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Abstract Distributions of human foraging success across age has implications for many
aspects of human evolution. Estimating the distribution of foraging returns is complicated
by (1) the zero-inflated nature of hunting returns, as many if not most trips fail, and (2) the
substantial variation among hunters, independent of age. We develop a multilevel mixture
analysis of human foraging data to address these difficulties. Using a previously published
20 year record of hunts by 147 individual Aché hunters in Eastern Paraguay, we estimate
returns-by-age functions for both hunting failures and the size of harvests, while also es-
timating the heterogeneity among hunters. Consistent with previous analyses, we find that
most hunters peak around 40 years of age. We can also show, however, that much more of
the variation among Aché hunters arises from heterogeneity in failure rates (zero returns),
not harvest sizes. We also introduce a new R package, glmer2stan, to assist in defining
and fitting similar multilevel mixture models.

Keywords human behavioral ecology · foraging · multilevel modeling · life history

1 Introduction

Foraging returns vary for many reasons. Prey vary in value and cost. Individual foragers
may be differently skilled, due to differences in endurance or strength, knowledge or mem-
ory. Across the lifespan, foraging returns vary, as young hunters can be substantially less
productive than the old. Foraging returns also entail some risk, in that many hunting trips
fail to produce any returns and others vary in yield, producing considerable trip-to-trip vari-
ation. In empirical data, all of these sources of variation—individual, age, and trip-to-trip
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variation—are mixed together. Furthermore, as Jones et al. (forthcoming) have recently
emphasized, it may be essential to carefully estimate variation, since foraging returns are
non-linearly related to fitness, and therefore expected values may not lead to correct infer-
ences about the value of prey items.

These aspects of the data make foraging records challenging to analyze. We exam-
ine two general difficulties. First, the outcome measure is a mixture of zeros and positive
values, unlike any convenient statistical distribution. No effective transformation exists for
such “zero-inflated” data. The simple statistical solution of averaging across trips, for exam-
ple using rates of return, obscures trip-to-trip variation and discards information. Second,
data of this sort tend to exhibit imbalance in sample size across individuals. Since hunters
may vary in skill, both within and across ages, ignoring the unbalanced repeat measures
can lead to misleading estimates. In some cases, such as estimating the effect of age on
foraging returns, since no individual presents data from all ages, a failure to account for
heterogeneity can reduce the precision of age estimates as well.

Because of these difficulties, previous analyses of hunting returns have made pragmatic
compromises. Alvard (1995) and Koster (2008), for example, addressed the problematic
outcome variable by using non-parametric comparisons of trip-by-trip returns, calculated
as kilograms per hour. And while cognizant of hunter-level variation, they did not attempt
to model it. Bliege Bird and Bird (2002) addressed the zero-inflation problem by discard-
ing information about harvest size, using logistic regression to model the failure rates of
foraging bouts, while using fixed effects to account for forager-level variation. Koster and
Tankersley (2012) implemented a multilevel model with varying intercepts to account for
hunter-level variation, but transformed the returns from hunting trips by adding an arbitrary
constant to zeros and taking the logarithm. Walker et al. (2002) and Gurven et al. (2006)
also used varying intercepts for individual hunters while modeling aspects of hunting that
impact daily returns, including encounters per trip and the success of initiated pursuits, but
they relied on locally estimated smoothers to examine the effects of age on return rates.

All of these studies are informative. But if these analyses were now to be repeated,
it would be practical to fit unified foraging models that disentangle variation in failure
rate from variation in the size of returns, while controlling for and modeling heterogene-
ity among individual foragers or foraging households. We provide an example of such an
analysis, predicting trip-by-trip returns while allowing individual hunters to vary, as well
as a software package to make such modeling more accessible. The data we use comprise
about 15-thousand individual trips by 147 different hunters among the Aché of Paraguay
(Hill and Kintigh 2009). Hunter ages in the data range from 19 to 74 years, with a mean
of 48. We simultaneously address the problems of zero-inflated outcomes and imbalanced
sampling in human foraging data, using a mixture distribution to model both failures (zero
returns) and the size of returns (non-zeros) as functions of age and individual variation.
Our estimates allow for zero and non-zero harvests to vary independently or to be corre-
lated within individual hunters. Each component of returns is allowed to change across age
in independent or correlated ways.

To cope with imbalance in sample size and heterogeneity among individuals, we use
a multilevel modeling approach. Multilevel models, also known as hierarchical models or
mixed effects models, can cope with imbalanced samples (for an accessible introduction,
see Gelman and Hill 2007). Such models assume that there are clusters of observations
within the data, such as all observations from individual hunters, that have unique coeffi-
cients. For example, each hunter can have his own parameter for average kilograms of meat
returned to camp. These unique coefficients are related to one another by simultaneously
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modeling the population of clusters. The estimates for each hunter take advantage of the in-
formation in the total sample, providing better estimates than by assuming either that each
hunter provides no information about other hunters (zero pooling) or that all hunters are the
same (complete pooling). The multilevel approach has considerable advantage over “fixed
effects” using dummy variables for forager identity, because fixed effects will overfit on the
data available to each forager and potentially be unidentified.1 Additionally, if we wish to
make inferences about the population of foragers, then we must model the population, and
only a multilevel model does that explicitly.

