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Abstract. It is an underappreciated fact within the philosophical literature on laws of na-

ture that many scientific laws require the aid of a supporting cast of additional modelling

ingredients (such as boundary conditions, material parameters, interfacial stipulations,

rigidity constraints, and so on) in order to perform their traditional role in scientific in-

quiry. In this paper, I suggest that this underappreciated fact spells trouble for some

recent reformulations of David Lewis’s Best Systems Account (BSA) of laws of nature.

Under the auspices of ‘pragmatic Humeanism,’ several philosophers have recently argued

that the criteria of strength and simplicity that lay at the heart of Lewis’s original formu-

lation should be replaced with alternatives that are more sensitive to the role that laws

play in scientific practice. Although the criteria that these philosophers put forward dif-

fer in a variety of ways, they are primarily concerned with the ability of laws to furnish

us with predictions and encode information. This, I suggest, is a problem. If it is true

that many scientific laws do not on their own perform some of the roles with which they

are traditionally associated, then they are unlikely in isolation to make meaningful con-

tributions to the predictive strength of a system or encode information about particular

systems. Such laws are thus unlikely to end up in the best system, and so these accounts

will have trouble conferring lawhood upon them.

When I was a kid, I enjoyed watching some old Disney cartoons that featured
Donald Duck and his nephews Huey, Dewey, and Louie. In a few episodes,
the somewhat incompetent Donald Duck finds himself serving in the post of
Sheriff of Bullet Valley.1 Although he warns his nephews against joining him
on this dangerous adventure, the incorrigible Huey, Dewey, and Louie sneak
along nonetheless, intent on helping their bumbling uncle with his various chal-
lenges. Donald Duck remains blissfully unaware of the secret machinations of his
nephews, despite the fact that they are by and large responsible for the success
he encounters in performing his various sheriff-related duties. Although Donald
believes he has single-handedly succeeded in restoring law and order to Bullet
Valley and its surrounds, the viewer realises that his tenure as Sheriff of Bullet
Valley would have proved disastrous without his cabal of helpful nephews.

It strikes me as an underappreciated fact that in the course of scientific inquiry
many laws behave much like Donald Duck. On first glance, it might seem that
such scientific laws are capable of performing a variety of tasks all on their own
(for example, providing us with accurate descriptions of the evolution of various

Forthcoming in The British Journal for the Philosophy of Science
1I should thank Mark Wilson for reminding me of these old cartoons.
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systems through time). Little do we realise, the law’s ability to perform such
a task owes much to its own supporting cast of helpers. In the case of laws, it
is things like boundary conditions, material parameters, interfacial stipulations,
rigidity constraints, and so on that serve as the analogues of the helpful Huey,
Dewey, and Louie.

In this paper, I will argue that this fact about the way that laws feature in
scientific practice spells trouble for some recent formulations of the Best System
Account (BSA) of laws of nature. Where David Lewis originally insisted that
the laws of nature are the true generalisations that feature in the deductive
system that best balances strength and simplicity with respect to an underlying
Humean mosaic,2 several philosophers have recently suggested that these criteria
(of simplicity and strength) should be replaced with (or augmented by) others
that are more sensitive to the role that laws play in scientific practice.3 Although
the criteria that these philosophers put forward differ in a variety of ways, they
are primarily concerned with the ability of laws to furnish us with predictions
and encode information. This, I suggest, is a problem. If it is true that many
scientific laws do not on their own perform some of the roles with which they are
traditionally associated, then they are unlikely in isolation to make meaningful
contributions to the predictive strength of a system or encode information about
particular systems. Such laws are thus unlikely to end up in the best system,
and so these accounts will have trouble conferring lawhood upon them.

To be clear from the outset, I do not think that Humean views are alone in having
difficulty accommodating the way in which laws rely on a variety of supporting
cast members. Indeed, it strikes me that Humeans and non-Humeans alike in
discussions of laws of nature generally overlook the fact that laws are typically
only able to perform their familiar roles when embedded in the right kind of
modelling environment. To this end, it seems to me that the problems I raise for
various Humean accounts of laws in this paper are illustrative of a more general
oversight in the literature on laws of nature. That being said, there are two good
reasons to focus here on Humean accounts. The first is the fact that non-Humean
accounts differ more widely from one another in character and structure than
do Humean accounts, and so determining exactly how and to what extent this
oversight affects such accounts is a delicate task. The second is that pragmatic
Humeans tend to be more explicit than most about exactly how their account
relates to the role played by laws in scientific practice, and so the problems that
arise from considering the role played by constructions like boundary conditions
can be seen most clearly in the context of these accounts. For these reasons, this
paper will mainly focus on articulating the problems that this supporting cast
dynamic raises for pragmatic Humean accounts. Once the shape of this problem
becomes clearer, however, we will be in a position to consider how questions
about the role and status of boundary conditions might impact our accounts of
laws more broadly.

2See Lewis [1973], [1983], [1986], [1994].
3In particular, Hicks [2017], Dorst [2019], Jaag and Loew [2020], Wilhelm [2022].
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This paper, then, will proceed as follows. In §1, I briefly outline the traditional
formulation of the BSA as well as the more pragmatically-inflected alternatives
that have been proposed recently. In §2, I focus on a particular kind of construc-
tion on which scientific laws regularly rely: boundary conditions. Although in
the philosophical literature it is common to see the term ‘boundary conditions’
employed as though it were more or less synonymous with ‘initial conditions,’
applied mathematicians and physicists often mean something far more substan-
tial when they talk about boundary conditions.4 §3 illustrates the essential role
played by these more involved boundary conditions in allowing some scientific
laws to perform the tasks traditionally associated with them by way of an case-
study: the Navier-Stokes Equations. In §4, I outline the general problem that
laws such as the Navier-Stokes equations present to the BSA with reference to
Lewis’s account. In particular, I argue that it is difficult to see how the BSA
can render the verdict that the Navier-Stokes equations are, indeed, a law. In
§5, I examine how this problem arises for the different attempts to reform the
BSA along pragmatic lines by examining the details of the various proposals. In
§6, I consider some of the differences between the kinds of boundary conditions
required by the Navier-Stokes equations and explain why it is that the Humean
cannot avoid the problem raised by simply accepting the verdict that the various
boundary conditions turn out to be laws. Finally, in §7, I conclude by suggest-
ing that addressing the problem outlined in this paper may require more radical
reform to the BSA than simply providing new criteria for picking out the best
system.

§1. The BSA and its Pragmatic Variants. David Lewis originally formu-
lated his Best System Account in terms of the ‘Humean mosaic,’ which is simply
supposed to be the totality of all the particular matters of fact about the uni-
verse. The idea is that we might consider various axiomatised deductive systems
as attemptes to systematise as many of these particular matters of fact that
make up the Humean mosaic as we can. Different systematisations may exhibit
different virtues to different degrees. Some may be quite simple, perhaps in the
sense that they contain relatively few axioms. Others may be quite strong, in
that we can deduce many consequences from the axioms, or in that the axioms
rule out many different possible worlds. In reality, Lewis suggests, we should
want any systematisation of the mosaic to balance these competing virtues. As
such, his account holds that a true generalisation is a law of nature if and only
if it features as an axiom or theorem of the system that best balances the virtues
of simplicity and strength. If there turn out to be several such systems, then the
laws will be the true generalisations that feature in all of the best systems.

4It is worth mentioning here that boundary conditions are not the only example of the kind
of dynamic between laws and supporting contructions that I am highlighting in this paper.
For instance, material parameters (such as conductivity and viscosity) are constructions that

allow us to capture the complex scale-dependent behaviours of some system (often a particular

material) such that we may actually apply the relevant continuum-scale laws to that system.
They do not simply report the initial values of variables that feature in certain continuum-scale

equations. For more details on such material parameters, see Batterman [2013], Batterman
and Green [2020], Batterman [2021].
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Dorst [2019] helpfully points out that we might distinguish two components here.
The first is the thought that the laws are those statements that feature in our
best systematisation of something like a Humean mosaic. The second is an actual
specification of what makes for the best system (and thus the laws). The idea
here is that in evaluating the merits of various candidate systematisations of
the Humean mosaic, we attempt to balance certain principles. Dorst calls this
second component the ‘nomic formula.’ Thus Lewis’s original nomic formula
involves finding the best balance between strength and simplicity.

