qualification,
we can derive an expected total utility representation of the
social preorder using one of those conditions instead of strong
independence; the conceptual advantage is that strong separa-
bility and especially Full Pareto seem more central to traditional
utilitarian concerns than strong independence. This leads to a
particularly economical Harsanyi-like result in Theorem 4.10:
Full Pareto plus just one of our aggregation axioms, Two-Stage
Anonymity, implies an expected total utility representation of the
social preorder. The qualification is that it is only a ‘rational coef-
ficients’ version of strong independence that is exactly equivalent,
given our axioms for aggregation, to Full Pareto. This means that
the expected total utility representation just mentioned may be
slightly less well behaved than the one that arises from strong
independence.

Our results on non-expected utility theory in Section 5 paint
a similar picture: we do not need to add much to our basic ag-
gregation axioms to get close to Harsanyi-style utilitarianism. For
example, monotonicity, or respect for stochastic dominance, is
widely assumed in non-expected utility theory. But Theorems 5.2
and 5.3 show that, given some common background assumptions,
monotonicity for the social preorder entails that the social pre-
order is once more represented by expected total utility. Even if
we deny monotonicity, Theorems 5.5 and 5.7 show that when the
individual preorder has a ‘local expected utility’ representation
in the style of Machina (1982), the social preorder has a ‘local
expected total utility’ representation.

Given these results, it is natural to ask just how close quasi
utilitarian social preorders are to Harsanyi-style utilitarian pre-
orders, and how close our axioms for aggregation are to
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Harsanyi’s own. We explore this question in Section 6 and draw
connections to the literature. While our axioms are much weaker
than Harsanyi’s, they retain the indifference to ex ante and ex
post equality that is integral to Harsanyi’s approach (Section 6.1).
More generally, Harsanyi’s axioms are often said to combine ex
ante and ex post requirements, and our axioms do this as well,
albeit in a weakened sense (Section 6.2). On the other hand, quasi
utilitarian social preorders may violate Pareto and separability
principles, and failures of separability are sometimes associated
with egalitarianism. In relation to this, Proposition 6.1 shows that
any social preorder on distributions (rather than lotteries), even
if apparently egalitarian, is compatible with quasi utilitarianism
in the constant population case. For instance, Example 2.9 shows
that imposing rank-dependent utility theory on the individual
preorder leads to separability-violating rank-dependent social
preorders that have been seen as canonically egalitarian. Overall,
the sense in which all quasi utilitarian social preorders should be
seen as utilitarian is somewhat equivocal. We recommend reserv-
ing ‘utilitarian’ for quasi utilitarian preorders that satisfy strong
independence, in large part because they have Harsanyi-like
expected total utility representations and are essentially the only
ones that satisfy Full Pareto or strong separability (Section 6.3).

We briefly revisit Harsanyi’s utilitarian theorem in Section 6.4,
but Harsanyi had another famous contribution to the theory of
social aggregation: the veil of ignorance construction of Harsanyi
(1953), leading to his impartial spectator theorem, another con-
stant population result with the same utilitarian conclusion. How-
ever, it is not clear how to justify the use of the veil, and when
applied to variable population problems, it is far from obvious
even how to interpret it. Nevertheless, our aggregation theorems
can be seen as vindicating a specific version of the veil in both
the constant and variable population cases (Section 6.5).

We briefly sketch an alternative strategy for generalizing
Harsanyi’s utilitarian theorem (Section 6.6), and end with a dis-
cussion of related literature (Section 6.7). For now we empha-
size Pivato (2013) for a generalization of Harsanyi’s utilitarian
theorem that is closest to ours, and Mongin and Pivato (2015)
for also deriving independence from Pareto in a Harsanyi-like
framework, though one somewhat different from ours.

Let us make three final comments about our framework. First,
our use of a single individual preorder to represent the value of
prospects for individuals may appear controversial. For example,
individuals may disagree about how to make welfare compar-
isons, or have different attitudes to risk. However, in Section 2.1
we provide several possible rationales, and also explain why it is
compatible with standard presentations of Harsanyi’s utilitarian
theorem, including Harsanyi’s own.

Second, it is nonetheless true that Harsanyi’s most general
result, Theorem V of Harsanyi (1955), does not rely on a sin-
gle individual preorder, nor does it explicitly require the kind
of interpersonal comparisons implicit in its use.7 Given an ex-
pected utility function for each individual, its conclusion is that
the social preorder can be represented by a weighted sum of
these functions.8 We refer to this result, not assuming inter-
personal comparisons, as Harsanyi’s social aggregation theorem;
as already noted, we take Harsanyi’s utilitarian theorem to be
the result whose conclusion is that the social preorder can be
represented by an unweighted sum of utility functions that have
been normalized to reflect interpersonal comparisons. Harsanyi

7 Whether this result in some sense implicitly assumes interpersonal compar-
isons is a matter of controversy; see e.g. Harsanyi (1979, p. 294), Harsanyi (1978,
p. 227), Harsanyi (1977b, pp. 81–2), Broome (1991, p. 219), Mongin (1994, pp.
348–50), and Mongin and d’Aspremont (1998, p. 432).
8 For elaboration, see e.g. Domotor (1979), Border (1981), Coulhon and

Mongin (1989), Weymark (1993, 1995), and De Meyer and Mongin (1995).

presents the utilitarian theorem as a mere corollary of the social
aggregation theorem, and the literature tends to use the same
terminology to refer to both results. But we find it helpful to
distinguish them, since they indicate a two pronged strategy for
generalizing Harsanyi’s work: in McCarthy et al. (2019), without
assuming interpersonal comparisons, we generalize Harsanyi’s
social aggregation theorem by dropping continuity and com-
pleteness while allowing the population to be infinite; in the
present paper, we generalize Harsanyi’s utilitarian theorem, as-
suming interpersonal comparisons at the outset in the form of
a single individual preorder, but dropping continuity, complete-
ness, and independence. Both approaches have their advantages.
Harsanyi’s social aggregation theorem, and the generalization just
mentioned, may be applied to problems to which the present
approach is inapplicable. For example, given a society with het-
erogeneous values or conflicting views about welfare, the social
planner may wish to know how much can be concluded about so-
cial aggregation without resorting to controversial interpersonal
comparisons. On the other hand, if, like Harsanyi, one is going
to introduce interpersonal comparisons eventually, then one can
obtain powerful results by assuming them from the outset and
examining what other assumptions, like independence, can be
modified or dropped.

Third, throughout this paper we work, for simplicity, in the
setting of risk, where the uncertainty involved in each option is
represented by a single probability measure, which one might
think of as objective or universally agreed. But the principles
underlying our aggregation theorems are much more general
than this, and in Section 2.7 we briefly outline how they work
for a variety of other representations of uncertainty, such as
convex sets of probability measures and Anscombe–Aumann acts.
This enables us to illustrate the relevance of our aggregation
theorems to views according to which social evaluation should
be based in part on a social consensus about uncertainty. Even if
disagreement between individuals means that this social consen-
sus cannot be represented by a single probability measure, our
aggregation theorems can still cope.

Most proofs are in Appendix A, while Appendix B contains an
index of common notation.

2. A constant population aggregation theorem

In Sections 2.1 to 2.4 we present the basic framework, ax-
ioms, and theorem. Section 2.5 introduces some useful terminol-
ogy, Section 2.6 gives examples, and Section 2.7 explains how
our framework and theorem could be adapted to other ways of
representing uncertainty.

2.1. The individual and social preorders

Before introducing our formal axioms, we elaborate on our
background assumptions, emphasizing our treatment of welfare
comparisons and their role in our approach to aggregation. The
questions of how to understand welfare and how to make wel-
fare comparisons are much disputed, and our policy will to be
remain as neutral as possible. Instead, we lay out our minimal
commitments.

We assume that how well off an individual is in a particu-
lar social outcome can be adequately represented by specifying
that individual’s ‘welfare state’. A welfare state takes into ac-
count all the information that is relevant to an assessment of
an individual’s overall welfare, with the implication that if two
individuals are in identical welfare states, they are equally well
off. A welfare state could be a single numerical indicator (see
e.g. d’Aspremont and Gevers, 2002, p. 464); it could be a vector
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with many components corresponding to, say, levels of happi-
ness, pleasure, preference satisfaction, achievement, functioning,
capabilities, resources, and so on (Sen, 1981, 1985); it could be a
pairing of objective circumstances and subjective tastes (see note
11 and Pivato, 2013).9 As we explain shortly, it is also possible
to think of welfare states as being characterized abstractly in
terms of intra and interpersonal comparisons. In any case, we
assume that each social outcome can be adequately represented
by specifying the welfare state of each member of the population.
Thus our approach is welfarist in the sense that we are only
concerned with the distribution of welfare under risk, rather than
non-welfare factors.10

With this in mind, we adopt the following terminology, al-
ready sketched in the introduction. A ‘distribution’ is an assign-
ment of welfare states to individuals. A ‘lottery’ is a probability
measure over distributions. A ‘prospect’ is a probability measure
over welfare states. Each lottery determines a prospect for each
individual. The ‘social preorder’ expresses a view about how good
lotteries are from an impartial perspective, while the ‘individ-
ual preorder’ expresses a view about how good prospects are
for individuals, allowing interpersonal comparisons. The central
question for us is how the social preorder should depend upon
the individual preorder.

To elaborate, our basic assumption is that there is a single
preorder, which we call the ‘individual preorder’, such that for
any individuals i and j and prospects P and Q , P is at least as
good for i as Q is for j if and only if P is ranked at least as highly
as Q by the individual preorder.

As already noted, this assumption may seem implausible to
anyone who understands welfare comparisons in terms of prefer-
ences, insofar as individuals may have different preferences over
welfare states, or different attitudes to risk. However, there are
several widely held views about welfare comparisons on which
our assumption may be maintained.

First, one may claim that welfare comparisons should not be
based on actual preferences, but rather on idealized preferences,
formed under conditions of full information and rationality, and
argue that at that level, individual preferences do agree.11 Second,
welfare comparisons may be taken to reflect objective evalu-
ative facts; note that on such views, welfare states can still
take into account levels of preference satisfaction. Third, welfare
comparisons may be interpreted as reflecting the preferences
or evaluative judgments of a single impartial person, the ‘so-
cial planner’. Finally, welfare comparisons may be understood to
reflect a (not necessarily unanimous) social consensus, perhaps
formed by pooling individual preferences. Each of these positions
is well established in the literature,12 and we have no need to
choose between them. We claim that our axioms for aggregation
are plausible under each of these views, and we allow for any
view that makes them plausible.

9 See Adler and Fleurbaey (2016) for many essays on these possibilities.
10 Given that we allow for many views about what constitutes welfare, and
about the comparability of different welfare states, this makes our framework
akin to ‘formal welfarism’ in social choice theory; see Mongin and d’Aspremont
(1998), d’Aspremont and Gevers (2002), and Fleurbaey (2003).
11 As a historically important example, Harsanyi (1977b, Ch. 4) assumes
that each individual i has an ‘extended preference relation’ on gambles over
‘extended alternatives’; an extended alternative specifies both an objective
situation faced by an individual and the individual’s subjective attitudes, like
tastes. It would then be natural to identify welfare states with extended
alternatives. Harsanyi argues in his Section 4.4 that fully rational individuals
will have identical extended preferences even though their ‘personal’ preferences
over objective situations may differ. Thus on Harsanyi’s view, there is a unique
rational extended preference relation, with which we could identify the individ-
ual preorder. However, Harsanyi’s argument has been heavily criticized (Broome,
1993; Mongin, 2001a), and we are not committed to it. We shortly describe a
different way of connecting our framework to Harsanyi’s utilitarian theorem.
12 See Adler and Fleurbaey (2016).

In fact, the possibility of using a single individual preorder
to encode welfare comparisons is implied by the assumptions
of Harsanyi’s utilitarian theorem.13 Harsanyi (1955) starts with
a measurable space Y of social outcomes, and a set P (Y ) of
probability measures on Y . Each individual i is assumed to have a
von Neumann–Morgenstern utility function ui on Y . These utility
functions are assumed to reflect intrapersonal and interpersonal
comparisons of welfare (whether understood in terms of prefer-
ences or otherwise): for any p, q ∈ P (Y ), p is at least as good for
i as q is for j if and only if

∫
Y ui dp ≥

∫
Y uj dq. The utility functions

allow us to define interpersonally comparable utility levels: i’s
utility level in outcome y is ui(y). Since each social outcome
determines a utility level for each individual, these utility levels
can be interpreted as welfare states. With this identification, each
element of P (Y ) determines a prospect for each individual, that is,
a probability distribution over welfare states understood as utility
levels. We can redescribe intra and interpersonal comparisons in
terms of these prospects: for any p, q ∈ P (Y ), p is at least as good
for i as q is for j if and only if the prospect p assigns to i has at
least as great an expected utility level as the prospect q assigns
to j. So, just as we assume, such comparisons are encoded in a
single preorder of prospects, namely, the preorder of prospects
by expected utility. However, this use of utility levels to define
welfare states is not as general as we would like, as it rests on
the premise of expected utility theory, which we wish to avoid.
Fortunately, an equivalent but more neutral understanding of
welfare states is available in Harsanyi’s framework: welfare states
correspond exactly to equivalence classes in Y × I, where I is the
set of individuals, and (y, i) is equivalent to (z, j) if and only if
y is as good for i as z is for j. This abstract characterization of
welfare states as equivalence classes makes sense even without
the assumption of expected utility theory.

In short, many understandings of welfare states and justifica-
tions for using a single individual preorder are available. For our
purposes, we will simply take welfare states and the individual
preorder as primitives, and we will impose no formal require-
ments on the individual preorder beyond preordering, allowing
for the flexibility in welfare comparisons outlined in Section 1,
including the possibility of violating all of the expected utility
axioms.

In summary, we adopt a two-stage approach to social aggre-
gation. At the first stage, welfare comparisons at the individual
level are expressed by a single, but possibly highly incomplete,
preorder that we call the individual preorder. At the second
stage, axioms are introduced to show how the social preorder
is determined by the individual preorder. Our focus is on the
second stage, and it is not our purpose to defend the two-stage
approach as a whole. However, we have noted that it is implicit,
and sometimes fully explicit, in presentations of Harsanyi’s util-
itarian theorem. It also provides one well known response to
impossibility theorems concerning social aggregation in the face
of individual disagreement about uncertainty (see Section 6.7.4).
Aside from Harsanyi-like frameworks specifically involving risk
or other forms of uncertainty, the two-stage approach also cor-
responds to the pioneering work of Sen (1970) in which the
social planner first forms a view about interpersonal and intrap-
ersonal comparisons before addressing questions about the social
preorder (for discussion, see e.g. d’Aspremont and Gevers, 2002,
sec. 1).

13 There are several presentational variations of this result. For example, Black-
orby et al. (1998) and Fleurbaey (2009) omit one of the steps we describe
below and interpret social outcomes directly as profiles of interpersonally
comparable von Neumann–Morgenstern utilities. And, closest to our approach,
the extensions of Harsanyi’s utilitarian theorem in Pivato (2013, 2014) explicitly
use a single individual preorder. For more general discussion of interpersonal
comparisons in this context, see Hammond (1991).
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2.2. Framework

Formally, our basic framework starts with a set W of welfare
states, and a finite, nonempty set I of individuals. We model
social outcomes as what we call distributions, elements of WI ,
the product of copies of W indexed by I. We write Wi(d) for
the ith component of distribution d, i.e. the welfare state that
individual i has in that outcome. We focus on any set D ⊂

WI of distributions that satisfies certain conditions shortly to be
announced. Besides welfare states and distributions per se, we
consider probability measures over them. Thus we assume that
W and D are measurable spaces. We call probability measures
over W prospects, and those over D lotteries. Notationally, if P
is (say) a prospect and A is a measurable subset of W, then we
write P(A) for the probability that P assigns to A. Instead of just
considering all prospects and all lotteries, we will, for generality,
focus on arbitrary non-empty convex sets P and L of prospects
and lotteries respectively.

We make the following domain assumptions concerning the
finite set I, the measurable spacesW and D ⊂ WI , and the convex
sets of probability measures P and L.

(A) We assume that for each individual i ∈ I the projection
Wi:D → W is a measurable function. This allows us to
define a prospect Pi(L) for each lottery L. Explicitly, if A is
a measurable subset of W, then

Pi(L)(A) = L(Wi
−1(A)).

We assume that Pi(L) ⊂ P.
(B) For each w ∈ W, we assume that D contains the distribu-

tion D(w) in which every individual i ∈ I has welfare w.
Thus

Wi(D(w)) = w.

We assume that the function D:W → D is measurable.
This allows us to define a lottery L(P) for each prospect P .
Explicitly, if B is a measurable subset of D, then

L(P)(B) = P(D−1(B)).

In L(P), every individual i ∈ I faces prospect P (that is,
Pi(L(P)) = P), and it is certain that all individuals will have
the same welfare.14 We assume that L(P) ⊂ L.

(C) We assume that D is invariant under permutations of in-
dividuals. Formally, let Σ be the group of permutations of
I. For each σ ∈ Σ and d ∈ D, the assumption is that D
contains the distribution σd such that for all i ∈ I,

Wi(σd) = W
σ−1 i(d).

We assume that the action of Σ on D is measurable. That
is: if B ⊂ D is measurable, then σ−1B is measurable, for
any σ ∈ Σ . This allows us to define an action of Σ on
lotteries L:

(σ L)(B) := L(σ−1B)

for any σ ∈ Σ , lottery L and measurable B ⊂ D. We assume
that L is invariant under Σ .

Example 2.1. The various measurability conditions are not very
stringent: for example, they are automatically met if D ⊂ WI

has the product sigma algebra, i.e. the smallest one for which

14 This second statement just means that any measurable subset of D con-
taining the image of D has probability 1 according to L(P). We do not assume
that the image of D is itself measurable. It may not be, even when D has the
product sigma algebra, without modest further assumptions (Dravecký, 1975).

the functions Wi are measurable. To check that D is measur-
able with respect to that sigma algebra, it suffices to check that
D−1(Wi

−1(A)) is measurable whenever A is a measurable subset
of W. But, in fact, D−1(Wi

−1(A)) = A. Similarly, if W is a
topological space, and we give D ⊂ WI the product topology,
then the measurability conditions will be met with respect to the
Borel sigma algebras (even though the Borel sigma algebra on D
is not necessarily the product one (Dudley, 2002, Prob. 4.1.11)).

2.3. Axioms for aggregation

Now we assume that P and L are each preordered. The pre-
order ≿P on P is the individual preorder; the preorder ≿ on L is
the social preorder. We discussed their significance in Section 2.1.
We will use obvious notation, e.g. writing P ∼P P ′ to mean the
conjunction of P ≿P P ′ and P ′ ≿P P , and writing P ≻P P ′ to
mean that P ≿P P ′ but not P ′ ≿P P . Since ≿P is allowed to be
incomplete, we will also write P ⋏P P ′ to mean neither P ≿P P ′

nor P ′ ≿P P .
We will sometimes informally treat the individual and social

preorders as ranking not only prospects and lotteries but also
welfare states and distributions respectively. Strictly speaking,
this presupposes that we can identify welfare states and dis-
tributions with the corresponding delta-measures, for example,
writing w ≿P w′ to mean 1w ≿P 1w′ . (Here, if y is an element of
a measurable space Y , then the delta-measure 1y is the unique
probability measure on Y such that for any measurable set A,
1y(A) = 1 just in case A contains y.) This does not always
make sense in our framework: different welfare states or different
distributions may determine the same delta-measure (unless the
sigma algebras separate points, an assumption we only take on
in Section 6.1); and anyway these delta-measures may not be in
the convex sets of probability measures under consideration. But
we often ignore this detail in informal discussion.

Our first principle of aggregation says that the social preorder
only depends on which prospect each individual faces.

Anteriority. If Pi(L) = Pi(L
′) for every i ∈ I, then L ∼ L′.

Second, we need a principle which captures the idea that
individual welfare contributes positively towards social welfare.

Reduction to Prospects. For any P, P ′
∈ P, L(P) ≿ L(P ′) if and

only if P ≿P P ′.

It says that for lotteries that guarantee perfect equality, social
welfare matches individual welfare.

Anteriority can be seen as a very weak form of Pareto indif-
ference,15 which is obtained by replacing ‘Pi(L) = Pi(L

′)’ with
‘Pi(L) ∼P Pi(L

′)’. In fact, Anteriority and Reduction to Prospects
are both restrictions of a natural but apparently novel Pareto
principle, which we call Full Pareto (see Section 4.3), that extends
strong Pareto to cases involving incompleteness.16 We further
discuss Anteriority and Reduction to Prospects in Section 6.2.1,
where we argue that together they express a weak sense in which
the social preorder is ex ante (hence the term ‘Anteriority’).

Third, we need a principle of impartiality or permutation-
invariance. The simplest such principle is

Anonymity. Given L ∈ L and σ ∈ Σ , we have L ∼ σ L.

15 The expected utility and Pareto axioms mentioned in this section are
formally defined in Sections 4.1 and 4.3.
16 The idea of restricting Pareto principles to lotteries that guarantee equality
is familiar; see e.g. Fleurbaey (2010), McCarthy (2015), and Fleurbaey and Zuber
(2017). But Reduction to Prospects appears to be novel even in the absence of
risk. For example, it implies w ⋏P w′

⇒ D(w) ⋏ D(w′). This inference is not
licensed by any standard Pareto principle we know of, restricted or otherwise.
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We will in fact use the following stronger condition.17

Two-Stage Anonymity. Given L,M ∈ L, σ ∈ Σ , and α ∈

[0, 1] ∩ Q,

αL + (1 − α)M ∼ α(σ L) + (1 − α)M.

One motivation for Two-Stage Anonymity is that it follows from
the combination of Anonymity and the central axiom of expected
utility theory, strong independence, or even the restriction of
strong independence to the indifference relation. However, our
preferred motivation for Two-Stage Anonymity avoids appealing
to any independence axiom.

Define an ‘anonymous distribution’ to be an element of the
quotient D/Σ . One natural principle says that L and L′ are equally
good if they define the same probability measure over anony-
mous distributions.18 Here is a convenient reformulation:

Posterior Anonymity. Given L, L′
∈ L, suppose that L(B) =

L′(B) whenever B is a measurable, Σ-invariant subset of D.
Then L ∼ L′.

In Section 6.2.2 we will argue that this principle expresses a weak
sense in which the social preorder is ex post, hence the term
‘Posterior’. Posterior Anonymity is easily seen to logically entail
Two-Stage Anonymity, and that is our preferred motivation for
accepting the latter as an axiom.19

Now strong independence is itself often said to be an ex post
principle, so one might ask whether Two-Stage Anonymity is
genuinely weaker than the conjunction of strong independence
and Anonymity. But in Section 6.2.3 we give a precise sense in
which Two-Stage Anonymity is much weaker. To anticipate, the
following aggregation theorem, our main result, is compatible
with rejecting any independence axiom for the individual and
social preorders. In fact it is compatible with any individual
preorder, and therefore with individual preorders that violate
even the weakenings of independence axioms that are typical of
non-expected utility theory.

2.4. The aggregation theorem

Now we state the main constant population result. We assume
given domains I, W, D, P, and L satisfying the domain conditions
(A)–(C) of Section 2.2.

Theorem 2.2. Given an arbitrary preorder ≿P on P, there is a
unique preorder ≿ on L satisfying Anteriority, Reduction to
Prospects, and Two-Stage Anonymity. Namely,

L ≿ L′
⇐⇒ pL ≿P pL′ (1)

where pL (similarly pL′ ) is the prospect

pL =
1
#I

∑
i∈I

Pi(L).

17 The use of only rational numbers α in stating Two-Stage Anonymity is
simply a matter of precision: we do not require more. In fact, the obvious
generalization to real α will hold for all our social preorders, as a consequence
of Theorem 2.2.
18 More precisely, we first use the quotient map π :D → D/Σ to push forward
the sigma algebra on D to a sigma algebra on D/Σ . Thus C ⊂ D/Σ is defined
to be measurable if and only if its preimage π−1(C) is a measurable subset of
D . Note that π−1 defines a bijection between {measurable subsets of D/Σ} and
{measurable, Σ-invariant subsets of D}. Next we push forward each L ∈ L to
a probability measure LΣ on D/Σ: by definition, LΣ (C) = L(π−1(C)). Then the
principle is that L ∼ L′ if LΣ = L′

Σ , and this is easily shown to be equivalent to
Posterior Anonymity.
19 Posterior Anonymity itself follows from Anonymity and the widely accepted
principle of monotonicity, provided the social preorder is upper-measurable, a
common domain assumption needed for monotonicity to apply (see Section 5.1).
Anonymity is the case of Two-Stage Anonymity where α = 1.

Proof. First let us show that if the social preorder satisfies
the three conditions, then it is has the form (1). Consider the
lottery L1 :=

1
#Σ

∑
σ∈Σ σ L. By repeated application of Two-Stage

Anonymity, we have

L =
1

#Σ

∑
σ∈Σ

L ∼
1

#Σ

∑
σ∈Σ

σ L = L1.

On the other hand, for any i ∈ I,

Pi(L1) =
1

#Σ

∑
σ∈Σ

Pi(σ L) =
1

#Σ

∑
σ∈Σ

P
σ−1 i(L) = pL.

By Anteriority, we must have L1 ∼ L(pL), and so L ∼ L(pL).
Similarly, we will have L′

∼ L(pL′ ). Thus L ≿ L′ if and only if
L(pL) ≿ L(pL′ ). By Reduction to Prospects, the latter holds if and
only if pL ≿ pL′ .

Now we must check that, conversely, the social preorder de-
fined by (1) necessarily satisfies the three conditions. For Anteri-
ority, suppose that Pi(L) = Pi(L

′) for every i ∈ I. Then clearly
pL = pL′ , so L ∼ L′ by (1). As for Reduction to Prospects, (1)
gives L(P) ≿ L(P ′) if and only if pL(P) ≿P pL(P ′). However,
this biconditional is equivalent to Reduction to Prospects since
pL(P) = P and pL(P ′) = P ′. Finally, suppose given L,M, σ , α as
in the statement of Two-Stage Anonymity. To deduce from (1)
that αL + (1 − α)M ∼ α(σ L) + (1 − α)M , it suffices to show that
pαL+(1−α)M = pα(σ L)+(1−α)M . It is easy to see that pL = pσ L, and
then we can calculate

pαL+(1−α)M = αpL + (1 − α)pM = αpσ L + (1 − α)pM
= pα(σ L)+(1−α)M . □

Definition 2.3. We say that a social preorder ≿ is generated
by the individual preorder ≿P whenever the constant population
domain conditions (A)–(C) hold and ≿ satisfies (1). We call such
social preorders quasi utilitarian.

We defend the ‘quasi utilitarian’ terminology in Section 6.3.
The following result shows that our favored principle of Pos-

terior Anonymity, which implies Two-Stage Anonymity, could be
used in place of the latter in Theorem 2.2.

Proposition 2.4. If a social preorder is generated by an individual
preorder, then it satisfies Posterior Anonymity.

2.5. Representations

We now introduce some standard terminology which will be
useful in the subsequent examples and results.

Definition 2.5. Given two preordered sets (X,≿X ) and (Y ,≿Y ),
a function f : X → Y represents ≿X (or is a representation of ≿X )
when, for all x1, x2 ∈ X , x1 ≿X x2 ⇐⇒ f (x1) ≿Y f (x2).

The mere existence of a representation is trivial; let X = Y and
f be the identity mapping. The interesting case is where (Y ,≿Y )
is better behaved or easier to understand or more fundamental
than (X,≿X ). For example, Y may be R with the usual ordering.
For another example, the conclusion of Theorem 2.2 can be put
by saying that the function L → P given by L ↦→ pL represents
≿.

We will be much concerned with the case where (Y ,≿Y )
is a preordered vector space, or a slightly more general space
that we call a Q-preordered vector space. These are discussed
in Sections 4.2 and 4.3, where we show that they are especially
useful for making sense of vector-valued expected total utility
representations in the absence of continuity or completeness
assumptions.
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2.6. Examples

Now let us give some examples of individual preorders and the
social preorders they generate. For concreteness and simplicity,
we will take W to be the real line R and take P to be the set of
all finitely supported probability measures on W.20

Example 2.6 (Expected Utility and Total Utility). Suppose that ≿P
orders P by the expectations of a utility function u:W → R.
That is, ≿P is represented by the function U:P → R defined
by U(P) =

∑
x∈W P({x})u(x). (This sum, which has finitely many

non-zero terms, can also be written as an integral
∫
W u dP .)

The corresponding social preorder is represented by the func-
tion V :L → R given by V =

∑
i∈I U ◦ Pi. We can identify

V (L) as the total expected utility of L, or equivalently as the
expected total utility, since V (L) =

∑
i∈I

∑
x∈W Pi(L)({x})u(x) =∑

d∈D L({d})
∑

i∈I u(Wi(d)). For a more general statement and
proof, see Theorem 4.4.

As we discuss in Section 4.1, the conceptual content of the
assumption that ≿P has an ordinary (i.e. real-valued) expected
utility representation is given by axioms of continuity, complete-
ness, and independence. The next examples illustrate, for one
thing, what can happen if one denies each of these axioms.
In particular, the first two examples below illustrate the main
lesson of Section 4: as long as the individual preorder satisfies
strong independence, the social preorder still has an expected
total utility representation. The last example illustrates the denial
of strong independence.