We estimate and interpret the model fits within a Bayesian framework (Gelman et al.
2004). The model fit itself is Bayesian, because it comprises samples from the joint pos-
terior density of the parameters. The interpretation is Bayesian, because we use the proba-
bilistic interpretation of these parameters to simulate predictions and assess the quality of
model fit to data. When parameters are less certain, predictions are less certain, and the
Bayesian approach makes easy the propagation of uncertainty at the level of parameters to
the level of predictions. Readers unfamiliar with Bayesian data analysis will be surprised to
find no significance tests in our results. Instead, relative confidence in different models and
parameter values is assessed by means and confidence (sometimes called credible) intervals
and information criteria, as well as visual inspection of model predictions.

Our major goal is methodological. We hope to encourage other researchers to adopt
statistical modeling approaches that (1) meet the difficult nature of the outcome variable
and (2) assume and estimate individual level variation. Even a decade ago, such models
would have been difficult or impossible to fit to data. But desktop computing and statistical
algorithms have advanced rapidly, and now even average desktop computers are capable
of fitting complex multilevel models. While the most complex models presented in this
paper took as many as 8 hours to fit, it took many more hours—indeed, years—to collect
the data. The cost in estimation time is worth the benefits of estimating the models the
theory recommends rather than merely the models that are convenient. Winterhalder et al.
(2010) make a similar argument for the use of Bayesian model fitting in the analysis of
archaeological settlement data.

Our results are consistent with but also extend previous analyses. We find that failures
(zero returns) contribute much more to variation in expected hunting returns, across all
ages, than do the sizes of harvests. Most hunters peak around age 40 in both success and
size of returns. Success and the size of returns are correlated, as hunters with lower failure
rates (zeros) also experience higher mean non-zero returns. Success rates decline rapidly
late in age, but the size of non-zero returns shows no similarly rapid decline. By decompos-
ing hunting returns, more detailed questions can be addressed about the nature of human
foraging strategies and life history evolution.

2 The data

The data we analyze here derive from a 1980–2007 study of the Aché of eastern Paraguay
(Hill and Kintigh 2009). The outcome variable we will be concerned with, because it will

1 For example, suppose a particular hunter is sampled 10 times and is never observed to succeed on a hunt. In
a typical fixed effects model, it is not possible to produce a reasonable estimate unique to this hunter, because the
maximum likelihood estimate of the log-odds of hunting success would be −∞ with an enormous standard error.
In a multilevel context, Bayes theorem is used to augment these 10 observations with the inferences from other
hunters, moving the estimate off of zero probability of success.
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be available in many other samples, is the kilograms of game returned to camp. For each
recorded hunt, the data provide an associated hunter identity (as a number), the hunter’s
age at the time of the hunt, and the calendar date of the hunt. In some cases, the duration of
the hunt is also recorded. See Hill and Kintigh (2009) for more details of data collection.

Out of 14,358 recorded returns, 7,502 (52%) are zero returns where nothing was brought
back to camp. We call these zero returns failures. The remaining non-zero returns are
widely dispersed, ranging from 0.04 kilograms to 191 kilograms, with a median of 5 kilo-
grams. We call these non-zero returns harvest sizes, to indicate that they may comprise
multiple animal packages.

One aspect of these data that is likely to be common in much field data of this kind is
the extraordinary imbalance in sampling across individuals. The number of hunts for each
unique hunter ranges from 1 to 1049. The median number of hunts is 26. The 72 individu-
als with more than the median 26 hunts contribute all together 13,639 hunts out of a total
14,358, 95% of the entire sample. If individual hunters vary much in skill, then a statistical
model that ignores this variation may construct misleading estimates by substantially over-
weighting some individuals. This estimation hazard extends to regression slopes as well,
such as estimates of the effect of age on returns.

3 Model definition

We model hunting returns, which are a mix of zero and positive real values. Observations
that mix zeros with a large range of positive values arise in many fields, and are called both
zero-inflated and zero-augmented. We adopt a mixture of bernoulli (zero/one) and gamma
values to model this outcome variable. The probability density f (y) for the returns y is:

f (y) =
{

π if y = 0
(1−π)Gamma(k,θ) if y > 0

where π is the probability of a failure (y = 0), and k and θ define a gamma density with
mean kθ−1 and rate (inverse scale) θ . For clarity, let ZGamma(π,µ,θ) indicate the zero-
inflated gamma distribution with probability of a zero π and non-zero outcomes defined by
the mean µ and rate θ . See McCullagh and Nelder (1989), Chapter 8, for a thorough math-
ematical treatment of gamma GLM’s. Jones et al. (forthcoming) independently arrived at a
very similar solution to the same problem, using a zero-inflated log-normal distribution.2

This mixture distribution is capable of modeling the observed returns. But the model
is descriptive—the true distribution of returns depends upon a complex stew of encounter
rates, handling times, prey choice decisions, and heterogenous risks (Stephens and Krebs
1986). Given enough data, one might be able to build a process-oriented model of hunting
returns along those lines. But it remains useful to pursue a descriptive model that can be
applied in many contexts.

The details of our model framework comprise the remainder of this section. For those
eager to jump ahead to the results, we summarize the approach as assuming that hunters
vary in both baseline skill and how skill changes with age. The models estimate the extent
of that variation while constructing individual hunter estimates. We also consider several,

2 We considered a log-normal density for the non-zero values, as is sometimes used to model similar mixtures
(Tooze et al. 2002, Fletcher et al. 2005), but found that for our data a Q-Q plot indicated substantial non-normality
in the tails of the logged non-zero values. The gamma distribution has the same number of parameters as the
log-normal, but provides additional flexibility.
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potentially study-specific, covariates: Julian date, unique day effects, and hunt duration.
These help illustrate the generality of our approach, how it can incorporate study-specific
variables. The fitted multilevel model yields predictions at the level of the population of
hunters, as well as predictions for each individual hunter. Perhaps most important, we com-
pare models of differing structure, in order to learn both about statistical issues such as
overfitting as well as anthropological issues such as how predictions vary as variables and
assumptions are added and deleted.