In recent years, a series of philosophers have suggested that these two components
of Lewis’s BSA can and should be separated from one another. According to
such proposals, we ought to retain a broad commitment to the idea that the
laws are those generalisations that feature in the best sytem while replacing
Lewis’s nomic formula with one that better reflects the role played by laws in
scientific practice.5 Thus Dorst [2019] suggests that the best system is the one
with the highest predictive utility, Jaag and Loew [2020] argue that the best
system encodes information in a way that is most cognitively useful for creatures
like us, Hicks [2017] focusses on the fact that laws must facilitate predictions
and explanations and be inferred from repeated experiment, and Wilhelm [2022]
adds computational tractability to the list of principles that should appear in
our nomic formula.

The general thrust of these recent attempts to reform the BSA is the thought
that in developing an account of laws of nature we should pay more attention to
the pragmatic role that laws play in scientific practice. As such, many of these
recent proposals for alternatives to Lewis’s BSA begin by asking a question like:
what role do laws actually play in scientific practice? Once we have determined
the salient role or roles, the thought is that we can adjust our nomic formula to
ensure that whatever it is that our account declares the laws to be is capable of
playing the role that laws play in scientific practice.

Althought these more pragmatically-inflected versions of the BSA strike me as
clear improvements on Lewis’s original formulation, the tale of Scrooge McDuck
with which we began might indicate that there is a problem lurking here. If
it is true that the tasks typically assigned to be performed by laws in scientific
practice are actually performed by laws along with a substantial supporting cast,
how much of an improvement can we make on the BSA by focussing on ‘the role
that laws play in scientific practice’? Answering this question will be the focus
of the rest of this paper. In the meantime, however, it will be important to meet
at least one member of the supporting cast and to see exactly how certain laws
rely on them to furnish us with predictions, descriptions, and so on.

5That is not necessarily to say that the nomic formula proposed by Lewis has nothing to

do with the epistemic practice of science. Indeed, he suggests that the system that best
balances strength and simplicity “has the virtues we aspire to in our own theory building”
(Lewis [1983, 41]). Nonetheless, Lewis restricts himself to a more schematic and abstract
characterisation of the epistemic practice of science than would appeal to recent pragmatically-

inclined Humeans.
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§2. Boundary Conditions. Amongst the various kinds of constructions and
modelling ingredients that feature in the supporting casts upon which many laws
rely, boundary conditions stand out as particularly important and ubiquitous in
scientific practice. As a result, it will be helpful to examine in at least some detail
the way in which boundary conditions support scientific laws in their traditional
tasks. Although boundary conditions are often associated with initial conditions,
they play a distinct role in scientific practice and it will be especially important
to understand exactly how the two differ from one another.

Indeed, philosophers in the literature on laws of nature (and, indeed, beyond)
tend to assume that ‘boundary conditions’ are more or less the same as ‘initial
conditions.’ The following passage from Bhogal and Perry [forthcoming, 17]
illustrates this tendency:

However, the best system is not a purely nomic entity. It contains non-
nomic boundary conditions as well as laws. The best system is, roughly,
the deductive closure of statements which best systematize the facts about
the mosaic, balancing simplicity and informativeness. Nothing about that
systematization requires that it only include laws; it may include contin-
gent things, like the precise boundary conditions. In fact, such intuitively
contingent boundary conditions seem like they will be required for the sys-
tem to be informative. A system where the axioms are only the laws of
Newtonian mechanics, for example, would not be particularly informative
on its own – it needs the addition of boundary conditions specifying what
objects there are, their mass, their velocity, and so on.

As another example, Hicks [2017, 1002] writes that the orthodox BSA “can-
not differentiate laws from boundary conditions” before explaining how by con-
trast his own account delivers a “distinction between initial conditions and
laws.” That is, the task of differentiating laws from boundary conditions is
seen as the same as that of differentiating laws from initial conditions. Jaag and
Loew [2020, 2542] consider the question of why scientists distinguish laws proper
from “mere boundary conditions,” by which they mean information about the
coordinates, masses and charges of various particles. By and large, one sees the
term ‘boundary condition’ used either as though it were synonymous with ‘ini-
tial condition’ or as though boundary conditions were a particular kind of initial
condition.

In reality, initial conditions and boundary conditions are two very different kinds
of things. Granted, there may be some specific fields, such as point particle
mechanics, within which boundary conditions tend to look very much like initial
conditions. However by and large what physicists and applied mathematicians
mean by ‘boundary condition’ is something above and beyond merely fixing
the value of some parameter or parameters at some specified time. Boundary
conditions in this more substantial sense are constraints on the values that a
differential equation must take on the boundary region of the solution space of the
relevant problem. They typically arise in the contexts of boundary value problems
in which a core differential equation must be augmented by additional constraints
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before it admits of a unique or appropriate solution. These constraints, moreover,
must typically apply at all times t and not merely at some specified initial or
specific time. Indeed, they are often differential equations themselves.

Bursten [2021] helpfully distinguishes between the ‘variable fixing’ and ‘struc-
ture specifying’ role that such modelling ingredients can play. When philoso-
phers, such as in the passages above, write about ‘boundary conditions,’ they
are typically referring to something like what Hempel [1942, 36] calls ‘determin-
ing conditions.’ These determining conditions are statements that provide the
information about the specifics of an event required for some universal hypoth-
esis to properly apply to it. We might know, for instance, that some differential
equation captures the way in which certain classes of populations grow, but be-
fore we can use that equation to model some particular population we need to
know the initial population size, relevant growth rate, and so on. These kinds of
conditions, then, are contingent facts that specify the value of certain parameters
or variable that appear in the general equations for some kind of system.

Distinct from this variable fixing task, however, is the task of specifying the
mathematical structure of the boundary of the space on which some differential
equation is defined. Performing this structure-specifying task requires more than
simply plugging in the right kind of values for the parameters of the system at
hand (such as “the initial population consisted of n individuals,” or specifying
masses and velocities of particles, and so on). In many cases, solving the dif-
ferential equation requires that we impose constraints on how the function that
will emerge as a solution to the differential equation can evolve over time in the
region of the boundary. For example, we might need to specify how the normal
vector or derivative of some velocity field changes over time in certain directions.
We will see how this works in more detail shortly, but for now it is simply im-
portant to note that without such boundary conditions our original equations
often may not possess a ‘solution’ in any cogent sense.

The general point here is that laws of nature in their differential equation form
rely on boundary conditions in a far more substantial fashion than is typically
recognised.6 The ability of some scientific laws to perform their central descrip-
tive and predictive tasks depends on modelling ingredients, such as boundary
conditions, which involve more than simply (as Bhogal and Perry write), “spec-
ifying what objects there are, their masses, their velocity, and so on.” Before we
consider whether the BSA is able to handle this fact about the way that laws
operate in scientific practice, it will help to see exactly how it is that such bound-
ary conditions play this more expansive structure-specifying role. To this end,
we shall in the next section meet the Navier-Stokes equations and the boundary
conditions with which they are typically augmented.

6There are, of course, exceptions. In addition to Bursten [2021] and Sykora [2019], Mark

Wilson [2006], [2017] has repeatedly emphasised the way that conceptual and mathematical
differences between boundary conditions and initial conditions are often overlooked. In a similar

vein, Wolf and Read [2023] note that boundary conditions play an important structural role
in our attempts to evaluate claims of empirical equivalence between dynamical theories.
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§3. The Navier-Stokes Equations and Slip Conditions. The Navier-Stokes
equations7 are employed in a wide variety of scientific contexts involving fluid
flow, such as ocean currents, weather patterns, the motion of water in pipes,
blood flow, air flow over the wing of a plane, and so on. They have for quite
some time been considered the correct formulation of the laws governing fluid
motion. As Hermann von Helmholtz [1873] wrote:

“As far as I can see, there is today no reason not to regard the hydrody-
namic equations [of Navier and Stokes] as the exact expressions of the laws
that rule the motion of real fluids.”