Example 2.7 (Leximin). In this example the individual preorder
satisfies strong independence and completeness, but not the ax-
iom of mixture continuity. Let ≿P order P so that P ≿P P ′ if
and only if either P = P ′ or the smallest x ∈ W at which
P({x}) ̸= P ′({x}) is such that P({x}) < P ′({x}). When restricted to
distributions, the corresponding social preorder is leximin: d ≻ d′

if and only if the worst off individual in d is better off than
the worst off in d′; if they are tied, turn to the next worst off.
Although this seems quite different in flavor from Example 2.6,
it becomes structurally very similar once we allow the utility
function u to have values in a preordered vector space V rather
than the real numbers. We develop this idea in Section 4.2, but
a quick explanation is that, since one can average as well as add
up vectors, it still makes sense to speak of the expected utility
of a prospect, the total utility of a distribution, and the expected
total utility of a lottery.21 In this example, the vector space can be
taken to be the space V of finitely supported functions W → R.
The ‘lexicographic’ ordering ≿V on V is defined by the condition
that f ≿V g if and only if f = g or the least x ∈ W for which
f (x) ̸= g(x) is such that f (x) > g(x). The utility function u:W → V
is given by u(x) = −χ{x}, that is, minus the characteristic function
of {x}. The social preorder is then represented by expected total
utility just as in Example 2.6.

Example 2.8 (Incompleteness). Here the individual preorder sat-
isfies strong independence and mixture continuity, but it is not

20 Conceptually, a probability measure p on a measurable space Y is finitely
supported if it is supported on a finite set (in the sense of note 33). Equivalently,
though, it just means that p can be written as a convex combination of delta-
measures. The equivalence, which we prove in Lemma A.4, holds regardless of
whether the sigma algebra separates the points of Y , e.g. by making singletons
measurable. For reasons not to require a separating sigma algebra, see Halpern
(2003, §2.3).
21 For the purpose of these examples, we can understand expectations as
weighted sums, as in Example 2.6. In Section 4.2 we explain how to understand
vector-valued expectations as integrals.

in general complete. Let U be a set of real-valued functions on
W. Let ≿P preorder P so that P ≿P P ′ if and only if, for all u in
U , the expected value of u is at least as great under P as under
P ′. The corresponding social preorder ranks L ≿ L′ if and only if,
for each u in U , the expected total value of u is at least as great
under L as under L′. In Section 4.2 we explain how this type of
‘multi expected utility’ representation by many real-valued utility
functions is equivalent to an expected utility representation by a
single, vector-valued utility function. With respect to this single
utility function, the social preorder again ranks lotteries by their
expected total utility.

Example 2.9 (Risk-Avoidance and Rank-Dependence). Finally, here
is an example in which the individual preorder violates strong
independence, even though it is complete and satisfies mixture
continuity. This has interesting consequences for the social pre-
order: it illustrates a connection between strong independence
and strong separability that we develop in Section 4.3.

Say that ≿P is a ‘rank-dependent’ individual preorder (RDI) if
it has a ‘rank-dependent utility’ representation.22 In other words,
besides a utility function u:W → R, there is an increasing
function r: [0, 1] → [0, 1], with r(0) = 0 and r(1) = 1, which
we will call the ‘risk function’; ≿P is represented by U:P → R
defined by the following sum (which has finitely many non-zero
terms):

U(P) :=

∑
x∈W

Pr (x)u(x), where Pr (x) := r(P[x, ∞)) − r(P(x, ∞)).

If in addition r is convex, we will say that ≿P is ‘risk-avoidant’.23
Although U(1w) = u(w) holds in general, and ordinary ex-

pected utility theory is satisfied when r(x) = x, U(P) is not in
general simply the expected utility of P . To see the deviation from
ordinary expected utility, assume for concreteness r(x) = x2 and
u(x) = x. Consider the following distributions containing four
individuals with listed welfare states.
dA = (1, 1, 1, 1), dB = (5, 0, 1, 1)
dC = (1, 1, 0, 0), dD = (5, 0, 0, 0).

Each of these distributions dX determines a prospect PX := p1dX
that gives equal chances to each individual’s welfare state; for
example, PB gives probability 1/4 to welfare states 5 and 0, and
probability 1/2 to welfare state 1. Computing the value of U
for each prospect yields PA ≻P PB and PD ≻P PC . This has the
structure of the Allais paradox, violating strong independence. For
the corresponding social preorder, our aggregation theorem then
implies that dA ≻ dB and dD ≻ dC , violating strong separability.

Such violations of strong separability have been seen as ex-
pressions of egalitarianism. Thus it might be said that while the
perfect equality in dA outweighs the greater total welfare in dB,
there is not much difference in inequality between dC and dD, so
the greater total in dD is decisive (Sen 1973, p. 41, Broome 1989).

Returning to the general case, assume a population of size n.
Say that a preorder ≿ on distributions is a rank-dependent social
preorder (RDS) if, for some a1, . . . , an ≥ 0 with

∑
k ak = 1, ≿

ranks a distribution d with welfare states w1 ≤ w2 ≤ · · · ≤ wn
according to the aggregate score

V (d) := a1u(w1) + a2u(w2) + · · · + anu(wn).

22 Rank-dependent utility representations were introduced in Quiggin (1982).
For further discussion of this popular non-expected utility theory, see e.g. Quig-
gin (1993), Wakker (1994), Schmidt (2004, §4.2), and Buchak (2013, Ch. 2). The
function r is often required to be continuous and strictly increasing, but the
weaker definition will be useful.
23 This term is from Buchak (2013, p. 66); Yaari (1987) and Chateauneuf and
Cohen (1994) use ‘pessimistic’.
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If in addition a1 ≥ a2 ≥ · · · ≥ an, we will say that ≿ is
‘downwards increasing’.

Downward increasing RDSs are called ‘generalized Gini’ by
Blackorby and Donaldson (1980) and Weymark (1981), who take
them to be natural examples of egalitarian preorders. We will
say more about the relationship between apparently egalitarian
preorders and our aggregation theorems in Section 6.1. But for
now, by setting ak = r( n−k+1

n ) − r( n−k
n ), we see that ≿ is a

[downwards increasing] RDS if and only if it is generated by a
[risk-avoidant] RDI. Thus what has been taken to be a canonical
form of egalitarianism at the social level emerges from what has
been characterized as ‘pessimism about risk’ at the individual
level. For example, by setting r(x) = 1 if x = 1, r(x) = 0
otherwise, we obtain the social preorder on distributions given
by the Rawlsian maximin rule.

Curiously, though, the empirically best supported RDIs have
S-shaped risk functions.24 Provided the population is large eno-
ugh, such RDIs lead to RDSs which are apparently inegalitarian
at the high end, favoring unit transfers from the relatively well-
off (but perhaps absolutely badly off) to the relatively better
off. Given the lack of enthusiasm for inegalitarian ideas, this
might call into question the sometimes mooted idea that people’s
attitudes to inequality reflect their attitudes to risk.

The examples illustrate how distributive views which are tra-
ditionally seen as very different can be obtained while main-
taining our axioms for aggregation simply by varying the form
of welfare comparisons.25 General results corresponding to such
possibilities will be given in Section 4.

2.7. Uncertainty

As laid out in Section 2.2, we model uncertainty using proba-
bility measures on sets of outcomes (whether welfare states or
distributions). But analogues of our aggregation theorems hold
for many other ways of modeling uncertainty. All we need is
that we can take well-behaved mixtures (even just with ratio-
nal coefficients) of the appropriate analogues of lotteries and
prospects. Thus there is no difficulty in dealing with infinitesimal
probabilities, non-additive ‘capacities’, or many other variations
of standard probability theory.26 Even in Savage’s decision theory,
in which there is no explicit representation of uncertainty, it
is sometimes possible to endow the set of acts with convex
structure, as in Ghirardato et al. (2003).

More formally, suppose we have a finite set I with permuta-
tion group Σ; convex sets P and L (or, more generally, associative
mixture sets27); a mixture-preserving28 map L:P → L with, for
each i ∈ I, a mixture-preserving left-inverse Pi:L → P; and
finally a mixture-preserving action of Σ on L such that Pi(σ L) =

24 See Schmidt (2004, §4.2.2) for references.
25 This reflects a theme in social choice theory, where, for example, classical
utilitarianism and leximin can be derived from common axioms except for
different assumptions about the measurability of welfare; see d’Aspremont and
Gevers (1977).
26 One possibility particularly relevant to the themes of this paper is the use of
probability-like measures with values in preordered vector spaces. In McCarthy
et al. (2019) we explain how such ‘vector measures’ generalize other ways of
representing likelihood, give a representation theorem, and apply this idea to
the problem of opinion pooling.
27 For a definition of ‘mixture set’, see axioms (A1)–(A3) of Mongin (2001b),
following Herstein and Milnor (1953); we call ‘associative’ a mixture set that also
satisfies Mongin’s axiom (A4). Example 2.10 will require this level of generality.
28 A map f : X1 → X2 between convex sets, or more generally between mixture
sets, is mixture-preserving (by some authors called ‘affine’ or ‘convex-linear’) if
f (αx + (1 − α)y) = αf (x) + (1 − α)f (y) for all x, y ∈ X1, α ∈ [0, 1]. Below, the
action of Σ on L is assumed mixture-preserving in the sense that L ↦→ σ L is
mixture-preserving for each σ ∈ Σ .

P
σ−1 i

(L) for every i ∈ I, L ∈ L, σ ∈ Σ . Then Theorem 2.2 makes
sense as stated, and is still valid, with the same proof.29

Here are two more detailed illustrations. In both, we assume
given the population I with permutation group Σ , as well as sets
P and L of probability measures satisfying the domain condi-
tions in Section 2.2; we use these to construct more complicated
domains that do not themselves consist of probability measures.

Example 2.10 (Convex Sets of Measures). In some choice frame-
works one uses a convex set of probability measures, instead of a
single one, to model uncertainty, as in, for example, the maxmin
expected utility decision theory of Gilboa and Schmeidler (1989)
and the Knightian decision theory of Bewley (2002). In any case,
let con(P) and con(L) be the sets of nonempty convex subsets
of P and L. We can apply our aggregation theorem to relate an
individual preorder ≿con(P) on con(P) to a social preorder ≿con(L)
on con(L). To do this we first have to define suitable mixing oper-
ations on con(P) and con(L): for any α ∈ [0, 1] and P,Q ∈ con(P),
set αP+(1−α)Q = {αP+(1−α)Q : P ∈ P,Q ∈ Q}, and similarly for
con(L). Second, we need suitable maps Lcon: con(P) → con(L),
P con

i : con(L) → con(P), and an action of Σ on con(L). Define
Lcon(P) = {L(P) : P ∈ P}, P con

i (L) = {Pi(L) : L ∈ L}, and
σL = {σ L : L ∈ L}.

Example 2.11 (Anscombe–Aumann). In the Anscombe and Au-
mann (1963) framework, perhaps the most popular decision-
theoretic treatment of uncertainty, the objects of choice are
probability-measure-valued functions on a set S of states of
nature. In our setting, consider the function spaces PS and LS . Our
aggregation theorem can be used to relate an individual preorder
≿PS on PS to a social preorder ≿S on LS . First we can define
mixtures in PS , and similarly LS : for any P,Q ∈ PS and α ∈ [0, 1],
(αP+(1−α)Q)(s) = α(P(s))+(1−α)(Q(s)). Then we need suitable
maps LS :PS

→ LS , P S
i :L

S
→ PS , and an action of Σ on LS . For

this we can define LS(P)(s) = L(P(s)), P S
i (L)(s) = Pi(L(s)), and

(σL)(s) = σ (L(s)).

The formalism explained in these examples can be interpreted
in different ways, along the lines laid out in Section 2.1. But they
especially illustrate the relevance of our aggregation theorems to
the much discussed problem of social aggregation in the face of
individual disagreement about uncertainty.30 Assume, for exam-
ple, a social choice perspective in which it is seen as desirable for
social evaluation to reflect the social consensus about uncertainty.
One model might assume that each individual is equipped with
a subjective probability measure (or a convex set of measures),
and regard the social consensus about uncertainty as represented
by their convex hull (Brunnermeier et al., 2014; Alon and Gayer,
2016). Another could take each individual to be equipped with
a preorder of Anscombe–Aumann acts, and see the social con-
sensus about welfare comparisons under uncertainty as given by
their intersection, or some extension thereof. As the examples
illustrate, variations on our aggregation theorems still apply, even
when, as in these cases, the social consensus about uncertainty
can fall a long way short of being representable by a single real-
valued probability measure.31 We plan to discuss these and other
examples in future work, but to focus on other problems, we stick
here with our simpler framework in which uncertainty is always
represented by a single probability measure.

29 An analogous remark applies to the variable population analogue
Theorem 3.5, but we omit the details.
30 Section 6.7.4 gives references to discussions of this problem in the
framework of Harsanyi’s social aggregation theorem.
31 Of course, the literature on pooling uncertain opinion is vast, and we are
not arguing for any particular approach. See Dietrich and List (2016) for an entry
to the literature.
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3. A variable population aggregation theorem

In this section we present a version of the aggregation theorem
in which the population is allowed to vary from one distribution
to another. In Sections 3.1–3.3 we present the basic framework,
axioms, and theorem. In Section 3.4 we show that any constant
population individual preorder can be extended, in many differ-
ent ways, to a variable population one that generates a social
preorder. In Sections 3.5 and 3.6 we consider some examples.

3.1. Framework

At a basic level, the generalization to variable populations is
straightforward: we simply introduce a new element Ω repre-
senting nonexistence, and use an expanded set Wv

:= W∪{Ω} of
welfare states. (In general, we will mark variable population ob-
jects with a superscript v, to distinguish them from their constant
population analogues.) This allows each distribution to represent
some individuals as nonexistent and, otherwise, Theorem 2.2
remains unchanged. To be sure, there are some questions of
interpretation. For example, we will speak of Ω as a welfare
state, but one need not take this literally. We will say more about
comparisons involving Ω in Section 3.2.

The shortcoming of the approach just mentioned is there is
only a finite set I of possible individuals. The interesting gen-
eralization is to allow the population size to be unbounded. We
will, however, insist that any given lottery involves only finitely
many individuals. We spell this out as assumption (Dv) below.32
In comparing two lotteries, then, only a finite population will be
relevant, and we can apply the ideas of Section 2. Only a little
more work is required to ensure that these pairwise comparisons
combine into a well-defined social preorder. That is what we now
explain.

Thus let I∞ be an infinite set of possible individuals. Assume
that Wv and Dv

⊂ (Wv)I
∞

are measurable spaces, with Ω ∈ Wv,
and that Pv and Lv are non-empty convex sets of probability
measures on Wv and Dv respectively. We make the following
domain assumptions, parallel to those of Section 2.2.

(Av) We assume that, for each i ∈ I∞, the projection Wv
i :D

v
→

Wv is measurable. This again allows us to define a func-
tion Pv

i from lotteries to prospects, so that Pv
i (L)(A) =

L((Wv
i )

−1(A)) for measurable A ⊂ Wv. We assume that
Pv

i (L
v) ⊂ Pv.

(Bv) For each w ∈ Wv and each finite population I ⊂ I∞,
we assume that our set Dv of distributions contains the
distribution Dv

I (w) such that

Wv
i(Dv

I (w)) =

{
w if i ∈ I
Ω if not.

We further assume that Dv
I :W

v
→ Dv is measurable.

We can then define a corresponding function Lv
I from

prospects to lotteries. Thus if B is a measurable subset of
Dv, Lv

I (P)(B) = P((Dv
I )

−1(B)). We assume that Lv
I (P

v) ⊂ Lv.

32 Aggregating the welfare of infinitely many individuals raises quite
formidable problems which we thus set aside. For example, assuming inter-
personal comparisons as in Harsanyi’s utilitarian theorem, full Anonymity is
inconsistent with strong Pareto; see Bostrom (2011) for an overview of such
problems and Pivato (2014) for a careful study of separable aggregation in
the infinite setting with applications to the present setting of risk. Without
assuming interpersonal comparisons, see Zhou (1997) for an infinite population
version of Harsanyi’s social aggregation theorem; Danan et al. (2015) for an
infinite population version without assuming completeness; and McCarthy et al.
(2019) for an infinite population version that dispenses with continuity and
completeness.

(Cv) We assume that Dv is invariant under permutations of I∞.
We write Σ∞ for the group of all such permutations. We
further assume that the action of Σ∞ on Dv is measurable.
This allows us to define the action of Σ∞ on lotteries. We
assume that Lv is Σ∞-invariant.

Finally, we will assume in (Dv) that each distribution in Dv and
each lottery in Lv involves only finitely many individuals. This
requires careful formulation. For a distribution d, the assumption
is that Wv

i (d) = Ω for all but finitely many i ∈ I∞. One
might guess that for a lottery L to ‘involve only finitely many
individuals’, it would suffice that Pi(L) = 1Ω for all but finitely
many i ∈ I∞. But this is not conceptually the right criterion, as
the following example shows.

Example 3.1. Suppose that I∞ = [0, 1], and let di be the
distribution in which only individual i exists, with welfare state
w. Let L be the uniform probability measure over these di. Then
each person i is certain not to exist – each has prospect 1Ω –
yet there is a clear sense in which L involves infinitely many
individuals, rather than no individuals. Namely, for any finite
population I ⊂ I∞, it is certain that someone not in I exists. One
reason that this is problematic is that it would be natural to reject
Anteriority in this example. Anteriority would say that L is just as
good as no one existing at all, but intuitively it is rather as good
as having one person who is certain to exist in welfare state w.

To state a better criterion, given finite I ⊂ I∞, let Dv
I be the

subset of Dv consisting of distributions d such that Wv
i (d) = Ω for

all i /∈ I. We always consider Dv
I as a measurable space, with its

sigma algebra restricted from the one on Dv. In other words, its
measurable sets are those of the form B ∩ Dv

I , with B measurable
in Dv. The assumption we make is

(Dv) We assume that each distribution d ∈ Dv is a member of
some Dv

I , and each lottery L ∈ Lv is supported on some
Dv

I ,
33 with I ⊂ I∞ finite in both cases.

We write Lv
I for the subset of Lv consisting of lotteries which

are supported on Dv
I . In this notation, I ⊂ I∞ is always assumed

to be finite. Note that, if I is contained in some larger population
I′, then Dv

I ⊂ Dv
I′ , and any lottery supported on Dv

I is also a
lottery supported on Dv

I′ . Because of this, any two lotteries in Lv

are members of some common Lv
I , with I ⊂ I∞ finite.

Example 3.2. The various measurability assumptions are again
guaranteed if Dv

⊂ (Wv)I
∞

has the product sigma algebra, or if
Wv is a topological space, Dv has the product topology, and we
use Borel sigma algebras (cf. Example 2.1). However, it would be
natural to consider a finer-grained sigma algebra by including the
sets Dv

I . Then Lv
I would be the subset of Lv containing lotteries L

such that L(Dv
I ) = 1. But we do not need this assumption.

The implications of the domain assumptions are illustrated by
the following lemma.

Lemma 3.3. Assume the variable population domain conditions
(Av)–(Dv).

(i) Given L ∈ Lv
I , we have Pv

i (L) = 1Ω for any i ∈ I∞ \ I. In
particular, 1Ω ∈ Pv.

33 We say that a probability measure p on a measurable space Y is supported
on A ⊂ Y (not necessarily measurable) if p(B) = 0 whenever B ⊂ Y is
measurable and disjoint from A. More conceptually, the condition is that p is
the pushforward to Y of a probability measure on A by the inclusion of A in Y ,
assuming that A is given the sigma algebra restricted from Y . This pushforward
is a bijection between probability measures on A and probability measures on
Y supported on A, and it is convenient to identify these things informally.
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(ii) Dv contains the ‘empty distribution’ dΩ such that Wv
i (dΩ ) =

Ω for all i ∈ I∞.
(iii) Lv contains the ‘empty lottery’ 1dΩ

, and Pv
i (1dΩ

) = 1Ω for all
i ∈ I∞.

(iv) Suppose {Ω} is measurable in Wv. If Pv
i (L) = 1Ω for all

i ∈ I∞, then L = 1dΩ
.

3.2. Axioms for aggregation

In parallel with the constant population case, we assume that
there is an ‘individual preorder’ ≿Pv on Pv, and a ‘social preorder’
≿v on Lv. The significance of these preorders was discussed in
Section 2.1, but there are some new subtleties having to do with
the possibility of individual non-existence, as we explain shortly.
The key axioms for aggregation are much as before, replacing
constant population objects by variable population ones. The only
notable point is that Reduction to Prospects must be formulated
relative to every finite, non-empty subset of I∞.

Anteriority (Variable Population). If Pv
i (L) = Pv

i (L
′) for every

i ∈ I∞, then L ∼
v L′.

Reduction to Prospects (Variable Population). For any P, P ′
∈

Pv and any finite, nonempty I ⊂ I∞, Lv
I (P) ≿v Lv

I (P
′) if and

only if P ≿Pv P ′.

Two-Stage Anonymity (Variable Population). Given L,M ∈

Lv, σ ∈ Σ∞, and α ∈ [0, 1] ∩ Q,

αL + (1 − α)M ∼
v α(σ L) + (1 − α)M.

In line with Theorem 2.2, Anteriority, Reduction to Prospects,
and Two-Stage Anonymity will turn out to be satisfied by at most
one social preorder. However, for such a social preorder to exist,
we will need a condition on the individual preorder.34

Omega Independence. For any P, P ′
∈ Pv and rational number

α ∈ (0, 1),

P ≿Pv P ′
⇐⇒ αP + (1 − α)1Ω ≿Pv αP ′

+ (1 − α)1Ω .

We will present a defence of this condition, and discuss its
relation to other independence axioms, in Section 3.4.

Let us comment on the justification for our three main axioms
in the variable population context. Anteriority seems just as com-
pelling as in the constant population case. And as in Section 2.3,
our favored motivation for Two-Stage Anonymity is that it is
entailed by Posterior Anonymity, now taking the following form.

Posterior Anonymity (Variable Population). Given L, L′
∈

Lv, suppose that L(B) = L′(B) whenever B is a measurable,
Σ∞-invariant subset of Dv. Then L ∼

v L′.

But Reduction to Prospects requires further comment. In Sec-
tion 2.1, we endorsed the following interpretation of the constant
population individual preorder:

(E) P ≿P Q if and only if, for any individuals i and j, facing
prospect P is at least as good for i as facing Q is for j.

When the population consists of a single individual i, that is,
when I = {i}, it is also natural to suppose

(F) P ≿P Q if and only if L ≿ L′, where L and L′ are the
one-person lotteries in which the single person i faces the
prospects P and Q respectively.

34 Again, we can apply Theorem 2.2 to determine a unique social preorder on
each Lv

I separately. The issue is whether these are compatible, in the sense of
defining a social preorder on Lv as a whole.

This is an instance of Reduction to Prospects. In the variable
population case, one could extend (E) to the following:

(Ev) P ≿Pv Q if and only if, for any individuals i and j, facing
prospect P is at least as good for i as facing Q is for j.

And similarly one has the following special case of Reduction to
Prospects (Variable):

(Fv) P ≿Pv Q if and only if L ≿v L′, where L and L′ are the
one-person lotteries in which the single person i faces the
prospects P and Q respectively.

Granted the constant population (E), (F) appears to be very plau-
sible, although we discuss a possible anti-utilitarian objection to
it at the end of Section 6.1. But the variable population case is
more subtle.

Example 3.4. The following combination of views is well known,
and often endorsed by utilitarians:

(a) A distribution consisting of one person with an excel-
lent life is better, according to the social preorder, than
a distribution containing no one at all; and, especially, a
distribution consisting of one person with a terrible life, full
of suffering, is worse than a distribution containing no one
at all.

(b) Nonetheless, existing at a given welfare state cannot be
better or worse for an individual than not existing at all.35

Granted (Ev), this combination of views violates (Fv), and
hence Reduction to Prospects.

One option for defending Reduction to Prospects in the vari-
able population case is to reject this combination of views. How-
ever, we prefer not to take a position on this. Instead, our as-
sumption is that there is a preorder ≿Pv on prospects satisfying
(E), (F), and (Fv), while remaining neutral on whether (Ev) also
holds.36 However one settles this question, it seems to us that
Anteriority and Two-Stage Anonymity, as well as Reduction to
Prospects, retain their plausibility.

3.3. The aggregation theorem

Now we state the main variable population result. We assume
given domains I∞, Wv, Dv, Pv, and Lv satisfying the domain
conditions (Av)–(Dv) of Section 3.1.

Theorem 3.5. Given an arbitrary preorder ≿Pv on Pv, there is
at most one preorder ≿v on Lv satisfying Anteriority, Reduction to
Prospects, and Two-Stage Anonymity. When it exists, it is given by

L ≿v L′
⇐⇒ pIL ≿Pv pIL′ (2)

for any finite non-empty I ⊂ I∞ such that L and L′ are lotteries in
Lv
I , and where pIL (similarly pIL′ ) is the prospect

pIL =
1
#I

∑
i∈I

Pv
i (L).

It exists if and only if the individual preorder satisfies Omega Inde-
pendence.

35 This combination of views is endorsed, for example, by Broome (2004,
cf. pp. 63–65) and Blackorby et al. (2005, cf. pp. 23–24); a classic argument
for (b) is given in Broome (1999, p.168).
36 For opposing utilitarian views, Broome (2004) and Blackorby et al. (2005)
effectively reject (Ev), while, for example, Hammond (1991) would accept (Ev)
and (Fv) as conceptual truths, serving to define individual welfare comparisons
in terms of the social preorder.
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Proof. Once we have fixed I, the proof goes the same way as that
of Theorem 2.2; for example, we define L1 and L′

1 by summing
over the group ΣI ⊂ Σ∞ of permutations of I.

The only worry is that the comparison between L and L′

defined by (2) might depend on I, and that is where Omega
Independence comes in. In detail, if I ⊂ I′ and #I = m and
#I′ = n, then

pI
′

L =
m
n
pIL +

n − m
n

1Ω .

Thus Omega Independence ensures the required independence of
I:

pI
′

L ≿ pI
′

L′ ⇐⇒ pIL ≿ pIL′ .

To see that Omega Independence is a necessary condition, note
that we can choose I and I′ so that m/n equals any rational
number α ∈ (0, 1). □

The following parallels Definition 2.3.

Definition 3.6. We say that a variable population social preorder
≿v is generated by the individual preorder ≿Pv whenever the
variable population domain conditions (Av)–(Dv) hold and ≿v

satisfies (2). We call such social preorders quasi utilitarian.

The social preorders described by Theorem 2.2 turned out
to automatically satisfy Posterior Anonymity. We can prove a
similar result here, but we need a technical assumption. It would
suffice to assume that I∞ is countable—a modest limitation, given
Anonymity and the fact that each lottery involves only finitely
many individuals. However, we instead focus on a condition to
the effect that there are plenty of measurable sets. Say that the
sigma algebra on Dv is coherent if the following holds: B ⊂ Dv is
measurable in Dv if and only if, for every finite I ⊂ I∞, B ∩ Dv

I
is measurable in Dv

I . (The left-to-right implication is automatic,
since we defined the sigma algebra on Dv

I to be the restriction of
the one on Dv.) Note that coherence is a harmless assumption,
in the sense that one can always expand the sigma algebra on
Dv to make it coherent without invalidating any of the domain
conditions (see Lemma A.5 in Appendix A for details).

Proposition 3.7. Suppose that the sigma algebra on Dv is coherent,
or that I∞ is countable. If a variable population social preorder
is generated by an individual preorder, then it satisfies Posterior
Anonymity.

In parallel to the constant population case, this shows that,
granted coherence, Posterior Anonymity could be used in place
of Two-Stage Anonymity in Theorem 3.5.

Remark 3.8. In the constant population case, there is no real
difference between total and average utilitarianism. In this vari-
able population setting, the fact that the definition of pIL involves
‘averaging’ over members of I may seem to suggest that (2)
amounts to a form of average utilitarianism. But this impression is
misleading: while I contains every individual who has a positive
probability of existing under L or L′, it is an arbitrary indexing set
which may also contain individuals who are certain not to exist
under L and L′, and it can be replaced by any larger finite I′ ⊃ I
without effect. In fact, one cannot say whether (2) should be
seen as expressing a form of total utilitarianism, average utilitar-
ianism, or something else, without more information about ≿Pv .
Section 3.5 illustrates the extent to which theories with the form
of total and average utilitarianism are compatible with (2), while
Section 4 concludes that given (2), the social preorder has an
expected total utility representation if and only if the individual
preorder satisfies strong independence.

3.4. Omega independence

We now argue that Omega Independence is a fairly weak con-
dition; in particular, it is compatible with any individual preorder
on P ∪ {1Ω}.

To do this we need to be able to identify members of P with
members of Pv. For this we assume that P is a (non-empty)
convex set of probability measures on a measurable spaceW, that
Wv

= W ∪ {Ω}, and that Wv has the sigma algebra generated
by the one on W. In other words, A ⊂ Wv is measurable in Wv

if and only if A ∩ W is measurable in W; in particular, W and
{Ω} are measurable in Wv. This enables us to identify members
of P with probability measures on Wv by the natural inclusion
P ↦→ Pv, where Pv(A) := P(A ∩ W) for all measurable A in Wv.37
We then identify Pv with the convex hull of PΩ := P ∪ {1Ω}. We
summarize these assumptions by saying that Pv extends P. For
any sets X ⊂ Y , we also say that a preorder ≿Y on Y extends a
preorder ≿X on X if x ≿X x′

⇐⇒ x ≿Y x′ for all x, x′
∈ X .

Proposition 3.9. Assume that Pv extends P. Suppose given a
preorder ≿P . Let ≿PΩ

be any preorder on PΩ that extends ≿P . Then

(i) There is a preorder ≿Pv on Pv that extends ≿PΩ
(and hence

≿P ) and satisfies Omega Independence.
(ii) There is a preorder ≿Pv on Pv that extends ≿PΩ

(and hence
≿P ) and violates Omega Independence.

The first part shows that Omega Independence is compatible
with any preorder on PΩ . For example, having fixed any ≿P ,
Omega Independent ≿Pv can be chosen so that for a given P ∈ P,
1Ω ∼Pv P; alternatively, Omega Independent ≿Pv can be chosen
so that 1Ω ⋏Pv P (or 1Ω ≻Pv P , or P ≻Pv 1Ω ) for all P ∈ P. This
provides the first sense in which Omega Independence is a weak
condition.