3.1 Modeling age

We model the effect of age using a cubic polynomial, in both the zeros (π) and the non-
zeros (µ). The advantages of the cubic polynomial include familiarity to many scientists,
flexibility, and ability to accommodate differential rates of improvement and then decline
with age (unlike a quadratic). The cubic is relatively easy to estimate, being an additive
function. Higher-order polynomials are possible, but we found (using DIC, explained later)
that fourth-order polynomials added nothing to the estimates, in this case.

The cubic model’s flexibility is also a potential disadvantage. In principle, it can predict
impossible hunter life histories with peak hunting skill at birth or death. Polynomials are
also inconvenient because their parameters rarely have meaning that is easy to interpret.
To navigate between the benefits and costs of the cubic function, we present results for
the cubic polynomial in the main text, and we check the robustness of our inferences by
estimating another, biologically-motivated and constrained function. We present the alter-
native age function in the ESM, showing that general inference remains the same under
both models.

We wish to allow for heterogeneity among hunters in every parameter of these age func-
tions. Varying slopes can accommodate this assumption. In the varying slopes approach,
each cluster (hunter) in the data has its own parameter values. The ensemble of parame-
ter estimates come from a population, and the parameters which describe the population’s
shape are estimated from the data. It is the population assumption that allows multilevel
models to share statistical power among clusters, using the total information in the sample
to improve individual estimates (for further explanation, see Efron and Morris 1975).

The varying slopes model structure is given by:

yi j ∼ ZGamma(πi j,µi j,θ j),

log
πi j

1−πi j
= s j1 + s j2Ai j + s j3A2

i j + s j4A3
i j +βπ xi,

log µi j = s j5 + s j6Ai j + s j7A2
i j + s j8A3

i j +βµ xi,

logθ j = s j9,

s j ∼ N9(s,Σ) ,

where i is an index referring to case, j an index referring to hunter, and Ai j is the age (stan-
dardized) of the j-th hunter at case i. Each coefficient s jk is a parameter unique to hunter
j. s j is a vector of these individual hunter varying effects, sampled from a 9-dimensional
multi-variate normal. s is a vector of the means of each effect. The 9-by-9 matrix Σ is the
variance-covariance matrix of the varying effects. Additional covariates x (such as hunt
duration and Julian date) are estimated by the βπ and βµ vectors of standard regression
coefficients. This allows a covariate, such as hunt duration, to have different effects on the
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different components of the outcome. See the model code in the ESM for exact details of
implementation.

3.2 Julian date

To consider the possibility that average failure rates and harvest sizes have changed over
time in these data, potentially distorting our age estimates, we fit models containing Julian
date (standardized) as a covariate in both the zero and non-zero components of the model.

3.3 Hunting duration and Bayesian imputation

The duration of a hunt may strongly covary with both success rate and the size of returns.
To model this possibility, we allow hours hunted as simple fixed effect on both components
of returns. Our interest is in controlling for hours hunted, so as to produce better estimates
of the age functions.

A complication is that most (12,044 out of 14,358 cases, 84%) of the recorded hunts
in the Aché data are missing hours hunted values. In order to use the 2,314 records that
include hours hunted, we impute the missing values from a Gaussian duration distribution
with mean and variance estimated from the data. We use a Gaussian, because the empirical
distribution of observed hunt durations is approximately Gaussian, with almost no skew.
We perform this imputation within a Bayesian framework, integrating over uncertainty in
each imputed value hi j for duration for hunt i of hunter j, while computing the uncertainty
in the other parameters. This approach allows us to use the duration information where it is
present to estimate any relationship between duration and returns, without having to discard
the majority of cases where it is missing. Unlike multiple imputation, the Bayesian method
of imputation uses a hyper-parameter for each missing value, simultaneously estimating
the missing values and the impact of the variable (hunt duration) on outcomes. See Chapter
25 of Gelman and Hill (2007) for an overview of imputation terminology and methods.

Since we have good reason to think that duration entries are missing completely at
random (Hill and Kintigh 2009), we adopt that approach (Rubin 1976). We considered the
possibility that hunt duration is also a function of age, requiring a more complex imputation
model. However, the correlation between hours hunted and age is weak, whether modeled
as a linear, quadratic, or cubic effect.

3.4 Correlated returns by day

While returns are assigned to individual hunters, failures and harvest sizes may be corre-
lated across hunts on the same day. First, there may be exogenous factors such as weather
that affect all hunters, even if they hunt completely independently. Second, while the Ache
mainly hunt individually, they do move into the forest in groups and sometimes recruit help
in pursuing some prey (Hill 2002). Therefore correlations may arise because of cooperative
aspects of hunting.

As a minimal approach to modeling these correlations, we consider a varying effect on
each of the 2,525 unique days in the sample. Number of hunts per day range from 1 to 29,
with a median of 4 and mean of 5.7. We introduce two varying effects on each day, centered
on zero, that allow for an increase or decrease in log-odds of failure and mean harvest
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size, respectively. These effects apply to all hunts on the same day, creating correlations in
outcomes. They are independent of the varying effects on individual hunters, making this a
cross-classified multilevel model with both varying effects on age, clustered by hunter, as
well as varying effects on failure and harvest size, clustered by day.