In particular, the Navier-Stokes equations improved on the previously known
Euler equations by correctly formulating the influence of fluid viscosity on fluid
motion.8

Yet the Navier-Stokes equations on their own do not tell us how individual sys-
tems featuring fluid motion will behave. For that, they must be augmented with
a variety of boundary conditions, some quite general and others more specific.
Most prominently, we require a slip condition, which specifies the tangential
component of the velocity of a fluid at the surface of flow along the stationary
boundary. For instance, how does the contact between the walls of a pipe and
flowing water impact the velocity of the fluid along the walls? Without such
additional constraints, we are typically unable to solve the equations or find
ourselves provided with incorrect values, depending on the system.

Typically, though not always, we must augment the Navier-Stokes equations with
a no-slip condition, which sets this tangential component of the velocity to zero.
In physical terms, this captures the fact that at the fluid-solid interface, the force
of attraction between the fluid and solid particles is greater than that between
the fluid particles themselves, owing to the fact that the effect of viscosity pre-
dominates at the boundary (see Rapp [2017, 244-245] and Schobeiri [2010, 234]).
This specification of boundary structure allows the equations to apply in some
concrete fashion to real systems. (Something like the no-slip condition is required
to explain why dust accumulates on a stationary ceiling fan, for instance.)

It is important to note again that a boundary condition such as the no-slip
condition is not simply a mere contingent fact that we plug into the equation
expressing the relevant law. Indeed, Sykora [2019] has shown that the no-slip
condition in particular is invariant under certain classes of interventions and
enjoys quite broad empirical and theoretical support. The no-slip condition does
not tell us what the velocity of any particular fluid particle is at any particular
time, but rather provides a constraint on the way the velocity of the fluid particles
in the boundary region must evolve for all times t. It is this added structure that

7One will occasionally see historical references to the singular Navier-Stokes equation, but

modern terminology has settled on referring to the equations in the plural. Since they are

vector equations they can, if necessary, be written as a series of equations in each of the
component spatial directions.
8For more detail on the equations, what they look like, and what the various terms in them
mean, see Moffatt [2015] and Batchelor [2000].
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ensures that the task of solving the Navier-Stokes equations amounts to what
Jacques Hadamard [1923] famously termed a “well-posed problem.” This simply
means that the model admits of a unique solution that changes continuously
with the initial conditions. Without the inclusion of some kind of slip condition,
we would be unable to find a unique solution (or sometimes any solution at all)
to the Navier-Stokes equations for fluid systems.

Figure 1. Without the appropriate boundary condition (in ad-
dition to the obligatory slip condition), the Navier-Stokes equa-
tions will predict that the velocity field diverges to infinity in
the indicated inside corner.

In specific cases, other boundary conditions may be required. For instance, if
we are interested in the way that fluid behaves after being poured out of a pipe,
we require so-called inlet/outlet conditions before the Navier-Stokes equations
can be properly applied to our system. The form of these conditions depends
on the kind of inlet or outlet we have, though often something along the lines of
∂u
∂t + ū∂u

∂x = 0 is required, where ū denotes an averaged value of the velocity in a
particular area. If our fluid flows along a surface that forms a right angle, on the
other hand, the Navier-Stokes equations (plus the appropriate slip condition, of
course) will predict that the fluid velocity along the inside corner is infinite (see
Figure 1). This is a result not of some defect in the equations but rather of a
lack of certain pieces of information required by the geometry of the problem.
To accommodate such systems, we must also augment the equations with a
Neumann boundary condition which specifies the derivative of the velocity at
that point of the boundary.9

9More precisely, such additional boundary conditions serve as a kind of prerequisite for the

numerical techniques we use to tame the singularities that the Navier-Stokes equations contain
in cases involving sharp corners. Applied mathematicians and physicists commonly deal with
singularities in the core differential equations of their model by way of a variety of numerical and
‘semi-analytic’ methods. In cases involving sharp corners, we must imposed further boundary

conditions on our flow before we can employ such methods to extract information from the
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In many circumstances we may be able to apply some set of equations very
comfortably to some system without needing to solve them in their entirety; that
is, without possessing an explicit solution. We may do this because it is extremely
difficult to get our hands on explicit solutions, and so we might approximate a
solution or treat the equations numerically or something along those lines. The
sense in which the Navier-Stokes equations without the boundary conditions do
not admit of a solution is different than this. Without the boundary conditions
the application of the Navier-Stokes equations to a particular system will likely
not amount to a well-posed problem. In such cases there is no sensible solution
to be approximated or treated numerically in the first place. So when I say that
certain boundary conditions are integral to our ability to solve the Navier-Stokes
equations, I mean this in the sense that without the boundary conditions we do
not even have a well-posed problem to solve, rather than the sense that the
boundary conditions help us to apply the Navier-Stokes equations by allowing
us to get our hands on actual solutions.

One final point is important here. In this context, whether the Navier-Stokes
equations can be ‘solved’ in some case or another is not merely a matter of
computational tractability. Even in more ideal cases the equations are often
extremely intractable and must be handled using a complex toolkit of numerical
methods and approximations developed by applied mathematicians. In the above
cases, the Navier-Stokes equations themselves do not, without the appropriate
boundary conditions, possess the right kind of structure to ensure that sensible
solutions exist. This cannot be rectified simply by finding the correct information
to add to the equations themselves. The Navier-Stokes equations are the correct
laws for describing the motion of viscous fluid, and they can be verified as such
by both empirical and theoretical considerations. The moral here is this: simply
because some statement is a physical law of nature does not necessarily guarantee
that it can be applied to any system at all without the addition of the boundary
structure appropriate to that system.

§4. Boundary Conditions and the BSA. Why, then, might the way in
which laws like the Navier-Stokes equations rely on boundary conditions present
a problem for the BSA? The rough idea is that unless the required boundary
conditions are included in our candidate system, the Navier-Stokes equations
are unlikely to make any meaningful contribution to the strength of our system.
In such a case the Navier-Stokes equations would be unlikely to end up in the
best system and thus unlikely to come out as laws. On the other hand if we do
include the boundary conditions in our system, then we run the risk of conferring
lawhood on the entire supporting cast. It will perhaps help to see how this
problem plays out for Lewis’s ‘strength and simplicity’ formulation of the BSA
and then think about the more pragmatic formulations that have appeared in
recent years.

Navier-Stokes equations regarding our system. For examples of this approach, see Gupta,
Manohar, and Noble [1981] and Deliceoğlu, Çelik, and Gürcan [2019].
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Recall that according to Lewis, a generalisation is a law of nature if it appears
as an axiom or theorem in the deductive system that best balances simplicity
and strength with respect to the Humean mosaic. Yet as we have seen, the
Navier-Stokes equations on their own are unlikely to make any contribution
to the strength of some candidate system. Unless they are coupled with the
appropriate boundary conditions, which may vary depending on the system at
hand, there is very little that we will be able to deduce about any particular
system (or very few possible worlds we can rule out) as a result of the Navier-
Stokes equations. Indeed, as we saw, they may in fact provide incorrect results
in such a case. Given that the inclusion of the Navier-Stokes equations in our
system would result in at least a marginal decrease in simplicity with no real
gain in strength, it would seem unlikely that the best system would include the
Navier-Stokes equations on their own. In other words, if the boundary conditions
are not included in our candidate systematisation, it seems unliklely that Lewis’s
BSA will declare the Navier-Stokes equations to be a law.