The proposition as a whole shows that no matter how nonex-
istence is compared with other welfare states, Omega Indepen-
dence of ≿Pv is logically independent of strong independence
of ≿P , despite the formal resemblance between these princi-
ples. In particular, because of the qualitative distinction between
nonexistence and other welfare states, anyone who is moved
by something like the Allais paradox to reject strong indepen-
dence for ≿P might well accept Omega Independence for ≿Pv .
In addition, even if ≿P satisfies strong independence, Omega
Independence for ≿Pv falls a long way short of implying strong
independence for ≿Pv ; Example 3.11 will illustrate this with a
natural view about the value of nonexistence. These observations
provide a second sense in which Omega Independence is weak.

Our variable population Theorem 3.5 shows that given a vari-
able population domain, any Omega Independent individual pre-
order is compatible with our axioms of aggregation. That is a final
sense in which Omega Independence is fairly weak, and in fact
Theorem 3.5 gives strong reasons to accept Omega Independence.
If the social preorder satisfies Anteriority, Reduction to Prospects
and Two-Stage Anonymity, then the theorem tells us that the
individual preorder must satisfy Omega Independence. This is
an argument for Omega Independence from seemingly modest
principles of aggregation.

Of course, someone who strongly objected to Omega Indepen-
dence could instead interpret Theorem 3.5 as an impossibility
theorem.38

37 Another way to put this is that the sigma algebra on Dv is the pushforward
of the one on D by the inclusion of W in Wv , and members of P are identified
with their pushforwards.
38 We thank a referee for this observation.
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3.5. Examples

In the following examples we assume that Pv extends P. In
each example we give a general construction to show how a
natural view about welfare comparisons involving nonexistence
extends a given ≿P to an Omega Independent ≿Pv , illustrating
Proposition 3.9(i). We then make the construction more concrete
by further assuming the framework of Example 2.6, so that P is
the set of finitely supported probability measures on W = R, im-
plying that Pv is the set of finitely supported probability measures
on Wv

= W ∪ {Ω}, and ≿P is represented by expectations of a
utility function u:W → R.

Example 3.10 (Total Utility and Critical Level Utilitarianism). One
possibility for extending a given ≿P to ≿Pv is to identify some
prospect P0 ∈ P that is effectively interchangeable with Ω , in the
sense that, for any P ∈ P and α ∈ [0, 1],

αP + (1 − α)1Ω ∼Pv αP + (1 − α)P0.

While this equivalence determines ≿Pv in terms of P0 and ≿P , it
does not guarantee that ≿Pv satisfies Omega Independence. But it
does if ≿P satisfies strong independence.

To illustrate, in the framework of Example 2.6, suppose we
extend the utility function u:W → R to a function u:Wv

→

R, and define ≿Pv to be the individual preorder represented by
expectations of this extension. This amounts to saying that Ω is
interchangeable with any P0 ∈ P that has expected utility u(Ω)
(although there might not be such a P0). The corresponding social
preorder is represented by the expected value of

∑
i∈I∞ (u◦Wv

i −

u(Ω)); see Theorem 4.4(iii).
Social orders of this type are also given by the ‘critical level

utilitarianism’ of Blackorby et al. (2005), and the ‘standardized to-
tal principle’ of Broome (2004). These treatments do not formally
give nonexistence a utility value. Instead, writing I(d) for the
individuals who exist in distribution d, they posit some constant
c such that the social preorder is represented by the expected
value of

∑
i∈I(d)(u◦Wi−c). This constant is said to be a ‘critical’ or

‘neutral’ level of utility: an individual’s existence in a given distri-
bution contributes to social value to the extent that the utility of
her welfare state exceeds c. Thus the social preorders described in
the previous paragraph have a critical level utilitarian form with
critical level u(Ω).

As we explain in Remark 4.5, we could normalize u so that
u(Ω) = 0. The stated representation of the social preorder would
then have a total utility form; that is, L ≿v L′ if and only if L has
at least as much expected total utility. In Section 4 we consider
very general expected total utility representations of the social
preorder, but these might also be seen as general forms of critical
level utilitarianism.

Example 3.11 (Average Utilitarianism and Value Conditional on Ex-
istence). Here is a second way to extend a given ≿P to an Omega
Independent ≿Pv . It works whether or not ≿P satisfies strong
independence. The idea is that sure nonexistence is incomparable
to any other prospect, while in other cases the value of a prospect
P is to be identified with its value conditional on the existence of
the individual.39 So define ≿Pv by the rule that, given P, P ′

∈ P
and α, α′

∈ [0, 1],

αP + (1 − α)1Ω ≿Pv α′P ′
+ (1 − α′)1Ω

⇐⇒

{
α, α′ > 0 and P ≿P P ′, or
α = α′

= 0.

39 Such an idea is emphasized, for example, by Fleurbaey and Voorhoeve
(2016), and also seemingly endorsed by Harsanyi in correspondence reported
in Ng (1983).

Note that ≿Pv will violate strong independence (unless ≿P ranks
all prospects as equal).

In the framework of Example 2.6, the resulting variable pop-
ulation social preorder can be seen as a version of average util-
itarianism. It ranks lotteries by expected total utility divided by
expected population size; call this function of lotteries Av1. (Here
and in the next example, the total utility of a distribution d is
given by

∑
i∈I(d) u ◦Wi; nonexistence is not given a utility value.)

The ‘empty’ lottery in which it is certain that no one exists is
incomparable to the others.

This is an unusual version of average utilitarianism, but two
more obvious versions are less well behaved. Ranking lotteries by
expected average utility (Av2) violates Anteriority. Alternatively,
one could consider the expected utility conditional on existence
for each individual who has a non-zero chance of existing, and
then average over such individuals (Av3). Ranking lotteries by this
average then violates Two-Stage Anonymity.

To illustrate the differences between the three forms of av-
erage utilitarianism and total utilitarianism, consider the distri-
butions d1 = (0, Ω), d2 = (x, x), and d3 = (y, Ω), written as
utility profiles; thus one person exists in d1 with utility 0, two
people exist in d2 with utility x, and one person exists in d3 with
utility y. Consider the lotteries L =

1
21d1 +

1
21d2 and L′

= 1d3 .
Let Tot compute expected total utility. We find Av1(L) =

2x
3 ,

Av2(L) =
x
2 , Av3(L) =

3x
4 , and Tot(L) = x. On the other hand,

Av1(L′) = Av2(L′) = Av3(L′) = Tot(L′) = y. Thus the four different
views can result in different judgments about L versus L′.

Example 3.12 (Incomparability of Nonexistence). A third method
of defining ≿Pv may appeal to those who take to heart the view
mentioned in Example 3.4(b) that nonexistence is incomparable
to other welfare states. For P, P ′

∈ P and α, α′
∈ [0, 1], they may

define

αP + (1 − α)1Ω ≿Pv α′P ′
+ (1 − α′)1Ω

⇐⇒

{
α = α′ > 0 and P ≿P P ′, or
α = α′

= 0.

This invariably produces an individual preorder satisfying Omega
Independence. However, it leads to widespread social incompa-
rability: we will have L ⋏v L′ unless the expected population size
under L equals that under L′. In the framework of Example 2.6, the
social preorder ranks lotteries of the same expected population
size by their expected total utility. For illustration, the lotteries L
and L′ introduced in the previous example are always incompara-
ble. In the next subsection we give an example of a ‘neutral-range’
view that involves less widespread incomparability.

3.6. The Repugnant Conclusion

We now give some further examples organized around the
‘Repugnant Conclusion’ of Parfit (1986), which has played a cen-
tral role in discussions of variable-population aggregation. This is
the statement that for any distribution in which every individual
has the same very high welfare state, there is a better distribution
in which every individual has the same very low but positive
welfare state, corresponding to a life barely worth living. For
example, this is a consequence of critical level utilitarianism
(Example 3.10), on the assumption that ‘barely worth living’
lives have utility above the critical level. Many people find the
Repugnant Conclusion, or variations on it, as repugnant as the
name suggests (see e.g. Parfit 1986, Hammond 1988, Blackorby
et al. 1995).

Let w0 be the welfare state of a life that is barely worth living,
and W a much higher welfare state, representing an excellent
quality of life. Let Pα be the prospect α1W + (1 − α)1Ω , for
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α ∈ [0, 1]. Under the conditions of our variable population
aggregation theorem, the Repugnant Conclusion amounts to the
claim that 1w0 ≻Pv Pα , for some rational probability α ∈ (0, 1).

There are, at least formally, many ways in which this claim
about prospects can be denied. Some we have already seen. The
critical level utilitarianism of Example 3.10 holds that Pα ≻Pv

1w0 for any α ∈ (0, 1), as long as u(Ω) is above u(w0). The
average utilitarianism of Example 3.11 similarly holds that Pα ≻Pv

1w0 . And the highly incomplete social preorder of Example 3.12,
ranking lotteries of the same expected population size by their
expected total utility, holds that 1w0 ⋏Pv Pα .

In the first and third examples just mentioned, the individ-
ual preorder satisfies strong independence. As we have already
advertised, this leads to a general form of expected total utility
representation to be studied in Section 4. To illustrate the scope
of this result, we now give two further examples of individual and
social preorders that satisfy strong independence while avoiding
the Repugnant Conclusion.

Example 3.13 (Non-Archimedean Total Views). In this example,
people in welfare state w0 contribute positively to the social value
of a distribution, but no number of such people can contribute
more than even one person in welfare state W .40 The key con-
dition on the individual preorder is that Pα ≻Pv 1w0 for every
α ∈ (0, 1), even though, corresponding to α = 0, 1w0 ≻Pv 1Ω . This
requires that the individual preorder violates mixture continuity
and the closely related Archimedean axiom (see Section 4.1). As
a concrete example, consider V = R2, with the lexicographic
ordering ≿V; that is, (x1, x2) ≿V (y1, y2) if and only if either
x1 > y1, or x1 = y1 and x2 ≥ y2. Choose a utility function
u:Wv

→ V with u(W ) = (1, 0), u(w0) = (0, 1), and u(Ω) = 0,
and rank prospects by (component-wise) expectations of u. The
corresponding social preorder ranks lotteries by expected total
utility. Any distribution in which everyone has welfare state W
is better than any distribution in which everyone has w0.

Example 3.14 (Neutral-Range Views). In this example some wel-
fare states, including w0, are ‘neutral’ in the sense of being in-
comparable to Ω .41 The Repugnant Conclusion is avoided because
people in welfare state w0 do not contribute positively to social
value.42 Such a view can be derived from an individual preorder
satisfying the condition that Pα ⋏Pv 1w0 for α in some interval
containing 0, while Pα ≻Pv 1w0 for α outside that interval. As
a concrete example, suppose that W = R, with w0 = 1 and
W = 100. Let V = R2 with the product preorder ≿V: that is,
(x1, x2) ≿V (y1, y2) if and only if x1 ≥ y1 and x2 ≥ y2. Define a
utility function u:Wv

→ V by u(Ω) = 0 and u(w) = (w+10, w−

10) for w ∈ W. Let the individual preorder be represented by
(component-wise) expectations of u; note this is compatible with
the natural ordering onW. This makes w0, and indeed any welfare
state in the interval (−10, 10), incomparable to Ω . In particular,
Pα has expected utility (110α, 90α) and 1w0 has expected utility
(11, −9). Thus one finds that Pα ⋏Pv 1w0 for α ∈ [0, 1/10) and
Pα ≻Pv 1w0 for α ∈ [1/10, 1]. The corresponding social preorder
ranks lotteries by expected total utility. From this one can deduce

40 See e.g. Arrhenius and Rabinowicz (2015) and Thomas (2018) for recent
discussions of such theories, which are often called ‘non-Archimedean’ or
‘lexical’.
41 Example 3.12 is the extreme case in which all of W is in this neutral range.
42 This relatively popular kind of theory, often called a ‘critical range’ or
‘neutral range’ view, is developed by Broome (2004) and Blackorby et al. (2005),
although these authors differ in how to interpret the relevant incomparability
(see also Rabinowicz, 2009; Gustafsson, 2019). It is worth noting that these
views are usually described using a set of real-valued utility functions, rather
than a single vector-valued utility function (cf. Example 2.8); we connect the
‘multi-utility’ approach and our vectorial approach in Section 4.2.

that a population of m people in welfare state W will be better
than one of n people in welfare state w0 as long as n ≤ 10m;
otherwise they are incomparable.

4. Expected utility

We now begin to explore more systematically the relation-
ship between individual preorders and the social preorders they
generate. What do natural constraints on the individual preorder
tell us about the social preorder, and vice versa? In this section
we focus on axioms related to expected utility theory, while in
Section 5 we consider non-expected utility theory.

Section 4.1 presents the preliminary result that the social
preorder inherits the most normatively central expected util-
ity axioms from the individual preorder, in the sense that if
the individual preorder satisfies a given axiom, then so does
the social preorder it generates (and vice versa). This contrasts
with common approaches in which the same expected utility
axioms are imposed on the individual and social preorders; in our
framework, this is often redundant.

Section 4.2 shows that if the individual preorder is repre-
sented by expected utility, then the social preorder it generates
is represented by expected total utility. The continuity and com-
pleteness axioms of standard expected utility theory are often
seen as normatively questionable, and some of the examples we
have discussed may provide further reasons to drop them.43 This
is why we work with a vector-valued form of expected utility
representation that relies only on strong independence, the most
distinctive and normatively plausible axiom of expected utility
theory.

Section 4.3 shows the equivalence (under the aggregation the-
orems) of various Pareto, independence, and separability axioms.
Thus one might take Pareto or separability as fundamental and
derive independence, since the former two axioms are arguably
more central to the utilitarian project. It allows us to give our
weakest axiomatization of an expected total utility representation
of the social preorder, based solely on Two-Stage Anonymity and
what we call Full Pareto, a natural strengthening of strong Pareto
in the face of incompleteness.

4.1. Axioms

Let us review the main expected utility axioms before proving
that they are inherited by the social preorder. At the heart of
expected utility theory is the notion of independence. Several dif-
ferent independence axioms are possible, and, like other axioms
from expected utility theory, they can be posited separately for
either the individual or the social preorder. Thus we state them
generically for a preorder ≿X on a convex set X .

Independence axioms. Suppose given p, p′, q ∈ X and α ∈

(0, 1).
(Ia) p ∼X p′

H⇒ αp + (1 − α)q ∼X αp′
+ (1 − α)q.

(Ib) p ≻X p′
H⇒ αp + (1 − α)q ≻X αp′

+ (1 − α)q.
(Ic) p ⋏X p′

H⇒ αp + (1 − α)q ⋏X αp′
+ (1 − α)q.

Let (I1) := (Ia), (I2) := (Ia) ∧ (Ib), and (I3) := (Ia) ∧ (Ib) ∧

(Ic). These seem to be the reasonable packages of independence
axioms. In particular, (I3) is equivalent to perhaps the best known
independence axiom, strong independence, that is, p ≿X p′

⇐⇒

αp+(1−α)q ≿X αp′
+(1−α)q. Although the weaker independence

axioms are often sufficient given other assumptions, Lemma 4.3

43 We have in mind here especially the idea that Ω may be incomparable to
other welfare states (Examples 3.11, 3.12 and 3.14) and the desire to avoid the
Repugnant Conclusion (Section 3.6).
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below strongly suggests that (I3) should be seen as the core idea
of expected utility.

Just as Omega Independence only quantified over scalars in
(0, 1) ∩ Q, we similarly define the Rational Independence ax-
ioms (IQi ) for i = 1, . . . , 3 as the corresponding independence
axioms, but with α restricted to (0, 1) ∩ Q. We will use these
rational-coefficient axioms in Section 4.3.

Standard expected utility theory also assumes

Completeness (Comp). ≿X is a complete preorder: for all
p, q ∈ X , p ≻X q or q ≻X p or p ∼X q.

The final main idea of standard expected utility is continuity,
often understood to mean either one of the following two axioms.

Archimedean (Ar). For all p, q, r ∈ X , p ≻X q ≻X r implies
that there exist α, β ∈ (0, 1) such that αp+ (1−α)r ≻X q and
q ≻X βp + (1 − β)r .

Mixture Continuity (MC). For all p, q, r ∈ X , the set {α ∈

[0, 1] : αp + (1 − α)r ≿X q} is closed in [0, 1], as is the set
{α ∈ [0, 1] : q ≿X αp + (1 − α)r}.44

Given (I3) and (Comp), (Ar) is equivalent to (MC). But when ≿X
is incomplete, there is tension between the Archimedean and
mixture continuity axioms, and one may have to choose between
them.45

When X is equipped with a topology, many continuity con-
ditions typically stronger than (MC) have been considered. The
following is the most popular.

Continuity (Cont). {p ∈ X: p ≿X q} and {p ∈ X: q ≿X p} are
closed for all q ∈ X .

One can only expect nice results about (Cont) if the basic oper-
ations on prospects and lotteries are themselves continuous. Say
that mixing is continuous on X if for any λ ∈ (0, 1), λp + (1 − λ)q
is a continuous function of p, q ∈ X . In the constant population
case, the basic assumption is as follows.

Topology (Top). P and L have topologies such that L and all
the maps Pi are continuous, and mixing is continuous on P.

In the variable population case, we need a further condition on
the topology of Lv that allows us to pass from continuity on each
Lv
I to continuity on Lv itself. Say that Lv is topologically coherent

if it satisfies the following condition: X ⊂ Lv is closed if and only
if X ∩ Lv

I is closed in Lv
I for every finite I ⊂ I∞, where Lv

I has a
topology as a subspace of Lv. Thus in the variable population case
we use

Topology (Variable Population) (Topv). Pv and Lv have
topologies such that all the maps Lv

I and Pv
i are continuous,

mixing is continuous on Pv, and Lv is topologically coherent.

Example 4.1. Suppose that Wv is a topological space, and give
Dv a topology as a subspace of (Wv)I

∞

with the product topology
(cf. Example 3.2). Assuming that Pv and Lv consist of Borel
measures, we can give them the weak topologies. That is, the
topology on Lv

I is the coarsest one such that, for every bounded
continuous f :Dv

→ R, the function L ↦→
∫
Dv f dL is continuous on

Lv
I ; similarly for Pv with f bounded and continuous on Wv. Define

a topology on Lv by the condition that X is closed if and only if

44 This is the continuity axiom of Herstein and Milnor (1953).
45 For example, when incomplete ≿X satisfies (I3), it cannot satisfy both
(MC) and a mild strengthening of (Ar) which is natural in the presence of
incompleteness; see further Dubra (2011) and McCarthy and Mikkola (2018).

X ∩ Lv
I is closed in this weak topology on Lv

I for every finite I.46
It is then easy to check that (Topv) holds.

Proposition 4.2 (Inheritance). Suppose that a (constant or variable
population) social preorder is generated by an individual preorder.
Then

(i) Each of (Comp), (Ar), (MC), (Ii), and (IQi ) (for i = 1, 2, 3) is
satisfied by the individual preorder if and only if it is satisfied
by the social preorder.

(ii) Assuming (Top) or (Topv), the individual preorder satisfies
(Cont) if and only the social preorder does.

Thus the most normatively central expected utility axioms are
all inherited by the social preorder. Similar results hold for many
other normatively natural expected utility axioms.47

4.2. Expected utility representations

We saw in Proposition 4.2 that the standard axioms of ex-
pected utility theory are inherited by the social preorder. We
now focus on the conclusion of expected utility theory, that is, on
the existence of an expected utility representation. We show that
such representations of the individual preorder yield expected to-
tal utility representations of the social preorder. This result works
even for a very general kind of expected utility representation
which, as we explain, requires only the independence axiom (I3).

We again state the relevant conditions in terms of the generic
preorder ≿X on a convex set X , but in this subsection we further
assume X = P(Y ) for some convex set of probability measures
P(Y ) on a measurable space Y . In this case we say that f : Y → R
is P(Y )-integrable if it is Lebesgue integrable with respect to all
p ∈ P(Y ).48 Say that a function U:P (Y ) → R is expectational if
there is a P(Y )-integrable function u: Y → R such that U(p) =∫
Y u dp. The basic form of an expected utility representation is as

follows.

EUT. There is an expectational function U:P (Y ) → R that
represents ≿X . We say that U is an EU representation of ≿X .

Given the implausibility of completeness, however, there has
been much interest in the following ‘multi-utility’ generalization
of EUT.49

Multi EUT. There is a set U of expectational functions P (Y ) →

R such that for p, q ∈ P(Y ), p ≿X q ⇐⇒ U(p) ≥ U(q) for all
U ∈ U . We say that U is a Multi EU representation of ≿X .

46 It does not follow automatically that the topology on Lv
I as a subspace of

Lv is the weak topology, as one might wish. But this does follow if {1Ω } is
closed in Pv , which is guaranteed e.g. if Wv is metrizable (Bogachev, 2007, Cor.
8.2.4).
47 For example, the social preorder also inherits the strengthening of (Ar)
mentioned in note 45, finite dominance axioms, and also countable dominance
axioms (cf. Fishburn 1970, Hammond 1998) if L and Lv are closed under
countable mixing.
48 We follow Bogachev (2007, Def. 2.4.1) and other authors in not insisting
that an integrable function must be measurable (although all results go through
on that stronger notion of integrability). Still, if f is integrable with respect to
p, then f coincides with a measurable function on some set of p-measure 1.
(By the definition of integrability, there is a sequence (fn) of simple functions
converging to f on some set A of p-measure 1. It follows from (Bogachev, 2007,
Thm. 2.1.5(v)) that the limit of (fnχA) is a measurable function agreeing with f
on A).
49 The general concept of a multi-representation was introduced in Ok (2002);
see also Evren and Ok (2011). In the specific context of expected utility,
see Dubra et al. (2004), Evren (2008, 2014), McCarthy et al. (2017a), and Gorno
(2017).
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However, if ≿X has a Multi EU representation, it automatically
satisfies (MC). Since our aggregation theorems allow for violations
of all kinds of continuity axioms, we now consider a further kind
of expected utility representation to cater for this possibility.

Here is the general set-up. A preordered vector space is a vector
space V with a (possibly incomplete) preorder ≿V that is linear in
the sense that v ≿V v′

⇐⇒ λv+w ≿V λv′
+w, for all v, v′, w ∈

V and λ > 0.50 So R with the standard ordering is one example;
other examples for (V,≿V) were described in Example 2.7 and
Section 3.6. Given a preordered vector space (V,≿V), we need a
way of integrating V-valued functions. Suppose we have a vector
space V′ of linear functionals on V that separates the points of
V.51 A function u: Y → V is weakly P(Y )-integrable with respect to
V′ if there exists a function U:P(Y ) → V such that

∫
Y Λ ◦ u dp =

Λ ◦ U(p) for all Λ ∈ V′, p ∈ P(Y ). In particular, every Λ ◦ u must
be P(Y )-integrable. We then define the Pettis or weak integral by
setting

∫
Y u dp := U(p). When U:P(Y ) → V can be written in this

form, we here also say that U is expectational.

Vector EUT. For some preordered vector space (V,≿V) and
some separating vector space V′ of linear functionals on V,
there is an expectational function U:P(Y ) → V that rep-
resents ≿X . We say that U is a Vector EU representation of
≿X .

An ordinary EU representation, as above, can be identified
with a Vector EU representation with (V,≿V) = (R, ≥), and with
V′ the set of linear maps from R to R. We can also identify a Multi
EU representation with a special kind of Vector EU representation.
Indeed, for whatever index set I , equip the vector space RI with
the product preorder ≿RI , i.e. x ≿RI y ⇐⇒ x(i) ≥ y(i) for all
i ∈ I . Let V′ be the span of the set of projections x ↦→ x(i) of RI

onto R; it clearly separates the points of RI . The weak integral
with respect to V′ with values in RI is just the component-wise
ordinary integral.52 Then Multi EU representations of the form
U = {Ui:P (Y ) → R | i ∈ I} correspond exactly to Vector EU
representations U:P (Y ) → RI ; the correspondence is given by
U(p)(i) = Ui(p). However, since Multi EU representations imply
both (I3) and (MC), the following result shows that Vector EU
representations are much more general.

Lemma 4.3. Suppose ≿X is a preorder on P(Y ), a convex set of
probability measures on a measurable space Y . Then ≿X satisfies (I3)
if and only if it satisfies Vector EUT.

This result shows that (I3) is the only crucial axiom for ex-
pected utility theory in this setting, and makes it clear that the
existence of a Vector EU representation is a normatively natural
assumption.

Now let us apply these definitions in the context of our ag-
gregation theorems. When combined with Lemma 4.3, the next
theorem shows that if the individual preorder satisfies (I3), then
the social preorder is represented by total expected utility, or,
equivalently, expected total utility.

Theorem 4.4 (EUT Inheritance). Suppose that a (constant or variable
population) social preorder is generated by an individual preorder.

(i) The individual preorder satisfies Vector EUT if and only if the
social preorder does.

50 A linear preorder, in our sense, is sometimes called a vector preorder.
51 Giving V the weak topology with respect to V′ makes it a locally convex
topological vector space whose dual is V′ (Rudin, 1991, 3.10).
52 Note that in this case the weak topology on V := RI is just the product
topology, and we can identify V′ as the direct sum

⨁
i∈I R (see e.g. Kelley and

Namioka (1963, Thm. 14.6)).

(ii) In the constant population case, if ≿P has a Vector EU repre-
sentation

U(P) =

∫
W

u dP

then ≿ has a Vector EU representation

V (L) =

∑
i∈I

U(Pi(L)) =

∫
D

∑
i∈I

(u ◦ Wi) dL.

(iii) In the variable population case, if ≿Pv has a Vector EU repre-
sentation

Uv(P) =

∫
Wv

u dP

where Uv is normalized so that Uv(1Ω ) = 0,53 then ≿v has a
Vector EU representation

V v(L) =

∑
i∈I∞

Uv(Pv
i (L)) =

∫
Dv

∑
i∈I∞

(u ◦ Wv
i ) dL. (3)

Although stated for Vector EUT, the result holds for both
ordinary EUT and Multi EUT as well (see the proof of part (i) for
details).54 Specialized to ordinary EUT, the claim that the constant
population social preorder is represented by V (L) =

∫
D

∑
i∈I (u ◦

Wi) dL is the conclusion of Harsanyi’s utilitarian theorem, when
translated into our framework, but resting on premises that are
much weaker than his (see Section 6.4). Theorem 4.4 also includes
the familiar fact that this expected value of the sum of individual
utilities is identical to the sum of the expected values of individ-
ual utilities. This is sometimes put by saying that in Harsanyi’s
conclusion, ex post utilitarian social evaluation is equivalent to
ex ante utilitarian social evaluation.55 The general Vector EUT
version allows for failures of continuity and completeness, but
maintains the expected total utility form and ex ante/ex post
equivalence. We have derived the same sort of expected total util-
ity representation and ex ante/ex post equivalence in the variable
population case.

Remark 4.5 (Normalization). The main difference in the variable
population case is the normalization condition on Uv. When
utilities are values in a preordered vector space, one can add any
constant to a utility function without changing the preorder it
represents, allowing for different normalizations. Since we always
have 1Ω ∈ Pv (Lemma 3.3(i)), the normalization Uv(1Ω ) = 0
used in Theorem 4.4 is always available. But other normalizations
may be natural; for example, a utility value of zero is some-
times reserved for welfare states that are neutral, rather than
good or bad, for the person in question.56 Without imposing any
normalization, (3) would become

V v(L) =

∑
i∈I∞

(Uv(Pv
i (L))−Uv(1Ω )) =

∫
Dv

∑
i∈I∞

(u◦Wv
i −u(Ω)) dL. (4)

53 An equivalent normalization condition is u(Ω) = 0, since u(Ω) = Uv(1Ω ).
We explain the normalization more in Remark 4.5; it implies that, in the
following formula, the sums have finitely many non-zero summands (see
Lemma 3.3(i)).
54 In the case of Multi EUT, we can unwind parts (ii) and (iii) of the theorem
in the following way. In the constant population case, if U is a Multi EU
representation of ≿P , then {

∑
i∈I U ◦ Pi : U ∈ U} is a Multi EU representation

of ≿; in the variable case, if Uv is a Multi EU representation of ≿Pv with each
Uv

∈ Uv normalized so that Uv(1Ω ) = 0, then {
∑

i∈I∞ Uv
◦ Pv

i : Uv
∈ Uv

} is a
Multi EU representation of ≿v .
55 In frameworks in which the ex ante utilitarian evaluations are made using
possibly differing individual subjective probabilities, an approach not considered
here, it is well known that this equivalence can fail. We thank a referee for
emphasizing this point.
56 The question of how these normalizations are related depends upon the
interpretation of the individual preorder in cases of nonexistence as discussed
at the end of Section 3.2.
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Comparison with Example 3.10 shows that (4) can be seen as a
very general version of the formula used to define critical level
utilitarianism. It allows for failures of continuity and complete-
ness, and can accommodate the popular view that there is a range
of critical levels (see Section 3.6). In any case, we will continue
to emphasize total utility representations like (3) rather than
representations like (4) that make the critical level explicit.

Remark 4.6 (Mixture-Preserving Representations). In Section 2.7
we noted that our aggregation theorems can be generalized to as-
sociative mixture sets of prospects and lotteries that do not nec-
essarily consist of probability measures. In that general setting,
expected utility representations do not make sense. However,
one can still consider representations that are mixture preserv-
ing rather than expectational.57 In analogy to Lemma 4.3 and
Theorem 4.4, and with essentially the same proof, (I3) for the indi-
vidual preorder is still necessary and sufficient for the existence of
a mixture-preserving representation with values in a preordered
vector space (McCarthy et al., 2019, Lemma 16), and the social
preorder then has a mixture-preserving representation by total
utility. In addition to their generality and technical simplicity, an
advantage of dealing with mixture-preserving representations is
that, unlike Vector EU representations, they can always be given
values in partially ordered rather than merely preordered vector
spaces. This fits the natural thought that equally good prospects
should have the same, rather than merely equally good, utilities.