3.5 Priors

Different priors produce different models, just like different likelihoods and link functions
produce different models. We adopt “uninformative” priors for all parameters, resulting in
estimates that echo maximum likelihood inferences. Precise prior specifications are avail-
able in the model definitions in the supplemental. However, in general we believe that the
best priors are rarely uninformative, because the analyst always knows something a pri-
ori that can improve model-based inference. See for discussion and example Gelman et al.
(2008).

More generally, the term “noninformative” appears to be a Whorfian trick of language.
Just as an “empty” gasoline drum is more dangerous than a “full” one (Whorf 1941), a
noninformative prior may distort estimates more than would an informative prior. Better to
regard all priors as informative, just as all likelihood functions are informative.

In that spirit, we checked that inference is robust to changes in variance-covariance
priors for the varying effects. We estimate the models using both the common inverse-
Wishart prior and a Cholesky decomposition that provides for a uniform prior over positive
definite matrices (Lewandowski et al. 2009, as implemented in Stan 1.0.2). Moreover, we
provide all of our model fitting code so that others can easily adjust the priors (as well as
likelihoods and links) and see how changes alter inferences.

3.6 Nested models

The full model contains 9 varying effects clustered on individual hunters, 2 varying effects
clustered on day, and four simple fixed effects. There is also one parameter for each missing
hunt duration value to be imputed, as well as two parameters to estimate for the distribution
of the missing values. This implies a total of 63 traditional (fixed effect) parameters and
15,892 hyper-parameters (varying effects and missing values).

Many simpler nested models can be constructed from this full model. In order to guard
against overfitting, we fit 10 different models to the Aché hunting data. The simplest model,
Fixed, uses cubic models of age for both failures (zeros) and harvests (non-zeros), but
contains no varying effects of any kind. This model also omits Julian date, hunt duration,
and varying effects on days. This is a poor model for the unbalanced, heterogenous data
considered here, but comparing its fit to the other models provides information about how
much better prediction is after considering varying effects and the remaining covariates. We
then add in varying effects on components of the age model, from Vary2 (varying intercepts
only) to Vary9 (varying slopes on every component). Combinations of hunt duration (with
imputation), Julian date, and varying effects on day allow for judging the robustness of age
inferences to inclusion of these covariates.
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3.7 Software

Models of this kind, with non-standard outcome distributions and cross-classified varying
effects and missing data imputation, are most easily estimated with Markov chain Monte
Carlo (MCMC) techniques. We fit the models using both JAGS 3.1.0 (Plummer 2003)
and Stan 1.0.2 (Stan Development Team 2012) to draw samples from the joint posterior
density of the parameters. The results we present are based on the Stan samples, which
produce the same inferences as the JAGS results, but with more rapid convergence and
better mixing. The estimates here derive from 10-thousand samples of each parameter,
after 5-thousand samples for adaptation. Sampling was very efficient within Stan, which
uses a variant of Hamiltonian Monte Carlo (see Neal 2011, for lucid explanation). We
present example trace plots from two chains in the supplemental, to illustrate Stan’s rapid
convergence and efficient mixing.

We have also developed an open source R package, glmer2stan (McElreath 2012),
that allows the user to define and fit a large variety of mixed-outcome multilevel models,
using standard R mixed model formula notation. Further details of this package are avail-
able in the ESM or by contacting the corresponding author.

4 Results

4.1 Model comparison

Table 1 presents formal model comparison statistics for ten models that recombine different
varying effect structures and covariates. For each of the ten models, the table presents
(left to right) the number of fixed parameters, the number of varying hyper-parameters,
the deviance, the effective number of parameters pD, the information criterion DIC, the
difference between each DIC and the smallest DIC (∆DIC), and finally the approximate
posterior model weight of each model.

The metric DIC (Deviance Information Criterion: Plummer 2008, Spiegelhalter et al.
2002) provides a multilevel analogue of AIC (Burnham and Anderson 2002, Claeskens and
Hjort 2008, Lunn et al. 2013). In the absence of varying effects, DIC reduces directly to
AIC. When one is not interested in generalizing to the same clusters, then AIC may pro-
vide useful information, while DIC is more relevant for generalization of varying effects
estimates (Fang 2011, Vaida and Blanchard 2005). Like AIC, smaller values of DIC indi-
cate better expected generalization. The model weights are analogous to Akaike weights
(Burnham and Anderson 2002). The “weight” of a model is an estimate of the posterior
probability of the model family, providing a standardized metric of comparison.

We detail calculation of DIC and DIC weights in the supplemental. It is important to
keep in mind that DIC is computed from samples from a Markov chain, so there can be
simulation uncertainty in its value (Gelman and Hill 2007, page 525). This means that we
should not base strong inferences on small differences in DIC between models. Addition-
ally, the proper use of model comparison metrics like DIC is not to “select” a single best
model. First, both theory and simulation suggest that averaging predictions using relative
DIC weights produces better results than choosing a single model (Burnham and Anderson
2002, Claeskens and Hjort 2008). Second, much can be learned from all models, including
those with very large DIC values. Later in the paper, and in the ESM, we discuss compar-
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isons of predictions among models, which provides further information not available from
concise metrics like DIC.