It might seem as though there is a simple solution here: we can simply add the
boundary conditions to our system in order to ensure that the Navier-Stokes
equations is in a position to contribute to its overall strength. However there
are two problems with this move. The first is that there is an extraordinarily
large (possibly infinite) number of boundary conditions that we would need to
add to our system in order to accomplish this, appropriate to the various phys-
ical systems that we might encounter. This would seem to represent a pretty
dramatic loss with respect to the simplicity of our system. Of course, much has
been written about exactly how the trade-off between simplicity and strength
is supposed to work in Lewis’s BSA,10 but it would seem that whichever way
you slice it a system which includes both the Navier-Stokes equations and the
full litany of boundary conditions they employ would likely be one of the least
simple candidates on offer.11

Suppose, however, that we overcome this problem. That is, suppose that some
system which includes the Navier-Stokes equations and the relevant boundary
conditions turns out to be the one that best balances strength and simplicity.
In that case, we have succeeded in conferring lawhood on the Navier-Stokes
equations. Unfortunately, we may have gone too far. If any true generalisation
that features in the best system comes out as a law of nature, then it would seem
that our entire supporting cast of boundary conditions will turn out to be laws of

10For instance, objections have been raised by Hall [2015], Roberts [2008], and Woodward

[2014].
11There is a related problem here worth mentioning. Given that different classes of systems
will require different, incompatible boundary conditions, there is a risk that including all the

requisite boundary conditions will render the system inconsistent. Perhaps the Humean might
avoid this by suggesting that each boundary condition should be included in the system with
a specification of the kinds of systems it is to be applied to and the kinds of laws it should

combine with, but this seems once again to place a pretty heavy toll on the system’s simplicity.

Not only must our system include an enormous quantity of boundary conditions, but these
boundary conditions are quite complicated specifications in and of themselves. It seems then

even more implausible that such a system would count as simple enough to win the title of
‘best system.’ Thanks to an anonymous reviewer for suggesting this point.
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nature. Granted, some of these, such as the no-slip condition, display a limited
range of lawlike characteristics. Many others, however, such as the variety of
inlet/outlet conditions, do not (these differences will be discussed further in §6).
It would seeem to be a real problem for the BSA if the only way it could render
the verdict that the Navier-Stokes equations were laws of nature was at the cost
of declaring that all the boundary conditions also turn out to be laws of nature.

Of course Humeans, such as Bhogal and Perry as we saw earlier, tend to recognise
that the best system will need to contain a variety of initial condition statements
in order to ensure that the laws contained therein are informative. The mere
fact that f = ma features in our system, for instance, does not allow us to derive
or deduce correct statements about the Humean mosaic unless we also include
some information about “what objects there are, their mass, their velocity, and
so on.” Yet simply because such initial conditions feature in our best system
does not on its own seem to mean that we run the risk of conferring lawhood on
them. The laws, after all, are the generalisations that feature in the best system,
and initial conditions statements about the masses and velocities of particular
objects clearly do not seem to be generalisations.12

We might then ask: why are boundary conditions any different? The answer is
that where initial conditions are particular, discrete pieces of information about
the state of a system at a certain time, boundary conditions are differential
equations themselves which impose ongoing restrictions on the evolution of our
system. Unlike initial conditions, then, it does not seem that there is any clear
reason not to regard these boundary conditions as generalisations in our system.
The no slip condition, for instance, is a generalisation that relates the velocity of
the fluid at the boundary to the shear rate at the boundary. As such, it seems
that as long as such boundary conditions feature in the best system the defender
of the BSA is committed to declaring that they are laws.

By talking about boundary conditions as generalisations here I do not mean
to point to a mere syntactic difference. After all, if this distinction amounts
simply to the difference between, for instance, statements that are universally
quantified and those that are not, then it seems that we could simply stretch
initial conditions into the right shape to count as a generalisation.13 Such a
distinction would not be able to robustly capture the difference between initial
conditions and boundary conditions. When I say that boundary conditions (and
laws) are generalisations where initial conditions are not, I mean that boundary
conditions are general statements about the Humean mosaic and not the kind of
thing we can think of as being in the mosaic.

There are, of course, a variety of ways that one might understand the facts that
make up this mosaic, the predicates featured therein, and so on. Nonetheless,
it seems right to say that whether or not we stretch them into the logical shape
of a generalisation, statements roughly of the form “system S exhibits properly
P at time t” are the kind of thing we should imagine as making up the mosaic.

12Some pragmatic Humeans, such as Dorst [2019], talk in terms of principles rather than
generalisations.
13Thanks to an anonymous reviewer for pushing me on this point.
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On the other hand, statements like “system S exhibits properly P at all times
t” or “systems of class C exhibit properly P at all times t” seem clearly to be
general statements about the mosaic rather than the kind of discrete fact we
should expect to find in the mosaic. The suggestion then is that where initial
conditions by and large are discrete facts that might feature in the mosaic,
boundary conditions pose a special kind of problem because they are of the
latter kind of more general statement about the mosaic.

That, at least, is the shape of the problem. There are two reasons, however,
that it might not help to dwell on the implications of the role played by bound-
ary conditions for Lewis’s BSA in particular. The first is that there seems to
be relatively broad consensus amongst Humeans that, for a variety of reasons,
Lewis’s particular nomic formula stands in need of revision.14 In particular,
many philosophers have argued on grounds totally unrelated to those that con-
cern us here that Lewis’s BSA does not sufficiently reflect facts about scientific
practice.

The second reason is that Lewis insists on a far sharper distinction between fun-
damental and non-fundamental laws than do some of the BSA’s recent reformers.
On his view, laws must only make reference to an elite class of ‘perfectly natural’
properties, and so it is less clear that his account is intended to capture all of the
laws of fluid dynamics at all. That is to say that since the Navier-Stokes equa-
tions make reference to macroscale material properties such as viscosity which
are not on his view ‘perfectly natural,’ Lewis may have rejected them as not
sufficiently fundamental and thus beyond the scope of his account.15

More recently, Humeans of various stripes have attempted to dispense with this
aspect of Lewis’s view.16 In the absence of some strict naturalness constraint,
however, it might seem difficult to insist on a sharp distinction between the
‘fundamental laws’ one’s account is intended to cover and the ‘non-fundamental’
laws it is not.17 The main point here is that where Lewis’s machinery of perfectly
natural properties might allow him to dismiss the Navier-Stokes equations as

14Of course, pragmatically-inclined Humeans such as Hicks [2017], Dorst [2019], Wil-
helm [2022], and Jaag and Loew [2020] represent a big part of this consensus. But in addition,

more orthodox Humeans such as Loewer [2007], [2020] and Cohen and Callender [2009] have

suggested a variety of modifications to Lewis’s nomic formula.
15It also seems to me that some distinction between fundamental and non-fundamental laws
is likely to play a role in how some non-Humeans would respond to the problems raised by

the relationship boundary conditions and laws. For instance, if one is a primitivist (such
as Maudlin [2007]) and thus thinks that laws are primitive entities who perform the role of

carrying the universe from prior states to subsequent states, then it would seem to be a real

problem if the laws must rely on boundary conditions to accomplish this task. Presumably,
then, such a primitivist would want to deny that laws like the Navier-Stokes equations are
fundamental in some relevant sense. A similar line of thought would seem to apply to those

who, like Emery [forthcoming], think that laws play some kind of metaphysical governing role.
As I mentioned in §1, however, assessing the way in which the relationship between laws and

boundary conditions impacts the viability of non-Humean views is beyond the scope of this

paper.
16Most notably Cohen and Callender [2009] and Loewer [2007], [2020].
17Jaag and Loew [2020, 2526fn3], for instance, simply distinguish the “fundamental laws of
physics” from the “so-called laws of the special sciences.”
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beyond the intended domain of adequacy of his account, this move does not
quite seem available to the more pragmatically-inclined Humeans that are wary
of positing such properties.18

§5. Alternative Nomic Formulas. Now that we have seen at least the broad
shape of the problem posed by boundary conditions for the BSA, we can look in
detail at how this might apply to some recent reformulations of Lewis’s nomic
formula.

5.1. Computational Tractability. Wilhelm [2022] argues that along with
strength and simplicity we should consider computational tractability to be one
of the theoretical virtues our best system should balance. A system X is more
computationally tractable than another Y if X is “overall, more computationally
useful than Y when it comes to performing numerical integrations, estimating
infinite series expansions, constructing idealized models of phenomena, approxi-
mating exact solutions to equations of motion, and so on” (Wilhelm [2022, 3]).
The idea is that laws of nature ought in practice to do more than simply rule
out a large array of possible worlds. A system that is computationally tractable
as well as strong not only rules out plenty of possibilities but also “gives us the
tools to determine which worlds are eliminated” (Wilhelm [2022, 5]).