Remark 4.7 (Canonical Utility Spaces). One can use structure the-
orems for preordered and partially ordered vector spaces to make
the utility spaces more concrete. In particular, mixture-preserving
representations can always be taken into a product of what Haus-
ner and Wendel (1952) call ‘lexicographic function spaces’. Infor-
mally, this means that we can choose the utilities to be matrices
of real numbers. The space of row-vectors is lexicographically
ordered, and one matrix ranks higher than another if and only
if it ranks higher in each row. Normatively natural constraints on
the represented preorder correspond to dimensional restrictions
on the matrices.58

4.3. Pareto, separability, and independence

In the previous subsection we indicated the power of strong
independence (I3) as a condition on the individual preorder: it
allows us to derive an expected total utility representation of the
social preorder. However, as we explained in Section 1 (especially
note 6), it is not obvious that (I3) is an axiom to which utilitarians
are conceptually committed. We now show in Proposition 4.8
that, given the axioms of our aggregation theorems, the ‘rational’
independence axioms (IQi ) introduced in Section 4.1 are equiva-
lent to corresponding Pareto axioms, and also to corresponding
separability axioms. As we will suggest, given the proximity of
(I3) and (IQ3 ), this can be taken as an informal argument that (I3)
is a consequence of central utilitarian principles. Alternatively,
Theorem 4.10 shows that Two-Stage Anonymity and a suitably
strong Pareto principle are enough by themselves to yield a
slightly more general kind of expected total utility representation
without having to appeal to any independence axiom.

57 See note 28 for the definition of ‘mixture preserving’. Expectational func-
tions are always mixture preserving, and the generalization is modest in the
sense that mixture-preserving functions are expectational in the most commonly
studied setting, where the domain X is a convex set of finitely supported
probability measures on a measurable space Y with measurable singletons.
58 Hausner and Wendel (1952) assumed completeness. In the case of in-
completeness, representations involving lexicographic function spaces are given
in Borie (2016), McCarthy et al. (2017b) (discussing dimensional restrictions),
and Hara et al. (2019).

We will continue to consider both constant and variable pop-
ulation settings. However, in the constant population setting, the
results are most striking, and easiest to state, if we consider a
family of constant population models with populations of dif-
ferent sizes. If one accepts our constant population axioms for
aggregation from Section 2.3 for one finite population, it is natural
to accept them for every finite population. The same goes for
various conditions like Pareto or separability.

Formally, a constant population model is any tuple M =

(I,W,P,≿P ,D,L,≿) satisfying the constant population domain
conditions (A)–(C) of Section 2.2. Similarly, a variable popula-
tion model is any Mv

= (I∞,Wv,Pv,≿Pv ,Dv,Lv,≿v) satisfy-
ing the variable population domain conditions (Av)–(Dv) of Sec-
tion 3.1. And, given an infinite population I∞, a family F of
constant population models consists of a constant population
model (I,W,P,≿P ,DI,LI,≿I) for each finite I ⊂ I∞. Note that
W, P, and ≿P must be independent of I.

We will present the following axioms in a way that applies to
both variable population models and families of constant popu-
lation models. Our convention so far has been to label variable
population objects with the superscript ‘v’. Here we will use
the superscript ‘∗’ to cover both constant and variable cases: for
example, D∗

I stands for Dv
I if we are talking about a variable popu-

lation model, and it stands for DI if we are talking about a family
of constant population models. To make this work smoothly,
given a variable population model, and finite I ⊂ I∞, we define
≿v

I to be the restriction of ≿v to Lv
I . Thus in the new notation ≿∗

I
is invariably a preorder on L∗

I .
59

With this background, suppose we are given either a variable
population model, or a family of constant population ones. Let us
state Pareto and separability axioms.

Because the individual preorder can be incomplete, Pareto
axioms need to be stated with some care. We first define relations
≈

J
P∗ , ▷J

P∗ and ▷◁
J
P∗ ; these are ways of comparing lotteries with

respect to a finite population J. For any lotteries L and L′ in L∗
I

and J ⊂ I:

L ≈
J
P∗ L′

⇐⇒ P∗

i (L) ∼P∗ P∗

i (L
′) for all i ∈ J

L ▷J
P∗ L′

⇐⇒ P∗

i (L) ≻P∗ P∗

i (L
′) for all i ∈ J

L ▷◁
J
P∗ L′

⇐⇒ P∗

i (L) ⋏P∗ P∗

i (L
′),P∗

i (L) ∼P∗ P∗

j (L), and

P∗

i (L
′) ∼P∗ P∗

j (L
′) for all i, j ∈ J.

We might read ≈
J
P∗ , ▷J

P∗ and ▷◁
J
P∗ as, respectively, equally good,

better, and equi-incomparable for all members of J. To explain
the last of these, suppose I = {1, 2} and consider the inference:
P∗

i (L) ⋏P∗ P∗

i (L
′) for i = 1, 2 H⇒ L ⋏∗

I L′. This may seem
natural: if L and L′ are incomparable for both 1 and 2, they are
incomparable. But suppose W∗ includes welfare states v and w,
and consider two distributions with two people each: d = (v, w)
and d′

= (w, v). Treating welfare states and distributions as
degenerate prospects and lotteries, suppose v ⋏P∗ w. Then the
inference just considered implies d ⋏∗

I d′. But this violates any
standard formulation of anonymity (in our framework, Two-Stage
Anonymity). The use of ▷◁

J
P∗ in the following axioms blocks this

kind of inference.

Pareto axioms. Suppose given a variable population model,
or a family of constant population ones. For finite I ⊂ I∞,

59 The reader may notice that, given a variable population model, we can
formally obtain a family of constant population models (I,Wv,≿Pv ,Dv

I ,L
v
I ,≿

v
I ),

with the caveat that the set Wv of welfare states in these models happens
to contain Ω . So axioms and results about variable population models can
sometimes be read directly off of axioms and results about families of constant
population models. We find it clearer not to rely on this fact presentationally.
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L, L′
∈ L∗

I , and any partition I = J ⊔ K with J ̸= ∅,

(Pa) L ≈
I
P∗ L′

H⇒ L ∼
∗
I L′.

(Pb) L ▷
J
P∗ L′ and L ≈

K
P∗ L′

H⇒ L ≻
∗
I L′.

(Pc) L ▷◁
J
P∗ L′ and L ≈

K
P∗ L′

H⇒ L ⋏∗
I L′.

We will focus on the natural packages (P1) := (Pa), (P2) :=

(Pa)∧ (Pb), and (P3) := (Pa)∧ (Pb)∧ (Pc). Of course, Pareto axioms
are usually formulated with respect to a single finite population
I; we just apply them with respect to every finite I ⊂ I∞. Setting
this aside, some of these packages have familiar names. (P1) is
Pareto Indifference; (P2) is strong Pareto; but (P3) appears to be
novel. We will call it Full Pareto.

The separability assumptions we consider only make sense
under some further domain conditions. We want to be able to
‘restrict’ lotteries to a subpopulation J. That is, suppose given
finite populations J ⊂ I ⊂ I∞. We first assume that for each
d ∈ D∗

I , D
∗
J contains a (necessarily unique) distribution πJ(d) such

that W∗

j (πJ(d)) = W∗

j (d) for each j ∈ J. This defines a function
πJ:D∗

I → D∗
J . We assume it is measurable.60 Given L ∈ L∗

I , we
can then define a pushforward probability measure L|J= L ◦ πJ

−1

on D∗
I . We further assume L|J is in L∗

J . We thus have a restriction
map L∗

I → L∗
J , L ↦→ L|J. We summarize these assumptions by

saying that restrictions exist.

Separability axioms. Suppose given a variable population
model, or a family of constant population ones. Suppose that
restrictions exist. For finite I ⊂ I∞, L, L′

∈ L∗
I , and any partition

I = J ⊔ K with J ̸= ∅,

(Sa) L|J∼∗
J L′

|J and L|K∼
∗
K L′

|K H⇒ L ∼
∗
I L′.

(Sb) L|J≻∗
J L′

|J and L|K∼
∗
K L′

|K H⇒ L ≻
∗
I L′.

(Sc) L|J⋏∗
JL

′
|J and L|K∼

∗
K L′

|K H⇒ L ⋏∗
I L′.

We consider the natural combinations (S1) := (Sa), (S2) := (Sa) ∧

(Sb), and (S3) := (Sa)∧ (Sb)∧ (Sc). When L|K∼
∗
K L′

|K, (S3) says that
the members of K can be ignored in the comparison between L
and L′. That is to say, L ≿∗

I L′
⇐⇒ L|J≿∗

J L′
|J. Thus (S3) can be

seen as an axiom of strong separability across individuals.61
Separability is most interesting when the lotteries faced by J

and K can vary independently. In the variable population case,
it turns out that our basic domain conditions already ensure a
supply of lotteries sufficient for our purposes. For a family of
constant population models, the following suffices: say that the
family is compositional if, for any partition I = J ⊔ K, and any
P,Q ∈ P, there exists L ∈ LI such that Pj(L) = P for all j ∈ J and
Pk(L) = Q for all k ∈ K. For example, the family is compositional
if each DI equals WI equipped with the product sigma algebra,
and LI is the set of all lotteries on DI (Bogachev, 2007, Theorem
3.3.1).

Proposition 4.8 (Equivalence of Pareto, Separability, and Indepen-
dence). Constant Population. Suppose given a compositional fam-
ily F of constant population models, and that restrictions exist.

60 Recall that each constant population space DI has its own sigma algebra,
while each variable population space Dv

I has the sigma algebra restricted from
Dv . Recall also in what follows that, even in the variable population case,
elements of Lv

J can be identified with probability measures on Dv
J (see note

33).
61 A more common notion of strong separability says that, given L, L′,M,M ′

∈

L∗
I , with L|J= M|J , L′

|J= M ′
|J , L|K= L′

|K , and M|K= M ′
|K , one has L ≿∗

I L′ if
and only if M ≿∗

I M ′ . Given a sufficiently rich domain of lotteries, our (S3) is
equivalent to the slightly stronger claim that, in fact, L ≿∗

I L′ if and only if
L|J≿∗

J L′
|J .

Suppose that each social preorder ≿I is generated by ≿P . Then, for
i = 1, 2, 3:

F satisfies (Si) ⇐⇒ F satisfies (Pi) ⇐⇒

every ≿I satisfies (IQi ) ⇐⇒ ≿P satisfies (IQi ).

Variable Population. Suppose given a variable population model
Mv, and that restrictions exist. Suppose that the social preorder ≿v

is generated by ≿Pv . Then, for i = 1, 2, 3:

Mv satisfies (Si) ⇐⇒ Mv satisfies (Pi) ⇐⇒

≿v satisfies (IQi ) ⇐⇒ ≿Pv satisfies (IQi ).

This result shows that, against the background of our ag-
gregation theorems, there is little difference between Pareto,
separability, and independence. It is true that Proposition 4.8
strictly speaking concerns rational independence axioms like (IQ3 ),
but there is simply no plausible normative or descriptive theory
that accepts (IQ3 ) while rejecting (I3). Examples mobilized against
(I3), like the Allais paradox, are indeed always formulated using
rational numbers as probabilities.

One could take this as an informal argument for (I3) from
utilitarian principles such as (P3) and (S3), leading to the expected
total utility representations of Theorem 4.4. Alternatively, we
now show how to use Proposition 4.8 to derive a slightly more
general kind of expected total utility representation of the social
preorder directly from (P3) without assuming any independence
condition.62

Say that (V,≿V) is a Q-preordered vector space if V is a real
vector space and ≿V is a Q-linear preorder, in the sense that for
any v, v′, w ∈ V and rational λ > 0, v ≿V v′

⇐⇒ λv + w ≿V
λv′

+ w. By allowing such a space of utilities, we can slightly
generalize Vector EUT:

Rational Vector EUT. For some Q-preordered vector space
(V,≿V) and some separating vector space V′ of linear func-
tionals on V, there is an expectational function U:P(Y ) → V
that represents ≿X . We say that U is a Rational Vector EU
representation of ≿X .

The significance of this definition is explained by the following
analogue of Lemma 4.3.

Lemma 4.9. Suppose ≿X is a preorder on P(Y ), a convex set of
probability measures on a measurable space Y . Then ≿X satisfies (IQ3 )
if and only if it satisfies Rational Vector EUT.

Combined with Proposition 4.8, this allows us to derive an
analogue of Theorem 4.4 that takes Full Pareto and Two-Stage
Anonymity as the basic premises.63

Theorem 4.10. Suppose given either a compositional family of
constant population models or a variable population model, and that
restrictions exist.
Constant Population.

(i) Full Pareto and Two-Stage Anonymity, for each social preorder
≿I in the family, hold if and only if the individual preorder ≿P
satisfies Rational Vector EUT and generates each ≿I.

62 That one can use Pareto or independence to derive an expected total
utility representation, although in a somewhat different framework to ours, is
emphasized by Mongin and Pivato (2015, p. 159); see also Pivato (2014, pp. 39–
40). In Theorems 5.2 and 5.3 we show that, in one common setting, expected
total utility representations follow from our aggregation theorems without
assuming any independence, Pareto, or separability condition; we merely need
monotonicity for the social preorder.
63 In both the constant and variable population cases, Posterior Anonymity
could be used in place of Two-Stage Anonymity, granted coherence (or countable
I∞) in the variable population case. See Proposition 3.7 and its preceding
commentary, where coherence was defined.



94 D. McCarthy, K. Mikkola and T. Thomas / Journal of Mathematical Economics 87 (2020) 77–113

(ii) If ≿P has a Rational Vector EU representation U, and ≿P
generates each ≿I, then each ≿I has a Rational Vector EU
representation

∑
i∈I U ◦ Pi.

Variable Population.

(iii) Full Pareto and Two-Stage Anonymity hold if and only if ≿Pv

satisfies Rational Vector EUT and generates ≿v.
(iv) If ≿Pv has a Rational Vector EU representation Uv, normalized

so that Uv(1Ω ) = 0, and ≿Pv generates ≿v, then ≿v has a
Rational Vector EU representation

∑
i∈I∞ Uv

◦ Pv
i .

Just as in Theorem 4.4, the conveniently brief ‘total expected
utility’ form of representation can be rewritten as expected total
utility. So, to emphasize: this result shows that, given a rich
enough domain, Full Pareto and Two-Stage Anonymity (or Full
Pareto and Posterior Anonymity) are by themselves enough to
yield an expected total utility representation of the social pre-
order (or of each one in the family), with an unusually general,
but still well-behaved, space of utilities. However one feels about
these general utility spaces, the fundamental point is that Full
Pareto and Two-Stage Anonymity are enough to determine the
social preorder in terms of the individual preorder, while guar-
anteeing separability (S3) and at least the rational version of
strong independence, (IQ3 ). We give the proof of Theorem 4.10 in
Appendix A, but a sketch will illustrate the perhaps surprising
power of Full Pareto. Full Pareto entails both Anteriority and
Reduction to Prospects, so Two-Stage Anonymity is the only
one of our aggregation axioms then needed to show that the
social preorder is generated by the individual preorder. Using
Proposition 4.8, another application of Full Pareto implies that the
individual preorder satisfies (IQ3 ), and therefore (Lemma 4.9) has a
Rational Vector EU representation. The derivation of the expected
total utility representation of the social preorder then proceeds
just as in Theorem 4.4.

We conclude with two further remarks about Proposition 4.8.
First, the proposition lends some credence to our suggestion
that Full Pareto, (P3), is the right way of extending the usual
strong Pareto condition (P2) to say something ‘Pareto-style’ about
incomparability. For the question of whether (P3) is plausible, the
crucial issue is the status of its component (Pc). Suppose first that
K in the statement of (Pc) is empty. Then (Pc) is entailed by the
conjunction of (P1) and the following plausible principle (in, for
concreteness, the variable-population framework): P ⋏Pv P ′

H⇒

Lv
I (P) ⋏

v Lv
I (P

′). In the general case where K can be non-empty,
(Pc) is then motivated by the kind of separability principle which
underlies (Pb), that of ignoring groups of indifferent individuals.
To this we now add that, since (P3) is essentially equivalent to
(I3), given our axioms for aggregation, and since (I3), as strong
independence, is so well-established, (P3) appears to be a very
natural extension of (P2).

Second, our aggregation Theorems 2.2 and 3.5 are compat-
ible with the adoption of any non-expected utility theory for
the individual preorder, provided only that Omega Independence
is satisfied in the variable population case. This allows non-
expected utility theory to be easily inserted into our approach
to aggregation. But Proposition 4.8 reveals a potential cost. Non-
expected utility theories typically reject every independence ax-
iom. But given the assumptions of Theorem 3.5, rejecting any
independence axiom requires rejecting the corresponding Pareto
axiom. To its critics, this may be a further strike against non-
expected utility theory; to its defenders, it may be evidence for
a hidden problem with Pareto. We briefly address the options
for someone with broadly utilitarian sympathies who wishes to
adopt a non-expected utility theory without giving up Pareto in
Section 6.6.

5. Non-expected utility

In this section we continue to explore the relationship be-
tween individual preorders and the social preorders they gener-
ate, but we now focus on non-expected utility theory. Although
independence remains very popular as a normative principle, it
continues to have its critics; see, for example, Buchak (2013).
It is therefore natural to ask what typical non-expected utility
conditions on the individual preorder imply about the social
preorder, and vice versa.

Even if one accepts independence at the normative level, it is
hard to ignore its widespread violation at the empirical level (see
note 5), and the project we pursue here may have some relevance
to empirical work. The literature has mostly focused on subjects
who violate independence when only self-interest is at play. But
such subjects may on occasion put themselves in the position of
the social planner to make judgments about social outcomes. It
is natural to ask whether their views about risk at the individual
level are reflected in their views about welfare distributions, even
in risk-free cases. Answering this first requires models of what
independence-violating judgments about risk imply about social
evaluation; that is what our aggregation theorems provide. We
do not pursue this empirical angle here, but see Example 2.9 and
Section 6.1 for discussion relevant to the natural idea that there
is a connection between non-expected utility and egalitarian
attitudes.

In what follows, we discuss two standard approaches to non-
expected utility theory. The upshot is that ideas from
non-expected utility theory provide two conceptually distinct
paths from our aggregation theorems to something at least close
to Harsanyi-style utilitarianism. First, Theorems 5.2 and 5.3 show
that assuming monotonicity for the social preorder, along with
some common background assumptions, is enough to guarantee
that the social preorder is represented by expected total utility.
Second, even if we deny monotonicity, Theorems 5.5 and 5.7
show that when the individual preorder has a ‘local expected
utility’ representation in the style of Machina (1982), the social
preorder has a ‘local expected total utility’ representation.

5.1. Axioms

One strand of non-expected utility theory has been to articu-
late axioms which mildly weaken independence in natural ways.
Some non-expected utility axioms are straightforwardly inherited
by the social preorder in both the constant and variable pop-
ulation cases. These include Betweenness, Quasiconcavity, Qua-
siconvexity, Very Weak Substitution, and Mixture Symmetry. In
addition, Weak Substitution and Ratio Substitution are inherited
in at least the constant population case.64 These results follow
easily from the fact that the map L ↦→ pL (or L ↦→ pIL) is mixture
preserving.

These conditions are typically combined with continuity and
completeness in the non-expected utility literature, but there is
work aimed at allowing for failures of each of those conditions.
Just to give one example, Karni and Zhou (2019) propose an
axiom they call Partial Substitution, a condition which relaxes
Weak Substitution to accommodate incompleteness. At least in
the constant population case, this is also inherited by the social
preorder.

Inheritance of other non-expected utility axioms is less
straightforward, as they are designed only for the case in which
the set of outcomes is a compact interval of real numbers
(Schmidt, 2004). Thus even if we assumed W was such an in-
terval, the axioms would not make sense for D = WI. (And even

64 For definitions and sources of these axioms see e.g. Schmidt (2004).
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when the axioms make sense, representation theorems designed
for an interval of outcomes may not apply.) That problem aside,
the ease with which inheritance can be shown for the axioms
so far discussed might lead one to guess that inheritance is the
rule. Nevertheless, some important non-expected utility axioms
are not inherited.

Suppose in general that X = P(Y ) is a convex set of probability
measures on a measurable space Y , and that X includes the delta-
measure 1y for every y ∈ Y . Suppose that a preorder ≿X on P(Y )
is upper-measurable, meaning that Uy := {z ∈ Y : 1z ≿X 1y} is
measurable for every y ∈ Y . Define a preorder ≿SD

X on P(Y ) by
p ≿SD

X q ⇐⇒ p(Uy) ≥ q(Uy) for all y ∈ Y . We say that p
stochastically dominates q when p ≿SD

X q. Consider the following
axiom, which requires consistency with stochastic dominance.

Monotonicity (M). For an upper-measurable preorder ≿X ,

(i) p ∼
SD
X q H⇒ p ∼X q; and

(ii) p ≻
SD
X q H⇒ p ≻X q.

This axiom is widely assumed in non-expected utility theory. But
the next example shows that the social preorder does not always
inherit (M) from the individual preorder, even in the constant
population case.

Example 5.1. Make the assumptions of Example 2.9, where the
individual preorder had a rank-dependent utility representation.
Again make the concrete assumption that r(x) = x2 and u(x) = x;
equip W = R and D = Rn with the Borel sigma algebras. Assume
a population of n = 2 people. Then ≿ ranks a distribution d =

(w1, w2) with welfare states w1 ≤ w2 according to the aggregate
score V (d) =

3
4w1 +

1
4w2. Both ≿P and ≿ are upper measurable,

and ≿P satisfies (M). Consider three distributions d1 = (0, 0),
d2 = (−1, 3) and d3 = (−2, 6). Then 1d1 ∼ 1d2 ∼ 1d3 , so that
1d1∼

SDL :=
1
21d2 +

1
21d3 . But U(p1d1 ) = 0 and U(pL) = −

1
4 ,

hence 1d1 ≻ L, violating (M)(i). For a violation of (M)(ii), let
d4 = (− 1

8 , −
1
8 ). Then L≻

SD1d4 but 1d4 ≻ L.

This example reveals tension in a common line of thought.
For, in some variant, (M) has been seen as ‘[t]he most widely
acknowledged principle of rational behavior under risk’ (Schmidt,
2004, p. 19). But it is also sometimes said that rationality requires
applying to the social preorder whatever conditions one imposes
on the individual preorder (compare Harsanyi 1977a, p. 637).

One response would be insist that (M) does apply to the social
preorder, and say so much the worse for non-expected utility
theories that are forced to reject it there. But the following result
suggests that this response places very strong restrictions on
non-expected utility theories: indeed, given common background
assumptions, (M) for the social preorder is equivalent to its having
an EU representation (in which case it has an expected total
utility form, by Theorem 4.4). We state the variable popula-
tion version result first, and then note a version for a family of
constant population models below.

Theorem 5.2. Suppose that ≿v is upper-measurable and gener-
ated by ≿Pv . Suppose, moreover, that Dv contains every possible
distribution with finitely many people, i.e. Dv

I = (Wv)I for each
finite I ⊂ I∞; that Pv and each Lv

I consists of all finitely supported
probability measures on Wv and Dv

I respectively; and that ≿Pv is
complete and strongly continuous.65 Then

65 Say that a sequence (pn) in a space X = P(Y ) of probability measures
converges strongly to p ∈ X (written pn

s
−→ p) whenever pn(A) → p(A) for

all measurable A in Y . A preorder ≿X on X is strongly continuous if whenever
pn

s
−→ p, (i) pn ≿X q for all n H⇒ p ≿X q; and (ii) q ≿X pn for all n H⇒ q ≿X p.

This is, of course, an instance of the continuity axiom (Cont): the topology is
the one whose closed sets are precisely the subsets that contain the limit points
of their strongly convergent sequences.

(i) The social preorder ≿v satisfies (M) if and only if the individual
preorder ≿Pv satisfies EUT.

(ii) If ≿Pv has an EU representation Uv, normalized so that
Uv(1Ω ) = 0, then ≿v has an EU representation V v

=∑
i∈I∞ Uv

◦ Pv
i .

(iii) In particular, if ≿v satisfies (M), then ≿Pv and ≿v satisfy (I3),
(P3) and (if restrictions exist) (S3).

Thus in this relatively simple setting, we obtain a total ex-
pected utility (or expected total utility) representation of the
social preorder from our axioms for aggregation merely by as-
suming completeness and strong continuity for the individual
preorder and monotonicity for the social preorder; such prop-
erties as strong independence (I3), strong separability (S3), and
Full Pareto (P3) are derived, not assumed. It is worth noting
the analogue of Theorem 5.2 for families of constant population
models (in the sense of Section 4.3). The proof is exactly the same,
with constant population objects substituted for variable popu-
lation ones. But the result is independently interesting because
the hypotheses of completeness and strong continuity may both
be more compelling when we exclude Ω from the set of welfare
states.

Theorem 5.3. Suppose that every social preorder ≿I in a family of
constant population models is upper-measurable and generated by
≿P . Suppose, moreover, that DI = WI for each finite I ⊂ I∞; that P
and each LI consists of all finitely supported probability measures
on W and DI respectively; and that ≿P is complete and strongly
continuous. Then

(i) Every ≿I satisfies (M) if and only if ≿P satisfies EUT.
(ii) If ≿P has an EU representation U, then each ≿I has an EU

representation V =
∑

i∈I U ◦ Pi.
(iii) In particular, if every ≿I satisfies (M), then ≿P and every ≿I

satisfy (I3), (P3) and (if restrictions exist) (S3).

These results make it seem unpromising (although perhaps
not impossible) to pursue non-expected utility theory for social
preorders based on (M). Of course, even if we maintain (M) for
the individual preorder, denying it for social preorders also has its
costs, not least that it rules out the application of representation
theorems for social preorders that take (M) as a premise. We
therefore now turn to a kind of non-expected utility represen-
tation that does not depend on (M) and which can apply to
individual and social preorders alike.

5.2. Local expected utility

The axiomatic approach to non-expected utility theory tries to
respect the normative plausibility of independence by focusing
on axioms that weaken it only mildly. An alternative approach,
pioneered by Machina (1982), abandons independence entirely
while imposing technical conditions on preorders that are just
strong enough to allow one to apply expected utility techniques
locally in order to deduce important global properties. A num-
ber of technical conditions have been considered; we focus on
one that allows us to elaborate on the utilitarian nature of our
social preorders. We begin by explicating a sense, weaker than
Machina’s, in which a preorder of probability measures can be
locally governed by expected utility.

Let X = P(Y ) be a convex set of probability measures on Y . Re-
call from Section 4.2 that a function f : Y → R is P (Y )-integrable if
it is Lebesgue integrable with respect to every element of P (Y );
and that a function U:P(Y ) → R is expectational if there is a
P(Y )-integrable function u such that, for any q ∈ P(Y ), U(q) =∫
Yu dq. Now, for any basepoint p ∈ P(Y ), we can rewrite this as

U(p+t(q−p)) =
∫
Yu d(p+t(q−p)) for all q ∈ P(Y ) and t ∈ [0, 1].
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It is natural to say that U is a locally expectational at p if there is
a function up satisfying this equation up to first order in t . To be
precise, U:P(Y ) → R is locally expectational at p ∈ P(Y ) if there
is a P(Y )-integrable function up such that, for each66 q ∈ P(Y ),

U(p + t(q − p)) =

∫
Y
up d(p + t(q − p)) + o(t) as t → 0+. (5)

Call such a up a local utility function for U at p. We say U is locally
expectational on a subset S ⊂ P (Y ) to mean that it is locally
expectational at every p ∈ S.

Consider the following condition on a preorder ≿X on P(Y ). For
a reason we will soon explain (see note 74), we state it relative
to a subset S ⊂ P(Y ); if not explicitly mentioned, S = P(Y ).

Local EUT over S . There is a function U:P(Y ) → R that
represents ≿X and that is locally expectational on S. We say
that U is a Local EU representation of ≿X over S.

While there are normatively natural axiomatizations of EUT,
Multi EUT, and Vector EUT, the normative significance of Local
EUT can be understood via a differentiability concept. A function
U:P (Y ) → R is said to be Gâteaux differentiable at p ∈ P (Y ) if
the one-sided limit

U ′

p(q − p) := lim
t→0+

U(p + t(q − p)) − U(p)
t

(6)

exists for all q ∈ P (Y ).67 Thus U ′
p(q−p) is a directional derivative

of U at p in the direction q − p. Say that U is integrally Gâteaux
differentiable at p ∈ P (Y ) when it is Gâteaux differentiable at p
and there exists a P (Y )-integrable up: Y → R such that

U ′

p(q − p) =

∫
Y
up d(q − p) (7)

for all q ∈ P (Y ).68 Let ∇Up be the set of such up; thus U is
integrally Gâteaux differentiable at p if and only if ∇Up ̸= ∅. It
is well known that many normatively natural conditions on ≿X
are compatible with, and sometimes guarantee,69 the assumption
that ≿X can be represented by an integrally Gâteaux differentiable
function. But then ≿X must satisfy Local EUT:

Lemma 5.4. Suppose P(Y ) is a convex set of probability measures
on a measurable space Y . Then U:P(Y ) → R is locally expectational
at p ∈ P(Y ) if and only if it is integrally Gâteaux differentiable at p.
Specifically, the local utility functions for U at p are precisely those
up ∈ ∇Up such that U(p) =

∫
Yup dp.

In parallel to the constant population claims of Theorem 4.4
we have

Theorem 5.5 (Local EUT inheritance: constant population). Suppose
≿P generates ≿.

(i) ≿P satisfies Local EUT if and only if ≿ does.

66 Recall that the expression ‘f (t) = g(t) + o(t) as t → 0+ ’ means
limt→0+

f (t)−g(t)
t = 0.