The DIC rankings and model weights show that models that include both 9 varying
effects on age (“Vary9”) and varying effects on day (“v”) are expected to generalize best
to new data from the same population of hunters. Removing varying effects on day from
a model results in a one-thousand point increase in DIC, and removing varying slopes
on age results in another one-thousand point increase. Other factors have smaller effects.
Considering Julian date adds very little to the model, as models that differ only by inclusion
of Julian date (“D”) differ very little in both deviance and DIC. Models that include hunt
duration (“h”) out-perform models that do not, but the improvement in DIC is only about
40 points of deviance. Together, these results imply that varying intercepts and slopes on
age and day-specific intercepts are both very important to successful prediction, while the
other effects are less important.

Table 2 presents the expected values and standard deviations of the samples of each
parameter, across the four top-ranking models from Table 1. In the ESM, we provide es-
timates for the six lower-ranked models. While we reference this table of estimates in the
following sections, it will be easier to appreciate the nature of the estimates by plotting their
implied predictions. In the following sections, we take each component of the top-ranked
model, Vary9hDv, and plot its implied predictions. In the ESM, we show predictions for
other models. In each case, the implied predictions incorporate the uncertainty embodied
in the joint posterior. As a result, highly uncertain estimates produce highly uncertain pre-
dictions.

4.2 Failure rates

Figure 1 displays predictions from model Vary9hDv, using the sample-average length of
hunts, 6.8 hours (the empirical mean duration), in all plots unless otherwise noted. Figure 1
is complex, but focus for now on only the top row. Panel (a) displays the predicted average
hunter’s probability of failure (zero return) across the lifespan. The youngest hunters are
expected to fail more than 80% of the time. By age 40, the average hunter is expected to
fail only 50% of the time. Later in life, failure rates rise again, but the predictions are much
less precise, as seen by the broadening of the 95% confidence interval (dashed curves).

The circles in Figure 1(a) indicate observed average failure proportions for each age,
averaged across trips for all hunters. Comparing predictions to the raw data can be useful
both for validating the estimates and understanding their implications. The size of each cir-
cle indicates the relative sample size at each age. Notice that the estimates of the predicted
average trend across age does not pass through the center of the observed data averages.
Instead, the predicted trend for failures passes above the mean failure rates across hunters.
Why is this? The best hunters hunt more often, and so they bias population estimates, un-
less variation among hunters is explicitly modeled. Thus the apparent lack of fit between
the model predictions (the curves) and the raw data (the circles) is a feature of the multi-
level approach, not a flaw. Predictions based on fixed effects models, shown in the ESM,
do indeed pass through the empirical averages at each age, but are nevertheless not better
estimates of the performance of an average hunter, because they overweight the data from
the best hunters.

Figure 1(b) illustrates variation across individual hunters. Predictions for the average
hunter are useful, but it is also useful to characterize the variation among hunters at each
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Table 1 Model comparison information. In model names, “Varyx” indicates x varying effects on age, “D” indi-
cates Julian date, “h” indicates hours hunted, and “v” indicates varying effects on day. ∆DIC is the difference
between a model’s DIC and the smallest DIC in the set.

Model parameters hyper-parameters deviance pD DIC ∆DIC weight
Vary9hDv 63 15892 50006 2126 54258 0 0.73
Vary9hv 61 15892 49979 2140 54260 2 0.27
Vary9v 57 3848 50431 1932 54294 36 < 0.01
Vary9Dv 59 3848 50448 1928 54304 46 < 0.01
Vary9h 58 13367 54094 631 55355 1097 < 0.01
Vary9hD 60 13367 54097 630 55357 1099 < 0.01
Vary9 54 1323 54625 393 55411 1153 < 0.01
Vary9D 56 1323 54635 390 55415 1157 < 0.01
Vary2 12 294 56297 156 56608 2350 < 0.01
Fixed 9 0 57287 9.03 57305 3047 < 0.01

Table 2 Parameter sample expectations and standard deviations (in parentheses) for the top four models. Vari-
ance components reported as variances, with standard deviation of the variance in parentheses. In model names,
“Vary9” indicates 9 varying effects on age, “D” indicates Julian date, “h” indicates hours hunted, and “v” indicates
varying effects on day.

Vary9v Vary9Dv Vary9hv Vary9hDv
Fixed effects

Zeros
Intercept 0.04(0.10) 0.01(0.10) 1.07(0.25) 0.97(0.21)
Age 0.14(0.12) 0.02(0.12) 0.15(0.12) 0.01(0.12)
Age2 0.17(0.10) 0.23(0.10) 0.18(0.10) 0.24(0.10)
Age3 -0.11(0.06) -0.08(0.06) -0.11(0.06) -0.08(0.06)
Julian date 0.17(0.06) 0.17(0.05)
Hours -0.15(0.03) -0.14(0.03)

Non-zeros
Intercept 1.83(0.04) 1.84(0.04) 1.79(0.06) 1.79(0.06)
Age -0.06(0.05) -0.06(0.05) -0.06(0.05) -0.06(0.05)
Age2 -0.02(0.05) -0.02(0.05) -0.02(0.05) -0.03(0.05)
Age3 0.05(0.03) 0.05(0.03) 0.05(0.03) 0.05(0.03)
Julian date 0.00(0.02) 0.00(0.02)
Hours 0.01(0.01) 0.01(0.01)
log θ -0.64(0.11) -0.66(0.11) -0.64(0.10) -0.66(0.11)

Variance
Zeros

Intercept 0.55(0.14) 0.46(0.12) 0.57(0.15) 0.45(0.12)
Age 0.33(0.13) 0.27(0.11) 0.33(0.13) 0.29(0.11)
Age2 0.19(0.09) 0.16(0.07) 0.19(0.08) 0.16(0.08)
Age3 0.09(0.03) 0.08(0.03) 0.09(0.03) 0.09(0.03)
Day 0.85(0.07) 0.85(0.07) 0.87(0.07) 0.86(0.07)