Does adding computational tractability to the list of theoretical virtues help
with the problem of conferring lawhood on the Navier-Stokes equations? It
does not seem to me that it does. Recally that the Navier-Stokes equations are
computationally intractable not simply in the sense that they are difficult or
computationally expensive to solve (though they are) but rather in that without
the boundary conditions they do not present us with a well-posed problem to
solve in the first place. Put differently, a system that contains the Navier-Stokes
equations (but not the relevant boundary conditions) is no more useful when it
comes to constructing idealised models of phenomena or approximating exact
solutions to equations of motion than the same system with the Navier-Stokes
equations removed. Such a system would then presumably be unlikely to be the
one that strikes the best balance between the relevant theoretical virtues and
thus the Navier-Stokes equations would be unlikely to come out as laws.

If we attempt to remedy this by adding the boundary conditions as axioms to
our system, then we run into the same problems as we saw in the previous

18This point is borne out, I would suggest, by some of examples that these more pragmatic
Humeans appeal to. Jaag and Loew [2020, 2530] mention the Wiedemann–Franz law which

deals with macroscale thermodynamic properties such as thermal conductivity. Dorst [2019,
887] considers the ideal gas law, which again relates a variety of macroscopic properties of ideal
gasses. Hicks [2017] discusses at various points different theories of planetary motion. It does
not seem to me that any of these laws have a strong claim to be ‘more fundamental’ than the
Navier-Stokes equations in such a way that would relieve these pragmatic Humeans from the

burden of accounting for the details presented earlier. Indeed, given that we do not currently

possess a truly fundamental physical theory, it would be quite philosophically awkward to
appeal to a substantive characterisation of the role played by laws in contemporary scientific

practice to motivate an account of laws that was only intended to capture some restricted
subset of ‘fundamental’ laws.
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section. First, any increase in computational tractability and/or strength will
come at a significant cost to simplicity given the sheer number of boundary
conditions we will require. Suppose that this can be overcome, we nonetheless
risk conferring lawhood on the entire supporting cast of boundary conditions,
since Wilhelm’s account has it that any theorem of the best system comes out as
a law of nature.19 The underlying problem is that computational tractability is
not a feature that laws in general exhibit in isolation. Many laws on an abstract
level capture how certain systems behave but require the right kind of support
before they can accomplish the tasks that Wilhelm collects together under the
banner of computational tractability.

5.2. The Epistemic Role Account. Hicks [2017] argues that we should de-
part even more substantially from the criteria laid down by Lewis. The BSA, he
suggests, focusses too much on the outputs of scientific inquiry and not enough on
the inputs, such as experimentation. He rightly points out that the methodology
of science is concerned with more than simply the organisation and unification
of as many truths as possible. In particular, science “aims both at discovering
truths that can be employed in a wide range of situations much smaller than the
universe as a whole, and at marshalling empirical evidence to provide epistemic
support for believing those truth” (Hicks [2017, 993]).

With this in mind, Hicks presents the epistemic role account (ERA), according
to which

“The laws of nature are those true statements that, as a group, are best
suited to produce predictions and explanations and to be inferred from
repeated observation and controlled experiments.” (Hicks [2017, 995])

The ‘output role’ that the ERA identifies for laws is similar to the one that
features in the BSA in that “science should output a set of generalizations that
will enable us to easily deduce predictions and provide explanations” (Hicks
[2017, 995]). Where the ERA differes from the orthodox BSA is in the importance
it places on the ‘input role’ of laws, in that they must be the kind of thing we
can infer from observation and experimentation. Hicks thus adds two extra
requirements: the laws must be able to be observed in isolated subsystems of
the universe, and the laws must be observable in isolation.20

In the next section, we will consider how the focus on the predictive role played
by laws fares in light of the boundary conditions-related difficulties we have

19Given that Wilhelm’s BSA holds that the laws are all of the theorems of the best system and

not necessarily only the generalisations, one might wonder whether this means he faces some
problem of unintentionally conferring lawhood on all the initial conditions as well. However
Wilhelm does not include initial conditions themselves in any of his various candidate systems,

instead considering what one could derive from his various candidate systems when they are
‘supplemented’ with sentences about initial conditions. Such an approach would seem strange

in the case of boundary conditions, since they are not particular, discrete sentences about the

state of some part of the mosaic at some time but generalisations of a kind with those that
feature in the deductive systems under consideration.
20I take it that by ‘observing a law’ in this context Hicks means observing particular instances
of the generalisation captured by the law.
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discussed so far. In the meantime, it is worth thinking about Hicks’s requirement
that the laws of nature must be observable in isolation. In 1828, Antoine Cournot
wrote of Claude-Louis Navier’s (correct) formulation of what would come to be
known as the Navier-Stokes equations that

“M. Navier himself only gives his starting principle as a hypothesis that
can be verified solely by experiment. If, however, the ordinary formulas
of hydrodynamics resist analysis so strongly, what should we expect from
new, far more complicated formulas?”

In essence, Cournot was complaining about the fact that it was at the time
extremely difficult to subject the Navier-Stokes equations to empirical testing.
The viability of some of the premises employed in Navier’s derivation was dif-
ficult to ascertain, since it was unclear how the resulting equations could be
applied to even simple systems (Darrigol [2005, 116-8]). Indeed Navier him-
self, although quite confident in the theoretical underpinnings of his equation,
nonetheless conceeded that the formula “cannot suit the ordinary cases of appli-
cation” (Darrigol [2005, 115]).

So what changed between this point and 1873 such that Helmholtz could as
we saw earlier triumphantly declare that the Navier-Stokes equations were “the
exact expressions of the laws that rule the motion of real fluids”? The answer
is that physicists succeeded in determining the correct boundary conditions for
several systems of central importance. As Darrigol [2005, 144] writes, the key
reason that “as late as the 1860s the Navier-Stokes equation did not yet belong
to the physicist’s standard toolbox” was that a consensus had yet to emerge with
regard to “the boundary condition, which is crucial in judging consequences for
fluid resistance and flow retardation.”

Indeed it was (unsurprisingly) George Stokes who realised that considerations of
boundary conditions were key to the applicability of the Navier-Stokes equations
to real fluid systems. In 1850 he employed the no-slip condition, which we met
in §3, in order to extract from Navier’s equation an array of correct predictions
regarding the motion of fluid through a cylindrical pipe (Darrigol [2005, 142-
3]). Despite the fact that a variety of molecular and non-molecular derivations
of the Navier-Stokes equations had already been given, it was not until the
work of Stokes that physicists were able to subject them to thorough empirical
testing. Once the correct boundary conditions were found for certain central
cases, physicists were able to understand more generally how to determine the
boundary conditions appropriate to a wider class of systems.21 It was exactly
this development that inspired Helmholtz’s optimistic declaration of 1873.

The moral of this historical interlude is that the reliance of some laws on the
appropriate supporting cast can run all the way to questions of confirmation and
testing. Some laws cannot be properly subject to experimental testing until the

21Indeed, developing techniques for producing boundary conditions for the Navier-Stokes equa-
tions and understanding their behaviour remains a very active area of modern mathematical

research. See, for instance, Nordström and Svärd [2006], Kučera and Skalák [1998], Ray-
mond [2007].
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right boundary conditons (or material parameters, or rigidity constraints, and so
on) are produced. Although Hicks [2017, 1000] is right to point out that scientific
investigation is characterised by a “divide and conquer methodology of evidence
gathering,” it is too much to demand that “each part of the lawbook must be
independently tested.” Our ability to subject certain laws to empirical testing
is contingent upon our ability to formulate the correct boundary conditions.

Hicks articulates the thought that we must be able to subject laws to isolated
experimental testing in terms of the virtue of modularity. Roughly, a set of laws
L is more modular than a set of laws L∗ if various subsets of the laws in L apply
to more subsystems of the universe than do the subsets of the laws in L∗. We can
put the problem, then, as follows. Let L be some set of laws and L∗ be the set of
laws that we get by adding the Navier-Stokes equations to L. Then since L∗ does
not contain the boundary conditions, the addition of the Navier-Stokes equations
will not allow L∗ to apply to more subsystems than our original L. That is, the
Navier-Stokes equations in isolation do not contribute to the modularity of our
set of laws – L∗ is just as modular as L. Of course, we could always include the
boundary conditions, but in such a case we would run into the by now familiar
problem of conferring lawhood on all the relevant supporting ingredients.