67 Our notion of Gâteaux differentiability is very weak, as it only re-
quires a one-sided limit, only considers q ∈ P (Y ), and does not make
any topological assumptions. It coincides with what is sometimes known as
semi-differentiability.
68 Similar definitions, but with more restrictions on up or Y , are found in Chew
et al. (1987), Chew and Mao (1995), and Cerreia-Vioglio et al. (2017). For
example, the latter, from whom we borrow notation, assume up is continuous
and bounded, but we make no such assumption.
69 See Chew and Mao (1995) for a summary when Y is a real interval and
P (Y ) is the set of Borel probability measures.

(ii) In particular, if ≿P has a Local EU representation U, then ≿
has a Local EU representation70

V (L) := #IU(pL).

(iii) If uL is a local utility function for U at pL, then
∑

i∈I uL ◦ Wi
is a local utility function for V at L.

This result has two significant implications. First, the often
justifiable assumption of Local EUT for the individual preorder
guarantees that Local EUT techniques and results can be ap-
plied to the social preorder as well.71 Second, in Theorem 4.4,
we saw that if the individual preorder has an expected util-
ity representation, then the social preorder has a representa-
tion by expected total utility. Correspondingly, the last part of
Theorem 5.5 shows that if the individual preorder has a local
expected utility representation, then the social preorder has what
we can analogously call a local expected total utility representa-
tion.72 This local version of Theorem 4.4(ii) bolsters the view that
the social preorders described by our aggregation theorems are
utilitarian in spirit even when they do not satisfy (I3).73

We would like to extend Theorem 5.5 to the variable pop-
ulation case. As usual (see Section 3.1), there is no problem in
doing so for each finite population I ⊂ I∞: for any Local EU
representation Uv of ≿Pv , and any L ∈ Lv

I , we can define V v(L) =

#IUv(pIL), in parallel to Theorem 5.5(ii). This will be a Local EU
representation of the restriction of ≿v to Lv

I , with a local expected
total utility interpretation as in Theorem 5.5(iii). The proofs are
the same as in the constant population case. The only difficulty
is that this V v(L) is not a function of L independent of I, so does
not define a representation of the unrestricted social preorder.

To avoid this difficulty, we will focus on a narrower class of
variable population social preorders, for which an unrestricted
representation V v is readily defined. We first explain why this
class is still generated by a rich and normatively interesting
set of individual preorders. Say that a function Uv:Pv

→ R is
Omega-linear if for all P ∈ Pv and α ∈ [0, 1],

Uv(αP + (1 − α)1Ω ) = αUv(P) + (1 − α)Uv(1Ω ). (8)

Similarly, say that a function V v:L → R is dΩ-linear if for all
L ∈ Lv and α ∈ [0, 1],

V v(αL + (1 − α)1dΩ
) = αV v(L) + (1 − α)V v(1dΩ

).

Recall from Lemma 3.3 that dΩ here is the empty distribution.

Lemma 5.6. Suppose Pv extends P (see Section 3.4). Let U:P → R.

(i) For any c ∈ R, U has a unique Omega-linear extension
Uv:Pv

→ R that satisfies Uv(1Ω ) = c.

70 The #I in the definition of V is optional here, but it facilitates comparison
with the variable population analogue Eq. (9) in which the corresponding factor
is necessary.
71 See Cerreia-Vioglio et al. (2017) for extensive discussion of the global
properties of preorders that satisfy (in our terminology) Local EUT in terms
of their local utility functions, along with detailed applications.
72 A slightly different notion of local utilitarianism was discussed by Machina
(1982, §5.2). His notion applies to social welfare functions on ‘wealth
distributions’, which he idealizes as probability measures on W .
73 It is worth noting that the individual preorder in Example 5.1 satisfies Local
EUT, even though the social preorder does not satisfy (M). Thus Theorem 5.5
applies, even if nothing like Theorem 5.3 does. This illustrates the generality of
the local expected utility-based methods. It also illustrates the strategy of using
a standard non-expected utility theory (here, rank-dependent utility theory) for
the individual preorder to derive Local EU representations of both the individual
and social preorders. It would work less well to start from a standard non-
expected utility theory for the social preorder, since such theories invariably
assume (M), and, as we noted in Section 5.1, (M) for the social preorder is a
stringent assumption.
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(ii) If U is locally expectational on P, such a Uv is locally expec-
tational on Pv

\ {1Ω}.

We have noted that there is a normatively interesting class of
constant population individual preorders that satisfy Local EUT.
Any such ≿P has a locally expectational representation U . By the
lemma, U has an Omega-linear extension Uv which is locally ex-
pectational on Pv

\{1Ω} with a free choice of the value of Uv(1Ω ),
implying flexibility in how nonexistence is compared with other
welfare states. This Uv represents an Omega independent ≿Pv that
extends ≿. Thus the individual preorders to which the next result
applies form a rich class.74

Theorem 5.7 (Local EUT Inheritance: Variable Population). Sup-
pose ≿Pv generates ≿v. Assume that the sigma algebra on Dv is
coherent.75

(i) ≿Pv satisfies Local EUT over Pv
\ {1Ω} with respect to an

Omega-linear representation if and only if ≿v satisfies Local
EUT over Lv

\ {1dΩ
} with respect to an dΩ-linear representa-

tion.
(ii) In particular, if ≿Pv has an Omega-linear representation Uv

that is Local EU over Pv
\ {1Ω}, then ≿Pv has an dΩ-linear

representation V v that is Local EU over Lv
\ {1dΩ

}, defined for
L ∈ Lv

I by76

V v(L) := #IUv(pIL) − #IUv(1Ω ). (9)

(iii) If Uv is normalized so that Uv(1Ω ) = 0, then, for any
L ∈ Lv

I \ {1dΩ
}, if uL is a local utility function for Uv at pIL,∑

i∈I∞ uL ◦ Wv
i is a local utility function for V v at L.

The normalization condition in (iii) has the usual significance:
given one Omega-linear representation of ≿Pv that is locally ex-
pectational on Pv

\ {1Ω}, we can obtain another by adding a
constant. Aside from the requirement of Omega-linearity, the
implications of Theorem 5.7 parallel those of Theorem 5.5. In par-
ticular, a wide range of variable population social preorders are
compatible with constant population individual preorders that
satisfy normatively interesting non-expected utility conditions,
and except perhaps at one point, these social preorders have local
expected total utility representations.

6. Comparisons

We now relate our aggregation theorems to several standard
topics: egalitarianism; the ex ante versus ex post distinction;
utilitarianism; and Harsanyi’s impartial observer theorem. We
end with discussion of related literature.

6.1. Quasi utilitarianism and egalitarianism

Recall that we have defined quasi utilitarian social preorders
to be precisely the social preorders that are compatible with our
aggregation theorems (Definitions 2.3 and 3.6). We will defend
this terminology in Section 6.3. But we know of no discussion
of quasi utilitarian preorders, so our goal in this subsection is to
discuss their properties in more detail, especially by contrasting

74 It is easy to check from the definitions that, if Uv is Omega-linear, then the
Gâteaux derivative (Uv)′1Ω

(P − 1Ω ) = Uv(P) − Uv(1Ω ). It follows from (7) and
Lemma 5.4 that if u is a local utility function for Uv at 1Ω , then Uv is an EUT
representation, equal to the expectation of u. This is why we do not insist on
Local EUT over Pv in the next theorem.
75 We defined ‘coherent’ just before Proposition 3.7. Just as in that proposition,
it would suffice to assume that I∞ is countable, although we do not pursue this
here.
76 Since Uv is Omega-linear, it is easy to check that V v(L) is a well-defined
function of L ∈ Lv , independent of I.

them with egalitarian social preorders. First we show that they
form a rich class: they are compatible with a wide variety of social
preorders on distributions.

To simplify the discussion, let us assume that Dv is the set of all
possible distributions with finite populations, and that D is the set
of all possible distributions with some given constant population.
We also assume that the sigma algebras on Dv and D separate
points,77 so that if d ̸= d′ then 1d ̸= 1d′ . We can therefore think
of distributions as delta-measures. Finally, we assume that Lv and
L contain 1d for any d in Dv and D respectively.

Say that a preorder ≿v
0 on Dv is consistent with quasi utili-

tarianism if there exists some quasi utilitarian preorder ≿v on
Lv such that for all d, d′

∈ Dv, d ≿v
0 d′

⇐⇒ 1d ≿v 1d′ .
We can similarly ask whether a preorder ≿0 on D is consistent
with quasi utilitarianism for the given finite population: whether
d ≿0 d′

⇐⇒ 1d ≿ 1d′ for all d, d′
∈ D. Discussions of

distributive views like utilitarianism or egalitarianism often focus
solely on risk-free cases, so it is natural to ask which preorders on
distributions are consistent with quasi utilitarianism. We answer
this question in terms of the following two conditions.

Risk-Free Anonymity Given d ∈ D and σ ∈ Σ , we have
d ∼0 σd.

Say that c ∈ Dv is an m-scaling of d ∈ Dv if it consists of ‘m
copies’ of d—that is, there is an m-to-1 map s of I∞ onto itself
such that Wv

i (c) = Wv
s(i)(d) for every individual i. For example,

(x, x, y, y, Ω, Ω, . . . ) is a 2-scaling of (x, y, Ω, . . . ).

Scale Invariance If, for some m > 0, c, c ′
∈ Dv are m-scalings

of d, d′
∈ Dv respectively, then c ≿v

0 c ′
⇐⇒ d ≿v

0 d′.

Risk-Free Anonymity is obviously a very weak and uncontro-
versial constraint, while Scale Invariance is a seemingly modest
generalization (they are equivalent when m = 1). But these are
the only constraints imposed by consistency with quasi utilitari-
anism.

Proposition 6.1. Under the assumptions just made:

(i) A preorder on D is consistent with constant population quasi
utilitarianism if and only if it satisfies Risk-Free Anonymity.

(ii) A preorder on Dv is consistent with variable population quasi
utilitarianism if and only if it satisfies Scale Invariance.

This result shows that many apparently egalitarian (as well as
inegalitarian) preorders of distributions are consistent with quasi
utilitarianism. For example, as preorders of distributions, both
maximin and leximin are consistent with quasi utilitarianism.
This raises questions about the significance of quasi utilitar-
ian preorders as a class. In particular, why do they merit the
‘quasi utilitarian’ name, if they include preorders with apparently
egalitarian properties?

The answer is that the axioms of our aggregation theorems
precisely rule out certain features of the social preorder that
may be considered essential to standard egalitarian concerns, but
which can only be seen once one introduces risk.78 Thus, even
if some quasi utilitarian preorders are egalitarian in some useful
sense, quasi utilitarianism excludes what are arguably defining
characteristics of egalitarianism.

To illustrate, suppose given welfare states x and z with x ≻P
z, and a population consisting of Ann and Bob. Consider the

77 This is weaker than the assumption that singletons are measurable.
78 It is not obvious that egalitarians should accept scale invariance, since it is
not clear how the value of equality scales with population size. But the tensions
between our axioms for aggregation and versions of egalitarianism that we now
discuss are more direct, and apply even in the constant population case.
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following lotteries (in which each column displays a distribution
with a 1/2 chance of occurring).

LE 1
2

1
2

Ann x z
Bob x z

LF 1
2

1
2

Ann x z
Bob z x

LU 1
2

1
2

Ann x x
Bob z z

It is arguable that LE is socially better than LF on the grounds
that while Ann and Bob face identical prospects (and therefore ex
ante equality obtains) in both, LE ensures ex post equality (My-
erson, 1981). It is also arguable that LF is better than LU on
the grounds that while there is nothing to chose between their
outcomes, under LF there is ex ante equality, so LF is apparently
fairer (Diamond, 1967).

In our view, suitable generalizations of ‘LE ≻ LF ’ and ‘LF ≻

LU ’ are essential to ex post and ex ante egalitarianism respec-
tively.79 In related work, we use this idea to develop accounts
of ex ante and ex post egalitarianism that are compatible with
any individual preorder. This leads to a taxonomy of the main
distributive views in which quasi utilitarianism is distinguished
from the other views by containing at its core the indifference
to equality expressed by ‘LE ∼ LF ∼ LU ’. Quasi-utilitarianism
is inconsistent with ex ante egalitarianism because it accepts
Two-Stage Anonymity, and is inconsistent with ex post egalitari-
anism because it accepts Anteriority. Thus despite the egalitarian
appearance of some quasi utilitarian preorders of distributions,
there is a sharp distinction between quasi utilitarianism and
standard forms of egalitarianism.

Because it accepts Reduction to Prospects, quasi utilitarianism
also conflicts with a third type of view which has often been as-
sociated with egalitarianism. This is the distributive view widely
discussed in moral philosophy known as ‘prioritarianism’ or ‘the
priority view’ (see Tungodden 2003 for discussion). The core idea
of prioritarianism is arguably a form of social risk aversion. For
example, suppose that welfare state x is better for an individual
than welfare state y, which is in turn better than z, and that
the prospect of equal chances of x and z is exactly as good as
getting welfare state y for sure. A prioritarian social preorder will
consider the one-person distribution (y) to be strictly better than
the one-person lottery that gives equal chances to the distribu-
tions (x) and (z). In Section 3.2 we stipulated that the individual
preorder satisfies (E); granted that, prioritarianism rejects (F),
and more generally, Reduction to Prospects, serving to distinguish
quasi utilitarianism from prioritarianism.80

6.2. Ex ante and ex post

We now explain why there is a natural sense in which quasi
utilitarian preorders are those social preorders that are weakly
ex ante and anonymously ex post. This generalizes the contrast
between quasi utilitarianism and ex post and ex ante egalitarian-
ism developed in 6.1. We focus on the constant population case,
the variable case being parallel. The Pareto conditions discussed
below (and introduced in Section 4.3) are therefore understood
relative to a fixed population. As throughout, we assume prob-
abilities are given, and thus do not address problems that arise
from defining ex ante principles in terms of possibly differing
individual subjective probabilities.81

79 For similar views, see Broome (1989, 1991), Ben-Porath et al. (1977),
Fleurbaey (2010), Grant et al. (2012b), Saito (2013), and McCarthy (2015) among
others. For surveys on ex ante and ex post egalitarianism see Mongin and Pivato
(2016, §§25–26) and Fleurbaey (2018).
80 Nevertheless, our aggregation theorems are still useful for the characteri-
zation of prioritarianism; see McCarthy (2017).
81 For an entry into the huge literature on this topic, see Mongin and Pivato
(2019); see also Section 6.7.4.

6.2.1. Ex ante
Let (Ant) and (RP) stand for Anteriority and Reduction to

Prospects. The following irreversible implications are obtained by
noting that (RP) is equivalent to the restriction of (P3) to lotteries
in L(P).

(RP) ⇐ (P3) ⇒ (P2) ⇒ (P1) ⇒ (Ant)

Social preorders are commonly said to be ex ante if, in some
sense, they respect unanimous ‘before the event’ judgments of
individual welfare. Each of the above principles expresses some
way of making this rough idea precise, which helps explain why
‘ex ante’ is used quite flexibly. But the most popular interpretation
sees social preorders as ex ante if they satisfy strong Pareto
(P2) (Mongin and d’Aspremont, 1998, §5.4). This corresponds to
a relatively strong notion of unanimity: respect the unanimous
judgments of non-indifferent individuals. But this notion of una-
nimity is more fully captured by (P3), which strengthens (P2) in
cases where the individual preorder is incomplete. We therefore
suggest that it is social preorders which satisfy (P3) which should
be seen as ex ante.

However, as long as the social preorder is impartial in the
sense expressed by Two-Stage Anonymity, requiring it also to
be ex ante in the sense of (P3) carries an implicit commitment:
it effectively means that the individual preorder has to satisfy
strong independence (see Theorem 4.10). But that rules out a
wide range of possibilities for individual welfare comparisons, so
it is natural to ask which principle expresses the ex ante idea
as strongly as possible while remaining neutral on the prop-
erties of the individual preorder. According to our aggregation
Theorem 2.2, that principle is the conjunction of (Ant) and (RP).
We will therefore say that social preorders satisfying that con-
junct are weakly ex ante.

Similarly, in the variable population case, we will say that
a social preorder satisfying (P3) is ex ante, and one satisfying
Anteriority and Reduction to Prospects is weakly ex ante.

6.2.2. Ex post
Social preorders are often said to be ex post when they satisfy

expected utility theory (Mongin and d’Aspremont, 1998, §5.4).
But this seems distant from the ordinary meaning of the term,
which suggests that lotteries should be socially evaluated from
some sort of ‘after the event’ perspective in which all risk has
resolved. In particular, if two lotteries are in some natural sense
equivalent from that perspective, then they should be ranked as
equals.

To approach the matter more directly, let us suppose that
X = P(Y ) is a set of probability measures on a measurable space
Y , and that the following domain condition (∗) is satisfied: the
set {y} is measurable for each y ∈ Y , and P(Y ) contains each
corresponding delta-measure 1y. Say that a subset B of P(Y ) is
‘closed under indifference’ if y ∈ B and 1y ∼X 1y′ entail y′

∈ B. The
following condition seems to capture a general sense in which a
preorder ≿X on P(Y ) should count as ex post.

Posteriority. Given p, p′
∈ P(Y ), suppose that p(B) = p′(B)

whenever B is a measurable subset of Y that is closed under
indifference. Then p ∼X p′.

For example, assume that the domain condition (∗) just stated
holds for the set of lotteries L. Say that a ‘level of social welfare’ is
an equivalence class of distributions under the social indifference
relation ∼. Two lotteries are naturally said to be equivalent from
an ‘after the event’ perspective whenever they define the same
probability measure over levels of social welfare. Posteriority
then says that two such lotteries are equally good.82 For this

82 Compare the discussion of Posterior Anonymity in Section 2.3, and
especially note 18.
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reason, we will say that a social preorder is ex post if it satisfies
Posteriority.83

Continuing with the domain conditions, if B is a measurable
subset of D that is closed under indifference, Risk-Free Anonymity
implies that B is permutation-invariant. Hence given Risk-Free
Anonymity, Posterior Anonymity emerges as a much weaker,
special case of Posteriority. It is therefore natural to call social
preorders satisfying Posterior Anonymity anonymously ex post.
The same applies in the variable population case.

An appealing feature of this terminology is that anonymously
ex post social preorders rule out ex ante egalitarianism, and
weakly ex ante social preorders rule out ex post egalitarianism
(see Section 6.1).

It should be noted that this derivation of Posterior Anonymity
does not always make sense in our very general framework, as
the domain condition (∗) is not guaranteed to hold. For example,
our framework does not require that 1d is in L for all d in D.
Nevertheless, Posterior Anonymity has self-standing appeal, and
is always well-defined in our framework.

6.2.3. Two-stage anonymity and the aggregation theorems redux
Two-Stage Anonymity is entailed by Posterior Anonymity, and

although Posterior Anonymity is our conceptually favored prin-
ciple, it was simpler to work with Two-Stage Anonymity. Nev-
ertheless, granted the harmless assumption of coherence in the
variable population case, Propositions 2.4 and 3.7 show that Two-
Stage Anonymity and Posterior Anonymity are equivalent given
our other axioms for aggregation. Thus we can recapitulate our
aggregation theorems as follows.

Proposition 6.2. Any social preorder (constant or variable popula-
tion) that is generated by a given individual preorder is the unique
social preorder that is weakly ex ante and anonymously ex post. (In
the variable-population case, we assume that the sigma algebra on
Dv is coherent.)

In Section 2.3 we raised the question of how Two-Stage
Anonymity is related to strong independence as a condition on
the social preorder. Assuming Anonymity for this discussion, it is
clear that Two-Stage Anonymity follows more specifically from
the weaker ‘independence of indifference’ axiom (I1) we stated
in Section 4.1. As we have just noted, Two-Stage Anonymity also
follows from Posteriority, and also from the closely related part
(i) of monotonicity. It is therefore natural to wonder whether
Two-Stage Anonymity really represents a significant weakening
of these three alternative principles.

In fact, it is much weaker than any of them, even when it is
combined with our other axioms for aggregation. To see this, note
two points. First, our axioms for aggregation are compatible with
any constant population individual preorder ≿P (Theorem 2.2 and
Proposition 3.9(i)). Second, no matter how severely ≿P violates
the three alternative principles, the social preorder ≿ it generates
will always satisfy Two-Stage Anonymity, but will violate the
alternative principles in a comparably severe manner. This is
because, by Reduction to Prospects, the restriction of ≿ to L(P)
is a copy of ≿P .84 Examples like 5.1 also show that, even if the

83 Note that, when the social preorder is upper-measurable, so that the
stochastic dominance relation is defined, Posteriority is implied by the first part
of monotonicity, (M)(i), and these conditions often coincide in practice. Even
then, though, Posteriority is logically weaker, and gets more directly at the ex
post idea.
84 Here is a simple example of an individual preorder that violates (I1), (M)(i),
and Posteriority in an appropriately severe way. Set W = {x, y}, and let P contain
all probability measures on W (with every subset of W being measurable). Let
the individual preorder be such that 1x ∼P 1y , with all non-trivial mixtures of
1x and 1y ranked equally but strictly below 1x and 1y . This models a pure and
extreme form of uncertainty-aversion.

individual preorder satisfies (M)(i) and, relatedly, Posteriority, the
social preorder need not do so. We noted in Section 5.1 that
axiomatic approaches to non-expected utility weaken indepen-
dence only mildly, and invariably impose monotonicity. Since
Two-Stage Anonymity allows for major violations of those princi-
ples, Two-Stage Anonymity is compatible with violations that are
far more severe than any which would be taken seriously by non-
expected utility theorists. Thus although it is ex post enough to
rule out Diamond’s example of ex ante egalitarianism, Two-Stage
Anonymity is much weaker than the conjunction of Anonymity
with any of the standard ex post principles. The same conclusion
applies to Posterior Anonymity, since, as we noted above, it is
essentially equivalent to Two-Stage Anonymity given our other
axioms for aggregation.

6.3. Utilitarianism

The case for our ‘quasi utilitarian’ terminology rests on the
claim that our social preorders have enough properties tradition-
ally associated with utilitarianism to merit the name (see note 4).
The principal properties here are indifference to ex ante and ex
post equality, anonymity, and the positive dependence of social
welfare on individual welfare given by Reduction to Prospects.
The reason for the ‘quasi’ is that our social preorders do not
always have well-behaved total utility representations,85 nor do
they necessarily satisfy separability or Pareto conditions, even in
risk-free cases; these conditions might fairly be seen as important
utilitarian commitments.

Setting aside one subtlety to which we return below, it is
only when our preorders satisfy strong independence (I3) that
they possess the full range of properties naturally associated with
utilitarianism, including Pareto (P3) and separability (S3). In addi-
tion, (I3) for the individual preorder is necessary and sufficient
for the social preorder to have the well-behaved expected total
utility representation of Section 4.2. Thus we propose to define
as utilitarian precisely those social preorders that are generated
by an individual preorder that satisfies (I3). The discussion of
Section 5.2 suggests that a fairly general and important range of
social preorders should then be deemed locally utilitarian.

The subtlety is that one might identify utilitarianism with a
slightly broader class of social preorders by replacing (I3) with
its ‘rational’ version (IQ3 ). As noted in Section 4.3, this would
allow an especially parsimonious axiomatization that directly
expresses classical utilitarian ideas without any appeal to in-
dependence. The most visibly utilitarian variant (Theorem 4.10
note 63) assumes only Posterior Anonymity and the Pareto prin-
ciple (P3). But Pareto and Risk-Free Anonymity are central utili-
tarian ideas, while the extension of Risk-Free Anonymity to Pos-
terior Anonymity is a modest expression of the teleological basis
of classical utilitarianism (compare Section 6.2.2). This proposal
would still give utilitarian social preorders a reasonably well-
behaved expected total utility representation (Theorem 4.10), and
would imply the separability principle (S3). Nonetheless, as we
explained after Proposition 4.8, it is so implausible to violate (I3)
while satisfying (IQ3 ), and (I3) is so standard and technically con-
venient, that for pragmatic reasons we recommend the slightly
narrower identification.

85 There is a superficial sense in which every quasi utilitarian social preorder
has an additive representation. Sticking to the constant population case, we
could take V = Span(P) as our utility space, and extend ≿P to a preorder on
V. Then L ↦→ pL ∈ V is a vector-valued representation of ≿ , and since pL =∑

i∈I
1
#IPi(L), one might say it is a total utility representation. But we cannot

necessarily define ≿V in a way that validates the natural requirement that a sum
is an increasing function of its summands. All of the ‘total utility’ representations
we study in this paper satisfy this requirement, which is obviously related to
Pareto and separability.



100 D. McCarthy, K. Mikkola and T. Thomas / Journal of Mathematical Economics 87 (2020) 77–113

6.4. Harsanyi’s utilitarian theorem

As we defined it in Section 1, Harsanyi’s (1955) utilitarian
theorem assumed interpersonal comparisons and derived a real-
valued, expected total utility representation of the constant pop-
ulation social preorder. He used premises which, translated into
our framework, amount to EUT for the individual preorder, EUT
for the social preorder, Anonymity, and strong Pareto (P2).86 In
Theorem 4.4 we showed how to derive the same result simply
by adding EUT for the individual preorder to our basic axioms of
Anteriority, Reduction to Prospects, and Two-Stage Anonymity.
The premises we use, then, are weaker than Harsanyi’s: Two-
Stage Anonymity is much weaker than the conjunction of social
EUT and Anonymity, while Anteriority and Reduction to Prospects
are together much weaker than (P2), given that the individual
preorder satisfies EUT and is therefore complete.87

6.5. The veil of ignorance

Harsanyi (1953) gave a different argument for utilitarianism,
often known as his impartial observer theorem. The distinctive
premise is that social evaluation corresponds to self-interested
evaluation by someone behind a veil of ignorance, uncertain who
he is.

Surprisingly, Harsanyi seems not to have thought that his
utilitarian theoremwould extend to variable populations. He used
the veil of ignorance in that case, and argued that it leads to
average rather than total utilitarianism, a claim that has often
been endorsed.88 But appeals to the veil of ignorance have been
criticized in the constant population case,89 and they are espe-
cially difficult to interpret, let alone justify, in the variable case.
For example, it is unclear whether individuals behind the veil are
required to be certain of their existence.

However, while we do not endorse the veil of ignorance as a
basic axiom, our Theorems 2.2 and 3.5 can nevertheless be seen
as supporting a quite general version of the veil as a derived
principle. In the variable population case, for example, the lottery
pIL defined in Theorem 3.5 can be interpreted as the prospect
faced by an individual behind a veil, in the sense that he has
an equal chance of being any member of I under L. So the quasi
utilitarian social preorders are precisely the ones that correspond
to individual preorders behind this veil.

This version of the veil is compatible with average utilitari-
anism, as we saw in Example 3.11; indeed, Harsanyi endorsed
the kind of individual preorder used in that example (Ng, 1983).
But as illustrated in Sections 3.5 and 3.6, quasi utilitarianism is
compatible with many other social preorders as well, including
total utilitarianism.90

86 In Section 2.1, we explained how utility levels in Harsanyi’s framework
can be interpreted as welfare states in ours, so that prospects are probability
measures over utility levels; the individual preorder orders such prospects by
expected utility.
87 We add the caveat that we have not discussed the exact domain conditions
that Harsanyi’s utilitarian theorem requires, and we do not claim to have
reproduced his conclusion under exactly those conditions.
88 Harsanyi’s views about the variable population case are mainly presented
in correspondence quoted in Ng (1983), but see also Harsanyi (1977a, note 12).
The claim that the veil supports average utilitarianism was also made by Rawls
(1971, §27), who coined the phrase ‘veil of ignorance’, and is also implicit
in Vickrey (1945); see Kavka (1975), Barry (1977), and Ng (1983) for skepticism.
89 See for example Scanlon (1982) and Broome (1991, §3.3).
90 For a modification of the constant population veil of ignorance that is
incompatible with our approach, see the defense of ‘generalized utilitarianism’
in Grant et al. (2010, 2012a). Their approach is designed to accommodate
different attitudes to risk within the population in a way that in our framework
would clash with Two-Stage Anonymity.

6.6. An alternative

We now remark on an alternative way of generalizing
Harsanyi’s utilitarian theorem. One of our aims has been to show
that a Harsanyi-like approach to utilitarianism can be maintained
even if strong independence is rejected. But as we now explain,
the rejection of strong independence leads to tension between
two ideas that may each seem central to Harsanyi’s utilitarianism.

The discussion after Theorem 4.10 shows that Two-Stage (or
Posterior) Anonymity and Full Pareto together imply that the
social preorder is quasi utilitarian and that both the social and
individual preorders satisfy strong independence, at least in its
rational-coefficient form. Rejecting strong independence for the
individual preorder in any plausible way therefore means aban-
doning either Two-Stage Anonymity or Full Pareto.91 However,
both Two-Stage Anonymity and Full Pareto seem strongly in the
spirit of Harsanyi’s approach. Two-Stage Anonymity is entailed
by premises Harsanyi accepts, capturing (for one thing) indiffer-
ence to ex ante equality. While he does not consider Full Pareto,
Harsanyi (1977a) regards strong Pareto as a rather obvious as-
sumption, and in Section 4.3 we suggested that Full Pareto is the
natural way to extend strong Pareto in the face of incompleteness.
Thus rejecting strong independence for the individual preorder
involves a commitment to rejecting at least one assumption that
is arguably integral to Harsanyi’s utilitarianism.92 In this paper
we have taken Two-Stage Anonymity as a basic axiom, and al-
lowed for the rejection of Full Pareto. But it would be natural
to instead explore the possibilities for a Harsanyi-like approach
that retains Full Pareto while allowing for the rejection of Two-
Stage Anonymity, and thereby strong independence. The task
would be to look for principles that sufficiently weaken Two-
Stage Anonymity while preserving impartiality and indifference
to ex ante equality. But we leave this for another time.