Non-zeros
Intercept 0.08(0.02) 0.08(0.02) 0.08(0.02) 0.08(0.02)
Age 0.05(0.01) 0.06(0.01) 0.06(0.01) 0.06(0.02)
Age2 0.05(0.01) 0.05(0.01) 0.05(0.01) 0.05(0.01)
Age3 0.03(0.01) 0.03(0.01) 0.03(0.01) 0.03(0.01)
log θ 0.91(0.17) 0.88(0.17) 0.90(0.17) 0.89(0.17)
Day 0.02(0.004) 0.02(0.004) 0.02(0.004) 0.02(0.004)
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column: Individual hunter estimated functions. Each curve is the mean prediction for one of 147 hunters, with
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seperately.
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age. Each curve in this plot is an individual hunter’s average predicted relationship between
probability of failure and age. Transparency of the curves is proportional to the width of
the confidence interval at each age. Notice that there is less variation at low ages, with the
curves bundled more tightly, but more variation at middle ages, with some hunters keeping
very low failure rates for most of their lives. The best hunters enjoy a low 30% failure rate
in their 30’s or 40’s, while the average hunter does no better than a 50% failure rate.

As age increases, failure rates increase. Above 60 years old, the estimates are very
scattered and uncertain, as indicated by the flaring confidence bounds in the top-left plot and
the frequent transparency of individual curves in the lower-left. This is a result of paucity of
data at high ages and the flexibility of the cubic polynomial. As we noted earlier, the cubic
age function is very flexible. However, when there is little data for an individual hunter,
the mean prediction for the hunter can look odd, even predicting best performance (lowest
failure rates) at the youngest and oldest ages in a small number of cases. The corresponding
uncertainty for such curves is huge, and therefore they are transparent in the figure. We
show confidence bounds for all individual hunters in the ESM, with no transparency, to
provide a detailed sense of this phenomenon.

There are several strategies that could improve the estimates at the level of individual
hunter. We could adopt informative priors on the age function that preclude success at
extreme ages exceeding success at central ages. Another strategy is to use another, less
flexible age function. We provide in the ESM individual hunter curves for an alternative
age function that is more constrained and has interpretable parameters. These alternative
estimates show that the general inferences about pattern and variation are not sensitive to
the function we’ve chosen. However, the high uncertainty at late ages is partly a result of the
flexibility of the cubic polynomial, as the alternative age function produces more confident
trends at both the population and individual level.

4.3 Harvest size

The middle row in Figure 1 plots predicted average non-zero returns (c) and individual
hunter estimates for non-zero returns (d). These plots illustrate the distribution of returns
from successful hunts only. The dotted curves in panel (c) show the predicted density of
the actual returns, not just the mean returns indicated by the solid and dashed curves. So
for example the 80% dotted contour shows the boundary within which 80% of predicted
returns for an average hunter are expected to fall.

The pattern for the size of non-zero returns (harvest sizes) demonstrates a rapid increase
early in life, with an average hunter in his 40’s returning twice as many kilograms of meat
per trip as the youngest hunter. However, there is more diversity at early ages, compared
to failures, and less evidence of a decline in performance late in age. Estimates late in life
remain highly uncertain.

The individual hunter predictions, Figure 1(d), demonstrate variation at all ages, with
the best hunters appearing to enjoy a larger average return for most of their lives. In the flat
region between ages 35 to 60, the best hunters on average return twice as much meat as the
worst hunters. Still, realized returns overlap substantially, making it difficult to identify the
best hunters (Hill and Kintigh 2009).
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Fig. 2 Correlation between failure and size of returns (in kilograms), evaluated at age 46. Lefthand plot: Each
point is an individual hunter. The estimated average harvest size is plotted against probability of failure. Righthand
plot: Marginal posterior density of the correlation between failure and harvest size.

4.4 Correlations across failure rate and harvest size

Before explaining the bottom row in Figure 1, it will help to present estimates of the corre-
lations between components of the individual hunter varying effects. Recall that this model
assumes that each hunter has unique parameter values. Per-hunter parameters are drawn
from a population, however, and the model estimates the shape of this population. Part
of the structure of the population lies in correlations along different dimensions of hunt-
ing performance. For example, do hunters with lower average failure rates also get larger
average harvests?

Figure 2, lefthand plot, shows the mean estimates for each hunter, evaluated at age
46, for the probability of failure and harvest size. The clear negative trend suggests that
hunters with high failure probabilities also have low mean harvest sizes. The righthand plot
displays the posterior density for the correlation between log-odds of failure at age 46 and
log harvest size at age 46. The density has a mean of −0.40 and a 95% confidence interval
from −0.67 to −0.12. Better hunters are better at both getting prey and in getting more
and larger prey. There is substantial uncertainty about the magnitude of this correlation,
although it is unlikely to be positive.

4.5 Combined returns

The expected returns from a hunter are computed by multiplying his estimated average
success probability by the estimated mean harvest size. The bottom row in Figure 1 plots
these expectations, for both an average hunter (e) and for individual hunters in the sample
(f). These are the returns experienced by the people in the hunter’s community, in the long
run.