5.3. Prediction. One common thread that runs through several of the pro-
posed alternative BSAs is the idea that prediction is one of the most important
roles that laws play in scientific practice. As such, several of the alternative
nomic formulas that feature in these BSAs hold that something like predictive
utility is the key to determining the best systematisation of the Humean mo-
saic. Jaag and Loew [2020, 2534] propose that the best system is the one that
is maximally cognitively useful to creatures like us, but insist that “the main
cognitive function of the laws is facilitating predictions.” Cognitive usefulness,
then, is simply something like predictive utility. Dorst [2019, 886] suggests that
“the primary pragmatic use of laws is predictive” and so his BSA centres around
several desiderata such that “the system with the ‘best balance’ is the one with
the highest predictive utility.” Hicks [2017] also intends for his nomic formula
to ensure that the best system is one suited to the predictive needs of agents
operating in the world.

Of course, it is undoubtedly right to say that prediction lies at the heart of
the overall role that laws of nature play in scientific investigation. Moreover,
in articulating alternative nomic formulas framed around this predictive role,
the pragmatic reformers of the BSA have shed light on the kinds of features
that might allow laws to play this role. The question, however, is whether we
can expect laws to play this predictive role in isolation, without the help of
their supporting cast. If, as I have urged, we cannot in general maintain such
an expectation, then we must ask whether these proposals too are faced with
a problem similar to those we have seen in previous sections. Does a nomic
formula centred on prediction allow us to confer lawhood on the Navier-Stokes
equations without also conferring lawhood on the collection of sundry boundary
conditions on which they rely?
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Unfortunately, I do not think so. Suppose that you have some fluid system, the
various parameters of which you are able to measure to an arbitrary degree of
accuracy. Now take the Navier-Stokes equations and plug in the values produced
by your measurements. Do the resulting equations tell you what the velocity
field will look like a minute or two from now? No. The resulting equations will
not have a solution unless you provide the right kind of boundary constraints
(and perhaps also inlet/outlet conditions, depending on your system). In the
terminology we introduced earlier, the problem will not be well-posed and so
we will not even be able to approximate our way to a reliable solution. This is
exactly the problem we saw in the historical interlude of the previous section: it
was so difficult to subject the Navier-Stokes equations on their own to empirical
testing because without a procedure for generating the appropriate boundary
conditions one is not in a position to say what it is they predict of any particular
system.

In articulating his Best Predictive System Account, Dorst [2019] outlines several
desiderata, the best balance of which should ensure the highest predictive utility.
One way of putting the point above is to say that in isolation the Navier-Stokes
equations fail almost entirely to meet the first two (and arguably most impor-
tant) desiderata: informative dynamics and wide applicability. Dorst requires
that “the actual putative laws of nature joinly imply a dynamics for various sys-
tems” Dorst [2019, 887]. But any set of principles featuring the Navier-Stokes
equations and not the boundary conditions will imply no such dynamics for fluid
systems. Similarly, Dorst also includes as a desideratum that our dynamical
principles apply to a wide variety of systems so that we need not gather ad-
ditional information about particular subclasses of systems we might meet in
different circumstances. Of course, the Navier-Stokes equations tolerate a wide
variety of initial conditions relevant to all the possible fluid systems we might
encounter. Yet as we have seen, this does not guarantee that the Navier-Stokes
equations may be applied to that same wide variety of systems in the absence of
the more specific boundary conditions required by the problem at hand.

At any rate, it seems that our familiar problem rears its head again. Without
the boundary conditions the system (or set of principles) containing the Navier-
Stokes equations will be no more predictively useful than the system without
them. Yet if we include the boundary conditions in our set of principles then we
must thereby admit them into the pantheon of laws.

5.4. A Difference in Roles. One might at this stage worry that the pragmatic
Humean can avail themselves of a rather simple reply. Even if boundary con-
ditions play an important and indispensible supporting role for some scientific
laws, they nonetheless are not the kind of thing playing the central pragmatic
or epistemic role associated with laws. We might think that there is a stark dif-
ference between playing the appropriate ‘law role’ in science and assisting some
other generalisation as it goes about playing that role. Although they rely on
boundary conditions in all kinds of complex ways, it is the Navier-Stokes equa-
tions themselves, and not those boundary conditions, which are responsible for
the predictions and explanations that scientists are able to produce. On this line
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of thinking, then, the pragmatic Humean can admit that constructions like the
no-slip condition play an integral role in supporting the Navier-Stokes equations
and even admit that they will need to be included in any eventual best system
without being forced thereby to confer lawhood upon the boundary conditions.22

There is something very intuitive about this suggestion. Indeed, the thought
that there is an important distinction to be drawn between the supporting cast
and the laws that play the starring role is precisely the source of our intuition
that accounts of laws should be expected to confer lawhood on the Navier-Stokes
equations and not on things like the no-slip condition. The problem, however, is
that this intuitive distinction is exactly the kind of thing that we would want an
account of laws to explain in the first place, and so is not the kind of distinction
to which an account of laws should appeal. Given a set of regularities, the job
of an account of laws is in part to tell us which are the laws and which are not.
If the criteria offered by the account label some things laws that we intuitively
recognise play a slightly different role, then it is no response at all to say: those
things are not laws on my account because they only play a supporting role to
the real laws. After all, it is the job of the account in the first place to tell us
what the real laws are. From the perspective of an account of laws, the many
regularities that obtain in the world do not come, as it were, pre-labelled.

It is also worth registering that scientifically speaking the question of the differ-
ent roles played by central laws and boundary conditions can be quite subtle.
If one were to merely write down the Navier-Stokes equations and the relevant
boundary conditions as a set of equations, it would not be right to say that
one could somehow immediately discern that the Navier-Stokes equations are
the real laws and the boundary conditions merely supporting actors. The in-
tuitive distinction that we draw between the Navier-Stokes equations and their
boundary conditions is rooted in relatively complex and subtle facts about the
way that these respective components come to be used. But recall that for prag-
matic Humeans (and proponents of the BSA in general) it is the system as a
whole, and not individual regularities, that we evaluate according to some list
of pragmatic criteria. We do not ask whether the Navier-Stokes equations play
some lawlike role in scientific practice but whether the system containing them
best fulfils some criteria inspired by the role that laws play in scientific practice.
If the only way to get the Navier-Stokes equations into the best system is to
include some regularities that seem otherwise to play a different individual role
in scientific practice, then perhaps this an indication that the general framework
of the BSA is too coarse-grained to capture important distinctions between the
roles played by the different components of the set of equations we must use to
make predictions about fluid systems.

In short, this kind of reply puts the philosophical cart before the horse. There
is almost certainly an important distinction to be drawn between the individual
roles played by the Navier-Stokes equations and their attendant boundary con-
ditions, but this is the kind of thing that ought to emerge from an account of
laws rather than be appealed to by an account of laws. Moreover, the fact that

22Thanks to an anonymous reviewer for suggesting this reply.
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pragmatic Humean accounts confer lawhood on all of the regularities that make
it into the best system makes it hard to see how we would be able to recover
such a distinction by imposing further conditions at the level of the system. We
will return to this point again in §7.

5.5. Predictive Contexts. In §4, we asked why boundary conditions pose a
problem for the traditional BSA that is distinct from the one posed by initial
conditions. The answer was that where initial conditions may be construed as
pieces of information in the Humean mosaic, boundary conditions (like laws)
are instead general statements about the mosaic. As such, where the proponent
of the BSA could plausibly admit initial conditions into their best system with-
out conferring lawhood on them, this would not work in the case of boundary
conditions.