6.7. Related literature

We will not repeat comparisons made with Harsanyi in sec-
tions 1, 6.4, and 6.5. Instead, we briefly relate our results to
some recent developments. These can be classified according to
which aspects of the framework of Harsanyi’s social aggregation
theorem they preserve. Recall from Section 1 that this frame-
work assumes a constant population, does not assume interper-
sonal comparisons, and involves risk rather than other forms of
uncertainty.

6.7.1. Constant and variable population, no interpersonal compar-
isons, risk

For derivations of the conclusion of Harsanyi’s social aggre-
gation theorem using weaker assumptions, see Fleurbaey (2009,
Thm. 1) and Mongin and Pivato (2015). For generalizations of
the theorem still assuming no interpersonal comparisons and
risk, see Hammond (1988) (variable populations); Zhou (1997)
(allowing for infinite populations); Danan et al. (2015) (dropping
completeness, allowing for infinite populations); and McCarthy
et al. (2019) (dropping completeness and continuity, allowing for
infinite populations).

91 It is worth noting that this observation applies directly to the version
of the veil of ignorance that is vindicated by our aggregation theorems (see
Section 6.5). If the impartial observer’s preferences over prospects violate strong
independence, her social preferences over lotteries essentially cannot satisfy
both Two-Stage (or Posterior) Anonymity and Full Pareto.
92 Theorem 5.3 makes a similar point: monotonicity for the social preorder
entails strong independence, albeit with somewhat restrictive background con-
ditions. Given that standard ways of rejecting strong independence typically
maintain monotonicity, the latter might also be seen as a core commitment of
Harsanyi’s utilitarianism.
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6.7.2. Constant population, interpersonal comparisons, risk
Harsanyi-like results that, like ours, explicitly assume a single

individual preorder, and a form of anonymity, but weaken the
premises of Harsanyi’s utilitarian theorem, are given in Fleurbaey
(2009) and Pivato (2013).

Fleurbaey (2009, Thm. 2) derives a constant population, finite
support, total expected utility representation based on ordinary
expected utility theory for the individual preorder, completeness
for the social preorder, strong Pareto, anonymity, and a domi-
nance condition similar to (M). This weakens the assumptions
of Harsanyi’s utilitarian theorem by not requiring continuity or
independence for the social preorder. Differences in framework
make difficult a strict comparison to our own results, but suffice
to note that the ordinary EUT version of our Theorem 4.4(ii)
rests on significantly weaker premises: it does not require social
completeness, uses only Reduction to Prospects and Anteriority
instead of strong Pareto, and uses only Two-Stage Anonymity
instead of anonymity and dominance (cf. Section 6.2). Our Theo-
rems 4.10 and 5.3 derive similar results based on Pareto and (M)
without even assuming EUT for the individual preorder.

In the result that is closest to ours, Pivato (2013, Thm. 2.1)
assumes Pareto and independence axioms for the individual and
social preorders,93 along with Anonymity. He shows that the
social preorder must extend the one generated by the individual
preorder. This shows that if the individual preorder is complete,
then so is the social preorder; more generally, it restricts the
degree of incompleteness of the social preorder in terms of that
of the individual preorder.

Our Theorem 2.2 improves this picture. Its conclusion is that
the social preorder is identical to the one generated by the in-
dividual preorder, showing precisely how incompleteness of the
individual preorder determines that of the social preorder. More-
over, it makes no assumptions at all about the individual pre-
order, and rests on premises that are much weaker than Pivato’s
in most respects. The only premise that is not implied by any of
Pivato’s is a component of Reduction to Prospects: for any P , P ′

in P, P ⋏P P ′
H⇒ L(P)⋏L(P ′). This principle expresses a natural

connection between individual and social incompleteness, and we
suggest that it is very plausible.

6.7.3. Variable population, interpersonal comparisons, risk
An extension of Harsanyi’s utilitarian theorem to the variable

population case, resulting in critical level utilitarianism, is given
in Blackorby et al. (1998, 2007). Along with the full expected util-
ity framework, this result assumes that at least some distributions
have a critical level (roughly, a utility level at which creating an
additional person would be a matter of social indifference). Under
one of several important interpretations, Pivato (2014, Thm. 1)
shows, roughly, that for variable but finite populations, there is a
Harsanyi-like mixture-preserving total utility representation into
a linearly ordered abelian group if and only if the social preorder
is complete, anonymous, and satisfies a separability condition.
Under this interpretation, the separability condition implies both
strong independence and strong separability across individuals.
Thus the main advance in terms of ethical assumptions is to
have dispensed with continuity.94 In contrast, our Theorem 3.5
neither assumes nor implies completeness, continuity, strong
independence, strong separability across people, or the existence
of a critical level for some distribution. When we further as-
sume that the individual preorder is strongly independent, we
obtain an expectational, and therefore mixture-preserving (note

93 These are intermediate in strength between (I1)/(P1) and (I2)/(P2).
94 However, the main aim of Pivato (2014) is to provide an extension of his
Theorem 1 to the infinite population setting, a topic not considered here; see
note 32.

57), total utility representation into a preordered vector space.
As Pivato notes, a linearly ordered abelian group can always be
embedded in an ordered vector space (and specifically into a
lexicographic function space, by the Hahn embedding theorem),
so our use of preordered vector spaces as utility spaces allows his
kind of representation as a special case (compare Remark 4.7).
One difference is that Pivato’s framework is designed to allow
for infinitesimal probabilities, whereas we have assumed stan-
dard real-valued probabilities. But as discussed in Section 2.7,
this assumption plays no real role in either of our aggregation
theorems.

6.7.4. Constant population, no interpersonal comparisons, uncer-
tainty

In Harsanyi’s social aggregation theorem, each individual’s
preorder and the social preorder apply to lotteries, understood
as probability measures on a shared outcome space. His result
is therefore most obviously relevant to situations in which prob-
abilities are objective or universally agreed. If instead lotteries
are interpreted as such things as Anscombe–Aumann or Savage
acts, we obtain a framework in which individuals can apparently
have differing subjective probabilities. But a number of results
suggest that the gain in generality is illusory: strong Pareto plus a
version of subjective expected utility for all the preorders implies
that the subjective probabilities must be identical.95 This seems
to show that Harsanyi-style social aggregation is not possible
for individuals whose subjective probabilities disagree.96 These
results do not assume interpersonal comparisons, but parallel
difficulties will emerge if and when they are introduced.

In either case, one well-known reaction is to conclude that
uncertainty should first be given a single representation before
social aggregation takes place.97 Such a representation could have
many interpretations, such as expert consensus, social consensus,
or the view of the social planner (compare Section 2.1). It could
fall far short of being a single probability measure. But as illus-
trated in Examples 2.10 and 2.11, our aggregation theorems can
still cope.
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Appendix A. Proofs

Some lemmas

We first collect together a few basic results about probability
measures to which we will frequently appeal.

95 See e.g. Broome (1990), Mongin (1995, 1998), Mongin and Pivato (2015),
and Zuber (2016).
96 For further discussion and results, see e.g. Mongin (1998), Gilboa et al.
(2004), Chambers and Hayashi (2006, 2014), Danan et al. (2016), Mongin (2016),
Gajdos et al. (2008), Crès et al. (2011), Gilboa et al. (2014), Alon and Gayer
(2016), Billot and Vergopoulos (2016), Mongin and Pivato (2019), and Qu (2017).
97 See e.g. Mongin (1998, pp. 352–3).
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Lemma A.1. Let p be a probability measure on a measurable space
Y , and let A1, . . . , Am and B1, . . . , Bn be measurable subsets of Y .
Suppose that each y ∈ Y appears the same number of times in the
sets Ai as in the Bi. Then
m∑
i=1

p(Ai) =

n∑
i=1

p(Bi).

Proof. Writing χAi and χBi for the characteristic functions of Ai
and Bi, we have

∑m
i=1 p(Ai) =

∫
Y (

∑m
i=1 χAi ) dp and

∑n
i=1 p(Bi) =∫

Y (
∑n

i=1 χBi ) dp. By hypothesis, for each y ∈ Y ,
(∑m

i=1 χAi

)
(y) =(∑n

i=1 χBi

)
(y). The two integrands are therefore identical. □

Lemma A.2. Let X and Y be measurable spaces. Let f : X → Y be a
measurable function, and let µ be a nonnegative measure on X. Then
µ◦f −1 is a measure on Y . Moreover, suppose g: Y → R is integrable
with respect to µ ◦ f −1. Then g ◦ f is integrable with respect to µ,
and one has∫
Y
g d(µ ◦ f −1) =

∫
X
g ◦ f dµ.

Proof. The proof that µ ◦ f −1 is a measure is routine. For the
second claim, we spell out a remark Bogachev (2007) makes after
his Theorem 3.6.1. Since g is (µ ◦ f −1)-integrable, it agrees with
some measurable function G on some set of (µ ◦ f −1)-measure
1 (see note 48). Bogachev’s Theorem 3.6.1 shows that G ◦ f is
integrable with respect to µ and that∫
Y
G d(µ ◦ f −1) =

∫
X
G ◦ f dµ.

However, g◦f agrees with G◦f on a set of µ-measure 1; therefore
g ◦ f is integrable with respect to µ, and replacing G by g in the
displayed equation does not change the value of either side. □

The following two lemmas concern the notion of ‘support’
introduced in footnote 33.

Lemma A.3. Let p be a probability measure on a measurable space
Y , and let A be a subset of Y . The following conditions are equivalent:

(1) The measure p is supported on A, in the sense that p(B) = 0
whenever B ⊂ Y is measurable and disjoint from A.

(2) If B1, B2 ⊂ Y are measurable and B1 ∩ A = B2 ∩ A, then
p(B1) = p(B2).

Proof. Suppose p is supported on A. Suppose B1 ∩ A = B2 ∩ A.
Then p(B1) = p(B1 ∩ B2) + p(B1 \ B2). B1 \ B2 is disjoint from A.
So p(B1) = p(B1 ∩ B2); this equals p(B2) by parallel reasoning.
Conversely, suppose p(B1) = p(B2) whenever B1 ∩ A = B2 ∩ A.
Then, if B is disjoint from A, p(B) = p(∅) = 0. □

The following lemma shows that any finitely supported prob-
ability measure can be written as a convex combination of delta-
measures, regardless of whether singletons are measurable.

Lemma A.4. Let p be a probability measure on a measurable space
Y . Then p is finitely supported (i.e. supported on a finite set) if and
only if p =

∑n
i=1 αi1yi for some n ≥ 1, some distinct y1, . . . , yn ∈ Y ,

and some α1, . . . , an > 0 with
∑n

i=1 αi = 1. Moreover, if the sigma
algebra on Y separates points,98 then the yi and αi are uniquely
determined (up to re-ordering).

98 I.e. for all y, y′
∈ Y , there is a measurable set containing y but not y′ .

Proof. The right to left direction is obvious: if p is a weighted
sum of delta-measures then it is supported on the set of points
occurring in the sum. For the left to right, suppose p is supported
on a finite set of n elements, S = {y1, . . . , yn}. We can assume
n is as small as possible. Now, suppose that every measurable
set containing a given yi also contains some distinct yj; then p
is in fact supported on S \ {yj}, contradicting the minimality of
n. We can therefore find measurable sets A1, . . . , An such that
Ai ∩ S = {yi}, and by excising the intersections of these sets, we
can ensure that they are disjoint. Note that each p(Ai) ̸= 0 by
the minimality of n. We claim that p =

∑n
i=1 p(Ai)1yi . To see this,

note that (by Lemma A.3) two measurable sets have the same
measure with respect to p if they contain the same elements of
S; therefore, for any measurable A,

p(A) = p
( ⋃

yi∈A∩S

Ai

)
=

∑
yi∈A∩S

p(Ai) =

n∑
i=1

p(Ai)1yi (A).

Of course,
∑n

i=1 p(Ai) = p(Y ) = 1.
As to the uniqueness claim, suppose that p =

∑n
i=1 αi1yi can

also be written as
∑m

i=1 βi1xi , with the xi mutually distinct, the
yi mutually distinct, and all αi, βi > 0. It suffices to show that
each yj is equal to some xk, and that αj = βk. By the hypothesis
that the sigma algebra separates points, we can find a measurable
set Bj whose intersection with {y1, . . . , yn, x1, . . . , xm} is precisely
{yj}. Thus, from the second expression for p, p(Bj) = 0 unless yj
is equal to some xk, in which case p(Bj) = βk. But from the first
expression p(Bj) = αj > 0. This shows that some xk must equal
yj, and then βk = αj, as claimed. □

Proof of Proposition 2.4. Suppose that ≿ is generated by ≿P .
Suppose that L(B) = L′(B) for every measurable and permutation-
invariant B ⊂ D. We want to show L ∼ L′. Suppose given
measurable A ⊂ W. We can write

#I · pL(A) =

∑
i∈I

Pi(L)(A)

=

∑
i∈I

L(Wi
−1(A)) =

#I∑
n=1

L
( ⋃

I⊂I
#I=n

⋂
i∈I

W i
−1(A)

)
.

(10)

The first equation is from the definition of pL, the second from
the definition of Pi, and the last equation is a direct application
of Lemma A.1. (Note that if a distribution is an element of the
argument of L in exactly k terms of the left-hand sum, then it also
an element of the argument of L in exactly k terms of the right-
hand sum, namely those with n = 1, 2, . . . , k.) On the right hand
side, all arguments of L are permutation-invariant. We therefore
find that

#I · pL(A) = #I · pL′ (A)

for arbitrary measurable A. Hence pL = pL′ . Since ≿P generates ≿,
we must have L ∼ L′, as required. □

Proof of Lemma 3.3. For (i), suppose given L ∈ Lv
I and i ∈ I∞ \ I.

Let A be measurable in Wv with Ω ∈ A. Then Dv
I ⊂ (Wv

i )
−1(A),

hence Pv
i (L)(A) = L((Wv

i )
−1(A)) = 1. Since this is true for every

such A, we must have Pv
i (L) = 1Ω . Since Lv is nonempty, and

hence by domain condition (Dv) some Lv
I is nonempty, by domain

condition (Av) we must have 1Ω ∈ Pv.
For (ii), for any finite I, we have dΩ = Dv

I (Ω) ∈ Dv. Now
invoke assumption (Bv).

For (iii), we have Lv
I (1Ω ) ∈ Lv, and we claim that Lv

I (1Ω ) =

1dΩ
. Indeed, for any measurable B ⊂ Dv with dΩ ∈ B, we have

Ω ∈ (Dv
I )

−1(B). Therefore Lv
I (1Ω )(B) = 1Ω ((Dv

I )
−1(B)) = 1, as

desired. Moreover, for any measurable A ⊂ Wv with Ω ∈ A, we
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have, for any i ∈ I∞, dΩ ∈ (Wv
i )

−1(A). Therefore Pv
i (1dΩ

)(A) =

1dΩ
((Wv

i )
−1(A)) = 1. Therefore Pv

i (1dΩ
) = 1Ω .

For (iv), suppose we have L ∈ Lv
I , and Pv

i (L) = 1Ω for all
i ∈ I∞. Then L((Wv

i )
−1(W)) = Pv

i (L)(W) = 0 for all i. (Note that
W is measurable in Wv, being the complement of {Ω}, which is
measurable by hypothesis.) Defining B :=

⋃
i∈I(W

v
i )

−1(W), we
must have L(B) = 0. Suppose given measurable B′

⊂ Dv with
dΩ /∈ B′. We have B′

∩Dv
I ⊂ B∩Dv

I , so B′
∩Dv

I = B′
∩ B∩Dv

I . Since
L is supported on Dv

I , Lemma A.3 gives L(B′) = L(B′
∩B) ≤ L(B), so

L(B′) = 0. Therefore L = 1dΩ
. □

Lemma A.5. Suppose given a tuple (I∞,Wv,Pv,Dv,Lv) satisfying
the variable population domain conditions (Av)–(Dv), and let F
denote the sigma algebra on Dv. Then F is contained in a sigma
algebra F such that (a) F is coherent; (b) every L ∈ Lv extends
naturally to a probability measure L with respect to F ; (c) if we write
Dv for Dv equipped with the sigma algebra F , and Lv := {L : L ∈

Lv
}, then (I∞,Wv,Pv,Dv,Lv) again satisfies the domain conditions

(Av)–(Dv).

Proof. Define F by the rule that B ⊂ Dv is in F if and only
if, for every finite I ⊂ I∞, there exists some B ∈ F such that
B ∩ Dv

I = B ∩ Dv
I . It is easy to check that F is a coherent sigma

algebra containing F , and the restriction of F to each Dv
I ⊂ Dv is

the same as the restriction of F .
Given L ∈ Lv, we can extend L to a probability measure L on

F: if L ∈ Lv
I , then, for B and B related as above, L(B) := L(B). To see

that L(B) is independent of the choice of I and B, use Lemma A.3.
It remains to verify that the domain conditions (Av)–(Dv) are

satisfied. For (Av), it is obvious that each Wv
i is measurable with

respect to F , since F contains F . For clarity, let us retain the
notation Pv

i for the map from Lv to prospects defined in terms
of F , and write Pv

i for analogous map on Lv defined in terms of
F . Then Pv

i (L) = L ◦ (Wv
i )

−1
= L ◦ (Wv

i )
−1

= Pv
i (L), which shows

that Pv
i (Lv) ⊂ Pv.

For (Bv), each Dv
I is measurable with respect to F: we have

(Dv
I )

−1(B) = (Dv
I )

−1(B), for B, B related as above, showing that
(Dv

I )
−1(B) is measurable in Wv. Again distinguishing Lv

I :P
v

→ Lv

defined in terms of F from the map Lv
I defined in terms of F ,

we find Lv
I (P)(B) = P((Dv

I )
−1(B)) = P((Dv

I )
−1(B)) = Lv

I (P)(B). This
shows that Lv

I (P) = Lv
I (P) ∈ Lv, so Lv

I (P
v) ⊂ Lv.

For (Cv), given σ ∈ Σ∞ and B ∈ F , we can find B ∈ F with
B∩Dv

σ I = B∩Dv
σ I. Then (σ−1B)∩Dv

I = (σ−1B)∩Dv
I . Since this holds

for any I, σ−1B is in F , and the action of Σ∞ is measurable with
respect to F . Moreover, for L ∈ Lv

I , we find σ L(B) = L(σ−1B) =

L(σ−1B) = σ L(B) = σ L(B), so Lv is Σ∞-invariant.
Finally, for (Dv), it is easy to check that, given L ∈ Lv

I , we have
also L ∈ Lv

I . □

Proof of Proposition 3.7. Suppose that ≿v is generated by ≿Pv .
Suppose that L(B) = L′(B) for every measurable and Σ∞-invariant
B ⊂ Dv. We want to show L ∼

v L′. Pick finite non-empty I ⊂ I∞
such that L, L′

∈ Lv
I . It suffices to show that pIL = pIL′ . Now, for any

measurable A′
⊂ Wv, pIL(A

′) = 1−pIL(W
v
\A′). Since either Ω /∈ A′

or Ω /∈ Wv
\ A′, it suffices to show that pIL(A) = pIL′ (A) for every

measurable A ⊂ Wv such that Ω /∈ A.
For each number n, 1 ≤ n ≤ #I, let Bn be the set of

distributions in which at least n individuals have welfare states in
A; and, for any finite population J, let BJn be the set of distributions
in which at least n individuals in J have welfare states in A. That
is:

Bn :=

⋃
I⊂I∞
#I=n

⋂
i∈I

(Wv
i )

−1(A) BJn :=

⋃
I⊂J
#I=n

⋂
i∈I

(Wv
i )

−1(A).

Each set BJn is measurable in Dv (since the Wv
i are measurable

functions, and we take finitely many intersections and unions);
therefore BJn∩Dv

J is measurable in Dv
J (since its sigma algebra is the

restriction of the one on Dv). Given the assumption that Ω /∈ A,
we have Bn ∩Dv

J = BJn ∩Dv
J . Therefore, if the sigma algebra on Dv

is coherent, Bn is also measurable in Dv. If, instead of coherence,
we assume that I∞ is countable, then the definition of Bn involves
only countable unions and finite intersections of measurable sets,
so Bn is again measurable.

In exact parallel to (10) in the proof of Proposition 2.4, we have

#I · pIL(A) =

∑
i∈I

Pv
i (A) =

∑
i∈I

L((Wv
i )

−1(A)) =

#I∑
n=1

L(BIn)

again using Lemma A.1 for the last equation. Now, because L is
supported on Dv

I , and, for each n, BIn ∩ Dv
I = Bn ∩ Dv

I , Lemma A.3
gives L(BIn) = L(Bn). Therefore #I · pIL(A) =

∑#I
n=1 L(Bn), and

similarly #I · pIL′ (A) =
∑#I

n=1 L
′(Bn).

Now since each set Bn is Σ∞-invariant, L(Bn) = L′(Bn). There-
fore pIL(A) = pIL′ (A), establishing Posterior Anonymity. □

The following lemma is used in the proof of Proposition 3.9.
Preordered vector spaces are defined in Section 4.2.

Lemma A.6. Every preorder has a representation with values in a
preordered vector space.

Proof. The following construction is inspired by Conrad (1953);
see McCarthy et al. (2017b, Thm. 11) for an alternative. Suppose
≿X is a preorder on a set X . Set X := X/∼X , and for x ∈ X let
x be its class in X . There is a partial order ≿X on X defined by
x ≿X y ⇐⇒ x ≿X y. Let V be the vector space of functions
f : X → R such that supp(f ) := {x ∈ X: f (x) ̸= 0} satisfies
the ascending chain condition, i.e. every nonempty subset has a
≿X -maximal element. Define a relation ≿V on V by the rule that
f ≿V g ⇐⇒ f (x) > g(x) for all x maximal in supp(f − g). This
makes ≿V into a preordered vector space; the only non-trivial
claim to prove is that ≿V is transitive.

Suppose, for this, that f ≿V g ≿V h. We want to show that,
given x maximal in X fh := supp(f − h), we have (f − h)(x) > 0.
Now, (f − h)(x) = (f − g)(x) + (g − h)(x), so at least one of
the latter two terms must be non-zero. Correspondingly, x is in
X fg ∪ Xgh. This union also satisfies the ascending chain condition,
so we can find y maximal in {y ∈ X fg ∪ Xgh : y ≿X x}. This y
is automatically maximal in X fg ∪ Xgh. So if y is in X fg , it must
be maximal there, and (f − g)(y) > 0; if y is in Xgh, it must
be maximal there, and (g − h)(y) > 0; therefore, either way,
(f − h)(y) = (f − g)(y) + (g − h)(y) > 0. Thus y ∈ X fh. Since
x is maximal in X fh, and y ≿X x, and ≿X is a partial order, we
must actually have x = y, and (f − h)(x) > 0. Therefore ≿V is
transitive.

Finally, consider the function that maps x ∈ X to the charac-
teristic function of {x}; this is a representation of ≿X with values
in V. □

Proof of Proposition 3.9. (i) Applying Lemma A.6 to X = PΩ , we
have a representation U:PΩ → V of ≿PΩ

, for some preordered
vector space (V,≿V). Since Pv extends P, each member of Pv can
be written in the form Pα := αP + (1 − α)1Ω for some P ∈ P,
α ∈ [0, 1]. This presentation is unique except when α = 0. Define
a function U:Pv

→ V by the rule

U(Pα) = αU(P) + (1 − α)U(1Ω ).

Let ≿Pv be the preorder on Pv represented by U . We claim that
≿Pv is Omega Independent and extends ≿PΩ

.
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For all P ∈ PΩ , U(P) = U(P), so ≿Pv extends ≿PΩ
. To show that

≿Pv satisfies Omega Independence, suppose given P , P ′
∈ Pv and

α ∈ (0, 1) ∩ Q. We wish to show that P ≿Pv P ′
⇐⇒ Pα ≿Pv P ′

α .
We have P = Qβ and P ′

= Q ′
γ for some Q , Q ′

∈ P, β , γ ∈ [0, 1].
Then Pα = Qαβ and P ′

α = Q ′
αγ . Thus:

P ≿Pv P ′
⇐⇒ U(P) ≿V U(P ′)
⇐⇒ βU(Q ) + (1 − β)U(1Ω ) ≿V γU(Q ′)

+ (1 − γ )U(1Ω )
⇐⇒ αβU(Q ) + (1 − αβ)U(1Ω ) ≿V αγU(Q ′)

+ (1 − αγ )U(1Ω )

⇐⇒ U(Pα) ≿V U(P ′

α)
⇐⇒ Pα ≿Pv P ′

α

Here the third line is obtained from the second by applying the
order-preserving transformation of V given by v ↦→ αv + (1 −

α)U(1Ω ). This establishes that ≿Pv is Omega Independent and
extends ≿PΩ

.
(ii) Given ≿PΩ

, there is a unique preorder ≿Pv on Pv that
extends ≿PΩ

and satisfies the following property: for any P,Q ∈

P and α, β ∈ (0, 1),

Pα ≻Pv Q and Pα ≻Pv 1Ω and Pα ∼Pv Qβ .

In other words, elements of Pv not in PΩ are ranked as equals
above all elements of PΩ . This ≿Pv does not satisfy Omega In-
dependence: for P,Q ∈ P, α, β ∈ (0, 1) as before, we have
αP + (1 − α)1Ω = Pα ≿Pv Qαβ = αQβ + (1 − α)1Ω , but we do
not have P ≿Pv Qβ as Omega Independence requires for rational
values of α. □

Proof of Proposition 4.2. For (i), we present only the vari-
able population case, the constant population case being exactly
parallel. The general strategy is to use the assumption that ≿Pv

generates ≿v as follows. We use it directly to derive each condi-
tion on ≿v from the same condition on ≿Pv ; conversely, we use
Reduction to Prospects (which holds by Theorem 3.5) to derive
the condition on ≿Pv from the condition on ≿v. Moreover, we
can use the fact that the maps L ↦→ pIL and P ↦→ Lv

I (P) are
mixture preserving (in the sense of note 28). The arguments for
the different conditions are very similar, so we only present the
proof for (I3), or strong independence. Recall that for a preorder
≿X on a convex set X , (I3) is equivalent to the condition

p ≿X p′ if and only if αp + (1 − α)q ≿X αp′
+ (1 − α)q

for all p, p′, q ∈ X , α ∈ (0, 1).

Suppose first that ≿Pv satisfies (I3). Suppose given L, L′,M ∈ Lv,
α ∈ (0, 1). There is some finite, nonempty I ⊂ I∞ with L, L′,
M ∈ Lv

I . Then

L ≿v L′
⇐⇒ pIL ≿Pv pIL′

(≿Pv generates ≿v)
⇐⇒ αpIL + (1 − α)pIM ≿Pv αpIL′ + (1 − α)pIM

((I3) for ≿Pv )
⇐⇒ pIαL+(1−α)M ≿Pv pIαL′+(1−α)M

(L ↦→ pIL is mixture preserving)
⇐⇒ αL + (1 − α)M ≿v αL′

+ (1 − α)M
(≿Pv generates ≿v).

Therefore ≿v satisfies (I3), as claimed. Conversely, suppose ≿v

satisfies (I3), and suppose given P,Q , R ∈ Pv. Then

P ≿Pv Q ⇐⇒ Lv
I (P) ≿

v Lv
I (Q )

(Reduction to Prospects)

⇐⇒ αLv
I (P) + (1 − α)Lv

I (R) ≿
v αLv

I (Q ) + (1 − α)Lv
I (R)

((I3) for ≿v)

⇐⇒ Lv
I (αP + (1 − α)R) ≿v Lv

I (αQ + (1 − α)R)

(Lv
I is mixture preserving)

⇐⇒ αP + (1 − α)R ≿Pv αP + (1 − α)R

(Reduction to Prospects).

So (I3) for ≿v implies (I3) for ≿Pv .
Now let us turn to part (ii) of the proposition, beginning

with the constant population case. First a general observation.
Suppose given topological spaces X, Y with preorders ≿X ,≿Y , and
a function f : X → Y . Assume (1) that f is continuous, and (2) that
for all a, b ∈ X , a ≿X b ⇐⇒ f (a) ≿Y f (b). Then, we claim, if ≿Y
is continuous, so is ≿X . Indeed, for any q ∈ X , we find

{p ∈ X : p ≿X q} = {p ∈ X : f (p) ≿Y f (q)}

= f −1
{y ∈ Y : y ≿Y f (q)}.

The right-hand side is the inverse image of a closed set under a
continuous function, so it is closed. A similar calculation shows
that {p ∈ X : q ≿X p} is closed; hence ≿X is continuous.

Taking f = L:P → L, assumption (1) in the previous
paragraph is part of (Top), and assumption (2) follows from
Reduction to Prospects, which itself follows by Theorem 2.2 from
the hypothesis that ≿P generates ≿. We conclude that, if ≿ is
continuous, so is ≿P . Conversely, define f :L → P by f (L) =

pL. Assumption (1) follows from the continuity of mixing and
of every Pi, whereas (2) is part of what it means for ≿ to be
generated by ≿P . We conclude that, if ≿P is continuous, so is ≿.