Being able to analyze the zero and non-zero components of the outcome allows us
to identify how variation in each contributes to the overall pattern of variation. By far
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Fig. 3 Predicted impact of hours hunted on failure. Predictions computed for an average hunter at age 19 (left),
age 46 (middle), and age 74 (right). Dashed lines are 95% confidence intervals.

the most important component is failure rate. Since harvest size is irrelevant when a hunt
fails, hunting success multiplies the distribution of harvest sizes and has a dominant role in
determining variation in combined returns.

Some counter-factual calculation will help reveal this fact. The standard deviation in ex-
pected returns at age 46 is 0.76 kg. Now consider two thought experiments. First, imagine
a world in which all hunters have identical failure rates at the same age but retain their esti-
mated difference in non-zero returns. Under this thought experiment, the standard deviation
of expected returns falls 65%, from 0.76 kg to 0.27 kg. In the second thought experiment,
suppose instead that all hunters have identical harvest size distributions at the same age but
variable failure rates. Now the standard deviation of expected returns falls only by 30%, to
0.54 kg. Both components are important to combined expected returns, especially given the
correlation between them, but failure rates contribute much more than does harvest size.

4.6 Day varying effects

Next to age, the most important effect in these models is varying effects clustered on day.
These estimates express correlations among all trips on the same calendar date, and no
model without these effects comes close to either the deviance or DIC of the top four mod-
els in Table 1. Estimates of the variation in log-odds of failure across days is consistently
near 0.86 (95% interval 0.72–0.99). This is nearly twice as much variation as is estimated to
exist among hunters of the same age, 0.45 (95% interval 0.25–0.69). Day effects, whatever
their cause, structure per-trip failure and success in powerful ways.

In contrast to failure rates, there is not much evidence that day effects impact harvest
sizes. The estimated variation in log kilograms of meat across days is 0.023 (95% interval
0.015–0.031). This is a third of the variation estimated to exist among hunters of the same
age (0.08 with 95% interval 0.05–0.12).



Using Multilevel Models to Estimate Variation in Foraging Returns 15

4.7 Hunt duration

Hunt duration is an important covariate of failure rates, but not harvest sizes. The models
that include hours hunted (see Table 2) dominate the other models in both fit (deviance) and
expected out-of-sample accuracy (DIC). The estimate for the impact of each additional hour
hunted on log-odds of hunt failure is −0.14 (95% confidence interval: −0.20 to −0.08).
In terms of proportional odds, each additional hour of hunting is expected to reduce the
odds of failure by about 13% (95% interval: 8% to 18%). Figure 3 plots the impact of this
estimate on expected failure rates, at three different ages. The wide confidence intervals at
high ages is due to uncertainty in baseline failure rate at high ages.

In contrast to failures, the estimate for the impact of hours hunted on harvest size is
essentially zero—an expected additional 0.01 log-kg of meat per additional hour hunted
(95% interval: −0.01 to 0.03). If hunt duration has any important effect on the expected
size of non-zero returns, we cannot detect it with these data and these models.

4.8 Julian date

We consider Julian date as a predictor in order to account for secular trends in prey density
or other factors that increase or reduce return rates across the entire population through
time. The models provide weak support for a small increase in failure rates through time.
However, models with Julian date incorporated as a predictor fit almost identically to those
without it, and the coefficient estimates for Julian date are very small (Table 2). The mean
coefficient estimate for the effect of date on log-odds of failure in model Vary9hDv (the best
model that includes Julian date as a predictor) is 0.17, with a 95% confidence interval of
0.07 to 0.27. Since date was standardized before fitting, this estimate says that an increase
of one standard deviation of Julian date (2400 days, or 6.5 years) increases log-odds of
failure by 0.17. This is a small effect, although maybe a very real one (Hill et al. 2003).
There is also little evidence of a trend in harvest size (mean coefficient < 0.01, 95% interval
−0.04 to 0.04).

Note that because all of the models include hunter age, this estimate for secular trend
in failure rate controls for changes in the age structure of the hunter population. This is
important, because a reduction of the average hunter age, for example, could produce an
apparent increase in mean failure rate, without any change in the prey population.

5 Discussion

5.1 Summary and advantages of the approach

This paper presents a unified Bayesian analysis of variation in human foraging returns.
Variation in these data arise from differences in age, skill, and hunt duration, as well as
many unmeasured and un-modeled factors. Instead of coercing the outcome measure, kilo-
grams of meat returned to camp, into a convenient distribution, we modeled these returns
using a two process zero-inflated gamma mixture model. The benefit of this additional
complexity is that we are able to discuss risk as well as average returns within the same
model. When analyses focus on only one part of the mixture, whether zeros or non-zeros, or
average across trips to blend zeros and non-zeros together, information is lost. In addition,
the models estimate the correlation between the components of hunting returns, a superior



16 Richard McElreath, Jeremy Koster

approach to running separate regression models on zero and non-zero outcomes, because it
allows information about failures to inform estimates about harvests, and visa versa.

In addition to structuring returns using a two-process model, the multilevel structure
of the analysis assumes that hunters vary and allow the data to tell us how much and in
which ways. The model allows for individual hunters to differ not only on average, but also
to differ in how their performance changes with age. In principle, because foraging data
are nearly always unbalanced, presenting more data from certain individuals, a multilevel
model is needed to produce accurate estimates that do not give excessive influence to the
most frequent hunters. But beyond this basic need to deal with unbalanced repeat measures,
the multilevel structure also facilitates inferences about variation in different aspects of
foraging at different points in the lifespan.