In the context of the pragmatic Humean reformulations of the BSA, we might
consider a different form of the suggestion that we can handle boundary condi-
tions in the same way we handle initial conditions. Rather than thinking about
the informativeness of a system in terms of how much it tells us about the mo-
saic, as Lewis did, some pragmatic Humeans may conceive of informativeness
as the extent to which a system allows us to input relatively small amounts of
information about the mosaic and get back larger amounts of information about
the mosaic.23 We may then imagine that we already possess the information
about the mosaic that is relevant to our given predictive context, and that the
best system will be the one that allows us to get the most out of this informa-
tion. On this conception, there is no need to include initial conditions in our
system at all, and thus no risk that they may end up counting as laws against
our wishes. Rather, initial conditions are pieces of information about the mosaic
that we input into a system of generalisations (or to which we apply a system of
generalisations), and the laws will be the members of that system which allows
us to maximise some list of pragmatic criteria. The question then is: why can’t
we simply think of boundary conditions in the same way?

There are two answers worth outlining, here. The first is similar to the reply
offered in the case of the traditional BSA: boundary conditions are not the kind
of thing we can easily construe as discrete pieces of information that we input
into our set of laws. Distinguishing beteween the generalisations in our candi-
date system and the information we have on hand in some predictive context
may make sense when we imagine that information to take the form “system
S exhibits properly P at time t,” but this distinction gets a bit murkier if the
information we are ‘inputting into’ our system is of the more general form “sys-
tem S exhibits properly P at all times t” or “systems of class C exhibit properly
P at all times t.” If we want to treat some statement S as the kind of thing
that we merely ‘plug into’ some system of laws rather than needing to consider
as part of the system itself, it would seem to me that S should be at least in

23This conception of the best system as in some sense ‘amplifying’ our knowledge of the mosaic
is one that comes out most explicitly in Dorst [forthcoming] and Callender [2017]. Thanks to

an anonymous reviewer for pointing this out.
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the neighbourhood of a discrete piece of information about the Humean mosaic.
Boundary conditions, I suggest, are not quite in this neighbourhood.

The second (and perhaps more interesting) reason that we cannot treat boundary
conditions as we would initial conditions relates to the difference between the
‘variable fixing’ and ‘structure-specifying’ roles mentioned in §2. There is a
difference between a statement specifying the condition at the boundary of some
system in terms of the value of some variables and a boundary condition in a more
involved mathematical sense. Whereas conditions at the boundary, like initial
conditions, help us to specify the system to which we would like to apply our
laws, boundary conditions help to provide the mathematical structure required
to apply the laws at all. More specifically, they help to ensure that our attempts
to apply certain laws to some system (or class of systems) amount to a well-posed
problem. If you change the initial conditions (or conditions at the boundary), you
change the system you are working with. If you change the boundary conditions,
on the other hand, you change the nature of the predictive problem you are
trying to solve. In this sense, boundary conditions, alongside laws, form part of
the theoretical machinery that we use to turn particular bits of information into
predictions, rather than simply being ‘inputs’ into that theoretical machinery.
Unlike initial conditions, then, they should not be treated as information that we
‘input into’ some predictive system but rather as part of the predictive system
itself.

§6. Boundary Conditions as Laws? The pragmatic Humean might at this
stage wonder what is so bad about the possibility that their account delivers the
result that the boundary conditions required by the Navier-Stokes equations are
laws.24 After all, I did mention that some of these boundary conditions, such
as the no-slip condition, exhibit a limited range of lawlike characteristics. On
the other hand, many of the boundary conditions on which the Navier-Stokes
equations rely do not exhibit these characteristics. In particular, it will help to
look at the differences between the no-slip condition and some of the inlet-outlet
conditions required for certain systems.

It is worth noting to begin with that the no-slip condition applies to a relatively
wide variety of systems, from fluid in pipes to air flowing around a ceiling fan.
In these contexts, it serves as a generalisation that relates the velocity of the
fluid at the boundary to the shear rate at the boundary. Moreover, such slip
conditions remain invariant under quite a wide variety of interventions we might
perform on our system.25 For instance, if a slip condition is the appropriate one
for a fluid-solid pair, then changing the size of the shape of the boundary in
most ways will not affect the boundary conditions at all. Indeed, as long as the
amount of slip is independent of the amount of shear, as it is in most cases, then
physicists treat the amount of slip as a robust properly of a given fluid-solid pair
(Lauga, Brenner, and Stone [2007, 1232]). That is to say that the slip condition
for water flowing along a lead surface will apply whether the surface is a closed

24Thanks to Erica Shumener, as well as an anonymous reviewer, for raising this point.
25For a more detailed overview of the experimental data, see Sykora [2019, 15-21].
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pipe, a container wall, an obstacle in a stream, and so on. The slip conditions
for various fluid-solid pairs are thus invariant under considerable changes in
boundary shape. Finally, as the discussion in §5.2 of Stoke’s derivation shows,
these slip conditions are not merely empirically measured but indeed enjoy a sort
of theoretical support.

The above is not to suggest that the various slip conditions for the Navier-Stokes
equations certainly are laws. Rather, it is simply to point out that some bound-
ary conditions for the Navier-Stokes equations display some of the characteristics
that we intuitively associate with laws: they have wide scope, they are invariant
over a wide array of changes, and they enjoy some form of theoretical support
(i.e. they are not brute empirical generalisations).

Inlet-outlet conditions, on the other hand, lack these features entirely. If there
is additional liquid flowing into (or out of) our system, then working with the
Navier-Stokes equations requires that we characterise via boundary conditions
how this inflow (or out flow) behaves. By contrast with slip conditions, such
inlet conditions are often very specific. The right inlet condition depends in
sensitive ways on the specific geometry of the physical system and so our inlet
conditions often have a very limited scope.26 For this reason, they do not display
particularly notable amounts of invariance under manipulations: small changes
to the shape of the boundary can radically impact the suitability of a given
inlet condition. Finally, we do not often possess good ‘theoretical’ methods for
determining these inlet-outlet conditions and in such cases must employ heavily
computational empirical methods to produce them.

If the slip conditions were the only boundary conditions required by the Navier-
Stokes equations, then the pragmatic Humean may simply want to bite the bullet
and accept that on their account slip conditions will turn out to be laws. The
fact that these conditions exhibit some of the characteristics that we intuitively
associate with lawhood may make this an acceptable price to pay. However
conferring lawhood on the entire set of boundary conditions involves conferring
lawhood on the inlet conditions as well, even though they display almost no
intuitively lawlike behaviour. Indeed, in spite of their formal structure these
conditions seem far more like particular, contingent facts than the kind of thing
that any scientist would recognise as a law.

Part of the difficulty here, as we saw in §5.4, is that the pragmatic criteria
with which the BSA operates are applied at the level of the system as a whole.
This means that pragmatic Humeans who are happy to confer lawhood on slip
conditions but want to avoid conferring lawhood on inlet-outlet conditions must
outline some criteria for picking out the best system on which the slip conditions
appear in the best system but the inlet-outlet conditions do not. The problem is
that despite the fact that they may exhibit very different degrees of intuitively
lawlike behaviour, they are equally integral to the ability of our system as a
whole to play the pragmatic role we want it to play. For instance, both kinds

26Relatedly, we must often resort to highly computational methods appropriate to very specific
circmunstances in order to determine these inlet-outlet conditions in the first place. For exam-

ples, see Galusinski, Meradji, Molcard, and Ourmières [2017] and Bruneau and Fabrie [1994].
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of conditions are vital to the question of whether the task of solving the Navier-
Stokes equations amounts to a well-posed problem or not. Removing the inlet-
outlet conditions from our system would have just as negative an impact on
the pragmatic capacity of our system as would removing the more ‘intuitively
lawlike’ slip conditions.

In short, it does not seem promising for the pragmatically-inclined Humean to
respond to the problem we have posed by simply embracing one horn of the
dilemma and accepting the verdict that the boundary conditions for the Navier-
Stokes equations are laws. Although this might seem an acceptable price to pay
in some cases, it is clearly too high a price to pay in others. Moreover, both
the more intuitively lawlike and less intuitively lawlike boundary conditions are
equally vital to the ability of any system containing the Navier-Stokes equations
to perform certain pragmatic tasks. As such, it is difficult to see how the prag-
matic Humean could outline criteria for picking out the best system that would
ensure that things like the slip conditions found their way into the best system
(and thus were counted as laws), while things like inlet-outlet conditions did not.