As for the variable population case, let ≿v
I be the restriction of

≿v to Lv
I , and equip the latter with a topology as a subspace of

Lv. It suffices to prove two claims: first, that ≿Pv is continuous on
Pv if and only if ≿v

I is continuous on Lv
I , for every finite I ⊂ I∞;

second, that the latter holds if and only if ≿v is continuous on Lv.
The first claim follows from the logic just used for the constant

population case. As for the second claim, suppose (from right to
left) that ≿v is continuous on Lv. By definition of ≿v

I , for any
M ∈ Lv

I , {L ∈ Lv
I : L ≿v

I M} = {L ∈ Lv: L ≿v M} ∩ Lv
I . Since

≿v is continuous, {L ∈ Lv: L ≿v M} is closed in Lv, and since
Lv
I has the subspace topology, this intersection is closed in Lv

I .
A similar argument shows {L ∈ Lv

I :M ≿v
I L} is closed in Lv

I as
well. Therefore ≿v

I is continuous. For left to right, it suffices to
show that, for any L0 ∈ Lv, the set X = {L ∈ Lv

: L ≿v L0} is
closed in Lv (and similarly that {L ∈ Lv

: L0 ≿v L} is closed). By
topological coherence, it is enough to show that X ∩ Lv

I is closed
in Lv

I , for every finite I. Pick finite J such that L0 is in Lv
J , and let

K = I ∪ J, so L0 is also in Lv
K. Then X ∩ Lv

K is closed in Lv
K, by

continuity of ≿v
K. That means there is some closed V ⊂ Lv such

that V ∩ Lv
K = X ∩ Lv

K. But then X ∩ Lv
I = V ∩ Lv

I is closed in Lv
I ,

as desired. □

Proof of Lemma 4.3. We first check that ≿X satisfies (I3) if it
satisfies Vector EUT, that is, if it has a Vector EU representation
U with respect to some preordered vector space (V,≿V) and
separating vector space V′ of linear functionals on V. The main
point is that U is mixture preserving; as defined in note 28,
this means that U(αp + (1 − α)q) = αU(p) + (1 − α)U(q) for
p, q ∈ P(Y ), α ∈ [0, 1]. This is just the linearity of the integral;
in detail, for any Λ ∈ V′ we have Λ(αU(p) + (1 − α)U(q)) =

αΛ(U(p))+ (1−α)Λ(U(q)) = α
∫
Y Λ◦u dp+ (1−α)

∫
Y Λ◦u dq =∫

Y Λ◦u d(αp+(1−α)q) = Λ(U(αp+(1−α)q)). Since this works for
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any Λ in V′, we obtain the mixture preservation equation. Now,
to derive (I3), for p, p′, q ∈ P(Y ) and α ∈ (0, 1),

p ≿X p′
⇐⇒ U(p) ≿V U(p′)
⇐⇒ αU(p) + (1 − α)U(q) ≿V αU(p′) + (1 − α)U(q)
⇐⇒ U(αp + (1 − α)q) ≿V U(αp′

+ (1 − α)q)
⇐⇒ αp + (1 − α)q ≿X αp′

+ (1 − α)q.

The first and last biconditionals hold because U is a represen-
tation of ≿X . The second biconditional is immediate from the
definition of ‘preordered vector space’, and the third follows from
the fact that U is mixture preserving.

Conversely, suppose that ≿X satisfies (I3). Let V be the vector
space of finite signed measures on Y (it is the span of the set
of probability measures). For each measurable A ⊂ Y , define
FA:V → R by FA(p) = p(A). Let V′ be the span of all such FA.
Then V′ is a separating vector space of linear functionals on V.

Let U be the inclusion of P (Y ) into V. Define u: Y → V by
u(y) = 1y. For each FA ∈ V′, (FA ◦ u)(y) = FA(1y) = 1y(A),
so FA ◦ u is the characteristic function of A. Let Λ ∈ V′. We
may write Λ =

∑n
i=1 λiFAi for some λi ∈ R and measurable

Ai ⊂ Y . Therefore, for each p ∈ P (Y ), we have
∫
Y Λ ◦ u dp =∑n

i=1 λi
∫
Y FAi ◦ u dp =

∑n
i=1 λip(Ai) =

∑n
i=1 λiFAi (p) = (Λ ◦U)(p).

Therefore, u is weakly P (Y )-integrable with respect to V′, and∫
Y u dp = U(p). It only remains to define a linear preorder on

V making U into a representation of ≿X .
Define C ⊂ V by C := {λ(q − q′): λ > 0; q, q′

∈ P (Y ); q ≿X q′
}.

Define a binary relation ≿V on V by v ≿V v′
⇐⇒ v − v′

∈ C .
It is well known, and easy to check, that this construction makes
V into a preordered vector space. The only non-trivial claim is
that ≿V is transitive, which follows from ≿X satisfying (I3). Indeed,
suppose that v ≿V v′ ≿V v′′. We can then write v − v′

=

λ1(q1 − q′

1) and v′
− v′′

= λ2(q2 − q′

2) for some λ1, λ2 > 0,
q1 ≿X q′

1, and q2 ≿X q′

2. Setting α = λ1/(λ1 +λ2), straightforward
rearrangement shows

v − v′′
= (v − v′) + (v′

− v′′)

= 2(λ1 + λ2)
[ (

αq1 + (1 − α)q2
2

+
αq′

1 + (1 − α)q′

2

2

)
−

(
αq′

1 + (1 − α)q′

2

) ]
.

Now two applications of (I3) show q3 := αq1 + (1 − α)q2 ≿X
αq′

1 + (1−α)q2 ≿X αq′

1 + (1−α)q′

2 =: q′

3, and another application
shows q4 := q3/2+ q′

3/2 ≿X q′

3. However, the displayed equation
says v − v′′

= 2(λ1 + λ2)(q4 − q′

3), so v − v′′ is in C , so v ≿V v′′.
Finally, we check that U is a representation of ≿X . Since U is

the inclusion of P (Y ) into V, the claim is just that p ≿X p′
⇐⇒

p ≿V p′. First, p ≿X p′
H⇒ p − p′

∈ C H⇒ p ≿V p′.
Conversely, suppose p ≿V p′. Then there must be λ > 0 and
q, q′

∈ P (Y ) with q ≿X q′ and p − p′
= λ(q − q′). Let α :=

1
1+λ

.
Then αp + (1 − α)q′

= αp′
+ (1 − α)q. This, together with the

fact that ≿X satisfies (I3), yields q ≿X q′
H⇒ αp′

+ (1 − α)q ≿X
αp′

+(1−α)q′
H⇒ αp+(1−α)q′ ≿X αp′

+(1−α)q′
H⇒ p ≿X p′,

as desired. □

Proof of Theorem 4.4. Part (i) follows from Proposition 4.2
and Lemma 4.3. However, a more explicit argument is useful.
Suppose given a Vector EU representation U of ≿P . Then the
formula in part (ii) will define a Vector EU representation of ≿
(and similarly for part (iii) in the variable population case). Note
that the representation V has values in the same space as U . Just
before Lemma 4.3, we explained how both ordinary and Multi
EU representations can be identified with Vector EU represen-
tations whose value spaces V have certain forms. So with these
identifications in mind, if U is an ordinary EU representation, V

will be one too, and if U is a Multi EU representation, so is V .
Conversely, given a Vector EU representation V of ≿, with V (L) =∫
D v dL, we claim that U := V ◦ L is a Vector EU representation

of ≿P . (And similarly in the variable population case: if V v is a
Vector EU representation of ≿v, then any V v

◦ Lv
I is a Vector EU

representation of ≿Pv .) That this U is a representation follows
from Reduction to Prospects, which holds by Theorem 2.2. To see
that it is expectational, consider any Λ ∈ V′, where V′ is the
separating vector space of linear functional used to define the
weak integral. Using, in turn, the definition of U , the definition
of the weak integral, the definition of L, and Lemma A.2, we find

Λ ◦ U(P) = Λ ◦ V ◦ L(P) =

∫
D

Λ ◦ v dL(P)

=

∫
D

Λ ◦ v d(P ◦ D−1) =

∫
W

Λ ◦ v ◦ D dP .

By definition of the weak integral, we find that U(P) =
∫
W v ◦

D dP , showing that U is expectational. Again, since U has values
in the same space as the given V , if V is (up to identification)
either an ordinary EU representation or a Multi EU representation,
then so is U .

The proofs of parts (ii) and (iii) are parallel, so we present
only the variable population case, part (iii). We begin with a
general observation. Suppose that ≿Pv is represented by a func-
tion Uv:Pv

→ V, where (V,≿V) is a preordered vector space,
normalized so that Uv(1Ω ) = 0. Suppose that Uv is mixture
preserving. (As defined in note 28, this means that Uv(αP + (1 −

α)P ′) = αUv(P) + (1 − α)Uv(P ′) for P, P ′
∈ Pv, α ∈ (0, 1).) For

L, L′
∈ Lv

I , we have

L ≿v L′
⇐⇒ pIL ≿V pIL′

(≿Pv generates ≿v)
⇐⇒ Uv(pIL) ≿V Uv(pIL′ )

(Uv represents ≿Pv )

⇐⇒
1
#I

∑
i∈I U

v(Pv
i (L)) ≿V

1
#I

∑
i∈I U

v(Pv
i (L

′))
(Uv is mixture preserving)

⇐⇒
∑

i∈I∞ Uv(Pv
i (L)) ≿V

∑
i∈I∞ Uv(Pv

i (L
′)).

(11)

The last line incorporates two moves: multiplying both sides of
the previous line by #I (this is an order-preserving transformation
of V) and then extending the sum from I to I∞: by Lemma 3.3(i),
the additional terms are all zero.

Suppose now that ≿Pv satisfies Vector EUT with respect to
some (V,≿V,V′). Let Uv:Pv

→ V provide a Vector EU repre-
sentation, so that Uv(P) =

∫
Wv u dP . By adding a constant to

Uv, we may assume Uv(1Ω ) = 0. As shown in the proof of
Lemma 4.3, Uv is mixture preserving. From (11) we therefore find
that ≿v is represented by the function L ↦→

∑
i∈I∞ Uv(Pv

i (L)) =∑
i∈I∞

∫
Wv u dPv

i (L).
To establish part (iii) of the theorem, the only thing left to

prove is the identity∑
i∈I∞

∫
Wv

u dPv
i (L) =

∫
Dv

∑
i∈I∞

(u ◦ Wv
i ) dL

stated in the definition of V v(L). Again, each sum over i ∈ I∞ can
be replaced by a finite sum over i ∈ I. Considering each i ∈ I
separately, we are reduced to proving∫

Wv
u dPv

i =

∫
Dv

u ◦ Wv
i dL. (12)

For any Λ ∈ V′, Lemma A.2 yields∫
Wv

Λ ◦ u dPv
i (L) =

∫
Wv

Λ ◦ u d(L ◦ (Wv
i )

−1) =

∫
Dv

Λ ◦ u ◦ Wv
i dL.

Eq. (12) then follows from the definition of the V-valued
integral. □
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Proof of Proposition 4.8. We will treat the constant and variable
population cases simultaneously. In either case, the equivalence
between (IQi ) for the individual preorder and (IQi ) for the social
preorder (or preorders) follows from Proposition 4.2. So it re-
mains to show that (Si) ⇐⇒ (IQi ) ⇐⇒ (Pi) for i = 1, 2, 3,
where (IQi ) is understood as a condition on ≿P∗ .

We first argue that (Si) ⇐H (IQi ) H⇒ (Pi) for i = 1, 2, 3.
It will be sufficient to show that (Si) ⇐H [(IQa )&(I

Q
i )] H⇒ (Pi)

for i = a, b, c. So suppose we have (IQa ) and (IQi ). Let the symbol
⋄ stand for ∼, ≻, or ⋏, corresponding to i = a, b, c. We claim

(D1) The antecedent of each of (Si) and (Pi) implies pKL ∼P∗ pKL′ .
(D2) The antecedent of each of (Si) and (Pi) implies pJL ⋄P∗ pJL′ .

Granted (D1) and (D2), we can deduce pIL ⋄P∗ pIL′ by assuming the
antecedent of either (Si) or (Pi):

pIL =
#J
#I p

J
L +

#K
#I p

K
L

∼P∗
#J
#I p

J
L +

#K
#I p

K
L′ (IQa ) and (D1)

⋄P∗
#J
#I p

J
L′ +

#K
#I p

K
L′ (IQi ) and (D2)

= pIL′

Since ≿P∗ generates ≿∗
I , we find L ⋄

∗
I L′, validating both (Si) and

(Pi). It remains to prove (D1) and (D2).
Suppose the antecedent of (Si) is satisfied, so that L|K∼

∗
K L′

|K.
Then pKL = pKL|K ∼P∗ pKL′|K = pKL′ , as claimed by (D1). Similar
reasoning shows pJL = pJL|J ⋄P∗ pJL′|J = pJL′ , as claimed by (D2).

Suppose instead that the antecedent of (Pi) is satisfied, so that
L ≈

K
P∗ L′. This means that P∗

k (L) ∼P∗ P∗

k (L
′) for all k ∈ K. We

obtain pKL ∼P∗ pKL′ , as claimed by (D1), by repeatedly applying
(IQa ). If i = a or i = b, then pJL ⋄P∗ pJL′ follows by a similar
method. The case i = c is slightly more complicated. Choose any
j ∈ J. Since P∗

k (L) ∼P∗ P∗

j (L) for any other k ∈ J, we can deduce
pJL ∼P∗ P∗

j (L) by repeatedly applying (IQa ). Similarly, pJL′ ∼P∗ P∗

j (L
′).

Since P∗

j (L) ⋏P∗ P∗

j (L
′), we obtain pJL ⋏P∗ pJL′ , completing the proof

of (D2).
We now argue that (Si) H⇒ (IQi ) ⇐H (Pi) for i = 1, 2, 3,

and indeed for each of i = a, b, c. Suppose given p, p′, q ∈ P∗ and
α ∈ (0, 1) ∩ Q. Let P := αp + (1 − α)q, P ′

:= αp′
+ (1 − α)q.

It suffices to show that, given i ∈ {a, b, c}, each of (Si) and (Pi)
implies the conditional p ⋄P∗ p′

H⇒ P ⋄P∗ P ′.
Let J, K ⊂ I∞ be finite with J∩K = ∅ such that #J

#K =
α

1−α
. Let

I := J∪K. We first specialize to the case of a family F of constant
population models. Given the hypothesis that F is compositional,
we can find L, L′

∈ LI such that Pj(L) = p and Pj(L
′) = p′ for all

j ∈ J, and Pk(L) = Pk(L
′) = q for all k ∈ K. Then pIL = P and

pIL′ = P ′, while pJL = p, pJL′ = p′, and pKL = pKL′ = q. We claim
that the antecedent of each of (Pi) and (Si) holds if and only if
p ⋄P p′; for (Pi) this is immediate, while for (Si) it holds because
≿P generates ≿J and ≿K. In addition, the consequent of each of
(Pi) and (Si) holds if and only if P ⋄P P ′; this follows from the fact
that ≿P generates ≿I. Therefore, as we wanted to show, each of
(Si) and (Pi) yields the implication p ⋄P p′

H⇒ P ⋄P P ′.
Turning now to a variable population model M, we can argue

in a similar way, but now defining L :=
1
2L

v
J(p) +

1
2L

v
K(q) and

L′
:=

1
2L

v
J(p

′) +
1
2L

v
K(q). In this case, Pv

j (L) =
1
2p +

1
21Ω = pJL

and Pv
j (L

′) =
1
2p

′
+

1
21Ω = pJL′ for all j ∈ J, and Pv

k (L) = Pv
k (L

′) =
1
2q+

1
21Ω = pKL = pKL′ for all k ∈ K; moreover, pIL =

1
2P+

1
21Ω and

pIL′ =
1
2P

′
+

1
21Ω . As before, the antecedent of each of (Pi) and (Si)

holds if and only if p ⋄Pv p′; this now uses Omega Independence.
In addition, the consequent of each of (Pi) and (Si) holds if and
only if P ⋄Pv P ′; this also uses Omega Independence. Therefore, as
we wanted to show, each of (Si) and (Pi) yields the implication
p ⋄Pv p′

H⇒ P ⋄Pv P ′. □

Proof of Lemma 4.9. The proof is exactly the same as the proof
of Lemma 4.3, with ‘(I3)’ replaced by ‘(IQ3 )’, ‘Vector EU’ replaced
by ‘Rational Vector EU’, ‘preordered vector space’ replaced by ‘Q-
preordered vector space’, ‘linear preorder’ replaced by ‘Q-linear
preorder’, and the coefficients α, λ, λ1, λ2 restricted to rational
numbers throughout. □

Proof of Theorem 4.10. We consider the variable population
case, the constant population case being parallel. For part (iii)
of the theorem, Full Pareto implies Anteriority and Reduction to
Prospects as special cases. So, by the aggregation Theorem 3.5,
Full Pareto and Two-Stage Anonymity imply that ≿Pv generates
≿v. Indeed, this shows that Full Pareto and Two-Stage Anonymity
hold if and only if Full Pareto holds and ≿Pv generates ≿v. By
Proposition 4.8, therefore, Full Pareto and Two-Stage Anonymity
hold if and only if ≿Pv satisfies (IQ3 ) and generates ≿v. Appealing
to Lemma 4.9, we find that, as claimed, Full Pareto and Two-
Stage Anonymity hold if and only if ≿Pv has a Rational Vector EU
representation and generates ≿v.

The proof of part (iv) of the theorem, giving a total utility rep-
resentation of ≿v, is exactly parallel to the proof of
Theorem 4.4(iii). □

Proof of Theorem 5.2. Suppose we establish statement (i) of
the theorem, that ≿v satisfies (M) if and only if ≿Pv has an EU
representation. The explicit form for V v in statement (ii) was
derived in Theorem 4.4. As for statement (iii), preorders with
EU representations satisfy (I3) (by Lemma 4.3), while (P3) and
(S3) follow easily from the total expected utility form of V v. (The
assumption that restrictions exist is required for (S3) to make
sense.)

So it remains to establish statement (i). Suppose first that ≿Pv

has an EU representation. By Theorem 4.4, ≿v also has an EU rep-
resentation V v and in particular satisfies (Comp). Suppose lottery
L stochastically dominates L′. By Lemma A.4 we can write both L
and L′ as convex combinations of delta-measures: L =

∑m
i=1 αi1di

and L′
=

∑n
i=1 α′

i1d′
i
with each αi, α

′

i ∈ (0, 1] and di, d′

i ∈ Dv. By
(Comp), we can assume 1d1 ≿v

· · · ≿v 1dm and 1d′
1
≿v

· · · ≿v 1d′
n
;

recombining terms as necessary, we can assume m = n and each
αi = α′

i . Stochastic dominance then means that the first sum
dominates the second term-wise, i.e. 1di ≿v 1d′

i
, so V v(1di ) ≥

V v(1d′
i
). But then V v(L) =

∑n
i=1 αiV v(1di ) ≥

∑n
i=1 αiV v(1d′

i
) =

V v(L′). Therefore L ≿v L′, and we find that ≿v satisfies (M).
For the converse, suppose that ≿v satisfies (M). In Steps 1–5

below, we show that ≿Pv satisfies (I3), and then in Step 6 use this
to construct an EU representation. Suppose given P,Q , R ∈ Pv and
α ∈ (0, 1). Write [P, R] for the mixture αP+ (1−α)R. To establish
(I3) for ≿Pv , we want to show that P ≿Pv Q ⇐⇒ [P, R] ≿Pv

[Q , R].
Step 1. According to Lemma A.4, we can write P and Q as con-

vex combinations of delta-measures. Suppose for a first step that
the coefficients of these delta-measures are rational numbers. It
follows that, for some common denominator N , any population I
of size N , and some vi, wi ∈ Wv, we can write

P =
1
N

∑
i∈I

1vi Q =
1
N

∑
i∈I

1wi .

By hypothesis there exists some dP ∈ Dv
I with Wv

i (dP ) = vi for all
i ∈ I, and therefore a lottery LP := 1dP with pILP = P . Similarly for
Q .

Since, by hypothesis, ≿Pv is complete, either P ≿Pv Q or
Q ≿Pv P; since ≿Pv generates ≿v, this means that either LP ≿v LQ
or LQ ≿v LP . Since LP and LQ are delta-measures, [LP ,Lv

I (R)]
stochastically dominates [LQ ,Lv

I (R)] if LP ≿v LQ , and vice versa
if LQ ≿v LP . Applying (M), we find

[LP ,Lv
I (R)] ≿

v
[LQ ,Lv

I (R)] ⇐⇒ LP ≿v LQ .
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Now, pI
[LP ,Lv

I (R)]
= [P, R] and pI

[LQ ,Lv
I (R)]

= [Q , R], and we already
have pILP = P and pILQ = Q . Since ≿Pv generates ≿v, these
equations yield in addition the first and third biconditionals:

[P, R] ≿Pv [Q , R] ⇐⇒ [LP ,Lv
I (R)] ≿

v
[LQ ,Lv

I (R)]
⇐⇒ LP ≿v LQ ⇐⇒ P ≿Pv Q .

This establishes (I3) for ≿Pv under the restriction that P and Q
have rational coefficients.

Step 2. Suppose now that P,Q are general—that is, they are
arbitrary finitely supported prospects. In this step, we show as a
preliminary that ≿Pv is upper-measurable and satisfies (M). If x is
any welfare state, then

Ux := {y ∈ Wv
: 1y ≿Pv 1x} = (Dv

I )
−1({d ∈ Dv

: 1d ≿v 1Dv
I (x)

})

= (Dv
I )

−1(UDv
I (x)

) (13)

for any finite non-empty population I. Here we use Reduction
to Prospects, which follows from the fact that ≿v is generated
by ≿Pv . Since ≿v is upper-measurable by hypothesis, Eq. (13)
presents Ux as the inverse image of a measurable set by a mea-
surable function; therefore Ux is measurable, and ≿Pv is upper-
measurable.

To show that ≿Pv satisfies (M), suppose that P ≿SD
Pv Q . We have

to show that P ≿Pv Q , and that if P ≻
SD
Pv Q then P ≻Pv Q .

Let I ⊂ I∞ be finite and nonempty. First, we claim that
Lv
I (P) stochastically dominates Lv

I (Q ). If so, it follows from (M)
for ≿v that Lv

I (P) ≿v Lv
I (Q ), and by Reduction to Prospects that

P ≿Pv Q , as desired. Since ≿v is upper-measurable, the claim is
that Lv

I (P)(Ud) ≥ Lv
I (Q )(Ud) for all d ∈ Dv. Fix d. By definition of

Lv
I , L

v
I (P)(Ud) = P(A) where

A := (Dv
I )

−1(Ud) = {w ∈ Wv: 1Dv
I (w) ≿

v 1d}.

Similarly, Lv
I (Q )(Ud) = Q (A). The claim, then, is that P(A) ≥ Q (A).

To show this, let SQ be a finite set supporting Q . If SQ ∩ A = ∅,
then Q (A) = 0, so P(A) ≥ Q (A) as claimed. Otherwise, since ≿Pv

is complete, there is a minimal element s of SQ ∩ A, in the sense
that w ∈ SQ ∩ A H⇒ 1w ≿Pv 1s. Now, if 1w ≿Pv 1s, then, by
Reduction to Prospects, 1Dv

I (w) ≿v 1Dv
I (s)

≿v 1d; this shows that
Us ⊂ A. Therefore P(A) ≥ P(Us); since P ≿SD

Pv Q , P(Us) ≥ Q (Us);
and since Us ∩ SQ = A ∩ SQ , Lemma A.3 gives Q (Us) = Q (A).
Therefore P(A) ≥ Q (A), as claimed. So we conclude that Lv

I (P)
stochastically dominates Lv

I (Q ) and P ≿Pv Q .
Now suppose that, more strongly, P ≻

SD
Pv Q . That is, P ≿SD

Pv Q
but P(Ux) > Q (Ux) for some x ∈ Wv. By (13) and the definition of
Lv
I , we find Lv

I (P)(UDv
I (x)

) > Lv
I (Q )(UDv

I (x)
). The previous argument

showed that Lv
I (P) stochastically dominates Lv

I (Q ); this strict
inequality shows that the domination is strict, i.e. Lv

I (Q ) does not
stochastically dominate Lv

I (P). By (M) for ≿v, this means Lv
I (P) ≻

v

Lv
I (Q ), and by Reduction to Prospects, P ≻Pv Q . This establishes

(M) for ≿Pv .
Step 3. Nowwe claim we can find a sequence (Pi) in Pv strongly

converging to P such that each Pi has rational coefficients and
stochastically dominates P . To see this, using Lemma A.4 write
P as a sum of delta-measures, P = α11v1 + · · · + αn1vn . Since
by hypothesis ≿Pv is complete, we can assume 1v1 ≿Pv 1v2 ≿Pv

· · · ≿Pv 1vn . In the simplest case, n = 1, and then we can take
Pi := P for all i. For n > 1, let P ′ be the prospect P ′

=
α1

1−αn
1v1 +

· · · +
αn−1
1−αn

1vn−1 , so that P = (1 − αn)P ′
+ αn1vn . By induction on

n, we can find a sequence (P ′

i ) of prospects with rational values,
each stochastically dominating P ′, strongly converging to P ′. Let
(βi) be a sequence from [0, 1] ∩ Q approaching αn from below.
Then it is easy to check that the sequence of prospects given by
Pi := (1 − βi)P ′

i + βi1vn has the required properties.
Step 4. By a similar construction, we can find a sequence (Qi)

strongly converging to Q such that each Qi has rational values and
Q stochastically dominates each Qi.

Step 5. Since, as we proved in Step 2, ≿Pv satisfies (M), Pi ≿Pv

P and Q ≿Pv Qi. Using this, the result for rational-coefficient
prospects in Step 1, and strong continuity (applied once for Pi

s
−→

P and a second time for Qi
s

−→ Q ), we have

P ≿Pv Q H⇒ ∀ij.Pi ≿Pv Qj ⇐⇒ ∀ij.[Pi, R] ≿Pv [Qj, R]
H⇒ [P, R] ≿Pv [Q , R].

To complete the derivation of (I3), it suffices to show that the
first and last implications displayed are reversible. For the first
one, strong continuity yields ∀ij.Pi ≿Pv Qj H⇒ P ≿Pv Q . For
the last one, for each i, [Pi, R] stochastically dominates [P, R], so,
by (M), [Pi, R] ≿Pv [P, R]. Similarly, for any j, [Q , R] stochastically
dominates [Qj, R], so [Q , R] ≿Pv [Qj, R]. Therefore, if [P, R] ≿Pv

[Q , R], we must also have [Pi, R] ≿Pv [Qj, R] for any i, j. This
establishes (I3).

Step 6. It remains to show that ≿Pv has an EU representation.
We first show that ≿Pv satisfies (MC). Suppose that β is a limit
point of {α ∈ [0, 1] : αP + (1 − α)R ≿Pv Q }. Then there is a
sequence (βn) in [0, 1] converging to β with βnP+(1−βn)R ≿Pv Q .
It is clear that βnP+(1−βn)R converges strongly to βP+(1−β)R,
so by strong continuity, βP + (1 − β)R ≿Pv Q , implying that
{α ∈ [0, 1] : αP + (1 − α)R ≿Pv Q } is closed. A similar argument
shows that {α ∈ [0, 1] : Q ≿Pv αP + (1−α)R} is closed. Therefore
≿Pv satisfies (MC).

Given that ≿Pv satisfies (I3), (MC), and (Comp), the main result
of Herstein and Milnor (1953, Theorem 8) is that ≿Pv has a
mixture-preserving representation Uv:Pv

→ R. Set u(y) = Uv(1y)
for any y ∈ Wv. We want to show that, for any P ∈ Pv, Uv(P) =∫
Wv u dP . We can again use Lemma A.4 to write P in the form

P =
∑

αi1vi . Since Uv is mixture preserving, we have Uv(P) =∑
αiu(vi). It remains to show that u(vi) =

∫
Wv u d1vi , which is

automatic if u is measurable. To show that u is measurable, it
suffices to show that Ax := u−1([x, ∞)) is a measurable subset
of Wv, for all x ∈ R. First, if u(v) < x for all v ∈ Wv, then
Ax = ∅ is measurable. Second, if {u(w) : w ∈ Wv, u(w) ≥ x} has
a minimal element u(w), then Ax is the upper set Uw , and so is
measurable since (as proved in Step 2) ≿Pv is upper-measurable.
Otherwise, choose a sequence (wi) in Wv with u(wi) ≥ x and
u(wi) converging to inf{u(w) : w ∈ Wv, u(w) ≥ x}. Then
Ax is the countable union of the upper sets Uwi , and therefore
measurable. □

Proof of Lemma 5.4. Let U:P(Y ) → R. Suppose first that U
is integrally Gâteaux differentiable at p ∈ P(Y ). In other words,
there exists some vp ∈ ∇Up. We claim that there is at least one
up ∈ ∇Up satisfying

U(p) =
∫
Yup dp. (14)

Using the fact that P(Y ) consists of probability measures, it is
easy to check that ∇Up is closed under the addition of constant
functions; thus up := vp + U(p) −

∫
Y vp dp is also in ∇Up. By

integrating both sides with respect to p, we find that up satisfies
(14). We conclude that U is integrally Gâteaux differentiable at
p ∈ P(Y ) if and only if there exists up ∈ ∇Up satisfying (14).
To prove the lemma, it remains to show that up is in ∇Up, and
satisfies (14), if and only if it is a local utility function for U at p,
in the sense of satisfying (5).

Suppose given any up ∈ ∇Up satisfying (14). Being in ∇Up
means that U ′

p(q−p) =
∫
Yup d(q−p) for all q ∈ P(Y ). By definition

of U ′
p(q − p), this is equivalent to

U(p + t(q − p)) = U(p) + t
∫
Y
up d(q − p) + o(t) as t → 0+. (15)

Using (14), we obtain Eq. (5).
Conversely, suppose up satisfies (5) for all q ∈ P(Y ). Putting

t → 0+ in (5), we recover (14). Together, (5) and (14) entail (15).
As in the previous paragraph, (15) means that up is in ∇Up. □
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Proof of Theorem 5.5. For the right to left direction of part (i)
of the theorem, suppose that ≿ satisfies Local EUT. In particular,
suppose that V :L → R represents ≿ and is locally expectational
on L. Since ≿P generates ≿, Reduction to Prospects holds, by the
aggregation theorem Theorem 2.2. It follows that U := V ◦ L is a
representation of ≿P .