The model produces estimates about how foraging success changes with age by par-
tially pooling data across individual hunters. This is important, because rarely does any
individual hunter present a complete record of hunting across all ages. Instead we must es-
timate the relationship between age and performance by piecing together information from
many hunters. Attempting this kind of estimate outside of a multilevel framework can bias
estimates in many ways. The multilevel framework uses information from all hunters to
improve estimates for all ages, but it does not create illusionary confidence where there
is none. This conservatism of the approach can be seen in the wide confidence intervals
around pieces of the individual hunter estimates.

The advantages of multilevel models are numerous, making them useful as a default
form of regression analysis. Field data have naturally occurring clustering and usually un-
balanced sampling. An additional advantage of the multilevel framework is that it allows
for clusters, such as hunters, to have unique intercepts while still using cluster-level predic-
tors like age (Gelman and Hill 2007, page 269). Software such as the glmer2stan package
(McElreath 2012, described in the ESM) provides a friendlier interface to Bayesian model
fitting, which will help researchers incorporate such models into their standard procedures.

It is important to note that the multilevel approach is not confined to large-data situa-
tions, like this one. Whenever there is clustering or repeat sampling in the data, multilevel
estimates are likely to outperform traditional fixed effects. This is especially true when there
is imbalance in sampling, such that some individuals, households, or populations are sam-
pled more. In another analysis (House et al. forthcoming), similar age-dependent models
(fit with glmer2stan) were usefully fit to much less data, because the data were similarly
clustered and imbalanced. Of course the amount of data does impose limits on model com-
plexity, but the relationship between data and parameters in a multilevel model is not of
the same kind as in simple, fixed effect models. That is why measures like DIC are needed.
More generally, one always learns more by comparing models of differing structure and
complexity than by examining a single model, simple or complex.

Because it is now possible to fit the models we wish to, rather than just the models we
are able to, it is also possible to work towards a more satisfying match between statistical
and conceptual models of human foraging. The framework we have outlined is flexible,
allowing researchers to propose and compare different models, using additional informa-
tion about prey type, hunting strategies, and community composition. For example, it is
not necessary to treat returns as products of single hunters. Instead, multiple membership
models (Browne et al. 2001) allow for returns to be modeled as products of cooperative
hunts, while still disentangling evidence of individual hunter ability. The only requirement
is that individuals do not always hunt with the same partners. But even if partners were un-
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changing, estimates could be made for teams, and the success of teams could be modeled
as a function of individual characteristics of its members.

5.2 Risk-sensitive foraging and reciprocity

There are many substantive issues to unpack with respect to how our estimates reflect on on-
going debates within evolutionary anthropology, from signaling (Hawkes and Bliege Bird
2002) to human life history (Kaplan et al. 2000, 2009) to optimal strategies under different
stochastic distributions (Stephens and Charnov 1982). We have focused on methodology.
But this approach makes it possible to ask direct statistical questions about topics such as
risk, both within and across individuals, in precise new ways. We conclude the discussion
by relating our results to one of these traditional human behavioral ecological topics, risk
and risk reduction through sharing.

An immediate benefit of modeling both zero and non-zero returns within the same
model is that it becomes possible to discuss their relative importance in determining the
empirical distribution of foraging returns. We found evidence of substantial variation in
both failures (zeros) and harvest sizes (non-zeros). We also found that success and the size
of returns are correlated across hunters. Nevertheless, the estimates strongly suggest that
variation in failures contributes much more to average returns than does variation in har-
vest sizes. This pattern is unlikely to be true in all foraging contexts, especially those with
greater variation in prey mass—there are no giraffes in Paraguay. But in the Aché sample,
this finding echoes the general recognition that foraging is inherently risky (see chapters
in Cashdan 1990) and that sharing does sometimes result facultatively from increased risk
(Kaplan et al. 2012). Individual hunters can expect long stretches of failure, with no returns
to show for their efforts, even when the community at large enjoys high returns. Our es-
timates further suggest that some hunters must expect longer periods of total failure. For
example, the best hunters in our estimates have failure probabilities around 0.3 (at peak
age), while the worst have probabilities around 0.7. Translating these probabilities into the
probability of realizing 5 failed hunts in a row results in estimates of 0.75 ≈ 0.17 for the
worst hunters and 0.35 ≈ 0.002 for the best hunters.

This result sharpens the puzzle of food sharing, because it suggests that the benefits
and costs of sharing are highly asymmetric within at least some foraging groups. Sharing
can still evolve under such conditions (Boyd 1992, Gurven et al. 2000, Gurven 2006), but
it is a poorly studied problem. Additional complexity arises from risk on the production
side, as some individuals will be unable to share, for entirely stochastic reasons. There
is some work on reciprocity under noisy conditions (Green and Porter 1984, Le and Boyd
2007), but to our knowledge reciprocity has never been formally modeled under the peculiar
conditions we find here, with both highly stochastic production of goods for exchange and
large asymmetries in costs and benefits. On top of these factors, we also found evidence
that independent hunts on the same day have correlated failure probabilities. The impact of
correlations on the production side of sharing reduces the risk reduction benefits of sharing
and therefore incentives for reciprocity (Winterhalder 1990). Among other advantages, the
use of multilevel statistical models can inform future theorizing by helping to narrow and
parameterize modeling effort.

Statistical tools sometimes spur new theorizing (Gigerenzer 1991). We hope that the
ability to effectively model and estimate individual variation at multiple scales (individ-
ual, family, society) will encourage new questions, and eventually new answers, about the
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strategic nature and evolutionary history of human foraging behavior, in relation to both
ecology and culture.
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