§7. Conclusion: A Pragmatic Tension. So where does all of this leave these
recent attempts to reform the BSA? By and large these alternative BSAs proceed
by identifying features that laws of nature must possess in order to play the role
that they do in scientific practice and then use these features to generate a new
nomic formula while leaving in place the broader framework of the BSA. I have
argued that there is a problem with this strategy, since many scientific laws
require the assistance of (often quite complex) additional modelling ingredients
before they are in a position to perform their central role in scientific inquiry. If
this is right, then it is difficult to see how such alternative BSAs will be able to
render the verdict that such laws are indeed laws. The Navier-Stokes equations,
along with many others, will be left out in the cold.

Perhaps there are other strategies for generating nomic formulas that avoid this
problem, but it does seem to me that the fact that laws do not always operate
as lone wolves poses a broader challenge for the framework of the BSA. Recall
that the BSA is primarily phrased in terms of the Humean mosaic, made up of
particular matters of fact, and generalisations over that mosaic. Not every such
generalisation is a law, however, and so the task becomes that of cleaving the laws
proper from the accidental generalisations. In practice, however, scientists make
constant use of modelling ingredients that occupy a somewhat messy continuum
between full-blown laws and simple initial conditions-style matters of fact. The
BSA faces the challenge of reconciling the fact that these ingredients do not
seem to be (in most cases) appropriate candidates for lawhood with the fact
that they play an integral role in scientific practice (and indeed in allowing laws
to do the job that they do). It is not easy to see how a different set of criteria
for picking out the best system, however motivated by an examination of the
role laws play in scientific practice, will help us to handle the delicate interplay
between scientific laws and their supporting casts.
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Perhaps what the BSA needs here is some independent handle on the distinction
between laws proper and their supporting casts. If the Humean were able to
differentiate in some robust way between the generalisations eligible to be laws
and those merely eligible to play supporting roles, then they could avoid the
problems we encountered above by ensuring that their nomic formula applies
only to the former kind of generalisation. Armed with a distinction between
law-eligible and supporting-eligible generalisations, the BSA may then proceed
along some of the pragmatic lines we have seeen in order to distinguish the
accidental generalisations from the laws proper. On this line of thinking, even
if we are forced to include some of the supporting cast members in our best
system, they will not thereby turn out to be laws because we have in hand some
independent distinction between the members of the best system eligible to be
laws and those merely eligible to play supporting roles.

Maybe it is possible to draw such a distinction, but this would be no simple
task. The slip conditions required by the Navier-Stokes equations are differen-
tial equations in their own right that apply at all times t to the velocity field
describing the motion of fluid particles in the system. At the very least this
seems to suggest that a mere syntactic criterion will not be enough to maintain
such a distinction. Perhaps we can draw the distinction required by attending
more closely to the roles played by laws proper within the broader modelling
environments consisting of laws and their supporting casts, though I am not
sure exactly how this might look. At the very least, drawing the distinction in
such a way would require closer examination of the details of the role played by
boundary conditions (and material parameters, and so on) in scientific practice
than has been characteristic of the literature on laws of nature thus far.

There would also be something quite strange about this way of defending the
BSA. In some sense the central claim of the BSA is that it is precisely the notion
of membership in the best system that captures what it is to be a law and thus
what it is to play a lawlike role in scientific practice. Perhaps it is true that
the pragmatic Humean could respond to the difficulties surrounding boundary
conditions by saying something like: although members of the supporting cast
might find their way into the best system, there are finer distinctions between the
role that various components of the system play in scientific practice to which
we will need to attend in order to separate the laws from the non-laws. In some
sense, this is probably right. But in another sense, we might ask: how much
work is the notion of membership in the best system now doing in separating
the laws from the non-laws? If we are denying lawhood to general statements
about the Humean mosaic that find their way into the best system on the basis of
more fine-grained considerations of the role played by different kinds of general
statements in scientific practice, then why should we continue to work within the
framework of the BSA? In such an event it would seem like it was these more
fine-grained considerations that were doing the real work of separating the laws
from the non-laws.

Of course, these issues must be worked through carefully, and doing so is beyond
the scope of what I hope to achieve here. The point of this paper is to argue
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that the integral role played by supporting cast members such as boundary
conditions in the scientific employment of laws presents a considerable obstacle
to recent attempts to reform the BSA. The point of these concluding remarks
is to tentatively suggest that getting around this obstacle might require more
radical reform than simply switching out Lewis’s old nomic formula for a more
pragmatically-inspired one.

There is a way in which this, if true, is unsurprising. I think that Woodward
[2014, 92] was right to say that

“The appeal of the BSA does not, I believe, mainly derive from its demon-
strated descriptive adequacy as a treatment of detailed aspects of scientific
practice involving laws. It rather has to do with its overall fit with other
ideas to which many philosophers are committed: two of these are a pic-
ture of scientific reasoning as involving a trade-off between simplicity and
strength, and a ‘Humean’ programme of reduction of the nomic to the non-
nomic. [...] This makes many philosophers think that something along the
lines of the overall package must be right and perhaps that they ought
to pay less attention than they should to the details of exactly how the
account is supposed to work.”

More recent defenders of the BSA have done an admirable job in attempting
to refine the BSA so that the kinds of generalisations that feature in the best
systems picked out by their nomic formula more closely reflect the laws that
feature in scientific practice. But then again, one might wonder, as Woodward
does, whether the ability to capture the methodology of modern science in all
its complex, gory detail was ever part of the BSA’s core appeal. Driven by
commendable naturalistic scruples to demand more of the BSA in terms of de-
scriptive adequacy to the methodology of modern science, we may find that the
framework begins to collapse (or at least creak unpleasantly) under a kind of
pressure it was never intended to withstand. Adding a kind of pragmatic in-
flection to the nomic formula is one thing, but reckoning with the fact that the
scientific use of laws involves a far wider array of constructions than simply laws
and pieces of the Humean mosaic may turn out to be another thing entirely.

Perhaps my pessimism will turn out to be misplaced. Either way, if we want to
amend the BSA so that it provides us with a more descriptively adequate picture
of scientific methodology, we must do more than simply ask ourselves what role
laws (on their own) play in scientific practice. We must ask ourselves how they
go about playing that role and whether, in fact, they require any help in doing
so. If, as I have argued, they do, then the question is: does the BSA have the
resources to recognise the supporting cast without inadvertently giving them all
a star billing? It seems to me that the viability of the program of pragmatic
reform of the BSA depends on the answer to this question.

Acknowledgements. I am very grateful to Bob Batterman, Mark Wilson,
David Wallace, Erica Shumener, Gordon Belot, James Shaw, Marco Maggiani,
Gabrielle Kerbel, Stephen Mackereth, Julia Bursten, Mike Townsen Hicks, Isaac



LAWS OF NATURE AND THEIR SUPPORTING CASTS 25

Wilhelm, Christian Loew, Diego Arana, William Wolf, and two anonymous re-
viewers for their many insightful comments on various iterations of this paper.
I would also like to thank audiences at the University of Pittsburgh and Central
European University for their feedback.

REFERENCES

George K. Batchelor [2000], An Introduction to Fluid Dynamics, Cambridge Mathe-

matical Library, Cambridge University Press.
Robert W. Batterman [2013], The Tyranny of Scales, The Oxford Handbook of the

Philosophy of Physics (Robert W. Batterman, editor), Oxford University Press, pp. 255–

286.
Robert W. Batterman [2021], A Middle Way: A Non-Fundamental Approach to

Many-Body Physics, Oxford: Oxford University Press.

Robert W. Batterman and Sara Green [2020], Steel and Bone: Mesoscale Modeling
and Middle-Out Strategies in Physics and Biology, Synthese, vol. 199, no. 1-2, pp. 1159–1184.

Harjit Bhogal and Zee R. Perry [forthcoming], Humean Nomic Essentialism, Noûs.
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