It remains to show that U is locally expectational. Fix P ∈ P.
By Lemma 5.4, V is integrally Gâteaux differentiable at L(P); that
is, ∇VL(P) ̸= ∅. Since the map P ↦→ L(P) is mixture-preserving,
L(P + t(Q − P)) = L(P) + t(L(Q ) − L(P)), so U(P + t(Q − P)) =

V (L(P) + t(L(Q ) − L(P))). Applying the definition (6) of the
Gâteaux derivative, we find

U ′

P (Q − P) = V ′

L(P)(L(Q ) − L(P)). (16)

Thus U is Gâteaux differentiable at P . Now fix vP ∈ ∇VL(P). For
any Q ∈ P, vP is integrable with respect to L(Q ) = Q ◦ D−1. By
Lemma A.2, vP ◦D is integrable with respect to Q , for any Q , and
is hence P-integrable. Lemma A.2 also gives∫
D

vP dL(Q ) =

∫
W

vP ◦ D dQ .

Combining this with (16) we find

U ′

P (Q − P) = V ′

L(P)(L(Q ) − L(P)) =

∫
D

vP d(L(Q ) − L(P))

=

∫
W

vP ◦ D d(Q − P).

Thus U is integrally Gâteaux differentiable at P . By Lemma 5.4, U
is locally expectational at P , as claimed.

Conversely, suppose ≿P satisfies Local EUT, with a Local EU
representation U:P (Y ) → R. Note that #IU also represents ≿P .
Since ≿P generates ≿, ≿ is therefore represented by

L ↦→ V (L) := #IU(pL).

We want to show that V is locally expectational.
Fix L ∈ L. By Lemma 5.4, U is integrally Gâteaux differentiable

at pL; that is, ∇UpL ̸= ∅. Since the map L ↦→ pL is mixture-
preserving, pL+t(M−L) = pL + t(pM − pL), so V (L + t(M − L)) =

#IU(pL + t(pM − pL)). Applying the definition (6) of the Gâteaux
derivative, we find

V ′

L(M − L) = #IU ′

pL (pM − pL). (17)

Thus V is Gâteaux differentiable at L.
Fix uL ∈ ∇UpL . For any M ∈ L and i ∈ I, uL is integrable with

respect to Pi(M) = M ◦ Wi
−1. Using Lemma A.2, we find that

uL ◦Wi is integrable with respect to M , implying that
∑

i∈I uL ◦Wi
is L-integrable, and also that

#I
∫
W

uL dpM =

∫
W

∑
i∈I

uL d(Pi(M)) =

∫
D

∑
i∈I

uL ◦ Wi dM. (18)

Combining this with (17), we find

V ′

L(M − L) = #IU ′

pL (pM − pL) = #I
∫
W

uL d(pM − pL)

=

∫
D

∑
i∈I

uL ◦ Wi d(M − L)

so V is integrally Gâteaux differentiable at L, with
∑

i∈I uL ◦ Wi ∈

∇VL. By Lemma 5.4, V is locally expectational at L. This establishes
the left-to-right direction in part (i) of the theorem, and indeed
establishes the more specific claim of part (ii).

For part (iii), suppose that uL is a local utility function for U at
pL. By Lemma 5.4, this means uL ∈ ∇UpL and U(pL) =

∫
W uL dpL.

We then have V (L) = #IU(pL) = #I
∫
W uL dpL =

∫
D

∑
i∈I uL◦Wi dL,

using (18) at the last step. Using Lemma 5.4 again, we find that∑
i∈I uL ◦ Wi is a local utility function for V at L. □

The next result is used in the proofs of Lemma 5.6 and
Theorem 5.7. Recall the notation Pα := αP + (1 − α)1Ω for any
P ∈ Pv and α ∈ [0, 1].

Lemma A.7. Suppose Uv:Pv
→ R is Omega-linear. Fix P,Q ∈ Pv

and suppose that there is a Pv-integrable function uv such that

(Uv)′P (Q − P) =

∫
Wv

uv d(Q − P) and

(Uv)′P (1Ω − P) =

∫
Wv

uv d(1Ω − P). (19)

Then, for any α ∈ (0, 1] and β ∈ [0, 1], we have

(Uv)′Pα
(Qβ − Pα) =

∫
Wv

uv d(Qβ − Pα).

Proof. We first show that

(Uv)′Pα
(Qβ − Pα) = β(Uv)′P (Q − P)+ (β −α)(Uv(P)−Uv(1Ω )) (20)

given that, by hypothesis, the derivative on the right-hand side
exists.

Suppose first that β = 0. This reduces (20) to

(Uv)′Pα
(1Ω − Pα) = −α(Uv(P) − Uv(1Ω )), (21)

which follows from a direct calculation of the Gâteaux derivative
(6) using Omega-linearity of Uv.

Suppose instead that β > 0. Set f (t) := Uv(Pα +t(Qβ −Pα)), for
t ∈ [0, 1). Set x(t) =

βt
α+t(β−α) and R(t) := P+x(t)(Q−P). Since x(t)

approaches 0 from above as t approaches 0 from above, R(t) is in
Pv for all t small enough. Moreover, a straightforward calculation
shows Pα + t(Qβ − Pα) = R(t)α+t(β−α).

Therefore, by Omega-linearity (8),

f (t) = Uv(R(t)α+t(β−α)) = (α + t(β − α))Uv(R(t))
+ (1 − (α + t(β − α)))Uv(1Ω ).

By definition, (Uv)′Pα
(Qβ − Pα) is the partial derivative ∂+f (t)t=0,

and by elementary calculus

(Uv)′Pα
(Qβ − Pα) = ∂+f (t)|t=0= α∂+Uv(R(t))|t=0

+ (β − α)Uv(R(0)) − (β − α)Uv(1Ω ).

Noting that R(0) = P , and comparing this with (20), it remains to
establish

α∂+Uv(R(t))|t=0= β(Uv)′P (Q − P). (22)

This is essentially just an application of the chain rule. To work it
out in this unfamiliar setting,

∂+Uv(R(t))|t=0 = lim
t→0+

Uv(R(t))−Uv(R(0))
t

= lim
t→0+

Uv(R(t))−Uv(R(0))
x(t) ·

x(t)
t = (Uv)′P (Q − P) · x′(0).

The last equation follows from the definition of (Uv)′P and the fact
that x(t) → 0+ as t → 0+. Since x′(0) = β/α, we obtain (22). This
concludes the proof of (20).

Now we calculate:∫
Wv

u d(Qβ − Pα) =

∫
Wv

u d(Qβ − Pβ ) +

∫
Wv

u d(Pβ − Pα)

=

∫
Wv

u d(βQ − βP)

+

∫
Wv

u d((β − α)P − (β − α)1Ω )

= β

∫
Wv

u d(Q − P) + (β − α)
∫
Wv

u d(P − 1Ω )

= β(Uv)′P (Q − P) − (β − α)(Uv)′P (1Ω − P)
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applying the hypotheses of this lemma to obtain the last line. By
(21) with α = 1 we have (Uv)′P (1Ω − P) = −(Uv(P) − Uv(1Ω )).
Therefore we have found∫
Wv

u d(Qβ − Pα) = β(Uv)′P (Q − P) + (β − α)(Uv(P) − Uv(1Ω )).

And, according to (20), this equals (Uv)′Pα
(Qβ −Pα), as desired. □

Proof of Lemma 5.6. For part (i), since Pv extends P, every
element of Pv is of the form Pα := αP + (1−α)1Ω for some P ∈ P
and α ∈ [0, 1]. This presentation is unique except when α = 0, so
we may define Uv(Pα) = αU(P)+ (1−α)c. Then Uv is the unique
Omega-linear extension of U that satisfies Uv(1Ω ) = c.

For part (ii), suppose that U is locally expectational on P. We
want to prove that Uv as defined above is locally expectational at
Pα , for each P ∈ P and α ∈ (0, 1].

By Lemma 5.4, there is some u in ∇UP with
∫
W u dP = U(P).

Extend it to uv:Wv
→ R by setting uv(Ω) = c. We first show that

uv is Pv-integrable. Since Pv extends P, W is measurable in Wv,
with Q (W) = 1 for any Q ∈ P; therefore uv is Q -integrable, with∫
Wv uv dQ =

∫
W uv dQ =

∫
W u dQ . Similarly, {Ω} is measurable

and
∫
Wv uv d1Ω = uv(Ω) = c. Together this shows that uv is Pv-

integrable, and specifically that for any Q ∈ P and β ∈ [0, 1],∫
Wv uv dQβ = β

∫
W u dQ + (1 − β)c.

We now fix Q ∈ P and verify the hypotheses (19) of
Lemma A.7. Since Uv extends U , and since u is a local utility
function for U at P , we have

(Uv)′P (Q − P) = U ′

P (Q − P) =

∫
W

u d(Q − P) =

∫
Wv

uv d(Q − P).

Next, the definition (6) of the Gâteaux derivative and Omega-
linearity yield

(Uv)′P (1Ω − P) = lim
t→0+

Uv((1 − t)P + t1Ω ) − Uv(P)
t

= Uv(1Ω ) − Uv(P).

Given that Uv(1Ω ) = c =
∫
Wv uv d1Ω and Uv(P) = U(P) =∫

W u dP =
∫
Wv uv dP , we conclude

(Uv)′P (1Ω − P) =

∫
Wv

uv d(1Ω − P).

Applying Lemma A.7 we find that, for any β ∈ [0, 1],

(Uv)′Pα
(Qβ − Pα) =

∫
Wv

uv d(Qβ − Pα).

This shows that Uv is integrally Gateaux differentiable at Pα . By
Lemma 5.4 it is locally expectational at Pα , as desired. □

Proof of Theorem 5.7. We first prove the right-to-left direction
of part (i) of the theorem. Suppose we are given an dΩ-linear
function V v:Lv

→ R that is locally expectational on Lv
\ {1dΩ

}.
Fix finite, nonempty I ⊂ I∞. We can now follow the proof of the
right to left direction of Theorem 5.5(i), with variable population
objects replacing constant population ones. That is, essentially the
same argument shows that Uv

= V v
◦ Lv

I is a representation of
≿Pv ; that, for P,Q ∈ Pv with P ̸= 1Ω , we have (Uv)′P (Q − P) =

(V v)′Lv
I (P)

(Lv
I (Q ) − Lv

I (P)) in analogy with (16); and that, for any
vv
P ∈ ∇V v

Lv
I (P)

, we have

(Uv)′P (Q − P) =

∫
Wv

vv
P ◦ Dv

I d(Q − P).

Therefore Uv is integrally Gâteaux differentiable on Pv
\{1Ω}, and

so by Lemma 5.4 it is locally expectational there, as desired.
To complete the right-to-left direction of part (i), it remains

to show that Uv is Omega-linear. Since the map P ↦→ Lv
I (P)

is mixture preserving, we find that for any P ∈ Pv and α ∈

[0, 1], Uv(αP + (1 − α)P) = V v(αLv
I (P) + (1 − α)Lv

I (1Ω )). Since
Lv
I (1Ω ) = 1dΩ

, and V v is dΩ-linear, this equals αV v(Lv
I (P)) +

(1− α)V v(Lv
I (1Ω )). By definition of Uv, this equals αUv(P)+ (1−

α)Uv(1Ω ), so Uv is Omega-linear, as desired.
Conversely, for the left-to-right direction of part (i), suppose

Uv:Pv
→ R is an Omega-linear representation of ≿Pv that is

locally expectational on Pv
\ {1Ω}. For L ∈ Lv

I , define

V v(L) := #IUv(pIL) − #IUv(1Ω )

as in part (ii) of the theorem. We first show that V v represents
≿v. Since ≿Pv generates ≿v, and Uv is a representation of ≿Pv , we
have, for L, L′

∈ Lv
I ,

L ≿v L′
⇐⇒ Uv(pIL) ≥ Uv(pIL′ )
⇐⇒ #IUv(pIL) − #IU(1Ω ) ≥ #IUv(pIL′ ) − #IUv(1Ω )

as desired.
Next we show that V v is dΩ-linear. We have to show that, for

L ∈ Lv
I and α ∈ [0, 1], V v(αL + (1 − α)1dΩ

) = αV v(L) + (1 −

α)V v(1dΩ
). Note first that V v(1dΩ

) = 0, so we need to show that
V v(αL + (1 − α)1dΩ

) = αV v(L). But

V v(αL + (1 − α)1dΩ
)

= #IUv(αpIL + (1 − α)pI1dΩ ) − #IUv(1Ω )

= α#IUv(pIL) + (1 − α)#IUv(1Ω ) − #IUv(1Ω ) = αV v(L).

The first step uses the definition of V v and the fact that the map
L ↦→ pIL is mixture preserving; the second step uses the fact that
pI1dΩ

= 1Ω and the Omega-linearity of Uv.
To complete the proof of the left-to-right direction of part (i)

of the theorem, as well as proving part (ii), we need to show that
V v is locally expectational at each L ∈ Lv

\ {1dΩ
}. Fix such an L

for the remainder of the proof, and I ⊂ I∞ such that L ∈ Lv
I .

Note that, by Lemma 5.4, Uv is integrally Gâteaux differentiable
on Pv

\ {1Ω}, and it suffices to show that V v is integrally Gâteaux
differentiable at L.

We first show that V v is Gâteaux differentiable at L; that is,
for any M ∈ Lv, the Gâteaux derivative (V v)′L(M − L) exists. We
can find J ⊃ I such that both L and M are in Lv

J . Note that since
L is in Lv

\ {1dΩ
}, pJL is in Pv

\ {1Ω}, and therefore Uv is integrally
Gâteaux-differentiable at pJL . Now, we have V v(L + t(M − L)) =

#JUv(pJL + t(pJM − pJL))−#JUv(1Ω ). Applying the definition of the
Gâteaux derivative, we find that V v is Gâteaux differentiable at L,
and in particular,

(V v)′L(M − L) = #J(Uv)′
pJL
(pJM − pJL). (23)

We now show that V v is integrally Gâteaux differentiable at L.
Since Uv is integrally Gâteaux-differentiable at pIL, we may pick
uL ∈ ∇Uv

pIL
. By the variable population domain assumption (Dv) in

Section 3.1,

f :=

∑
i∈I∞

(uL ◦ Wv
i − uL(Ω))

is a well-defined function on Dv. To show that V v is integrally
Gâteaux differentiable at L, we show specifically that f ∈ ∇V v

L .
As a preliminary, let us show that f is Lv-integrable, i.e. in-

tegrable against an arbitrary M ∈ Lv. Choose nonempty, finite
J ⊂ I∞ with M ∈ Lv

J . Enlarging J if necessary, we can assume
that Pv

i (M) = 1Ω for some i ∈ J (using Lemma 3.3(i)). For any
finite K ⊂ I∞, define fK :=

∑
i∈K(uL ◦ Wv

i − uL(Ω)). In parallel to
the derivation of (18) in the proof of Theorem 5.5, uL is integrable
with respect to Pv

i (M) = M ◦ (Wv
i )

−1. Using Lemma A.2, uL ◦ Wv
i

is integrable with respect to M , and moreover∫
Dv

uL ◦ Wv
i dM =

∫
Wv

uL dPv
i (M).
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This implies that fJ is integrable with respect to M , and specifi-
cally∫
Dv

fJ dM = #J
∫
Wv

(uL − uL(Ω)) dpJM .

We claim that f coincides with fJ on a set of M-measure 1, and
is therefore M-integrable with the same integral.

Since uL is p
J
M-integrable, there is a measurable function uL on

Wv that equals uL on a set A ⊂ Wv of measure 1 with respect
to pJM (see note 48). By the definition of pJM , this A must have
measure 1 with respect to each Pv

i (M), i ∈ J. In particular, A has
measure 1 with respect to 1Ω , so we have Ω ∈ A.

Define f , f K by the same formulas as f , fK, but using uL instead
of uL. Then f K, the sum of measurable functions, is itself measur-
able. Note that f |Dv

K
= f K|Dv

K
. Therefore, for any measurable C ⊂ R,

(f )−1(C) ∩ Dv
K = (f K)−1(C) ∩ Dv

K, showing that (f )−1(C) ∩ Dv
K is

measurable in Dv
K. Since this works for every K, we conclude from

coherence that (f )−1(C) is measurable. Therefore f is a measur-
able function. Since they are both measurable functions, the set
B1 ⊂ Dv on which f and f J coincide is measurable. B1 clearly
includes Dv

J , on which M is supported, so B1 has M-measure 1.
Now consider the set B2 =

⋂
i∈I∞ (Wv

i )
−1(A). Using that fact

that Ω ∈ A, we see that, for each K ⊂ I∞, we have B2 ∩

Dv
K =

⋂
i∈K(W

v
i )

−1(A) ∩ Dv
K. This is the intersection of Dv

K with
a measurable set. Therefore B2 ∩Dv

K is measurable in Dv
K, for any

K. So, by coherence, B2 is measurable. SinceM is supported on Dv
J ,

Lemma A.3 also gives us M(B2) = M(
⋂

i∈J(W
v
i )

−1(A)). Moreover,
M((Wv

i )
−1(A)) = Pv

i (M)(A) = 1 for i ∈ J; therefore M(B2) = 1.
Finally, since uL|A= uL|A, we have f |B2= f |B2 and f J|B2= fJ|B2 .
Combining these equalities with the fact that f |B1= f J|B1 , we find
that f |B1∩B2= f |B1∩B2= f J|B1∩B2= fJ|B1∩B2 . That is, as claimed, f
coincides with fJ on B1 ∩ B2, a measurable set of M-measure 1. In
summary, f is Lv-integrable, with∫

Dv
f dM = #J

∫
Wv

(uL − uL(Ω)) dpJM . (24)

Now, given arbitrary M ∈ Lv, we can again choose J ⊃ I with
L,M ∈ Lv

J , and Uv is integrally Gâteaux differentiable at pJL . Note
that pJL is a mixture of pIL and 1Ω . We now apply Lemma A.7,
with P := pIL, Pα := pJL , any Q ∈ Pv, β := 1, and uv

:= uL. The
hypotheses (19) hold because uL was chosen from ∇Uv

pIL
, and the

conclusion is that this same uL is also in ∇Uv
pJL
.

Since ∇Uv
pJL

is closed under the addition of constant functions,

uL − uL(Ω) ∈ ∇Uv
pJL
. Combining this fact with Eqs. (23) and (24),

we find

(V v)′L(M − L) = #J(Uv)′
pJL
(pJM − pJL)

= #J
∫
Wv

(uL − uL(Ω)) d(pJM − pJL) =

∫
Dv

f d(M − L).

This shows f ∈ ∇V v
L , establishing part (ii) of the theorem, and the

left to right direction of part (i).
For part (iii) of the theorem, suppose that uL is a local utility

function for Uv at pIL, and that Uv(1Ω ) = 0. We first verify that
uL(Ω) = 0. By definition of integral Gâteaux differentiability,

lim
t→0+

Uv(pIL + t(1Ω − pIL)) − Uv(pIL)
t

= (Uv)′pIL
(1Ω − pIL)

=

∫
Wv

uLd(1Ω − pIL).

Since Uv is Omega-linear, the left-hand side simplifies to −Uv(pIL),
whereas, using Lemma 5.4, the right-hand side simplifies to
uL(Ω) − Uv(pIL). Hence uL(Ω) = 0.

Taking this into account, the final claim of the theorem is
that our f is a local utility function for V v at L. Since we have
already shown f ∈ ∇V v

L , it is enough by Lemma 5.4 to prove that∫
Dv f dL = V v(L). Moreover, since by hypothesis Uv(1Ω ) = 0, the

definition of V v reduces to V v(L) = #IUv(pIL).
By Eq. (24), putting M := L, we have

∫
Dv f dL = #J

∫
Wv uL dp

J
L .

Here we cannot simply replace J by I, because the derivation
of (24) was premised on a large enough choice of J. However,
pJL =

#I
#Jp

I
L +

#J−#I
#J 1Ω , so we find

∫
Dv f dL = #I

∫
Wv uL dpIL +

(#J − #I)
∫
Wv uL d1Ω . Since uL(Ω) = 0, the last term vanishes,

whereas Lemma 5.4 shows that
∫
Wv uL dpIL = Uv(pIL). Therefore∫

Dv f dL = #IUv(pIL) as desired. □

Proof of Proposition 6.1. The proof of (i) is an easy version of
the proof of (ii), so we present only the latter.

Suppose that ≿v
0 is consistent with quasi utilitarianism, and

specifically corresponds to an individual preorder ≿Pv . For any
finite, non-empty I ⊂ I∞ and d ∈ Dv

I , define pId :=
1
#I

∑
i∈I 1Wv

i (d)
.

Thus for d, d′
∈ Dv

I , we have d ≿v
0 d′ iff pId ≿Pv pId′ . Suppose that

c ∈ Dv is an m-scaling of d ∈ Dv
I , and that s is a corresponding

m-to-1 map. Then it is easy to see that pId = ps
−1(I)
c . Now, given

d, d′
∈ Dv

I , their m-scalings c, c ′, and corresponding m-to-1 maps
s, s′, we can, by applying a permutation to c , ensure that s−1(I) =

(s′)−1(I) =: J. Since then c and c ′ are in Dv
J , we have

c ≿v
0 c ′

⇐⇒ pJc ≿Pv pJc′ ⇐⇒ pId ≿Pv pId′ ⇐⇒ d ≿v
0 d′.

Therefore ≿v
0 satisfies Scale Invariance.

Conversely, suppose that ≿v
0 satisfies Scale Invariance; we

need to define a corresponding individual preorder. We first show
that Pv contains the set Pv

0 of convex combinations of delta-
measures on Wv with rational coefficients. For any w ∈ Wv and
finite, nonempty I ⊂ I∞, Lv contains 1Dv

I (w): for by variable
population domain condition (Bv) we have Dv

I (w) ∈ Dv, and by
hypothesis in Section 6.1, Lv contains 1d for every d ∈ Dv. So by
the domain condition (Av), Pv contains 1w; since Pv is convex, it
contains Pv

0.
For any w, w′

∈ Wv, the sigma algebra on Dv separates
Dv

I (w) and Dv
I (w

′) by assumption, and since Dv
I is measurable,

the sigma algebra on Wv separates w and w′. By Lemma A.4,
the representation of members of Pv

0 by convex combinations of
delta-measures is essentially unique: any p ∈ Pv

0 is the sum of
a unique finite set of delta-measures with non-zero coefficients,
and these (rational) coefficients are uniquely determined. We will
use this to first define a preorder on Pv

0 and then extend it to a
preorder on Pv.

Choose a sequence of populations I1 ⊂ I2 ⊂ . . . such that
#In = n. For any p ∈ Pv

0, there is some n > 0 and d ∈ Dv
In

such that p = pInd . In this case say that d is a realization of
p at n. More specifically, for any p ∈ Pv

0, let N(p) be the least
common denominator of the rational coefficients appearing in p.
Then p has a realization at n if and only if n is a multiple of N(p).
Moreover, any realization of p at, say, mN(p) is an m-scaling of
any realization of p at N(p).

For any pair p, p′
∈ Pv

0, let N(p, p′) be the least common
multiple of N(p) and N(p′): p and p′ both have realizations at n
if and only if n is a multiple of N(p, p′). Let I(p, p′) be the set of
all such multiples. The scale-invariance of ≿v

0 yields the following
observation. If d, d′ are realizations of p, p′ at m ∈ I(p, p′), and
c, c ′ are realizations of p, p′ at n ∈ I(p, p′), then d ≿v

0 d′ if and
only if c ≿v

0 c ′.
This allows us to define ≿Pv0

on Pv
0 as follows:

p ≿Pv0
p′

⇐⇒
for some (therefore any) n ∈ I(p, p′), there are
realizations d, d′ of p, p′ at n with d ≿v

0 d′.
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This is a preorder. In particular it is transitive, since, given p, p′,

p′′
∈ Pv

0, we can consider realizations d, d′, d′′ of p, p′, p′′ at some
common n. If p ≿Pv0

p′ ≿Pv0
p′′ then we must have d ≿v

0 d′ ≿v
0 d′′.

Since ≿0 is transitive, d ≿0 d′′, and therefore p ≿Pv0
p′′.

Let us also check that ≿Pv0
satisfies Omega Independence.

Suppose given p, p′
∈ Pv

0, and m/n =: α ∈ (0, 1) ∩ Q. Then real-
izations of p, p′ at N(p, p′)m are elements of Dv

IN(p,p′)m
; considered

as elements of the larger set Dv
IN(p,p′)n

, they are also realizations of
αp + (1 − α)1Ω and αp′

+ (1 − α)1Ω at N(p, p′)n. It follows that
p ≿Pv0

p′ if and only if αp + (1 − α)1Ω ≿Pv0
αp′

+ (1 − α)1Ω , as
desired.

We now extend ≿Pv0
to a preorder ≿Pv on Pv. Here is a con-

struction that works in general (of course, in any given case there
may be more natural ways to do it).

p ≿Pv p′
⇐⇒

{
p, p′

∈ Pv
0 and p ≿Pv0

p′, or
p = p′.

Then ≿Pv is a preorder on Pv which satisfies Omega Indepen-
dence. (Here we rely on the fact that Omega Independence only
quantifies over rational values of α.) Let ≿v be the social preorder
on Lv it generates. Then, for any finite non-empty set I ⊂ I∞ such
that d and d′ are in Dv

I , d ≿v
0 d′

⇐⇒ pId ≿Pv pId′ ⇐⇒ pI1d ≿Pv

pI1d′ ⇐⇒ 1d ≿v 1d′ . This shows that ≿v
0 is consistent with the

quasi utilitarian preorder ≿v. □

Appendix B. Index of global notation

We recall the convention (see Section 3.1) that a superscript
‘v’ is used to distinguish variable population objects, while a su-
perscript ‘∗’ is used in Section 4.3 to indicate neutrality between
a variable population model and a family of constant population
models (see Section 4.3 for discussion).

Sets

D,DI The set of welfare distributions in a constant population
model with population I, Sections 2.2 and 4.3.

Dv The set of welfare distributions in a variable population
model, Section 3.1.

Dv
I The subset of Dv consisting of distributions in which only

individuals in I exist, Section 3.1.
I A finite set of individuals; the population in the basic

constant population model, Section 2.2.
I∞ The infinite set of possible individuals in the basic variable

population model (see Section 3.1), or in a family of
constant population models, Section 4.3.

L,LI The set of lotteries in a constant population model with
population I, Sections 2.2 and 4.3.

Lv The set of lotteries in a variable population model, Sec-
tion 3.1.

Lv
I The subset of Lv consisting of lotteries supported on Dv

I ,
Section 3.1.

P(Y ) A generic convex set of probability measures on a mea-
surable space Y , Section 4.2.

P The set of prospects in a constant population model,
Section 2.2.

PΩ P ∪ {1Ω}, Section 3.4.
Pv The set of prospects in a variable population model, Sec-

tion 3.1.
R The set of real numbers.
Σ The group of permutations of I; it acts on D and L,

Section 2.2.

Σ∞ The group of permutations of I∞; it acts on Dv and Lv,
Section 3.1.

W The set of welfare states, excluding non-existence, Sec-
tion 2.2.

Wv The set of welfare states, including Ω , Section 3.1.

Functions

D D(w) is the constant population distribution in which all
individuals in I have welfare state w, Section 2.2.

Dv
I Dv

I (w) is the variable population distribution in which all
individuals in I have welfare state w, and no one else
exists, Section 3.1.

L L(P) is the constant population lottery in which all in-
dividuals in I face prospect P , with perfect correlation,
Section 2.2.

Lv
I Lv

I (P) is the variable population lottery in which all indi-
viduals in I face prospect P , with perfect correlation, and
no one else exists, Section 3.1.

Pi Pi(L) is the prospect faced by individual i in constant
population lottery L, Section 2.2.

Pv
i Pv

i (L) is the prospect faced by individual i in variable
population lottery L, Section 3.1.

Wi Wi(d) is the welfare state of individual i in constant pop-
ulation distribution d, Section 2.2.

Wv
i Wv

i (d) is the welfare state of individual i in variable pop-
ulation distribution d, Section 3.1.

Preorders

≿X A generic preorder on a (typically convex) set X , Section 1.
∼X For any preorder ≿X , x ∼X y if and only if both x ≿X y and

y ≿X x, Section 2.3.
⋏X For any preorder ≿X , x ⋏X y if and only if neither x ≿X y

nor y ≿X x, Section 2.3.
≻X For any preorder ≿X , x ≻X y if and only if x ≿X y but not

y ≿X x, Section 2.3.
≿P The constant population individual preorder on P, Sec-

tion 2.3.
≿,≿I The social preorder on L in a constant population model

with population I, Sections 2.3 and 4.3.
≿0 A social preorder on D, Section 6.1.
≿Pv The individual preorder on Pv in a variable population

model, Section 3.2.
≿v The social preorder on Lv in a variable population model,

Section 3.2.
≿v

0 A social preorder on Dv, Section 6.1.
≈

J
P∗ , ▷J

P∗ , ▷◁J
P∗ Relations used to define Pareto axioms, Section 4.3.

≿SD
X The stochastic dominance preordering on a set X of prob-

ability measures, Section 5.1.

Miscellaneous

1y The delta measure supported at a point y, Section 2.3.∫
The weak integral, Section 4.2.

Ω Non-existence, considered formally as a welfare state,
Section 3.1.

dΩ The empty distribution, in which no individuals exist,
Section 3.1.

F A family of constant population models, Section 4.3.
L|J The restriction of a lottery L to a sub-population J, Sec-

tion 4.3.
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M A constant population model, Section 4.3.
Mv A variable population model, Section 4.3.
pL The prospect derived from the constant population lot-

tery L by averaging over individuals: pL =
1
#I

∑
i∈I Pi(L),

Section 2.4.
pIL The prospect derived from the variable population lottery

L by averaging over individuals from I: pIL =
1
#I

∑
i∈I P

v
i (L),

Section 3.3.
U ′
p The Gâteaux derivative of U at p, Section 5.2.

∇Up The set of integral kernels for the Gâteaux derivative of U
at p, Section 5.2.
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